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Abstract

Large Multimodal Model (LMM) is a hot research topic in the computer vision
area and has also demonstrated remarkable potential across multiple disciplinary
fields. A recent trend is to further extend and enhance the perception capabilities
of LMMs. The current methods follow the paradigm of adapting the visual task
outputs to language-oriented formats. This adaptation leads to the convenient
development of such LMMs with minimal modifications, however, it overlooks the
inductive biases within diverse visual tasks and hinders the learning of perception
capabilities. To address this issue, we propose a novel LMM architecture named
Lumen, which decouples the learning of perception capabilities into task-agnostic
and task-specific stages. Firstly, Lumen promotes fine-grained vision-language
concept alignment, which is the fundamental capability for various visual tasks.
Thus the output of the task-agnostic stage is a shared representation for all vision-
centric tasks we address in this paper. Afterward, the task-specific decoding is
carried out by flexibly routing the shared representation to lightweight task decoders
with negligible training efforts. Comprehensive experimental results on a series
of vision-centric and VQA benchmarks indicate that our Lumen model not only
achieves or surpasses the performance of existing LMM-based approaches in a
range of vision-centric tasks while maintaining general visual understanding and
instruction following capabilities.

1 Introduction

As the Large Language Models (LLMs) [1, 2] currently ignite the spark of Artificial General
Intelligence (AGI), Large Multimodal Models (LMMs) [3, 4, 5, 6, 7, 8, 9] take a step forward by
integrating visual modalities with the linguistic prowess of LLMs. With the instruction-following
and content-reasoning capabilities inherited from LLMs, the LMM has successfully functioned as
a versatile assistant across a wide range of tasks, including visual question answering [10, 11, 12],
image captioning [13, 14], text-to-image generation [15], etc.

In pursuit of more convenient and efficient human-AI interaction, it is crucial to further explore
fundamental vision-centric capabilities encapsulated in the LMMs, which aid in detailed object
referencing and dialogue responses. Early works, e.g., MiniGPT-v2 [16], Kosmos-2 [17] and Qwen-
VL [18], equip the LMM with the grounding ability by reformulating bounding boxes as a sequence of
coordinate tokens and adapting them to the language model’s output space. Griffon [19] extends this
design to object detection by meticulously curating a language-prompted detection dataset. Owing
to such language model-oriented reformulation, these methods can be implemented with minimal
modifications to existing LMMs.
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“Person-[232,49,134,367] & 
person-[391,42,153,406] & 
person-[85,71,109,361] …”

“The location is [LOC]. The task output is [DET]/[SEG]/[POINT]”

Previous 
Methods

Lumen
 (Ours)

Figure 1: Comparison of our proposed Lumen with previous methods. Previous methods (e.g.,
Griffon [19]) serialize bounding box coordinates into discrete token sequences to conform to the
language-oriented outputs format of LMMs, disregarding the unordered nature inherent in bounding
boxes. Our Lumen first predicts unified heatmaps for various tasks. These heatmaps are further used
for guiding simple decoding tools with the parsed task-type indicators to support versatile visual
tasks. We omit the user instruction of referring to all persons in the image for conciseness.

Although convenient, the aforementioned approaches encounter challenges when scaling up to more
intricate scenarios and vision-centric tasks. First, those LLMs highly relies on language models’s
auto-regressive sequence generation method, which leads to high uncertainty when multiple objects
are concurrently addressed. As shown in the first row of Fig 1, the three persons highlighted with
bounding boxes of different colors lack an inherent order. And imposing a sequential order on
them would exacerbate the confusion in the decoding process, as the model would be compelled to
produce drastically different outputs after the same word “person”. Although sequence augmentation
techniques introduced in Pix2Seq [20] can alleviate this issue, they are tailored for the object detection
task and can not be seamlessly transferred to other vision-centric tasks such as instance segmentation
and pose estimation. On the other hand, in contrast to tasks within the NLP field, which often exhibit
stronger inter-task correlations [21], vision-centric tasks are inherently discrete due to the inductive
bias introduced by their distinct task definitions [22]. Therefore, reformulating heterogeneous vision-
centric task outputs into language-oriented formats tends to overemphasize the format consistency
with language models, while the learning of the underlying visual perception capabilities and intrinsic
characteristics of diverse vision tasks is overlooked.

When delving into fundamental vision-centric tasks, namely object detection, instance segmentation,
and pose estimation1, we observe that they can be decoupled into task-agnostic and task-specific
learning processes. Essentially, these tasks share a common task-agnostic objective of identifying
individual instances with an instruction like “finding the area addressed in instructions”, while
their task-specific definitions introduce different decoding rules for generating diverse formats of
outputs (e.g., boxes, masks, or points). Compared with the general task-agnostic objective, task-
specific outputs relies less on semantics but is more difficult for the LMMs to learn to output. Based
on the above analysis, in this paper, we propose Lumen, a Large multimodal model with vision-
centric capabilities enhancement, which decouples the task-agnostic and task-specific learning in two
consecutive stages as shown in the Fig 1. Concretely, in the first stage, the aforementioned visual
tasks are unified by reformulating them into the same matching problem. We start by feeding the
user’s instruction and image into a LMM for content comprehension. The obtained responses contain
a designed special token (i.e, [LOC] in Fig 1) that encapsulates the visual concepts conveyed in the
provided instruction, regardless of the specific task. Subsequently, this special token interacts with
image patches via a transformer-based aligner to generate a heatmap, wherein the response at each
location indicates the matching probability between the instruction and the corresponding image
region. In the second stage, utilizing this heatmap as indicative guidance, task-specific decoding

1We only investigate these three visual tasks in this paper, as LMMs inherently lack image generation
capabilities.
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processes are further managed by flexibly assembling predefined decoding rules and lightweight
decoders to generate the final outputs with different formats. Due to such decoupled learning
behaviors, on the one hand, Lumen can concentrate on promoting fine-grained multimodal content
comprehension, rather than being trapped in learning diverse specialized decoding rules lacking in
semantics. On the other hand, Lumen can be affected less by the various inductive biases associated
with vision-centric tasks within the LLM token space, thereby seamlessly maintaining general visual
understanding and instruction following capabilities, as demonstrated in Table 2.

In summary, our contributions are three folds: (1) We introduce Lumen, a Large multimodal
model with vision-centric capabilities enhancement, which unleashes the vision-centric potential of
the LMM by decoupling the task-agnostic and task-specific learning processes; (2) Our Lumen can
seamlessly adapt to tasks such as object detection, instance segmentation, and pose estimation without
requiring meticulously curated specialized dialogue datasets as done in the previous work [19]. (3)
Our Lumen not only matches or exceeds the performances of existing LMM-based approaches
on a series of vision-centric tasks, but also maintains general visual understanding and instruction
following capabilities.

2 Related Work

2.1 Large Multimodal Models (LMMs)

Benefiting from the remarkable reasoning capabilities of Large Language Models (LLMs), LMMs [23,
9, 24, 25] transfer these abilities to the vision domain by aligning visual tokens with LLMs’ input
space. To achieve this, pioneering work, Flamingo [26] resamples the visual features and feeds
them into attention-based adapter layers inserted in the LLM. Aiming at more comprehensive vision-
language alignment, BLIP-2 [27] designs a Q-Former and jointly performs cross-modal representation
learning and generative learning. Inspired by the instruction tuning technique [21, 28] in NLP field,
Instruct-BLIP [29], LLaVA [4] and Mini-GPT4 [3] curate high-quality multi-modal instruction data
for enhanced instruction-following abilities. Meanwhile, to systematically evaluate their general-
purpose conversational capabilities, more advanced benchmarks [30, 31, 32, 33, 34, 35] have been
explored. However, these methods focus on high-level visual content comprehension and reasoning,
ignoring the fundamental visual perception functions, such as object detection, instance segmentation,
pose estimation, etc.

2.2 Vision Generalist Models

Generalist models in the vision domain aim at unifying a wide range of vision tasks using one
model. Motivated by the success of sequence-to-sequence models in NLP field [13], OFA [36]
and GIT [37] unify various tasks in the sequence generation format. Following this trend, Unified-
IO [38], Pix2Seq v2 [39] and UniTab [40] add discrete coordinate tokens into the vocabulary, so as to
accommodating more tasks. Moreover, Gato [41] successfully unifies reinforcement learning tasks
as the sequence generation format. Nevertheless, the sequence generation modeling can lead to low
inference speeds and degraded performances. Toward this end, Uni-Perceivers [42, 43] unify different
tasks as the maximum likelihood matching problem by calculating representation similarities of all
targets and each input. With such an objective, generative and non-generative tasks can be unified by
selecting corresponding input and target candidates. However, these generalist models are restricted
to pre-defined tasks, failing to be flexibly instructed by natural languages like LMMs.

2.3 LMMs with Vision-Centric Capabilities

To endow LMMs with vision-centric capabilities, two research directions are investigated. On
the one hand, a line of work regards LLMs/LMMs as intelligent planners, and allows them to
trigger a wide range of task-specific Application Program Interfaces (APIs) according to user’s
instructions. HuggingGPT [44] connect GPT with a suite of visual experts. AutoGPT [45] can further
execute post-processing programs after detection. Moreover, BuboGPT [46] further combines visual
grounding specialists with LMMs. On the other hand, an alternative approach explores the intrinsic
localization potential of LMMs with task-specific modifications. Kosmos-2 [17], MiniGPT-v2 [16],
Qwen-VL [18] and Shikra [47] enlarge the vocabulary size of LMMs with discrete coordinate tokens
to deal with the visual grounding task [48]. LISA [49] merges the LMM with SAM [50] for enhanced
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Figure 2: Overall framework of the proposed Lumen. Our Lumen consists of two stages. In the
first stage, the input image and the instruction with designed special tokens are embedded and fed
into a large language model to interact and comprehend visual and textual contents. Then, the [LOC]
token output and high-resolution image features are further aligned to produce a heatmap denoting
cross-modal matching probabilities. In the second stage, the heatmap can serve as a strong indication
for various vision tasks, and the task outputs can be obtained with lightweight task-specific decoders.
The routing of the decoding pathway is determined by the task token (e.g., [DET] in image) output
generated in the first stage.

reasoning capability in the referring image segmentation scenario [51]. However, these methods do
not address fundamental vision tasks like object detection and instance segmentation, where multiple
objects should be detected or segmented simultaneously. To address this issue, VisionLLM [52]
regards an LLM as a DETR-like task decoder and customizes structural prompts for the detection
task with Hungarian matching [53] for label assignment. Griffon [19] takes a different approach
by leveraging the inherent detection capabilities of the LMM, introducing a language-prompted
detection dataset for the instruction tuning. However, these methods leverage discrete coordinate
tokens as outputs for different vision tasks, while ignoring their inherent disparities. In this paper, we
disentangle the task-agnostic and task-specific learning of various vision-centric tasks to unlock the
visual potential of LMMs.

3 Method

As shown in Fig 2, our proposed Lumen comprises two consecutive stages. In the first stage, we
concentrate on promoting fine-grained multimodal content comprehension via densely aligning visual
regions and language instructions, disregarding the discrepancies between various vision tasks. In
the second stage, with the resulting alignment heatmap from the first stage, task-specific decoding is
performed with specialized operations or decoders. In the following parts, we will elaborate on the
detailed designs within each stage.

3.1 Stage 1: Task-Agnostic Matching

3.1.1 Conversation Reformulation

A preliminary step for adapting vision-centric tasks to LMMs is to reformulate the visual data into
conversation formats. For different tasks, we employ a unified instruction-response template: “USER:
[IMG]. Please find the location of {description}. Respond with {format}. ASSISTANT: Sure,
the location is [LOC]. The task output is [DET]/[SEG]/...” Here, {description} and {format}
can be customized according to specific tasks. For vision-centric tasks like object detection, instance
segmentation and pose estimation, {description} is a certain class name, and {format} can be
boxes, masks, or points. For vision-language tasks like visual grounding and referring segmentation,
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- USER: [IMG]. Please find the location of all persons. Respond with boxes. 
- ASSISTANT: Sure, the location is [LOC]. The task output is [DET] . 

Object Detection Data

- USER: [IMG]. What is the location of player in white. Respond with box. 
- ASSISTANT: Sure, the location is [LOC]. The task output is [GROUND] . 

Visual Grounding Data
- USER: [IMG]. Please find the location of all dogs in the image. Respond 
with masks. 
- ASSISTANT: Sure, the location is [LOC]. The task output is [SEG] . 

Instance Segmentation Data

- USER: [IMG]. Find the location of banana on the piece of a toast. Respond 
with mask. 
- ASSISTANT: Sure, the location is [LOC]. The task output is [REFSEG] . 

Referring Segmentation Data
- USER: [IMG]. Can you find the location of right elbow. Respond with point. 
- ASSISTANT: Sure, the location is [LOC]. The task output is [POINT] . 

Pose Estimation Data

- USER: [IMG]. What are colors of  the 
bus in image? 
- ASSISTANT: The bus in the image is 
white and red.
- USER:  What feature can be seen on the 
back of the bus?
- ASSISTANT:  …

Visual Question Answering Data

Figure 3: The illustration of reformulated conversation data examples of different tasks. For
each reformulated data example, we sequentially present the original image (left), the heatmap
generated from annotations (middle), and the task-specific ground truth (right) in the figure.

{description} is the referring sentence and {format} can be boxes or masks. Apart from [IMG]
that denotes image features, we also introduce a task-agnostic special token [LOC] and a set of task-
specific special tokens, including [DET], [SEG], [POINT], [GROUND] and [REFSEG]. As shown in
Fig 2, regardless of task types, [LOC] is tasked to summarize the visual concepts in instructions and
further densely align with image regions. Task-specific tokens merely serve as routers for guiding the
decoding pathway in the second stage without encoding task-specific inductive bias. Examples of
reformulated conversation data of various tasks are illustrated in Fig 3.

3.1.2 Model Architecture

With the given image ximg and reformulated instruction xtxt as inputs, we first feed them into a
conventional LMM (LLaVA-1.5 [54] in our implementation) to generate language responses. We
also extract high resolution image features fimg ∈ R32×32×256 following prior works [18, 19]:

fimg = FV(ximg), (1)

where FV denotes the vision encoder. Since the adopted vision encoder, CLIP-ViT [55], is pretrained
to accept image inputs of 336× 336 pixels, we resize its positional embeddings to adapt to higher
resolution, e.g., 448 × 448 pixels. Afterward, the feature of [LOC] token hloc ∈ R1×256 from the
generated response, together with high-resolution image features, are fed into the proposed V-L dense
aligner to calculate their matching probabilities, resulting in a heatmap Ĥ ∈ R32×32:

Ĥ = FA(fimg, hloc), (2)

where FA represents the V-L dense aligner. In our implementation, we employ a lightweight
transformer-based architecture as FA to interact high resolution image feature tokens and the [LOC]
token. More discussions on the architecture design are included in Sec.4.3 and Appendix A.1.

3.1.3 Model Training

To enrich semantics during the dense alignment, we merge data from various tasks by reformulating
them into uniform conversation formats as shown in Fig 3. For vision-centric tasks, we hide diverse
task-specific output format details and their learning targets are reformulated and unified as heatmaps,
where each element denotes the matching probability between the instruction and the corresponding
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region. To construct the ground-truth heatmap H , we use a Gaussian kernel to fill the probabilities
into a blank map following prior works [56, 57]:

Hxy = exp(− (x− lx)
2 + (y − ly)

2

2σ2
), (3)

where the (lx, ly) is the location of the one referred by the instruction, and σ is the standard deviation.
For object detection and visual grounding, (lx, ly) is the center coordinate of each object, and σ
is object size-adaptive following [56]. For instance segmentation and referring segmentation, we
first convert their masks into bounding boxes by calculating enclosing rectangles of masks, and
then calculate (lx, ly) and σ with the same rules as detection and visual grounding tasks. For pose
estimation, (lx, ly) is the coordinate of the annotated keypoint, σ is a hyper-parameter designated as
2.

With the ground-truth heatmap H and predicted heatmap Ĥ , we apply Gaussian focal loss follow-
ing [56] as:

Lh = − 1

N

∑
xy

{
(1− Ĥxy)

α log(Ĥxy) if Hxy = 1,

(1−Hxy)
β(Ĥxy)

α log(1− Ĥxy) otherwise.
(4)

α and β are hyper-parameters of the focal loss, and N is the number of the location where the
ground-truth matching probability equals to 1. We set α = 2 and β = 4 in our implementation.
For supervising the language outputs, we use the standard cross-entropy loss Lt following previous
LMM-based methods [19, 18]. The overall loss function L can be formulated as:

L = λhLh + λtLt, (5)

where λh and λt are hyper-parameters for balancing two losses. During training, since the vision
encoder, adapter, tokenizer, and large language model parts in Fig 2 inherit the weights of LLaVA,
we only finetune the large language model using the LoRA [58] technique and train the V-L dense
aligner under the supervision of the loss function L.

3.2 Stage 2: Task-Specific Decoding

Decoding Modules. We first introduce the operations of the three key modules illustrated in Fig 2.
(1) Peak point selection parses the heatmap into a set of points, where each point indicates the
center location of an identified object or keypoint. Specifically, we filter the locations with heatmap
response greater than their 8 surrounding neighbors as candidate peak points, and then retain the top
K candidates as the selected results. The value of K can vary across different tasks, which will be
elaborated on in Sec.4.1. (2) Box decoder is used for further regressing the extent of the objects
designated by the selected peak points. For efficiency, instead of introducing an additional network as
the box decoder, we reuse the V-L dense aligner by appending two new learnable special tokens after
the [LOC] token as additional text-side inputs. Accordingly, the V-L dense aligner will generate two
additional 1-channel map predictions, which are used for regressing the height and width under the
supervision of the L1 loss functions similar to [56]. (3) Promptable mask decoder can accept both
points and boxes as visual instructions to generate the mask for the referred object. We directly use
the SAM model [50] for executing the above process without finetuning. In general, these decoding
modules introduce negligible training costs and can be easily implemented.

Decoding Pathways. On the basis of these three decoding modules, we customize their differ-
ent cooperation patterns to perform diverse tasks, which will be introduced as follows: (1) Pose
estimation requires to return the keypoint coordinates. We can easily obtain these coordinates by
parsing the predicted heatmap with the peak point selection operation. (2) Object detection and
visual grounding share the same output format of bounding box, therefore, we employ the identical
decoding pathway for them. Specifically, as shown in Fig 2, we feed the heatmap into the cascaded
peak point selection and box decoder modules to generate bounding boxes. (3) Instance segmenta-
tion and referring segmentation share a relationship analogous to the one between object detection
and visual grounding, therefore, we also adopt the same decoding pathway for them. Concretely,
we first parse both the center point and bounding box of the object, and then, we use them as visual
instructions to guide the promptable mask decoder to generate the mask prediction.
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4 Experiments

4.1 Experimental Setup

Datasets. Our training data consists of datasets from the following different tasks. (1) For object
detection, we use MSCOCO [59], Objects365 [60] and OpenImages [61]. (2) For visual grounding,
we use RefCOCO, RefCCO+ and RefCOCOg [62]. (3) For pose estimation, we use MSCOCO
keypoints [59] and AIC [63]. (4) For visual question answering, we employ a subset of ShareGPT4V
dataset [33] with 665K samples. It is worth noting that for instance segmentation and referring
segmentation, since we first transform their masks into bounding boxes as mentioned in Sec 3.1.2, the
constructed heatmaps are the same as the object detection. Additionally, given that we do not finetune
the mask decoder in the second decoding stage, we actually do not use segmentation annotations
throughout the entire training process.

Model Configurations. For the first task-agnostic matching stage, we utilize pre-trained CLIP
ViT-L/14-336 [55] and LLaVA-7B-v1.5 [4] as our vision encoder and large multimodal model,
respectively. For the second decoding stage, since the different decoding modules and pathways
have been introduced in Sec 3.2, we primarily specify the K value choices and corresponding post-
processing details of different tasks here. (1) For object detection and instance segmentation, which
generally includes multiple objects in a given image, we set K = 100 to generate 100 box candidates.
Then we apply regular NMS [64] to filter redundant boxes, and the remaining boxes are used for
further prompt mask decoder to generate instance segmentation results. (2) For visual grounding
and referring segmentation, given that only one object is referred by a referring sentence, we set
K = 1 to only generate one predicted box/mask, and no post-processing is required. (3) For pose
estimation, we follow previous works [65, 20] to first crop the single object from the image using
bounding boxes. Then, for each keypoint category, we set K = 1 to extract the point with the highest
matching probability as the prediction result.

Training Details. For the task-agnostic stage, our training comprises two phases. (1) In Phase 1, we
mix the object detection, visual grounding and pose estimation data with sampling rates of 0.69, 0.23,
0.08, respectively, for balanced data sampling. (2) In Phase 2, we mix the visual question-answering,
object detection, visual grounding and pose estimation data with sample rates of 0.67, 0.23, 0.07,
0.03, respectively. We set the batch size to 160 and train the first step for 50,000 steps and the second
step for 10,000 steps on 8 NVIDIA 80G A100 GPUs. The loss function balance terms λh and λt

are both set to 1. For each phase, we use AdamW as the optimizer with an initial learning rate of
3 × 10−4 and weight decay of 0. During training, we do not calculate heatmap loss Lh for visual
question-answering data. We do not use any data augmentation techniques for all tasks.

Evaluation Metrics. We adopt evaluation metrics commonly used within each field of task. For
object detection and instance segmentation, we use mAP based on box IoU and mask IoU, respectively.
For pose estimation, we use mAP based on OKS (object keypoint similarity). For visual question-
answering, we comply with the evaluation protocol of each individual benchmark.

4.2 Results on Versatile Tasks

We evaluate our method on vision-centric and vision-language tasks as shown in Table 1 and 2.
We categorize existing approaches into three groups, namely “task-specific specialists”, “vision
generalists” and “LMM generalists”, according to their functions and architectures. (1) Task-specific
specialists are customized models in different fields. They have diverse architectural designs and
are limited to a single task. (2) Vision generalists pursue handling multiple tasks with a unified
architecture. To excel in fundamental visual perception tasks, they typically utilize a powerful
vision encoder or additional designs (e.g, data augmentations or decoding strategies) adaptive to
vision-centric tasks. (3) LMM generalists aim to resolve every task in a conversational format.
Focusing on improving the conversational quality, they adopt vision encoders proficient in multimodal
content comprehension. In line with these methods, our Lumen pursues unleashing the inherent
vision-centric capabilities of LMMs.

Object Detection & Instance Segmentation. Object detection and instance segmentation require
the model to make dense predictions across the image, therefore they pose great challenges in
capturing fine-grained object cues. COCO val set is used for evaluation. (1) Compared with other
LMM generalists, our Lumen surpasses them by clear margins, achieving a 15.6 AP50 boost over
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Table 1: Results on fundamental vision-centric tasks and vision-language tasks. We use “-” and
gray cell to indicate the result is not reported and the corresponding task is not supported by the
method, respectively.

Method Object Det. Instance Seg. Pose Est. Grounding Refer Seg.
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP50 cIoU

Task-specific Specialists

Faster R-CNN [66] 40.3 61.0 44.0
DETR [67] 43.3 63.1 45.9
Mask R-CNN [68] 41.0 61.7 44.9 37.1 58.4 40.1
PolarMask [69] 30.5 52.0 31.1
CPM [69] 62.7 86.2 70.9
RTMPose [70] 68.2 88.3 75.9
MDETR [71] 83.4
SeqTR [72] 82.7 64.7
LAVT [73] 61.2
ReLA [74] 65.0

Vision Generalists
Pix2Seq-v2 [20] 46.5 - - 38.2 - - 64.8 - -
Uni-Perceiver-v2 [43] 58.6 - - 50.6 - -
mPLUG-2 [75] 46.9 - - 40.6 - - 84.7
VisionLLM [52] 44.6 64.0 48.1 25.1 50.0 22.4 -

LMM Generalists

Shikra-7B [47] 82.3
MiniGPT-v2-7B [16] 84.4
Griffon-13B [19] 23.2 37.6 23.4 81.5
InstructCV [76] - 48.5 -
Lumen-7B (Ours) 35.3 53.2 35.8 30.4 49.8 31.0 67.2 90.4 75.6 83.6 65.1

Table 2: Results on prevalent VQA benchmarks. Here, we employ English MMBench dev,
SEEDBench image, MME test, MMMU val and MathVista mini sets for evaluation.

Method Param MMBench SEED MME MMMU MathVista

InstructBLIP [29] 7B 36.0 58.8 1213/292 32.9 25.3
MiniGPT-4 [3] 7B 24.3 47.4 582/144 - 23.1
Shikra [47] 7B 58.8 - - - -
Qwen-VL-Chat [18] 7B 60.6 58.2 1488/361 35.9 -
LLaVA-v1.5 [54] 7B 64.3 66.1 1511/296 35.6 23.5
Lumen (Ours) 7B 64.9 65.8 1426/332 35.2 24.6

Griffon [19] and a 4.7 AP50 boost over InstructCV [76]. This indicates the effectiveness of our
method in discovering dense object cues. (2) Compared with vision generalists and task-specific
specialists, our method further approaches their performances. We analyze that the performance gap
might originate from two major aspects. First, we use the input size of 448× 448, which is much
smaller than these competitors, for example, 1024× 1024 in [20, 75]. Second, we do not introduce
DETR-like object decoding techniques as done in [52, 75].

Pose Estimation. We employ COCO human 2D body keypoint val set for evaluation. Following
the top-down paradigm employed by previous works [65, 20], we first crop a single object from the
image using the bounding box. Therefore, the pose estimation is simplified to discovering keypoints
of a single object. Since the LMM generalists do not perform this task, we only compare our method
with vision generalists and task-specific specialists. As illustrated in Table 1, our method outperforms
the vision generalist model Pix2Seq-v2 [20] with 2.4 AP. Meanwhile, our Lumen also achieves
comparable performances with task-specific specialists.

Visual Grounding & Referring Segmentation. Compared to object detection and instance seg-
mentation, visual grounding and referring segmentation underscore the language comprehension
ability. Here, we report the results on RefCOCOg val set for comparison because the referring
expressions in it are more diverse and abundant than those in RefCOCO and RefCOCO+. We also
provide complete results on these three benchmarks in the Appendix B. As illustrated in Table 1, our
method achieves better performances than Shikra [47] and Griffon [19] on visual grounding task,
with AP50 83.6 vs 82.3 and 83.6 vs 81.5, respectively.
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Table 3: Ablation studies on model designs.

(a) Effect of different “V-L dense
aligner” design choices.

Arch. AP AP50 AP75

Conv. 18.4 30.2 15.7
Trans. 28.4 45.0 28.1

(b) Effect of the pretrained mask
decoder. cIoUs are reported.

Mask Dec. RC RC+ RCg

TransDec. 65.8 58.6 62.0
SAM 66.6 59.2 61.5

(c) Effect of LMM baseline.

Baseline AP AP50 AP75

LLaVA-v1.0 24.0 39.0 23.0
LLaVA-v1.0* 26.8 43.2 26.0
LLaVA-v1.5 28.4 45.0 28.1

Table 4: Effect of multi-task training. AP50 on RefCOCOg val set and COCO val set are reported.
# Object Det. Grounding Pose Est. VQA RefCOCOg COCO

1 ✓ ✓ ✓ 72.3 26.3
2 ✓ ✓ ✓ 24.6 41.2
3 ✓ ✓ ✓ 75.8 45.7
4 ✓ ✓ ✓ 75.0 44.8
5 ✓ ✓ ✓ ✓ 74.8 45.0

Table 5: Effect of the training recipe on VQA performances. MMBench is used for evaluation2.
# Phase 1 Phase 2 AR CP FP-C FP-S LR RR Overall

1 69.3 74.3 54.5 66.6 28.0 55.7 62.5
2 ✓ 67.3 80.0 49.0 67.9 28.8 58.3 63.7
3 ✓ ✓ 67.3 77.0 58.7 67.2 33.0 56.5 64.2

Visual Question Answering. To examine general visual understanding and instruction following of
our model, we follow common practices and employ MMBench [77], MME [78], SEEDBench [79],
MMMU [30] and MathVista [80] for evaluation. As shown in Table 2, our Lumen achieves VQA
results comparable with state-of-the-art LMMs while extending versatile vision-centric capabilities.

4.3 Ablation Studies

For efficiency, we default to training the model for 10,000 iterations in the first phase of task-agnostic
learning. This protocol is standard for our ablation studies

Multi-task Training. We use different task combinations for training the model, and the results
are shown in Table 4. Based on the results, we have the following observations: (1) Compared
with adopting datasets from all tasks (#5), discarding object detection data (#1) will reduce visual
grounding performances. Similarly, removing visual grounding data (#2) also results in performance
degradation on object detection. This demonstrates that object detection and visual grounding can
benefit from each other. (2) Excluding pose estimation data leads to performance enhancements on
both visual grounding and object detection (#3 vs #5). This might be caused by the data conflict
problem addressed in many generalist models [52, 23]. (3) Excluding VQA data (i.e., discarding
Phase 2) does not significantly affect model’s performances on both detection and visual grounding,
which is reasonable as VQA data do not provide explicit object-level vision-language alignment cues.

Training Recipe. We ablate the effects of 2-phase training strategy to inspect the contribution of
vision-centric data on VQA tasks. In Table 5, we list detailed scores on diverse aspects covered by
MMBench. #1 is initialized from LLaVA’s weights, without any tuning. By comparing #2 and #3,
we observe that FP-C (i.e, Cross-instance Perception) improves remarkably, which indicates that
incorporating vision-centric data in Phase 1 can promote multi-instance perception in VQA (as well
as the overall performance). Scores of Phase 1-only are not reported as the model trained without
rich instruction data tends to respond template answers like “Sure, the location is [LOC].”

V-L Dense Aligner Architectures. We ablate different architecture design choices as shown in
Table 3a, where “Conv.” indicates the operation of concatenating feature of [LOC] token with every
image patch features and fusing them with two convolutional layers, and “Trans.” represents a
light-weight transformer in our main method. Substituting our transformer-based aligner with simple

2Please refer to the official benchmark for the specific meaning of each term.

9



Table 6: Generalization ability evaluation on object
detection. † indicates that VOC is not included
in our training data, and thereby used for cross-
dataset generalization evaluation.

Method COCO VOC†

RetinaNet [81] - 77.3
Faster R-CNN [66] - 80.4

Pix2Seq-v2 [20] 57.4 38.5
InstructCV [76] 48.5 61.7
Lumen (Ours) 53.2 77.9

Figure 4: Qualitiave results of our Lumen
when generalizing to the object counting task.

Instruction: “What are location of strawberries”

Instruction: “Please find the location of all fruits”

Pred: 11
GT: 11

Pred: 15
GT: 15

convolutional layers incurs significant performance degradation. This result indicates that complete
vision-language interaction is crucial in promoting explicit dense vision-language alignment.

Pretrained Mask Decoder. We adopt the mask annotations from RefCOCO (RC), RefCOCO+
(RC+) and RefCOCOg (RCg) to train a lightweight transformer-like mask decoder from scratch
(TransDec.) and report cIoU on their val set to ablate the effect of leveraging pretrained SAM decoder
in Table 3b. Although SAM outperforms TransDec., the narrow performance gap suggests that the
primary challenge in advancing segmentation performances within our framework is the need to
improve the dense vision-language alignment in the learned heatmap.

LMM Baseline. We ablate the effect of different LMM baselines on vision-centric task as shown
in Table 3c. Since LLaVA-v1.5 employs CLIP ViT-L/14-336 as a stronger vision backbone, we use it
to substitute the original CLIP ViT-L/14-224 in LLaVA-v1.0, denoted as “LLaVA-v1.0*” in Table 3c,
to respectively ablate the effects of stronger vision backbone and multimodal language model. It
can be proved that both stronger vision backbone and multimodal language model can benefit dense
vision-language alignment.

4.4 Generalization Evaluation

Generalization to Unseen Datasets. To evaluate the generalization ability of our method, we
perform zero-shot evaluation on PASCAL VOC2007 val set [82]. As illustrated in Table 6, our
method demonstrates superior generalization ability than other generalist models. It is worth noting
that compared with InstructCV which also inherits the enormous word vocabulary of LLM, our
method outperforms it on VOC zero-shot evaluation by 16.2 AP. Besides, even compared with
specialist models trained on VOC dataset (i.e, RetinaNet and Faster R-CNN in Table 6), our method
still achieves comparable performances.

Generalization to Unseen Tasks. To prove that the heatmap produced by our first-stage task-
agnostic training is a powerful intermediate representation for scaling up to more vision-centric tasks,
we apply simple decoding rules on the heatmap to make our Lumen support the object counting
task [83]. As shown in Fig 4 our Lumen can make the correct prediction even without specifically
training on the object counting task.

5 Conclusions

In this paper, we present Lumen, a Large multimodal model with versatile vision-centric capabilities
enhancement. Within the Lumen, we employ a decoupled design to initially promote learning
task-agnostic vision-language dense alignment, and subsequently collaborate with task-specific
decoding operations to address diverse tasks. With the task-agnostic and task-specific design, Lumen
significantly broadens the range of visual tasks that existing LMM generalists can tackle, and also
maintains general visual understanding and instruction following capabilities.

10



6 Acknowledgements

This work was supported in part by National Natural Science Foundation of China Project (No.
623B2027) and National Natural Science Foundation of China Project (No. 62072116).

References
[1] Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny

Pan, Esther Cheng, Jie Liu, Qunshu Lin, et al. Map-neo: Highly capable and transparent
bilingual large language model series. arXiv preprint arXiv:2405.19327, 2024.

[2] Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv
preprint arXiv:2403.04652, 2024.

[3] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

[4] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

[5] Zhuofan Zong, Bingqi Ma, Dazhong Shen, Guanglu Song, Hao Shao, Dongzhi Jiang, Hongsheng
Li, and Yu Liu. Mova: Adapting mixture of vision experts to multimodal context. arXiv preprint
arXiv:2404.13046, 2024.

[6] Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanmin Wu, Jiayi Lei, Pengshuo Qiu, Pan Lu, Zehui
Chen, Guanglu Song, Peng Gao, et al. Mmsearch: Benchmarking the potential of large models
as multi-modal search engines. arXiv preprint arXiv:2409.12959, 2024.

[7] Zekun Wang, King Zhu, Chunpu Xu, Wangchunshu Zhou, Jiaheng Liu, Yibo Zhang, Jiashuo
Wang, Ning Shi, Siyu Li, Yizhi Li, et al. Mio: A foundation model on multimodal tokens. arXiv
preprint arXiv:2409.17692, 2024.

[8] Pengkun Jiao, Xinlan Wu, Bin Zhu, Jingjing Chen, Chong-Wah Ngo, and Yugang Jiang. Rode:
Linear rectified mixture of diverse experts for food large multi-modal models. arXiv preprint
arXiv:2407.12730, 2024.

[9] Xiaohan Lan, Yitian Yuan, Zequn Jie, and Lin Ma. Vidcompress: Memory-enhanced
temporal compression for video understanding in large language models. arXiv preprint
arXiv:2410.11417, 2024.

[10] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence
Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE
international conference on computer vision, pages 2425–2433, 2015.

[11] Tianwen Qian, Jingjing Chen, Linhai Zhuo, Yang Jiao, and Yu-Gang Jiang. Nuscenes-qa: A
multi-modal visual question answering benchmark for autonomous driving scenario. arXiv
preprint arXiv:2305.14836, 2023.

[12] Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and
Hongsheng Li. Visual cot: Unleashing chain-of-thought reasoning in multi-modal language
models. arXiv preprint arXiv:2403.16999, 2024.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[14] Yang Jiao, Shaoxiang Chen, Zequn Jie, Jingjing Chen, Lin Ma, and Yu-Gang Jiang. More:
Multi-order relation mining for dense captioning in 3d scenes. In European Conference on
Computer Vision, pages 528–545. Springer, 2022.

11



[15] Bingqi Ma, Zhuofan Zong, Guanglu Song, Hongsheng Li, and Yu Liu. Exploring the role of
large language models in prompt encoding for diffusion models, 2024.

[16] Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023.

[17] Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023.

[18] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile
abilities. arXiv preprint arXiv:2308.12966, 2023.

[19] Yufei Zhan, Yousong Zhu, Zhiyang Chen, Fan Yang, Ming Tang, and Jinqiao Wang. Griffon:
Spelling out all object locations at any granularity with large language models. arXiv preprint
arXiv:2311.14552, 2023.

[20] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A language
modeling framework for object detection. arXiv preprint arXiv:2109.10852, 2021.

[21] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

[22] Lingxi Xie, Longhui Wei, Xiaopeng Zhang, Kaifeng Bi, Xiaotao Gu, Jianlong Chang, and
Qi Tian. Towards agi in computer vision: Lessons learned from gpt and large language models.
arXiv preprint arXiv:2306.08641, 2023.

[23] Shaoxiang Chen, Zequn Jie, and Lin Ma. Llava-mole: Sparse mixture of lora experts for
mitigating data conflicts in instruction finetuning mllms. arXiv preprint arXiv:2401.16160,
2024.

[24] Zhijian Huang, Tao Tang, Shaoxiang Chen, Sihao Lin, Zequn Jie, Lin Ma, Guangrun Wang,
and Xiaodan Liang. Making large language models better planners with reasoning-decision
alignment. In European Conference on Computer Vision, pages 73–90. Springer, 2025.

[25] Yunxin Li, Baotian Hu, Xinyu Chen, Lin Ma, Yong Xu, and Min Zhang. Lmeye: An interactive
perception network for large language models. IEEE Transactions on Multimedia, 2024.

[26] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716–23736, 2022.

[27] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

[28] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

[29] W Dai, J Li, D Li, AMH Tiong, J Zhao, W Wang, B Li, P Fung, and S Hoi. Instructblip: towards
general-purpose vision-language models with instruction tuning. arxiv. Preprint posted online
on June, 15:2023, 2023.

[30] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

12



[31] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9556–9567, 2024.

[32] Ge Zhang, Xinrun Du, Bei Chen, Yiming Liang, Tongxu Luo, Tianyu Zheng, Kang Zhu,
Yuyang Cheng, Chunpu Xu, Shuyue Guo, et al. Cmmmu: A chinese massive multi-discipline
multimodal understanding benchmark. arXiv preprint arXiv:2401.11944, 2024.

[33] Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023.

[34] Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and
generation with better captions. arXiv preprint arXiv:2406.04325, 2024.

[35] Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024.

[36] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through
a simple sequence-to-sequence learning framework. In International Conference on Machine
Learning, pages 23318–23340. PMLR, 2022.

[37] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu,
Ce Liu, and Lijuan Wang. Git: A generative image-to-text transformer for vision and language.
arXiv preprint arXiv:2205.14100, 2022.

[38] Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi.
Unified-io: A unified model for vision, language, and multi-modal tasks. arXiv preprint
arXiv:2206.08916, 2022.

[39] Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J Fleet, and Geoffrey E Hinton. A
unified sequence interface for vision tasks. Advances in Neural Information Processing Systems,
35:31333–31346, 2022.

[40] Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Faisal Ahmed, Zicheng Liu, Yumao
Lu, and Lijuan Wang. Unitab: Unifying text and box outputs for grounded vision-language
modeling. In European Conference on Computer Vision, pages 521–539. Springer, 2022.

[41] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[42] Xizhou Zhu, Jinguo Zhu, Hao Li, Xiaoshi Wu, Hongsheng Li, Xiaohua Wang, and Jifeng
Dai. Uni-perceiver: Pre-training unified architecture for generic perception for zero-shot and
few-shot tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16804–16815, 2022.

[43] Hao Li, Jinguo Zhu, Xiaohu Jiang, Xizhou Zhu, Hongsheng Li, Chun Yuan, Xiaohua Wang,
Yu Qiao, Xiaogang Wang, Wenhai Wang, et al. Uni-perceiver v2: A generalist model for
large-scale vision and vision-language tasks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2691–2700, 2023.

[44] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

[45] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

13



[46] Yang Zhao, Zhijie Lin, Daquan Zhou, Zilong Huang, Jiashi Feng, and Bingyi Kang. Bubogpt:
Enabling visual grounding in multi-modal llms. arXiv preprint arXiv:2307.08581, 2023.

[47] Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra:
Unleashing multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195,
2023.

[48] Yang Jiao, Zequn Jie, Jingjing Chen, Lin Ma, and Yu-Gang Jiang. Suspected objects matter:
Rethinking model’s prediction for one-stage visual grounding. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 17–26, 2023.

[49] Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa:
Reasoning segmentation via large language model. arXiv preprint arXiv:2308.00692, 2023.

[50] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

[51] Yang Jiao, Zequn Jie, Weixin Luo, Jingjing Chen, Yu-Gang Jiang, Xiaolin Wei, and Lin Ma.
Two-stage visual cues enhancement network for referring image segmentation. In Proceedings
of the 29th ACM International Conference on Multimedia, pages 1331–1340, 2021.

[52] Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo,
Tong Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended
decoder for vision-centric tasks. arXiv preprint arXiv:2305.11175, 2023.

[53] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[54] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning. arXiv preprint arXiv:2310.03744, 2023.

[55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[56] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. In arXiv preprint
arXiv:1904.07850, 2019.

[57] Dongkai Wang and Shiliang Zhang. Contextual instance decoupling for robust multi-person
pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11060–11068, 2022.

[58] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[59] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[60] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and
Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 8430–8439, 2019.

[61] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset,
Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images
dataset v4: Unified image classification, object detection, and visual relationship detection at
scale. International Journal of Computer Vision, 128(7):1956–1981, 2020.

14



[62] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling
context in referring expressions. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 69–85.
Springer, 2016.

[63] Jiahong Wu, He Zheng, Bo Zhao, Yixin Li, Baoming Yan, Rui Liang, Wenjia Wang, Shipei
Zhou, Guosen Lin, Yanwei Fu, et al. Ai challenger: A large-scale dataset for going deeper in
image understanding. arXiv preprint arXiv:1711.06475, 2017.

[64] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum suppression.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4507–4515, 2017.

[65] Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin Bao,
Zheng Zhang, Han Hu, Dong Chen, et al. Instructdiffusion: A generalist modeling interface for
vision tasks. arXiv preprint arXiv:2309.03895, 2023.

[66] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information processing
systems, 28, 2015.

[67] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[68] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[69] Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo Liu, Ding Liang, Chunhua Shen,
and Ping Luo. Polarmask: Single shot instance segmentation with polar representation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12193–12202, 2020.

[70] Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, and Kai
Chen. Rtmpose: Real-time multi-person pose estimation based on mmpose. arXiv preprint
arXiv:2303.07399, 2023.

[71] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas
Carion. Mdetr-modulated detection for end-to-end multi-modal understanding. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 1780–1790, 2021.

[72] Chaoyang Zhu, Yiyi Zhou, Yunhang Shen, Gen Luo, Xingjia Pan, Mingbao Lin, Chao Chen,
Liujuan Cao, Xiaoshuai Sun, and Rongrong Ji. Seqtr: A simple yet universal network for
visual grounding. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXV, pages 598–615. Springer, 2022.

[73] Zhao Yang, Jiaqi Wang, Yansong Tang, Kai Chen, Hengshuang Zhao, and Philip HS Torr. Lavt:
Language-aware vision transformer for referring image segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18155–18165, 2022.

[74] Chang Liu, Henghui Ding, and Xudong Jiang. Gres: Generalized referring expression segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 23592–23601, 2023.

[75] Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi,
Qi Qian, Wei Wang, et al. mplug-2: A modularized multi-modal foundation model across text,
image and video. arXiv preprint arXiv:2302.00402, 2023.

[76] Yulu Gan, Sungwoo Park, Alexander Schubert, Anthony Philippakis, and Ahmed M Alaa.
Instructcv: Instruction-tuned text-to-image diffusion models as vision generalists. arXiv preprint
arXiv:2310.00390, 2023.

15



[77] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun,
Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng
Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping
Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection
toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019.

[78] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang,
Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive
evaluation benchmark for multimodal large language models, 2024.

[79] Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-
bench: Benchmarking multimodal llms with generative comprehension. arXiv preprint
arXiv:2307.16125, 2023.

[80] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. In International Conference on Learning
Representations (ICLR), 2024.

[81] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[82] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June
2010.

[83] Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3394–3403, 2021.

[84] Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Ping Luo, Zehuan Yuan, and Huchuan Lu.
Universal instance perception as object discovery and retrieval. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15325–15336, 2023.

[85] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

[86] Gen Luo, Yiyi Zhou, Xiaoshuai Sun, Liujuan Cao, Chenglin Wu, Cheng Deng, and Rongrong Ji.
Multi-task collaborative network for joint referring expression comprehension and segmentation.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pages
10034–10043, 2020.

[87] Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat
Behl, Jianfeng Wang, Lu Yuan, et al. Generalized decoding for pixel, image, and language. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15116–15127, 2023.

16



Appendix

A Implementation Details

A.1 Detailed Design of V-L Dense Aligner
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Figure 5: Detailed designs of “V-L Dense Aligner”. [LOC] is the special token output from the LMM.
[M] is the special token used for predicting the matching probabilities (i.e., heatmaps) in the first
class-agnostic matching stage in the main paper. [H] and [W] are special tokens used as a simple box
decoder for predicting additional height and width in the second class-specific decoding stage in the
main paper. We use dotted lines to illustrate that these tokens are added in the second stage.

The detailed design of the transformer-based V-L dense aligner is shown in Fig 5. Motivated by
SAM [50], we regard [LOC] token as a prompt token, which carries semantics conveyed in the
instruction and is used to guide different output tokens, namely [M], [H] and [W], to generate
corresponding predictions (i.e., heatmap, height and width in Fig 5). Specifically, the prompt token
and output tokens are first interacted with a self-attention layer. Then, the resulting outputs are
interacted with image embeddings through a sequence of cross-attention layers and a feed-forward
network as shown in Fig 5 to perform dual attention. The above process is repeated twice. The final
outputs are produced by performing an element-wise multiplication of the features of output tokens
with the features of the image embeddings. For the sake of clarity and conciseness, we have omitted
channel compression steps from Fig 5.

As for the output tokens, in the first stage, we only use [M] to generate the predicted heatmap. In the
second stage, we add [H] and [W] to predict the height and width maps under the supervision of L1
loss as done in [56].

Table 7: Performance comparison with state-of-the-art specialists and generalists on the visual
grounding task.

Method RefCOCO RefCOCO+ RefCOCOg
val test-A test-B val test-A test-B val test

Specialists

UNINEXT [84] 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.73
G-DINO-L [85] 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02

Generalists

VisionLLM-H [52] 86.70 - - - - - - -
OFA-L [36] 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58
Shikra-7B [47] 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19
Lumen-7B (Ours) 88.59 92.06 83.55 80.35 87.59 72.20 83.62 84.44

17



B Complete Results on Visual Grounding and Referring Segmentation

We provide the complete performance comparison with existing approaches on visual grounding
and referring segmentation tasks as shown in Table 7 and Table 8. We will analyze the results in the
following parts.

B.1 Visual Grounding.

We report the visual grounding performances of our Lumen on RefCOCO, RefCOCO+ and Ref-
COCOg datasets in Table 7. First, compared with VisionLLM-H, a generalist that can also perform
object detection and instance segmentation like us, our method outperforms it on the RefCOCO val
set even without using a strong vision encoder, e.g., InternImage-H used in VisionLLM-H. Besides,
compared with OFA-L and Shikra-7B, which reformulate the box prediction as a sequence generation
manner, our method can achieve better or comparable performances with them. It indicates that our
predicted heatmap can capture the correspondence between visual regions and complex language
concepts.

B.2 Referring Segmentation.

We report the referring segmentation performances of our Lumen on RefCOCO, RefCOCO+ and
RefCOCOg datasets in Table 8. First, compared with other generalists, our Lumen surpasses them
across most benchmarks by clear margins. Besides, it is worth noting that we do not use any pixel-
level supervision (i.e., segmentation masks) throughout our training process, but our method still
achieves comparable performances with specialist models on the challenging RefCOCOg benchmark.

Table 8: Performance comparison with state-of-the-art specialists and generalists on the referring
image segmentation task.

Method RefCOCO RefCOCO+ RefCOCOg
val test-A test-B val test-A test-B val test

Specialists

MCN [86] 62.4 64.2 59.7 50.6 55.0 44.7 49.2 49.4
LAVT [73] 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
ReLA [74] 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0
LISA [49] 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5

Generalists

X-Decoder [87] - - - - - - 64.6 -
Unified-IO [38] 46.4 46.1 48.1 40.5 42.2 40.2 17.3 -
InstructDiff [65] 61.7 65.2 60.2 46.6 52.3 39.0 67.4 -
Lumen (Ours) 70.7 75.5 66.2 62.8 69.6 55.4 65.1 67.0

C More Ablation Studies

C.1 Input Sizes

To examine the impact of various V-L dense aligner input resolutions, we resize the input image into
three distinct sizes, concurrently adjusting the positional embeddings of the original CLIP ViT. As
shown in Table 9a, enlarging the input size from 336× 336 (default input size of CLIP ViT-L/14)
to 448 × 448 can achieve nontrivial performance boosts. However, further increasing the size to
896× 896 will harm the performances. This phenomenon indicates that excessively increasing the
input size (to a scale dramatically different from its pretraining) will break the semantics of visual
features, and thereby damaging the vision-language alignment.
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Table 9: Ablation studies on model designs.

(a) Effect of different input sizes for the dense
alignment.

Input Size AP AP50 AP75

336×336 26.1 40.2 25.6
448×448 28.4 45.0 28.1
896×896 24.5 36.4 22.5

(b) Effect of different pre-trained vision encoders.

Vis Enc. AP AP50 AP75

SAM ViT-H/16-1024 14.5 24.0 14.1
CLIP ViT-L/14-336 28.4 45.0 28.1

(c) Effect of different K value on dense prediction
task.

#K 20 50 100 200

AP 26.3 27.6 28.4 28.5
AP50 39.5 43.2 45.0 45.3
AP75 25.3 27.2 28.1 28.0

(d) Effect of different numbers of training itera-
tions.

#Iteration 10k 20k 30k 40k 50k

AP 28.4 31.6 34.5 35.2 35.3
AP50 45.0 49.2 52.4 53.2 53.2
AP75 28.1 31.5 34.7 35.5 35.8

C.2 Vision Encoders

Since the input size can not be seamlessly scaled up as discussed above, it is worth further exploring
to leverage vision encoders naturally adaptive to high-resolution image inputs. Toward this end, we
employ SAM ViT-H/16 [50], which takes 1024 × 1024 images as inputs, as an additional vision
backbone to provide high-resolution visual features for V-L dense aligner. However, as shown in
Table 9b, the utilization of SAM ViT-H/16 results in a significant performance deterioration. We
posit that this phenomenon can be attributed to the inadequate alignment between the SAM visual
encoder and the language modality. Building upon the aforementioned experimental findings and
analysis, we think that embracing vision encoders capable of processing high-resolution image inputs
without compromising semantic coherence can pave the way for further enhancing the vision-centric
capabilities of LMMs.

C.3 Number of K for Dense Prediction Tasks

We also investigate the impact of selecting different values for K on the dense prediction tasks, e.g.,
object detection. As shown in Table 9c, when K increases from 20 to 100, the model’s performance
consistently improves, which can be attributed to the increased recall of true positives. As K further
increases from 100 to 200, the model’s performance does not improve evidently, therefore, we set K
as 100 in our implementation.

C.4 Training Epochs

We record the variations in detection performance as the number of training iterations increases in
Table 9d. It can be observed that the model’s performance slowly increases as the training proceeds.
Due to the limitation of computational resources, we did not train our model for a longer time. The
convergence speed might be limited by the optimization difficulty of utilizing a single [LOC] token to
query the entire image regions. A feasible solution to mitigate this problem is to employ more special
tokens like [LOC] serving as object queries in DETR [67] with the Hungarian matching for label
assignment, which can accelerate training and promote performances as proved in VisionLLM [52].
We do not adopt this design as it is unclear whether these tokens customized for object detection can
generalize well to other tasks.

D Limitations

Due to the vision-language dense alignment manner of the introduced V-L connector, one heatmap
generated by it can only reflect the areas densely activated by a single instruction. To generate
individual heatmaps for each category in standard vision-centric tasks like object detection and pose
estimation, the model must be run separately for each category. This limitation can be addressed in
the future by reformulating vision-centric data into instructions that simultaneously indicate multiple
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categories. In our implementation, we use parallel programming techniques to expedite evaluation.
As a result, our Lumen requires ~5 hours to evaluate COCO val set on a single A100, which is faster
than Griffon [19] (~10 hours).
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Figure 6: Qualitative results of versatile vision-centric capabilities of our proposed Lumen. We use
different colors of dotted rectangles to denote performing different tasks.
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E More Qualitative Results

We provide qualitative results to demonstrate the versatile capabilities of our Lumen as shown in Fig 6.
Overall, the abundant qualitative results prove that our method possesses versatile vision-centric
capabilities. It is worth noting that in the case within the second row, we instruct the model to detect
the non-existing object (i.e., “basketball” in Fig 6), the maximum activation across the heatmap is
relatively low, and filtered with a pre-defined threshold. Therefore, the model will not generate any
output for this wrong instruction as illustrated in Fig 6.

F Broader Impacts

This research is expected to enhance the visual perception capabilities inherent in LMMs. Additionally,
since our approach leverages open-source pre-trained LMMs and vision encoders, it requires low
training resources, thus reducing the carbon footprint. Currently, we do not foresee any substantial
negative ethical or social impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main claims and contributions are clearly stated in the abstract and introduction,
and are supported by experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix D for discussion of limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Theoretical assumptions and proofs do not apply to this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Appendix 4.1 and A.1 for detailed training process and architec-
tural designs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Due to the privacy policy of the institution the authors collaborated with, the
code should be published only after obtaining authorization.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Sec.4.1 and Appendix 4.1, A.1 for experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow the standard evaluation protocol of each benchmark, and their
evaluation results are stable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix 4.1 for compute resource details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix F for details.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper aims at equip the LMM with vision-centric capabilities, without
introducing high-risk language data for training the model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and pretrained models used in this study are open-sourced and
licensed for academic research purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: Due to the privacy policy of the institution the authors collaborated with, new
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