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Broadening the scope of social environments in which
robots can be reliably deployed requires understanding how
to safely navigate in contact-prone environments. While
collision-free social navigation is well studied, navigation
planners that incorporate safe contacts remain largely
unexplored. Traditional social navigation schemes require
the robot to stop short if a collision is imminent [1].
“Freezing” the robot while navigating in a crowd may cause
people to trip and fall over the robot, causing more harm
than the collision itself. In very dense social environments
where contacts are common (e.g. public transit, narrow
corridors, doorways, etc.), this control scheme would render
the robot stationary and unable to traverse the environment,
which would in turn prevent robots from ever being deployed
in densely populated locales. Thus, if we wish to deploy
robots in crowded human spaces, planning safe contacts is
imperative. A further challenge is that people in the most
crowded environments will occlude traditional exteroceptive
sensors that are closer than the sensor’s minimum resolving
distance. To overcome these limitations, we propose a
learning-based motion planner and control scheme to
navigate ultra-dense social environments using safe contacts
for an omnidirectional mobile robot. Detailed information
and additional materials can be found on our project page:
https://sites.google.com/view/icra-blind-social-nav.

The use of contacts in navigation planning for social
spaces remains broadly under-studied. One approach to
overcome the freezing-robot problem in crowds formulates
a dynamical system-based controller to slide around the
point of contact [2]. This results in an effective reactionary
controller with maximum contact force guarantees much
below human injury-causing thresholds [3]. However, this
control scheme requires free space for the robot to slide into
and permits only a single point of contact with the robot -
both assumptions that may not be satisfied in the wild. This
reactive control scheme was deployed on a standing mobility
vehicle in social environments with densities of less than
one person per square meter (pp/m2) [4]. Another study
[5] mounts a robot arm on a mobile base and explores the
use of intentional touches and contacts to encourage people
to take a step, clearing a path for the robot. However, this
study only investigates environments with a single human
and ample free space to step into. These initial solutions to
model-based contact-aware navigation are rigid and impose
a number of assumptions that may make them unsuitable
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for deployment in subways, entertainment venues, busy
corridors, or other locations with high density traffic.

Alternatively, learning-based and data-driven methods
have found success in collision avoidance throughout the
social navigation literature [6]. While some methods learn
to avoid collisions from a model-based or mechanistic
description of human behavior such as the Social Force
Model [7] [8] [9] [10] [11], others estimate human behavior
without the use of explicit models [12] [13] [14]. However,
learning-based approaches for contact-based navigation are
largely unexplored. One study that applies learning methods
to contact-based navigation in dense social environments was
able to plan safe trajectories in crowds [15], but struggled
in environments with crowd densities greater than 1 pp/m2.
Specifically, failure occurred when the visual sensors of
the robot were occluded due to the density of the crowd or
limitations in the minimum sensing distance of the sensors.
In the highest density crowds, visual sensors are often
occluded and are therefore unreliable for planning safe paths.

To safely navigate in crowds, we devise a learning-based
motion planner and control scheme that effectively navigates
dense social environments without the use of visual sensors.
Critically, our planner makes no assumptions about the
environment, nor does our planner prescribe an “optimal”
contact. Instead, the local planner learns an implicit
representation of the contact dynamics, and uses this model
to estimate desired velocities and headings. Given the
difficulty of explicitly modeling inter-crowd interactions
and the limitations posed by occlusions to the sensors, this
generality allows our approach to successfully navigate
crowds of higher density than has been previously reported.

We formulate contact-based social navigation as a
multi-task reinforcement learning problem. We consider the
task as 1) follow a coarse set of waypoints from a global
planner, and 2) minimize discomfort to humans. We define
discomfort as the ratio between measured contact forces
and the average pain threshold for blunt impacts between a
human and a robot, as established by the ISO 15066:2016
standard. The average pain threshold for the lower legs is
130 Newtons [3]. By expressing contact forces as a ratio,
the planner learns to implicitly reason about what sorts
of contacts should be considered tolerable. Formulating
the task in this way avoids prescribing collision avoidance
behaviors and collision resolution strategies a priori. We
train the policy via proximal policy optimization (PPO) [16]
to output desired velocities and headings.

The local planner is modeled as a neural network policy.
In particular, an observation of the robot’s state and observed
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Fig. 1. Vision-occluded tactile control. A global planner (e.g. A*, RRT, etc.) sends waypoints to the local planner. The local planner also receives robot
state information and contact forces. The local planner then outputs desired speed, motion heading, and orientation, which produces the desired velocity
in world coordinates as ẋd(t) = vd

( cos θd
sin θd

)
. A low-level controller then produces motor torques to stabilize the robot’s velocity and heading around the

desired setpoint.

contact forces is passed through a linear projection layer
before being passed to the multilayer perceptron backbone
of the policy. We design the policy to be relatively shallow
so that it can be evaluated in real time on the limited robot
hardware. The policy has three outputs: desired speed,
desired motion heading, and desired orientation. Note that
the orientation of the robot and direction of motion are
decoupled due to the omni wheels.

We train the local planner in simulation using NVIDIA
IsaacGym [17]. Environments are procedurally generated to
mimic hallways in the Anna Hiss Gymnasium robot testing
facility. During training, each environment is populated by
simulated humans with deformable joints at a density of
1 pp/m2. Goal locations are selected five meters in front
of the robot, and an A* path [18] is generated at runtime
from a map of the empty environment. 2048 environments
are trained for 3.28 billion total training steps with 5 mini
epochs per rollout. The control frequency is 10 Hz while the
physics frequency is 100 Hz with 4 substeps, resulting in
400 Hz physics updates. Training on a workstation NVIDIA
3080 12GB GPU takes 5 days. The reward function consists
of three terms: one term minimizes the distance and heading
to the next waypoint, one minimizes the contact force ratio,
and one minimizes the slew rate, which encourages smooth
policy outputs.

The policy is evaluated in simulation over 160 trials
with crowd densities varying between 0 and 1.75 pp/m2.

See Table I for a summary of results compared to [15]1.
We evaluate the policy with three metrics: safety factor,
completion percent, and time to completion. The safety
factor is defined by the percent of trials for a given crowd
density in which the robot did not violate the safe contact
constraint (130N). Completion percent is defined as the
percent of trials for a given crowd density in which the robot
successfully reached the target location. In trials with the
highest densities, some crowd configurations had no possible
safe paths to the target. Time to completion is the mean
time of robot travel for a given policy to reach completion.

TABLE I

Density Method Safety Completion Time (σ)
<1.0 pp/m2 [15] 96% 91% 11.28 (2.32)

Ours 100% 100% 20.33 (1.66)
≥1.0 pp/m2 [15] 77.5% 42% 15.20 (6.52)

Ours 90% 77% 22.54 (5.50)

In crowds with density less than 1 pp/m2, we achieve
a 100% safety factor and completion percent, beating state
of the art by 4% on safety factor and 9% on completion
percent. This increase comes at the cost of completion time,

1This work is a continuation of preliminary results that we presented at
the 2nd Workshop on Human-Interactive Robot Learning (HIRL) at the 2023
ACM/IEEE International Conference on Human Robot Interaction. While
the problem statements are similar, we present a distinct method to deal
with the problem of sensor occlusions in very crowded environments.



which rises 80.2%. This longer mean path can be attributed
to a slower maximum speed. Without visual observations,
the policy must be reactive. The result is less aggressive
navigation plans than the policy presented in [15]. Where
[15] accelerates into free space, our policy maintains a
consistent average velocity low enough that initial contact
forces stay below the safety threshold. In the most crowded
environments with densities greater than 1 pp/m2, we
achieve a 90% safety factor and a 77% completion percent,
beating state of the art by 12.5% and 35%, respectively.
As in the lower density case, these improvements come at
the cost of a 48.3% increase in completion time. Both the
increase in completion time and safety factor can largely
be attributed to the slower maximum speed. However, the
significant improvement in completion percent and modest
improvement in safety factor are additionally benefited by
the removal of the visual observation present in [15].

Ironically, the lack of information about the robot’s
environment produces a safer navigation plan, as the robot
makes no assumption about future contacts given the current
observation, and more acutely responds to sensed contacts.
By comparison, a common failure mode of [15] occurs when
the policy commands an aggressive acceleration because
the observation indicates that the path is clear, only to run
over the foot of a simulated human that is out of the depth
camera’s field of view. An additional failure mode of [15]
occurs when the robot wedges itself between two simulated
humans. The depth camera shows a clear path ahead with
minimal steady state contact forces, and so the policy
commands an acceleration, causing either a safety failure or
for the robot to get stuck in the configuration until timeout,
failing to complete the navigation task. By comparison,
our policy learns a tip-toeing behavior whereby the robot
attempts to slowly accelerate forwards, but, upon contact,
attempts to accelerate to the left and right until a free path
is found. This results in a dramatically higher completion
percent, and the navigation strategy is less aggressive than
the one learned in [15], leading to a higher safety factor
as well. The only recorded instances of failure to meet the
safety standards is caused by a secondary collision. After the
robot makes a compliant contact with a simulated human,
the robot accelerates aggressively in the direction opposite
of the impact normal to decelerate and decrease the impact
force. When another simulated human is directly adjacent
to the first, this aggressive reversing behavior may cause
the robot to contact the second human with enough force
to violate the safety constraint. This behavior only occurs
in crowds of density equal to or greater than 1 pp/m2. The
robot was trained in simulated crowds of 1 pp/m2, and so
this aggressive over-correcting acceleration may be mitigated
by training in environments of higher density where such
interactions are likely to occur more often. We will validate
these simulation results on our research platform, Bumpybot,
a mobile base with torque sensing omni wheels. The torque
sensors are used to estimate the orientation and magnitude of
contact forces on the body of the robot, making Bumpybot
ideal for studying navigation in collision-prone environments

[19]. There are many exciting opportunities to include robots
in crowded human environments, and we hope this study will
help explore how to best embrace contacts in these spaces.
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