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ABSTRACT

Quantum Annealing (QA) on D-Wave’s Advantage system and Tensor Train (TT)
sampling are compared for QUBO-based ADMET classification. QA-based meth-
ods (QSVM, QBoost) leverage quantum effects to escape local minima, while TT
sampling employs low-rank decompositions for efficient high-dimensional data
handling. Benchmarks highlight TT sampling’s potential for improved optimiza-
tion in drug discovery.

1 INTRODUCTION

Quantum computing introduces novel methods for tackling combinatorial optimization via Quantum
Annealing (QA), which reformulates problems as Quadratic Unconstrained Binary Optimization
(QUBO) tasks|Salloum et al.| (2024czbja). Despite its promise, QA suffers from limited connectivity,
as noted in previous work on QSVM and QBoost|Salloum et al.|(2025). In contrast, TT sampling, by
decomposing high-dimensional tensors into sequentially combined core tensors [Oseledets| (201 1)),
offers a scalable alternative for solving large QUBO problems Batsheva et al.| (2023)); Ryzhakov
et al.| (2024); Nikitin et al.| (2022). We evaluate TT sampling for ADMET classification in drug
discovery and compare its performance to QA-based and classical approaches.
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Figure 1: Quantum-Inspired Machine Learning Pipeline for ADMET Classification

Building on |Salloum et al.| (2025), this work introduces a Tensor Train (TT) decomposition-based
approach, leveraging probabilistic tensor sampling to solve QUBO formulations. TT sampling ef-
ficiently handles high-dimensional data via structured decompositions, enabling scalable optimiza-
tion. We evaluate this method on QUBO-based ML models for ADMET drug discovery datasets,
benchmarking against D-Wave’s QA models (e.g., QSVM, QBoost) and classical approaches like
LightAutoML, comparing performance with prior reported results.
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2 METHODOLOGY

TT decomposition represents a tensor A € R™1 %72 XNd zg:
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TT sampling efficiently approximates high-dimensional joint distributions P(w) by sequentially
sampling variables wy,ws, ..., wq, conditioned on previously sampled values. This transforms
high-dimensional sampling into a series of low-dimensional steps, avoiding the curse of dimension-
ality. The TT decomposition represents P(w) using low-rank cores, enabling efficient computation
of marginal and conditional probabilities. At each step, wy, is sampled from:

P(w s, W
P(wk|’w1,...,wk_1) — ( 1 k)

2

P(wl,...,wk,l)’

computed via incremental core contractions, avoiding explicit high-dimensional tensor operations.
TT sampling reduces complexity from O(n?) to O(dnr?), making it scalable. Figure [1| outlines
the overall pipeline: starting from ADMET datasets (with molecular structures in SMILES format),
the problem is formulated as a QUBO and then optimized using the TT sampler, with performance
evaluated via the AUC-ROC metric.

3 RESULTS AND NOTABLE EXCEPTIONS

Table [I] shows that while LightAutoML outperforms other models on 9 of 10 ADMET
datasets, tensor-based TT-Sampler models (TT-Boost, TT-SVM) consistently deliver strong perfor-
mance—especially on datasets like #5 (BBB_Martins) and #8 (hERG) where feature interactions are
critical. The key observations include:

* Dataset #10 (Carcinogens_Lagunin): TT-SVM scores 0.8876 versus LightAutoML’s
0.8258, demonstrating the efficacy of tensor methods for complex toxicity endpoints.

» Dataset #3 (Pgp_Broccatelli): QSVM records 0.6102 compared to TT-SVM’s 0.8203,
highlighting the challenges QA models face with non-linear decision boundaries.

Figures 2] and [3]illustrate these performance differences.
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Figure 2: QSVM vs. TT-SVM
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Figure 3: QBoost vs. TT-Boost
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4 CONCLUSION

Although LightAutoML remains a strong baseline, tensor-based methods—especially those lever-
aging the TT-Sampler—offer a robust and practical approach for ADMET prediction. Notably,
the TT-Sampler proves to be an excellent tool for solving QUBO problems, efficiently capturing
complex feature interactions. In contrast, QA models still require significant refinement to address
scalability and stability challenges. Future work should explore hybrid models that integrate tensor
decomposition with QA to further enhance predictive performance.
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A SUPPLEMENTARY MODEL EVALUATION RESULTS
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Table 1: AUC-ROC Scores for ADMET Classification Models

Dataset LightAutoML  QBoost QSVM  TT-Boost TT-SVM
PAMPA NCATS (#1) 0.8463 0.7102 0.6316 0.7312 0.6563
HIA _Hou (#2) 0.9962 0.8323 0.8123 0.8489 0.8779
Pgp_Broccatelli (#3) 0.9446 0.7638 0.6102 0.7434 0.8203
Bioavailability_-Ma (#4) 0.7599 0.6254 0.5713 0.5829 0.6129
BBB_Martins (#5) 0.9310 0.5826 0.7939 0.6812 0.8336
CYP2C9_Substrate (#6) 0.6975 0.6048 0.5347 0.5310 0.5753
CYP3A4 _Substrate (#7) 0.6442 0.5554 0.5204 0.5910 0.4937
hERG (#3) 0.8185 0.6155 0.6382 0.6440 0.7519
DILI (#9) 0.9113 0.7103 0.6689 0.7374 0.6769
Carcinogens_Lagunin (#10) 0.8258 0.8614 0.7306 0.7897 0.8876

Note: Bold values indicate the highest score per dataset.
AUC-ROC scores closer to 1.0 represent better performance. TT methods show competitive results,
particularly for datasets #2, #5, and #10, while LightAutoML dominates most benchmarks.
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