
Under review as a conference paper at ICLR 2021

FASTER TRAINING OF WORD EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Word embeddings have gained increasing popularity in the recent years due to
the Word2vec library and its extension fastText that uses subword information. In
this paper, we aim at improving the execution speed of fastText training on ho-
mogeneous multi- and manycore CPUs while maintaining accuracy. We present
a novel open-source implementation that flexibly incorporates various algorith-
mic variants including negative sample sharing, batched updates, and a byte-pair
encoding-based alternative for subword units. We build these novel variants over a
fastText implementation that we carefully optimized for the architecture, memory
hierarchy, and parallelism of current manycore CPUs. Our experiments on three
languages demonstrate 3–20× speed-up in training time at competitive semantic
and syntactic accuracy.

1 INTRODUCTION

Word embeddings have a long history (Rumelhart et al., 1986; Bengio et al., 2003; Collobert &
Weston, 2008), but have received much attention in recent years due to word2vec (Mikolov et al.,
2013) and its computationally efficient implementation via skip-gram with negative sampling. Word
embeddings capture contextual relationships between the words, and have become a standard input
representation for the majority of NLP tasks, benefitting, e.g., classification (Joulin et al., 2016;
Deriu et al., 2017) or machine translation (Jansen, 2017; Conneau et al., 2017). More recently,
state-of-the-art results on many language understanding tasks were achieved by deep transformer
architectures such as BERT (Devlin et al., 2019), which however are very compute intensive both
at training and inference time, even with pre-trained models and reduced parameter space. Thus,
simpler and more lightweight static word embeddings such as fastText (Bojanowski et al., 2017) are
still widely used, due to their fast execution, comparable results for particular tasks (Tseng et al.,
2019), and ability to produce a single vector per word, which helps in information retrieval with
interpretability and search index construction.

Contributions. In this paper, we present algorithmic and code optimization techniques to improve
the training time of word2vec and fastText embeddings on modern general-purpose multicore and
manycore computers. We present an optimized open-source implementation of word2vec and fast-
Text that encapsulates a number of algorithmic variants including negative sample sharing, batched
updates, and subword units based on byte-pair encoding approach. Our extensive evaluation on
three languages shows that the best combinations of optimizations speed up training time by 2.7–
20.6 times while maintaining accuracy of selected NLP tasks.

2 WORD EMBEDDINGS

Word2vec. Word2vec is built upon a simple bilinear regression model trained on word co-
occurrence, resulting in numerical feature representations as floating point vectors of dimension-
ality d. Given a word in a sentence, the goal of the algorithm is to maximize the likelihood of
predicting surrounding (context) words. To achieve this, the model is trained to increase the prob-
ability of predicting particular words if they appear close to a given current word in the training
corpus. A popular variant also decreases the probability of predicting words that do not appear close
to the current word (negative sampling (Mikolov et al., 2013; Goldberg & Levy, 2014)).

During training, the algorithm processes the corpus in a streaming fashion. Each
word wi (called current word) is processed together with its surrounding context words

1

Under review as a conference paper at ICLR 2021

· · ·

hash(’<bro’)

· · ·

’fox’
’brown’

’dog’
’quick’
’jumps’

’a’

Min

a

quick

brown

fox

jumps

over

· · ·

· · ·

’fox’
’brown’

’dog’
’quick’
’jumps’

’a’

Mout

Figure 1: Representation of source and target words in the input (Min) and output (Mout) matrix in
fastText (skip-gram). The sentence is “a quick brown fox jumps over the lazy dog”, the current word
wi is “brown” and the context window size is 2. The words in the corpus are represented as indices
of the corresponding rows in Min and Mout.

{wi−C , ..., wi−1}, {wi+1, ..., wi+C}, where C is the range of the context window. There are two
modes of operation training the model for the following prediction tasks:

• Skip-gram (SG): predict target context words using the current word wi as the source.
• CBOW: predict the target current word wi using context words as the source.

Each word w in the vocabulary of size V is represented as a source ws by one row in the V × d
input matrix Min containing word embeddings, and each word is represented as a target wt by one
row in the V × d output matrix Mout that is used to calculate the training objective function. The
goal of the optimization is to maximize the inner products (minimize difference) of real pairs of
source current words with the target context words or vice versa, using the binary logistic loss.
This approach can be improved by the use of negative sampling, where the algorithm additionally
maximizes the difference between the source current words and the words picked randomly out
of the source’s context. Training is performed using stochastic gradient descent (SGD). SGD is
performed in parallel with p threads by splitting the training corpus into p parts and processing them
asynchronously (“Hogwild” approach (Recht et al., 2011)). The final embedding of each word is its
corresponding row in Min. Mout is discarded at the end of training.

FastText. FastText (Bojanowski et al., 2017) improves word2vec by utilizing subwords of target
words during the training. A typical run of fastText uses subwords of lengths k = 3 . . . 6, containing
delimiters 〈, 〉 at the boundaries. For example, for the word paris and k = 3 the subwords are: 〈pa,
par, ari, ris, is〉.
In fastText, the embeddings Min are extended to contain rows representing both entire words as well
as hashes of all their subwords. Additionally, the representation of the entire word is added to the
set of its subwords. During the execution of the algorithm, the hidden layer h is built by averaging
vectors in Min representing the source word’s subwords. The final vector embedding for each word
is obtained in the same way. Mout remains unchanged. Fig. 1 shows an example of how the word
vectors are stored and accessed. A single update is described in Alg. 1.

Related work. FastText has been implemented as a part of the popular Gensim library (Rehurek
& Sojka, 2011) using Cython and a default machine’s BLAS library (e.g., Intel MKL) for algebraic
operations. In our experiments we found the code memory-expensive and slow: training 5 epochs on
a 1 GB English Wikipedia dump with 24 threads took approximately 11 hours on a Knights Landing
CPU, about 10 times slower than the original fastText. Therefore, we use the original code provided
by Facebook Research (2016a) as the baseline in all our experiments.

For skip-gram with negative sampling, pWord2Vec (Ji et al., 2016) transforms the “Hogwild” ap-
proach into “Hogbatch”, by performing updates on multiple context words at once (effectively turn-
ing a series of dot products into a matrix-matrix operation) and sharing negative samples for the
entire batch. We employ similar techniques in our implementation.

The work by Rengasamy et al. (2017) extends this approach by context combining, where multiple
contexts can share a set of negative samples and be updated all at once. We do not adapt this approach
as it requires careful preprocessing rewarded by a relatively small speedup over pWord2Vec.

2

Under review as a conference paper at ICLR 2021

Algorithm 1: A single iteration of the original fastText algorithm. In skip-gram, it is performed
on each current-context word pair (as source-target). In CBOW, all context words are used as
source words at the same time.
Data: source word(s) ws, target word wt, learning rate l, number of negative samples n

1 if skip-gram then // Initialize.
2 h =

Min(ws)+
∑

z∈subwords(ws) Min(z)

count(subwords(ws))+1
// Average vectors of the source word(s) and their

3 else if CBOW then // subwords to obtain the hidden layer.

4 h =
∑

s (Min(ws)+
∑

z∈subwords(ws) Min(z))∑
s (count(subwords(ws))+1)

5 g = 0 // Reset the gradient.
// Update the target word.

6 α = l(1− σ(h ·Mout(wt))) // Compute positive score reflecting similarity between
// h and the row Mout(wt) representing wt.

7 g = g + α ·Mout(wt) // Build the gradient.
8 Mout(wt) =Mout(wt) + α · h // Update the target word.
9 for t′ ← 1 to n do // Update negative samples: negative score.

10 pick a random negative sample wt′ 6= wt

11 α = l(0− σ(h ·Mout(wt′)))) // Compute negative score.
12 g = g + α ·Mout(wt′)) // Build the gradient.
13 Mout(wt′)) =Mout(wt′)) + α · h // Update the target word.
14 end
15 if skip-gram then // Update the source rows(s).
16 Min(ws) =Min(ws) + g
17 foreach z ∈ subwords(ws) do
18 Min(z) =Min(z) + g
19 end
20 else if CBOW then
21 foreach ws do // As a result, the difference between rows in Min(ws)
22 Min(ws) =Min(ws) + g // and Mout which corresponds to the positive samples
23 foreach z ∈ subwords(ws) do // drops, and the difference between rows in Mout
24 Min(z) =Min(z) + g // which correspond to the negative samples increases.
25 end
26 end

Word2vec and fastText have been also implemented for GPU clusters. BlazingText (Gupta & Khare,
2017) tackles the problem of efficient batch size and synchronization for multiple GPUs. While this
issue is of no concern on CPU, they report the execution time on a single GPU comparable to a 16-
threaded CPU fastText baseline. We further speed up the CPU implementation. The work by Bae &
Yi (2016) reports up to 11× speedup of word2vec with negative sampling run on a K20 GPU over the
single-threaded CPU word2vec. However, they report only up to 1.6× speedup over a 12-threaded
CPU run. Our no subword version of the code are roughly 5 (skip-gram) and 6 (CBOW) faster
than the 20-threaded runs of the original word2vec. Word2vec and fastText are memory-intensive
algorithms. Additionally, fine-grained parallelism is limited by relatively small vectors typically
used in the computations. These characteristics severely limit the potential advantages of GPU over
CPU.

Li et al. (2019) discuss a distributed version for many GPUs aiming at the reduction of write conflicts
in updates. Similarly (and independently), we made attempts at pre-scheduling a list of current-
context word updates, but we found the overhead of this preprocessing prohibitive. Nonetheless, the
algorithmic variants presented in our paper can be applied in distributed setting, as long as the data
used for a single update fits inside a batch used in the distributed computation. This will be the case
for our variants, since they either execute separate updates on each current-context word pair, or
update current words with their entire (typically small) contexts. This is also the case in the original
fastText and therefore, the communication cost should not increase.

Another popular word embedding model is GloVe (Pennington et al., 2014). While the Authors
claim superiority over word2vec, a more thorough evaluation (e. g., by Wang et al. (2019), or Kumar
et al. (2020)) shows that there is no clear winner, as the results may vary depending on the training
corpus, evaluation task and hyperparameters used. Additionally, GloVe lacks the information on
word morphology provided by fastText, and does not scale well for large vocabularies. Since GloVe

3

Under review as a conference paper at ICLR 2021

original

code opt

batch

NS CT

no subword BPE h

(a) skip-gram (SG)

original

code opt

NS s DH

DHF

DHF NS s

DH NS s

no subword BPE h

(b) CBOW

Figure 2: Dependency between our code variants of skip-gram and CBOW. The experiments for the
“NS” variants (no box frames) are only shown in the appendix due to inferior experimental accuracy.

is based on a completely different algorithmic structure, that is, creation and reduction of a global
word co-occurrence matrix, there is no straightforward way to apply to it our code optimizations and
variants.

3 OPTIMIZATION TECHNIQUES AND ALGORITHMIC VARIANTS

To improve the training time, we first identify the most expensive operations. Assume that the source
word(s) have a total of m subwords and that we use n negative samples per target word. Then each
update comprises:

• Construction of h: a sum of m vectors (line 2 or 4).
• Loss calculation: n+ 1 dot products and 2(n+ 1) vector additions (lines 6–8, 11–13).
• Gradient update: m vector additions (lines 16–19 or 21–26).

In skip-gram, h is built only from a single current word, while in CBOW, it is constructed from all
context words. The loss function, in contrast, is computed once per each current-context word pair
in skip-gram, while in CBOW, the loss is computed using the entire context. This means that for
CBOW, the construction of h and the gradient update consumes most of the execution time, while
for skip-gram, these operations take roughly the same amount of time as the loss function calcula-
tion (assuming the default parameter of n = 5). All operations listed above are memory-intensive
and therefore memory bound: thus, the best approach to optimize them is by reducing memory
movement and avoiding unnecessary updates. It is further supported by our observations during the
tests on isolated sections of the code. We noted that a large amount of execution time is taken by
the latency of lower levels of memory hierarchy when accessing data from the rows scattered across
Min and Mout, which is an access pattern required to provide high quality embeddings.

To speed up the training, we first perform a number of code performance optimizations and then
various algorithmic modifications compared to the original fastText. Some modifications depend
on each other as illustrated in Fig. 2. Some, but not all, techniques apply to both modes of opera-
tion. All our improvements build on code opt which is a CPU-specific optimization of the original
fastText code. For skip-gram, we consider a batch variant and negative sharing across the context
(NS CT). For CBOW, we consider keeping track of the values in the hidden layer h and updating
them dynamically rather than building this layer from scratch in each iteration (DH: variable con-
text window size, DHF: fixed context window size). We consider combinations of this technique
with negative sharing involving different number s of positive samples that the negative samples are
shared between (NS s). Additionally, for both CBOW and skip-gram, we test no subword where
we remove the subwords from code opt, making it equivalent to optimized word2vec, and BPE h,
where we replace samples with BPE tokens obtained from a pre-trained token set of size h.

We next discuss these variants, referring to specific parts of Alg. 1 that they modify.

Code performance optimizations (code opt). For efficient execution we explicitly vectorize ma-
trix and vector operations using AVX-512 intrinsics. We block and merge operations involving mul-
tiple reads from the same location in memory to make them more cache-friendly (temporal locality),
like averaging the rows of Min or subsequently reading from and writing to Mout.

4

Under review as a conference paper at ICLR 2021

During the creation of hidden layer h (line 2 or 4), we reduce the number of array accesses such that
each element of h is stored only once during summing up the vector representations of subwords.
This improves the original code which performs a separate store for each subword.

To speed up the binary logistic loss function, we vectorize the dot product (lines 6, 11) with the use
of eight accumulators to increase instruction-level parallelism without too much register pressure.
We merge the update of the gradient g and the relevant rows of Mout (lines 7–8, 12–13) to avoid
multiple reads from the latter. We still call the loss function once per each wt and w′t.

Similar to the creation of h, we improve the update of Min(ws) with g (line 16 or 21–22) by reading
each element of g only once for all words and subwords ws.

The optimizations in the version code opt are used in all algorithmic variants discussed next. Note
that these optimizations can also be applied to other regularization schemes such as the hierarchical
softmax used in the original word2vec (Mikolov et al., 2013).

No subwords (no subword). Experiments in Section 4 show that it is sometimes useful to train
word embeddings without any subword information. We provide a code variant which disables sub-
words, but applies all optimizations discussed above. It is algorithmically equivalent to word2vec.
In Alg. 1, subwords(ws) in lines 1–4 and 15–26 becomes an empty set and needs not be processed.
While this is expected to improve the training time, especially for CBOw which dedicated a large
part of its runtime to averaging and updating subword representations, the information on the word
morphology becomes scarce. We will later see that the word embeddings trained without subword
information do not perform well when used for syntactic tasks. On the other hand, the training then
focuses on semantic information which is reflected in higher semantic quality of these embeddings.

Minibatching (batch for SG). For skip-gram, we implement a form of minibatching of the target
words per each source word. Rather than following the work of Ji et al. (2016), which merges all
Min(ws) rows in a minibatch into a matrix, we follow the original fastText’s approach hitherto only
applied to CBOW, which simply averages all these rows. The advantage of our minibatching over the
original fastText skip-gram is being able to execute a single update for each context window of the
current word wi, rather than per each current-context word pair. This means that h and the relevant
rows of the input matrix Min are updated only once per each current word, independent of context
window size. Lines 2 and 16 are now executed only once per context window, in a similar fashion
as in lines 4 and 21–22 respectively). This creates an additional delay between reading and writing
a word’s subword representations increasing the possibility of write conflicts, but our experiments
later show that the accuracy remains nearly unaffected. Minibatching can bring significant speed
improvements to subword-based training due to the relatively high cost of building h and updating
all subword representations. As mentioned, in fastText CBOW, this form of batching is already a
part of its algorithmic structure.

Negative sharing (NS CT and NS s). We implement negative sharing proposed by Ji et al. (2016),
but adapted for and built over SG batch and the natural batching of fastText CBOW. For skip-gram,
we share negative samples among all words in the entire context window of wi (NS CT). For CBOW,
we share negative samples for s consecutive current words wi (NS s). In our implementation, s is a
hyperparameter chosen by the user. Thus, line 10 is executed only n times every s-th update. While
negative sharing results in fewer expensive random memory reads and improved memory locality
(e. g., for d = 300, n = 5, and a context window size of 11, the data worked upon takes up c. a. 16
KB, while an usual L1 cache size is not less than 32 KB), it proportionally reduces the number of
data samples used in training per current-context word pair. For this reason, despite improvements
in execution time, NS yields inferior accuracy. Therefore, we do not report its results in the paper,
but only present them in the appendix.

Dynamic hidden layer update (DH). CBOW spends a large portion of its execution time building
h and updating relevant rows of Min for each subsequent current word wi and its context window.
Therefore, we opt for adding and removing subwords only as their words move in and out of the
context window as the algorithm processes the training text. After each shift of the context window,
we update the rows of Min for all removed subwords, readjust to the gradient g, and add new
subwords to h. Thus, rather than performing the entire sum in line 4, the data is processed in five
steps. Assuming that x embeddings remain inside the context window after a particular shift:

1. Denormalize h.

5

Under review as a conference paper at ICLR 2021

2. Update Min for subwords falling out of the context window.
3. Subtract embeddings of subwords falling out of the context window from h.
4. Readjust to gradient g: h = h+ xg.
5. Add subwords falling into the context window to h.
6. Normalize h.

Note that this creates additional delay between reading and writing to the rows of Min, but empiri-
cally it does not harm the vector quality.

Fixed window for dynamic hidden layer update (DHF). Since the window size is picked randomly
in each iteration, some words will fall in and out of the context window multiple times, forcing DH
to remove and add the same subwords to h multiple times over a short period of time. To mitigate
this, we fix the window size. While potentially saving time, this approach comes with a pitfall: the
variable window size is a natural way of sampling context words that are closer to a current word wi

with greater probability, which reflects a greater contribution of these words to the current word’s
meaning. DHF effectively ignores the impact of the distance of context words.

Byte-Pair vocabulary (BPE h). We also propose an alternative approach to subword embeddings,
replacing the subwords by Byte-Pair Encoding (BPE) tokens (Sennrich et al., 2016). These are
produced with the Hugging Face Tokenizers library (Moi, 2019) in the form of token IDs for the h
most frequent word fragments, where h is a hyperparameter. We expect this to reduce execution time
and memory consumption as the number of tokens is typically an order of magnitude smaller than
that of subwords. To our knowledge, this is the first attempt to apply BPE tokenization to provide
additional subword information in fastText-like fashion. In our experiments in Section 4, we train
the tokenizer over the same training corpus as our embeddings, but both trainings could use different
corpora. In case the BPE variant of fastText is unable to tokenize a word found in its training corpus
(e.g., because it was absent from the corpus used for training the tokenizer), the word remains as
it is, without additional embeddings. An alternative approach would be to create embeddings for
tokens consisting of single characters: however, we found that if many words fail to be tokenized,
this may cause a drastic slowdown, likely due to update conflicts on the single-character tokens. In
Alg. 1, using the BPE variant means replacing “subwords” with “tokens”.

4 EVALUATION

In this section we evaluate our performance-optimized polyalgorithmic implementation for training
word embeddings on a current homogeneous multicore system. For each algorithmic variant, and
considering three languages, we report the speedup we achieve for training and the obtained accuracy
of the generated word embeddings w.r.t. a number of semantic and syntactic quality tests.

Setup. We use a dual-socket Intel(R) Xeon(R) Silver 4114 CPU processor (Skylake, 20 physical
cores). For evaluation, we create an English corpus as described by Facebook Research (2016b). For
other languages, we proceed in analogous fashion: download respective Wikipedia dumps (Wikime-
dia Foundation, 2001), sanitize and lowercase with the script wikifil.pl authored by Mahoney (2006).
For each language, the script is modified to capture relevant characters and replace relevant words.
We truncate the outputs to 1 billion characters. The resulting vocabulary sizes are: (a) 218,316
words for English, (b) 592,674 words for German, (c) 385,596 words for Russian. The purpose of
our experiments is to speed up training over the original fastText. We demonstrate the speed-ups of
our implementation and show which algorithmic variants maintain accuracy at the same time.

The results for English are presented in Table 1. The names of algorithmic variants match those from
Section 3 and Fig. 2. We omit negative sharing (NS) due to low accuracy, but show the results in
Appendix F. In tokenized runs (BPE), we use h = 20K, 40K, 200K. All other hyperparameters are
the fastText defaults. The speedups shown are over the original implementations SG original and
CBOW original, respectively, from Bojanowski et al. (2017), run with the same number of threads.
The scaling column shows the speedup of our code when run with 20 threads compared to 1 thread.
The runtimes are consistent over several runs and are shown in Appendix F.

We perform various semantic and syntactic accuracy tests explained below. The best accuracy scores
for each test are marked in blue. Pareto-optimal combinations of accuracy scores are shown bold-
faced. Pareto-optimal means that no other algorithmic variant dominates it, i.e., is better on each

6

Under review as a conference paper at ICLR 2021

Table 1: Accuracy and speedup achieved with our library over fastText when training on English
Wikipedia corpus. Blue: best accuracy in category, bold: Pareto-optimal accuracy, speedup is over
the original fastText run with the same number of threads, and scaling is the speedup of 20 threads
vs. 1 thread for our code. Higher is better for all metrics.

algorithmic
variant

accuracy speedup (times)
scalingQW BATS MUSE Battig 1 20

sem. syn. sem. syn. thread threads

SG original 27.07 64.22 9.30 41.54 0.643 40.97 1.0 1.0 15.2
Our work:
SG code opt 26.37 63.75 9.29 41.61 0.647 40.85 3.7 2.7 11.2
SG no subword 47.42 48.07 12.97 27.81 0.635 41.27 10.2 8.8 13.1
SG batch 24.28 62.47 8.92 41.84 0.630 40.76 4.4 3.6 12.2
SG BPE 20K 40.78 53.85 12.86 34.50 0.642 40.43 4.9 4.2 13.0
SG BPE 40K 47.77 50.56 13.33 33.16 0.646 39.80 4.8 4.2 13.2
SG BPE 200K 54.98 44.79 12.65 27.73 0.634 41.46 4.8 4.2 13.4

CBOW original 9.27 67.74 5.53 63.42 0.546 32.98 1.0 1.0 13.2
Our work:
CBOW code opt 9.55 68.14 5.69 63.52 0.538 33.07 4.6 2.3 6.6
CBOW no subword 51.00 54.49 14.84 32.29 0.614 40.68 20.6 20.4 13.1
CBOW DH 11.38 68.73 6.51 63.58 0.583 36.30 4.8 2.7 7.4
CBOW DHF 5.29 57.44 3.94 51.71 0.633 31.37 4.8 3.3 9.2
CBOW BPE 20K 22.65 46.01 10.17 36.98 0.607 35.56 11.4 11.0 12.8
CBOW BPE 40K 30.85 40.47 10.13 33.38 0.614 36.07 11.5 11.1 12.8
CBOW BPE 200K 43.33 26.40 8.12 24.70 0.606 40.39 11.4 11.3 13.0

score. Together with Fig. 2, the tables also show the incremental impact on accuracy and execution
speed of each variant.

Accuracy tests. We perform multiple evaluation tasks to test the quality of our embeddings. First,
we test our embeddings with the word analogy task script provided with word2vec (Mikolov et al.,
2013) for both semantic and syntactic accuracy. For English, we use the questions-words (QW)
dataset (Mikolov, 2013). For other languages, we use its translations: German (Köper et al., 2015)
and Russian (Kononova, 2017). Additionally, we employ the Vecto library (Vecto, 2018) to evaluate
on the The Bigger Analogy Test Set (BATS) (Gladkova et al., 2016) on English embeddings, with
the 3CosAdd method. For all analogy benchmarks, we observe that fastText performs better for
syntactic than semantic tasks as was already noted by Bojanowski et al. (2017). Second, we compute
word similarity scores with Facebook MUSE (Conneau et al., 2017), using monolingual evaluation
with word similarity tasks on semantic datasets. For English and German, we use the tests provided
by MUSE. For Russian, we use the HJ dataset (Panchenko et al., 2016). The tables in this section
present the averaged MUSE output. For detailed score for each MUSE test set, see Appendix B.
Third, we use the scripts provided by the Word Embedding Benchmarks package (Jastrzebski, 2015)
to perform the concept categorization (word clustering) task. We evaluate on the semantic Battig test
set introduced by Battig & Montague (1969).

Evaluating English skip-gram. First, we evaluate multiple variants of skip-gram presented in the
first section of Tab. 1. The dependencies between the variants is illustrated in Fig. 2(a). We observe
that only optimizing for efficient execution (code opt) yields for fastText a 2.7–3.7× speedup while
maintaining accuracy. The no subword variant yields 8–10× speedup over original and about 3×
speedup over code opt. For word analogy, no subword improves the embeddings semantically. The
tokenized versions roughly balance between the fastText- and word2vec-style embedding quality,
with an exception of BPE 200K where the number of tokens is close to the vocabulary size, ef-
fectively turning only the most common subwords into separate tokens. This approach provides a
semantic accuracy even greater than original for both BATS and QW, however at a price of syntactic
quality, all including roughly 4–5× speedup over original and up to 1.5× speedup over code opt.
For QW, the accuracies vary greatly, while BATS indicates that a smaller number of tokens is gen-
erally preferable. The batch variant maintains or slightly handicaps the accuracy of fastText, and
provides a slightly smaller speedup than the tokenized versions. The different variants of skip-gram

7

Under review as a conference paper at ICLR 2021

perform almost equally well on the word similarity and categorization tasks, and all of them yield
Pareto-optimal results. All variants show good parallel scaling.

Evaluating English CBOW. The CBOW results are shown in the second section of Tab. 1; the
dependencies between variants are in Fig. 2(b). The code opt variant yields 2.3–4.6× speedup over
original, less than for skip-gram, but the obtained accuracy is not Pareto-optimal. For word analogy,
CBOW generally performs better on syntactic than semantic questions. The no subword variant
provides good scaling, and over 20× speedup over original and about 8–9× speedup over code opt.
It diminishes the discrepancy between these scores, albeit impacting negatively the syntactic quality
of the embeddings, while achieving highest scores for word similarity and categorization. None
of the tokenized variants was able to beat no subword both in speed and evaluation on these tasks,
but they provide an improvement in semantic accuracy over original, as well as in word similarity
and categorization. The BPE variants achieve roughly 11× speedup over original. The DH variant
provides only a slight speedup over code opt (2.7–4.8× speedup over original), but yields higher
accuracies in all tasks, while DHF impacts negatively all scores except for MUSE, but provides a
speedup over DH with multiple threads.

Comparison between skip-gram and CBOW. As a rule of thumb, the fastText implementations
of skip-gram perform much better on semantic questions in word analogy tasks and slightly bet-
ter in word similarity and categorization tasks. For syntactic questions, the CBOW code opt and
CBOW DH variants are a better option. On the other hand, CBOW no subword performs nearly
as well for word similarity and categorization tasks as skip-gram. Therefore, in specific cases, the
former can be used in lieu of skip-gram to boost the execution speed.

Evaluation on German and Russian corpora. Table 2 contains results for German and Russian,
presented analogously to those in English. In terms of evaluation accuracy, they are largely con-
sistent with English, with the small exception of CBOW BPE 20K, which performs better than
CBOW no subword on the German corpus. This indicates the impact of the number of tokens
used during training and opens opportunities for further investigation. Noteworthy, CBOW DH
achieves the best scores on syntactic tasks for all evaluated languages. Using skip-gram with BPE
tokens rather than fastText-style subwords performs very well in terms of both speedups and accu-
racy scores, all of which are Pareto-optimal. The code opt variants yields slightly better speedups
than for English, and further optimizations lead to significantly greater speedups. The code opt
variants yield roughly 3.5–5× speedup over their respective original versions. The best achieved
improvement is CBOW no subword, up to 50× for Russian. This shows that our improvements
are particularly beneficial for morphologically-rich languages with a large number of subwords per
word.

5 CONCLUSIONS

We presented a thorough evaluation, and associated open-source implementation, of various op-
timization techniques for fastText and word2vec. In particular, these include code-level perfor-
mance optimizations and the use of BPE tokens rather than subwords. For example, for English, our
code offers practitioners speedups in the range of 2.7–20.6×, while maintaining a single or multi-
dimensional notion of accuracy. We achieve good parallel scaling, which is expected to bring even
more benefits in the future, as the number of cores further increases. The choice of algorithm de-
pends heavily on the accuracy metric: for all languages, there is no universally best variant, which
makes a case for our polyalgorithmic implementation and thorough evaluation of trade-offs. Our
techniques should also apply to sent2vec (Pagliardini et al., 2018) for sentence embeddings.

REFERENCES

Maria Antoniak and David Mimno. Evaluating the stability of embedding-based word similarities.
Transactions of the Association for Computational Linguistics, 6:107–119, 2018.

Seulki Bae and Youngmin Yi. Acceleration of word2vec using gpus. In International Conference
on Neural Information Processing, pp. 269–279. Springer, 2016.

8

Under review as a conference paper at ICLR 2021

Table 2: Accuracy and speedup achieved with our library over fastText when training on (a) German
and (b) Russian Wikipedia corpora. Blue: best accuracy in category, bold: Pareto-optimal accuracy,
“speedup”: over the original fastText run with the same number of threads, “scaling”: speedup 20
threads vs. 1 thread for our code. Higher is better for all metrics.

algorithmic
variant

accuracy speedup (times)
scalingQW MUSE 1 20

sem. syn. thread threads

SG original 21.13 49.94 0.587 1.0 1.0 8.5
Our work:
SG code opt 19.41 49.12 0.575 3.5 4.9 11.8
SG no subword 42.31 27.29 0.589 11.5 18.8 13.9
SG batch 17.43 49.13 0.573 4.6 7.0 12.9
SG BPE 20K 29.91 36.83 0.589 5.5 8.9 13.9
SG BPE 40K 34.55 29.96 0.593 5.2 9.0 14.6
SG BPE 200K 45.90 23.39 0.593 5.3 9.0 14.6

CBOW original 4.71 58.94 0.507 1.0 1.0 8.3
Our work:
CBOW code opt 4.30 59.09 0.510 4.3 3.4 6.7
CBOW no subword 37.75 27.66 0.559 24.1 41.8 14.3
CBOW DH 5.96 59.81 0.527 4.9 4.2 7.0
CBOW DHF 1.86 54.17 0.591 5.2 4.5 7.2
CBOW BPE 20K 11.19 31.31 0.542 13.1 21.1 13.3
CBOW BPE 40K 18.67 23.25 0.557 13.3 22.0 13.7
CBOW BPE 200K 27.81 16.14 0.560 12.9 22.6 14.5

(a) German

algorithmic
variant

accuracy speedup (times)
scalingQW MUSE 1 20

sem. syn. thread threads

SG original 12.29 77.61 0.633 1.0 1.0 10.2
Our work:
SG code opt 12.86 77.81 0.622 4.1 4.2 10.4
SG no subword 23.82 42.89 0.588 12.1 16.5 14.0
SG batch 10.58 76.32 0.629 5.1 5.2 10.5
SG BPE 20K 14.22 51.86 0.621 5.8 7.9 13.8
SG BPE 40K 16.75 46.81 0.608 5.8 7.9 13.9
SG BPE 200K 22.90 45.91 0.600 5.8 8.0 14.1

CBOW original 8.88 80.78 0.495 1.0 1.0 7.9
Our work:
CBOW code opt 9.18 79.79 0.497 4.5 4.6 8.0
CBOW no subword 16.01 37.35 0.532 28.1 50.5 14.2
CBOW DH 9.17 81.43 0.523 4.3 5.7 10.5
CBOW DHF 7.32 78.75 0.557 4.6 6.2 10.6
CBOW BPE 20K 8.28 34.82 0.513 15.0 25.2 13.3
CBOW BPE 40K 8.96 40.66 0.493 15.2 26.1 13.6
CBOW BPE 200K 11.13 35.96 0.537 15.3 27.0 14.0

(b) Russian

William F Battig and William E Montague. Category norms of verbal items in 56 categories a
replication and extension of the connecticut category norms. Journal of experimental Psychology,
80(3p2):1, 1969.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

9

Under review as a conference paper at ICLR 2021

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:135–
146, 2017. doi: 10.1162/tacl a 00051. URL https://www.aclweb.org/anthology/
Q17-1010.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pp. 160–167, New York, NY, USA, 2008. Association for Computing Machin-
ery. doi: 10.1145/1390156.1390177.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
Word translation without parallel data. arXiv preprint arXiv:1710.04087, 2017.

Jan Deriu, Aurelien Lucchi, Valeria De Luca, Aliaksei Severyn, Simon Müller, Mark Cieliebak,
Thomas Hofmann, and Martin Jaggi. Leveraging large amounts of weakly supervised data for
multi-language sentiment classification. In Proceedings of the 26th International Conference
on World Wide Web, pp. 1045–1052, Republic and Canton of Geneva, CHE, 2017. Interna-
tional World Wide Web Conferences Steering Committee. doi: 10.1145/3038912.3052611. URL
https://doi.org/10.1145/3038912.3052611.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. pp. 4171–4186, 2019. doi: 10.18653/v1/
N19-1423. URL https://www.aclweb.org/anthology/N19-1423.

Facebook Research. facebookresearch/fastText: Library for fast text representation and classifica-
tion., 2016a. https://github.com/facebookresearch/fastText.

Facebook Research. Word representations, 2016b. https://fasttext.cc/docs/en/
unsupervised-tutorial.html.

Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based detection of morphologi-
cal and semantic relations with word embeddings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pp. 8–15, 2016.

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

Saurabh Gupta and Vineet Khare. Blazingtext: Scaling and accelerating word2vec using multiple
gpus. In Proceedings of the Machine Learning on HPC Environments, pp. 1–5. 2017.

Stefan Jansen. Word and phrase translation with word2vec. arXiv preprint arXiv:1705.03127, 2017.

Stanislaw Jastrzebski. kudkudak/word-embeddings-benchmarks: Package for eval-
uating word embeddings., 2015. https://github.com/kudkudak/
word-embeddings-benchmarks.

Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. Parallelizing word2vec in multi-core and
many-core architectures. arXiv preprint arXiv:1611.06172, 2016.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas
Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651,
2016.

Tatyana Kononova. Russian adaptation of Google Analogies Dataset, 2017. https://
rusvectores.org/static/testsets/ru_analogy_tagged_PROPN.txt.

Maximilian Köper, Christian Scheible, and Sabine Schulte im Walde. Multilingual reliability and
“semantic” structure of continuous word spaces. In Proceedings of the 11th international confer-
ence on computational semantics, pp. 40–45, London, UK, 2015. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/W15-0105.

P Santosh Kumar, Rakesh Bahadur Yadav, and Sunita Vikrant Dhavale. A comparison of pre-trained
word embeddings for sentiment analysis using deep learning. In International Conference on
Innovative Computing and Communications, pp. 525–537. Springer, 2020.

10

https://www.aclweb.org/anthology/Q17-1010
https://www.aclweb.org/anthology/Q17-1010
https://doi.org/10.1145/3038912.3052611
https://www.aclweb.org/anthology/N19-1423
https://github.com/facebookresearch/fastText
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks
https://rusvectores.org/static/testsets/ru_analogy_tagged_PROPN.txt
https://rusvectores.org/static/testsets/ru_analogy_tagged_PROPN.txt
https://www.aclweb.org/anthology/W15-0105

Under review as a conference paper at ICLR 2021

Bofang Li, Aleksandr Drozd, Yuhe Guo, Tao Liu, Satoshi Matsuoka, and Xiaoyong Du. Scaling
word2vec on big corpus. Data Science and Engineering, 4(2):157–175, 2019.

Matt Mahoney. About the Test Data, 2006. https://mattmahoney.net/dc/textdata.
html#appendixa.

Tomas Mikolov. Questions-Words.TXT, 2013. https://github.com/
nicholas-leonard/word2vec/blob/master/questions-words.txt.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Anthony Moi. Fast State-of-the-Art Tokenizers optimized for Research and Production, 2019.
https://github.com/huggingface/tokenizers.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 528–540, New Orleans, Louisiana, 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-1049. URL https://www.aclweb.
org/anthology/N18-1049.

Alexander Panchenko, Dmitry Ustalov, Nikolay Arefyev, Denis Paperno, Natalia Konstantinova,
Natalia Loukachevitch, and Chris Biemann. Human and machine judgements for russian semantic
relatedness. In International conference on analysis of images, social networks and texts, pp. 221–
235. Springer, Cham, 2016. URL https://doi.org/10.1007/978-3-319-52920-2_
21.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems
24, pp. 693–701. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.
pdf.

Radim Rehurek and Petr Sojka. Gensim—statistical semantics in python. Retrieved from genism.
org, 2011.

Vasudevan Rengasamy, Tao-Yang Fu, Wang-Chien Lee, and Kamesh Madduri. Optimizing
word2vec performance on multicore systems. In Proceedings of the Seventh Workshop on Irregu-
lar Applications: Architectures and Algorithms, pp. 1–9, New York, NY, USA, 2017. Association
for Computing Machinery. doi: 10.1145/3149704.3149768. URL https://doi.org/10.
1145/3149704.3149768.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986. URL https://doi.org/10.1038/
323533a0.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. pp. 1715–1725, 2016. doi: 10.18653/v1/P16-1162. URL https://www.
aclweb.org/anthology/P16-1162.

Hou-Chiang Tseng, Hsueh-Chih Chen, Kuo-En Chang, Yao-Ting Sung, and Berlin Chen. An in-
novative bert-based readability model. In International Conference on Innovative Technologies
and Learning, pp. 301–308. Springer, Cham, 2019. URL https://doi.org/10.1007/
978-3-030-35343-8_32.

Vecto. vecto-ai/vecto: Doing things with embeddings., 2018. https://github.com/
vecto-ai/vecto.

11

https://mattmahoney.net/dc/textdata.html#appendixa
https://mattmahoney.net/dc/textdata.html#appendixa
https://github.com/nicholas-leonard/word2vec/blob/master/questions-words.txt
https://github.com/nicholas-leonard/word2vec/blob/master/questions-words.txt
https://github.com/huggingface/tokenizers
https://www.aclweb.org/anthology/N18-1049
https://www.aclweb.org/anthology/N18-1049
https://doi.org/10.1007/978-3-319-52920-2_21
https://doi.org/10.1007/978-3-319-52920-2_21
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
https://doi.org/10.1145/3149704.3149768
https://doi.org/10.1145/3149704.3149768
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://doi.org/10.1007/978-3-030-35343-8_32
https://doi.org/10.1007/978-3-030-35343-8_32
https://github.com/vecto-ai/vecto
https://github.com/vecto-ai/vecto

Under review as a conference paper at ICLR 2021

Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng Wang, and C-C Jay Kuo. Evaluating word
embedding models: Methods and experimental results. APSIPA transactions on signal and infor-
mation processing, 8, 2019.

Wikimedia Foundation. Wikimedia Downloads, 2001. https://dumps.wikimedia.org.

A DETAILS OF EXPERIMENTAL SETUP

For the experiments with questions-words and MUSE, we do not remove any questions containing
out-of-vocabulary words. We use full test data sets for all modes, therefore our results are consistent.

For MUSE, we use the following tests provided by the library1.

English:

EN YP-130
EN SIMLEX-999
EN MTurk-771
EN RG-65
EN VERB-143
EN SEMEVAL17
EN MTurk-287
EN MC-30
EN RW-STANFORD
EN WS-353-SIM
EN-TR-3k
EN WS-353-ALL
EN WS-353-REL

German:

DE ZG222
DE GUR65
DE SIMLEX-999
DE GUR350
DE SEMEVAL17
DE WS-353

For the final MUSE scores, we take arithmetic mean of individual scores obtained from these tests.

For Russian, MUSE provides no tests. Therefore, we download and use the HJ dataset2.

B DETAILED EVALUATION WITH MUSE

Tables 3 and 4 present detailed MUSE results for each test set. For Russian, we use only one test
set, thus the results would be redundant with those in Section 4 and Appendix F. For the English
and German tables, we run the experiments on embeddings obtained in a different training run:
therefore, the individual scores are not expected to average exactly to those in Section 4.

C PREPARATION OF DATA

To prepare German and Russian Wikipedia dumps for training, we modify the wikifil.pl script such
that it captures relevant characters and replaces all digits with relevant words in each language. For
German, we add äöüß to the set of Latin characters. For Russian, we extract Cyrillic characters.
Then, we manually truncate the parsed texts to 1 billion characters, and further truncate to the last
complete word in the resulting text. For example, if the German enumeration was cut at the 1 billion
boundary, such that

1https://dl.fbaipublicfiles.com/arrival/wordsim.tar.gz
2https://github.com/nlpub/russe-evaluation/blob/master/russe/evaluation/hj.csv

12

https://dumps.wikimedia.org

Under review as a conference paper at ICLR 2021

Table 3: Detailed results of MUSE tests for fastText when training on English Wikipedia corpus.
Higher is better. The results are obtained from different training run, hence slight difference from
the main results.

algorithmic
variant

accuracy

YP SIMLEX MTurk RG VERB SEME MTurk MC RW-STA WS-353 TR WS-353 WS-353
-130 -999 -771 -65 -143 VAL17 -287 -30 NFORD -SIM -3k -ALL -REL

SG original 0.532 0.758 0.470 0.765 0.449 0.725 0.665 0.675 0.718 0.666 0.762 0.760 0.357
Our work:
SG code opt 0.520 0.785 0.480 0.819 0.443 0.716 0.673 0.691 0.737 0.665 0.776 0.764 0.366
SG no subword 0.524 0.813 0.375 0.842 0.416 0.730 0.672 0.687 0.745 0.669 0.796 0.752 0.369
SG batch 0.463 0.772 0.462 0.768 0.424 0.717 0.678 0.685 0.728 0.656 0.735 0.767 0.364
SG NS CT 0.450 0.739 0.448 0.660 0.481 0.685 0.662 0.636 0.680 0.622 0.659 0.735 0.338
SG BPE 20K 0.468 0.793 0.409 0.842 0.431 0.711 0.658 0.692 0.749 0.671 0.795 0.750 0.376
SG BPE 40K 0.547 0.814 0.404 0.810 0.411 0.721 0.658 0.706 0.760 0.675 0.754 0.759 0.365
SG BPE 200K 0.499 0.788 0.373 0.823 0.429 0.712 0.672 0.686 0.739 0.673 0.783 0.756 0.358

CBOW original 0.364 0.610 0.403 0.738 0.374 0.662 0.570 0.494 0.543 0.563 0.711 0.706 0.367
Our work:
CBOW code opt 0.350 0.604 0.404 0.701 0.377 0.663 0.585 0.508 0.546 0.568 0.698 0.706 0.365
CBOW no subword 0.392 0.769 0.381 0.774 0.435 0.706 0.663 0.648 0.709 0.658 0.749 0.721 0.390
CBOW NS 11 0.368 0.607 0.391 0.682 0.379 0.669 0.594 0.513 0.547 0.572 0.681 0.706 0.353
CBOW NS 80 0.378 0.657 0.412 0.700 0.384 0.643 0.652 0.611 0.625 0.608 0.667 0.694 0.318
CBOW NS 160 0.369 0.683 0.408 0.632 0.386 0.641 0.656 0.628 0.645 0.598 0.590 0.667 0.293
CBOW DH 0.426 0.677 0.416 0.731 0.383 0.691 0.653 0.565 0.617 0.616 0.715 0.731 0.358
CBOW DH NS 11 0.425 0.640 0.395 0.742 0.364 0.668 0.640 0.539 0.583 0.603 0.699 0.718 0.340
CBOW DH NS 80 0.344 0.703 0.418 0.709 0.364 0.648 0.678 0.658 0.667 0.632 0.627 0.710 0.319
CBOW DH NS 160 0.147 0.479 0.248 0.446 0.284 0.440 0.446 0.460 0.463 0.360 0.462 0.469 0.212
CBOW DHF 0.466 0.751 0.514 0.820 0.449 0.691 0.624 0.653 0.710 0.676 0.792 0.737 0.386
CBOW DHF NS 11 0.452 0.753 0.481 0.791 0.345 0.666 0.653 0.704 0.726 0.647 0.740 0.731 0.345
CBOW DHF NS 80 0.366 0.736 0.418 0.743 0.346 0.636 0.637 0.695 0.701 0.627 0.636 0.705 0.320
CBOW DHF NS 160 0.276 0.669 0.398 0.704 0.350 0.567 0.601 0.673 0.670 0.579 0.599 0.664 0.283
CBOW BPE 20K 0.35 0.767 0.408 0.808 0.432 0.689 0.668 0.650 0.714 0.648 0.734 0.712 0.367
CBOW BPE 40K 0.354 0.787 0.373 0.818 0.439 0.702 0.661 0.664 0.727 0.649 0.711 0.712 0.372
CBOW BPE 200K 0.385 0.758 0.360 0.738 0.414 0.716 0.672 0.641 0.704 0.655 0.724 0.719 0.393

eins zwei drei vier

becomes

eins zwei dr

we truncate it to

eins zwei

.

Finally, we use iconv to ensure UTF-8 format.

For example, for the Russian Wikipedia dump, the order of actions is:

wget <wiki dump address>/<ru.dump>
perl wikifil-ru.pl <ru.dump> > ruwiki
head -c 1000000000 ruwiki > ruwiki9
manually truncate the text
to the last complete word
iconv -t utf-8 ruwiki9 -o ruwiki9-utf

We train the embeddings on the file ruwiki9-utf.

D COMPATIBILITY WITH HUGGING FACE TOKENIZERS

We implement tokenization in a way that it is compatible with the files produced by
ByteLevelBPETokenizer in the Hugging Face Tokenizers library3. We apply the same char-

3https://github.com/huggingface/tokenizers

13

Under review as a conference paper at ICLR 2021

Table 4: Detailed results of MUSE tests for fastText when training on German Wikipedia corpus.
Higher is better. The results are obtained from different training run, hence slight difference from
the main results.

algorithmic
variant

accuracy

ZG222 GUR65 SIMLEX-999 GUR350 SEMEVAL17 WS-353

SG original 0.339 0.588 0.372 0.726 0.659 0.730
Our work:
SG code opt 0.373 0.617 0.371 0.724 0.699 0.716
SG no subword 0.395 0.639 0.363 0.718 0.677 0.796
SG batch 0.372 0.627 0.418 0.733 0.700 0.747
SG NS CT 0.332 0.600 0.388 0.702 0.688 0.700
SG BPE 20K 0.387 0.632 0.358 0.720 0.692 0.703
SG BPE 40K 0.395 0.644 0.385 0.722 0.707 0.749
SG BPE 200K 0.385 0.638 0.327 0.714 0.691 0.772

CBOW original 0.284 0.517 0.308 0.695 0.570 0.701
Our work:
CBOW code opt 0.284 0.517 0.319 0.693 0.579 0.695
CBOW no subword 0.357 0.627 0.363 0.709 0.658 0.672
CBOW NS 11 0.310 0.525 0.302 0.690 0.596 0.690
CBOW NS 80 0.320 0.534 0.372 0.653 0.659 0.600
CBOW NS 160 0.307 0.480 0.356 0.608 0.610 0.511
CBOW DH 0.313 0.543 0.344 0.709 0.618 0.672
CBOW DH NS 11 0.324 0.541 0.322 0.690 0.624 0.687
CBOW DH NS 80 0.332 0.546 0.388 0.631 0.678 0.561
CBOW DH NS 160 0.282 0.469 0.291 0.601 0.590 0.510
CBOW DHF 0.387 0.642 0.442 0.695 0.710 0.675
CBOW DHF NS 11 0.376 0.647 0.417 0.664 0.724 0.699
CBOW DHF NS 80 0.339 0.540 0.406 0.591 0.619 0.587
CBOW DHF NS 160 0.267 0.441 0.276 0.572 0.524 0.496
CBOW BPE 20K 0.319 0.620 0.361 0.689 0.660 0.622
CBOW BPE 40K 0.338 0.628 0.388 0.709 0.650 0.607
CBOW BPE 200K 0.343 0.649 0.332 0.713 0.660 0.684

acter mapping for UTF-8 characters that use more than one byte, and preprocess the words from the
vocabulary such that each begins with a special delimiter character Ġ.

Note that the number of tokens h must be selected during tokenization with the Tokenizers library.

bpe = ByteLevelBPETokenizer()
bpe.train([<corpus file>],

vocab_size=<h>)
bpe.save(<path>, <filename>)

(Note the [] brackets.)

E HOW TO RUN EXPERIMENTS

We provide parameterized code 4 to replicate our experiments. It is a modification of the original
fastText library5. Note that we disabled the production of .bin file to reduce saving time and save
storage space. Our experiments apply to unsupervised training with skip-gram and CBOW.

In order to compile, CMake, Intel ICPC compiler and a CPU with AVX-512 support are required.
Please compile with:

cmake .
make

4https://github.com/FT-Submit/ft-mod
5https://github.com/facebookresearch/fastText

14

Under review as a conference paper at ICLR 2021

To run, please use the command:

fasttext {cbow, skipgram} \
-input <corpus file> \
-output <embeddings file> \
<arguments>

Selecting code optimizations. To run a particular algorithm mode, use the argument -mode
<mode>. Table 5 explains all available modes.

Table 5: An overview of -mode arguments and their connection to our experiments. Parameter s is
set with -shared <s>.

argument mode

-mode normal * code opt (default)

-mode batched SG batch (skip-gram only)

-mode ns
SG NS CT (skip-gram)
CBOW NS s (CBOW)

-mode dh CBOW DH (CBOW only)

-mode dhf CBOW DHF (CBOW only)

-mode dh-ns CBOW DH NS s (CBOW only)

-mode dhf-ns CBOW DHF NS s (CBOW only)

By default, s (the number of words sharing negative samples) is set to 2C + 1, where C is the
maximum context window size (set in the original fastText with the argument -ws <c>). To set a
different s, use -shared <s>. Setting this argument to zero will result in the default setting.

Selecting BPE tokens or no subword. To use BPE tokens instead of subwords, provide paths to
the merge and vocab files produced by the Tokenizers library.

-token-merges <path/to/f.txt >
-token-vocab <path/to/f.json>

Both these arguments must be set to enable the BPE run. The number of tokens h is obtained from
the merge and vocab files. For our experiments, we produce these files using our training corpora.
Note that these two arguments are incompatible with -no-subwords.

Finally, to run the no subword (word2vec) version of our code, use the argument -no-subwords.
Note that it is incompatible with -token-merges and -token-vocab.

We run both the BPE and no subword experiments using -mode normal (default).

The remaining arguments are identical to those used by the original fastText code.

To obtain the results for SG original and CBOW original, please run the original library.

F COMPLETE RESULTS: ENGLISH, RUSSIAN AND GERMAN

We provide complete results for the embeddings trained on English (Tab. 6), German (Tab. 7) and
Russian (Tab. 8) corpora. In negative sharing (NS), we use s = 11, 80, 160.

G VARIANCE OF RESULTS

Due to low stability of word embeddings across different trainings (e.g., (Antoniak & Mimno,
2018)), we perform multiple experiments on our variants to characterize standard deviations ob-
tained for the scores of word analogy task on the questions-words test set (QW). We measure across

15

Under review as a conference paper at ICLR 2021

Table 6: Full results: accuracy, runtime and speedup achieved with our library over fastText when
training on English Wikipedia corpus. Blue: best accuracy in category, bold: Pareto-optimal accu-
racy, speedup is over the original fastText run with the same number of threads, and scaling is the
speedup of 20 threads vs. 1 thread for our code. For accuracy, speedup and scaling, higher is better.
For time, lower is better.

algorithmic
variant

accuracy time (s) speedup (times)
scaling

QW BATS MUSE Battig 1 20 1 20

sem. syn. sem. syn. thread threads thread threads

SG original 27.07 64.22 9.30 41.54 0.643 40.97 33640 2221 1.0 1.0 15.2
Our work:
SG code opt 26.37 63.75 9.29 41.61 0.647 40.85 9087 810 3.7 2.7 11.2
SG no subword 47.42 48.07 12.97 27.81 0.635 41.27 3309 253 10.2 8.8 13.1
SG batch 24.28 62.47 8.92 41.84 0.630 40.76 7631 625 4.4 3.6 12.2
SG NS CT 13.10 60.52 6.74 42.87 0.611 36.99 2537 257 13.3 8.7 9.9
SG BPE 20K 40.78 53.85 12.86 34.50 0.642 40.43 6843 527 4.9 4.2 13.0
SG BPE 40K 47.77 50.56 13.33 33.16 0.646 39.80 6948 525 4.8 4.2 13.2
SG BPE 200K 54.98 44.79 12.65 27.73 0.634 41.46 7041 526 4.8 4.2 13.4

CBOW original 9.27 67.74 5.53 63.42 0.546 32.98 19614 1484 1.0 1.0 13.2
Our work:
CBOW code opt 9.55 68.14 5.69 63.52 0.538 33.07 4285 651 4.6 2.3 6.6
CBOW no subword 51.00 54.49 14.84 32.29 0.614 40.68 951 73 20.6 20.4 13.1
CBOW NS 11 7.18 63.30 4.96 60.27 0.545 32.63 3623 605 5.4 2.5 6.0
CBOW NS 80 6.11 63.41 4.70 60.27 0.570 33.74 3604 604 5.4 2.5 6.0
CBOW NS 160 5.10 62.50 4.41 60.85 0.555 30.74 3584 602 5.5 2.5 6.0
CBOW DH 11.38 68.73 6.51 63.58 0.583 36.30 4079 555 4.8 2.7 7.4
CBOW DH NS 11 9.19 64.19 6.03 58.77 0.564 34.66 3422 480 5.7 3.1 7.1
CBOW DH NS 80 6.64 56.76 5.05 48.63 0.574 32.82 3347 474 5.9 3.1 7.1
CBOW DH NS 160 3.90 54.84 3.77 49.19 0.536 29.44 3371 454 5.8 3.3 7.4
CBOW DHF 5.29 57.44 3.94 51.71 0.633 31.37 4100 446 4.8 3.3 9.2
CBOW DHF NS 11 2.71 44.51 2.75 43.38 0.608 29.94 3214 398 6.1 3.7 8.1
CBOW DHF NS 80 2.84 47.19 3.10 43.26 0.582 29.65 3136 392 6.3 3.8 8.0
CBOW DHF NS 160 2.00 52.77 2.63 53.79 0.539 24.78 3132 392 6.3 3.8 8.0
CBOW BPE 20K 22.65 46.01 10.17 36.98 0.607 35.56 1717 135 11.4 11.0 12.8
CBOW BPE 40K 30.85 40.47 10.13 33.38 0.614 36.07 1710 133 11.5 11.1 12.8
CBOW BPE 200K 43.33 26.40 8.12 24.70 0.606 40.39 1714 131 11.4 11.3 13.0

5 runs. We were unable to perform more tests due to time constraints, but the results provide hints
on stability. We present the results in Table 9. We note that the standard deviation rarely increases
above 1. Moreover, it is more likely to be high for no subword and BPE variants of the code.

16

Under review as a conference paper at ICLR 2021

Table 7: Full results: accuracy, runtime and speedup achieved with our library over fastText when
training on German Wikipedia corpus. Blue: best accuracy in category, bold: Pareto-optimal accu-
racy, speedup is over the original fastText run with the same number of threads, and scaling is the
speedup of 20 threads vs. 1 thread for our code. For accuracy, speedup and scaling, higher is better.
For time, lower is better.

algorithmic
variant

accuracy time (s) speedup (times)
scalingQW MUSE 1 20 1 20

sem. syn. thread threads thread threads

SG original 21.13 49.94 0.587 51747 6095 1.0 1.0 8.5
Our work:
SG code opt 19.41 49.12 0.575 14599 1233 3.5 4.9 11.8
SG no subword 42.31 27.29 0.589 4511 325 11.5 18.8 13.9
SG batch 17.43 49.13 0.573 11249 870 4.6 7.0 12.9
SG NS CT 7.08 47.41 0.547 4506 383 11.5 15.9 11.8
SG BPE 20K 29.91 36.83 0.589 9440 682 5. 8.94 13.9
SG BPE 40K 34.55 29.96 0.593 9908 678 5.2 9.0 14.6
SG BPE 200K 45.90 23.39 0.593 9830 675 5.3 9.0 14.6

CBOW original 4.71 58.94 0.507 31674 3837 1.0 1.0 8.3
Our work:
CBOW code opt 4.30 59.09 0.510 7452 1114 4.3 3.4 6.7
CBOW no subword 37.75 27.66 0.559 1315 92 24.1 41.8 14.3
CBOW NS 11 3.17 55.67 0.520 5754 1050 5.5 3.7 5.5
CBOW NS 80 3.04 52.50 0.515 5664 1068 5.6 3.6 5.3
CBOW NS 160 1.58 46.71 0.472 5615 1045 5.6 3.7 5.4
CBOW DH 5.96 59.81 0.527 6406 911 4.9 4.2 7.0
CBOW DH NS 11 4.57 55.56 0.530 5532 841 5.7 4.6 6.6
CBOW DH NS 80 2.30 50.95 0.522 5812 831 5.5 4.6 7.0
CBOW DH NS 160 1.51 45.25 0.450 6097 829 5.2 4.6 7.4
CBOW DHF 1.86 54.17 0.591 6117 845 5.2 4.5 7.2
CBOW DHF NS 11 0.82 46.36 0.562 5049 751 6.3 5.1 6.7
CBOW DHF NS 80 1.03 46.97 0.498 5028 737 6.3 5.2 6.8
CBOW DHF NS 160 1.08 41.07 0.420 5059 764 6.3 5.0 6.6
CBOW BPE 20K 11.19 31.31 0.542 2413 182 13.1 21.1 13.3
CBOW BPE 40K 18.67 23.25 0.557 2389 174 13.3 22.0 13.7
CBOW BPE 200K 27.81 16.14 0.560 2461 170 12.9 22.6 14.5

17

Under review as a conference paper at ICLR 2021

Table 8: Full results: accuracy, runtime and speedup achieved with our library over fastText when
training on Russian Wikipedia corpus. Blue: best accuracy in category, bold: Pareto-optimal accu-
racy, speedup is over the original fastText run with the same number of threads, and scaling is the
speedup of 20 threads vs. 1 thread for our code. For accuracy, speedup and scaling, higher is better.
For time, lower is better.

algorithmic
variant

accuracy time (s) speedup (times)
scalingQW MUSE 1 20 1 20

sem. syn. thread threads thread threads

SG original 12.29 77.61 0.633 30219 2959 1.0 1.0 10.2
Our work:
SG code opt 12.86 77.81 0.622 7409 710 4.1 4.2 10.4
SG no subword 23.82 42.89 0.588 2501 179 12.1 16.5 14.0
SG batch 10.58 76.32 0.629 5914 565 5.1 5.2 10.5
SG NS CT 5.58 77.81 0.602 2289 254 13.2 11.7 9.0
SG BPE 20K 14.22 51.86 0.621 5179 376 5.8 7.9 13.8
SG BPE 40K 16.75 46.81 0.608 5212 374 5.8 7.9 13.9
SG BPE 200K 22.90 45.91 0.600 5230 370 5.8 8.0 14.1

CBOW original 8.88 80.78 0.495 20510 2599 1.0 1.0 7.9
Our work:
CBOW code opt 9.18 79.79 0.497 4541 569 4.5 4.6 8.0
CBOW no subword 16.01 37.35 0.532 731 51 28.1 50.5 14.2
CBOW NS 11 7.92 77.32 0.493 4166 519 4.9 5.0 8.0
CBOW NS 80 7.46 75.83 0.490 4105 518 5.0 5.0 7.9
CBOW NS 160 6.61 68.75 0.391 4311 518 4.8 5.0 8.3
CBOW DH 9.17 81.43 0.523 4790 455 4.3 5.7 10.5
CBOW DH NS 11 7.82 78.95 0.513 4179 403 4.9 6.5 10.4
CBOW DH NS 80 7.41 75.63 0.449 3969 403 5.2 6.4 9.8
CBOW DH NS 160 6.23 66.47 0.368 3796 405 5.4 6.4 9.4
CBOW DHF 7.32 78.75 0.557 4451 418 4.6 6.2 10.6
CBOW DHF NS 11 4.79 73.60 0.548 3400 366 6.0 7.1 9.3
CBOW DHF NS 80 5.50 66.22 0.458 2866 368 7.2 7.1 7.8
CBOW DHF NS 160 5.68 60.92 0.384 3024 366 6.8 7.1 8.3
CBOW BPE 20K 8.28 34.82 0.513 1371 103 15.0 25.2 13.3
CBOW BPE 40K 8.96 40.66 0.493 1349 100 15.2 26.1 13.6
CBOW BPE 200K 11.13 35.96 0.537 1343 96 15.3 27.0 14.0

18

Under review as a conference paper at ICLR 2021

Table 9: Standard deviation of the score obtained with word analogy task on QW. Lower is better.

algorithmic
variant

English German Russian

sem. syn. sem. syn. sem. syn.

SG original 0.28 0.28 0.43 0.36 0.33 0.83
Our work:
SG code opt 0.76 0.55 1.28 0.76 0.39 1.24
SG no subword 1.10 0.76 0.96 0.66 0.55 1.82
SG batch 0.51 0.33 1.54 0.52 0.40 0.98
SG NS CT 0.39 0.51 0.69 0.88 0.25 0.95
SG BPE 20K 1.51 0.28 0.76 0.38 0.14 0.23
SG BPE 40K 0.78 0.59 1.04 0.50 0.33 0.48
SG BPE 200K 1.93 0.54 0.84 0.64 0.36 2.46

CBOW original 0.13 0.23 0.10 0.21 0.08 0.63
Our work:
CBOW code opt 0.07 0.19 0.11 0.35 0.11 0.47
CBOW no subword 1.04 0.37 0.38 0.29 0.32 0.74
CBOW NS 11 0.04 0.48 0.18 0.48 0.08 0.57
CBOW NS 80 0.30 0.41 0.09 0.29 0.11 0.72
CBOW NS 160 0.13 0.29 0.11 0.37 0.10 0.47
CBOW DH 0.34 0.33 0.11 0.40 0.12 0.44
CBOW DH NS 11 0.10 0.40 0.17 0.39 0.21 1.25
CBOW DH NS 80 0.30 0.38 0.20 0.42 0.24 0.53
CBOW DH NS 160 0.26 0.57 0.06 0.25 0.17 0.91
CBOW DHF 0.31 0.24 0.05 0.38 0.14 0.81
CBOW DHF NS 11 0.13 0.75 0.13 0.63 0.17 1.35
CBOW DHF NS 80 0.19 0.76 0.06 0.52 0.14 0.60
CBOW DHF NS 160 0.12 0.55 0.07 0.23 0.14 1.06
CBOW BPE 20K 0.27 0.25 0.24 0.38 0.23 0.69
CBOW BPE 40K 0.45 0.37 0.48 0.31 0.41 0.46
CBOW BPE 200K 0.24 0.28 0.46 0.14 0.10 1.28

19

	Introduction
	Word embeddings
	Optimization techniques and algorithmic variants
	Evaluation
	Conclusions
	Details of experimental setup
	Detailed evaluation with MUSE
	Preparation of data
	Compatibility with Hugging Face Tokenizers
	How to run experiments
	Complete results: English, Russian and German
	Variance of results

