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Abstract

Reward-based finetuning is crucial for aligning language policies with intended
behaviors (e.g., creativity and safety). A key challenge is to develop steerable
language models that trade-off multiple (conflicting) objectives in a flexible and
efficient manner. This paper presents Conditional Language Policy (CLP), a
general framework for finetuning language models on multiple objectives. Building
on techniques from multi-task training and parameter-efficient finetuning, CLP
learn steerable models that effectively trade-off conflicting objectives at inference
time. Notably, this does not require training or maintaining multiple models to
achieve different trade-offs between the objectives. Through extensive experiments
and ablations on two summarization datasets, we show that CLP learns steerable
language models that outperform and Pareto-dominate the existing approaches for
multi-objective finetuning.

1 Introduction

Figure 1: (Left) For prompt x, a multi-objective LM can
output y1, y2, y3 for different weightings w1, w2, w3 of
two rewards r1 and r2, such that the response yi for
weighting wi is preferred under the weighted reward
wi[1]r1 + wi[2]r2. (Right) Pareto-fronts when using
the rewards NLI and Rouge (App. A.1.2). Rewarded
Soups (RS) [23] is Pareto-dominated by both full-CLP
(this paper) and prompting (say, [15]), but full-CLP
is more appealing for its steerability, evidenced by its
wider Pareto-front. Pareto-dominance (pushing out the
front) and steerability (stretching out the front) are both
key desiderata for MOFT.

In modern applications, reinforcement learn-
ing (RL) finetuning is often a multi-objective
problem due to the diversity of human prefer-
ences (e.g., factuality vs. creativity) and of ap-
plications (e.g., summarization, coding, dialog).
Since standard RL algorithms can only maxi-
mize a scalar reward function, it is common
practice to linearly combine the multiple, of-
ten conflicting objectives with carefully tuned
weightings that represent the relative importance
of each reward [3, 1]. However, this does not
reflect the plurality of use-cases or lead to a
steerable model [31].

To address the limitations of single-objective
finetuning (SOFT), multi-objective finetuning
(MOFT) is a new paradigm that learns a multi-
objective LM (see Fig. 1 left), which can be steered at inference to generate outputs over the continuum
of reward weightings without any retraining [23]. Specifically, a multi-objective LM takes a desired
reward weighting at inference time and outputs a response that maximizes this weighted combination
of rewards.

MOFT has been explored via prompt-based approaches [15, 11, 35] and parameter-based approaches
[23, 15]. Prompt-based approaches finetune a LM that is steered by simply including the reward
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weightings into the prompt. However, prompt-based MOFT is sub-optimal in steerability as we show
in our experiments and can be sensitive to how weightings are encoded in the prompt. An alternative
parameter-based approach, Rewarded Soups (RS) [23], (a) independently trains one LM per reward
function, and (b) interpolates parameters from separate LMs with reward weightings to perform
conditional generation at inference-time. Perhaps surprisingly, this zero-shot approach can effectively
trade-off multiple rewards by relying on the linear mode connectivity [8]. However, we find that
zero-shot MOFT is sub-optimal on weightings not seen during training.

This paper presents Conditional Language Policy (CLP), a general MOFT framework that employs
parameter-space conditioning and multi-task training [6]. Using parameter-conditioning from RS,
CLP is consistently more steerable than purely prompt-based approaches. Moreover, by finetuning on
a diverse set of reward weightings, CLP produces higher quality responses than zero-shot approaches
like RS while having comparable or better steerability. We conduct a systematic set of experiments,
observing that CLP both Pareto-dominates RS and is more steerable than prompt-based MOFT
(see Fig. 1 right). CLP robustly maintains the above benefits across many experimental conditions,
including various choice of rewards and model sizes. We also conduct an automated evaluation with
Gemini 1.0 Ultra [33] that further supports that CLP is more steerable and generates higher quality
responses than existing baselines.

In summary, our contributions are:

1. We propose CLP, a general framework for MOFT that learns multi-objective LMs through
multi-task learning and parameter efficient model averaging (Sec. 3).

2. We extensively evaluate CLP on summarization and show it robustly improves existing
approaches in both output quality and steerability, across many experimental conditions and
automated evaluator evaluations (Sec. 4).

3. We theoretically prove that logit mixing, a special case of CLP, is near-optimal under a
coverage condition. We also provide an example instance where zero-shot (i.e., without
multi-task training) methods fail while CLP succeeds (App. C).

2 Problem Setup

Let πref(y | x) be a base policy with parameters θref, where x is the input prompt and y is the output
generation. In single-objective finetuning (SOFT), there is a fixed reward function R(x, y) and the
goal is to maximize the expected reward without drifting too far from πref. Formally, SOFT learns a
policy πθ(·) to maximize the following value:

Vα,R(π) := Ex∼D,y∼π(x)[(1− α)R(x, y)− αKL(π(· | x) ‖ πref(· | x))], (1)

where α ∈ (0, 1) is a fixed weighting for the reverse KL w.r.t. πref.1 The main issue with SOFT
is that both the reward R and KL weighting are fixed; thus, it is not possible to offer near-optimal
behavior on other reward and KL weightings without retraining multiple times.

Multi-objective finetuning (MOFT) fixes the above issues by learning a conditional policy that
generates y based not only on the prompt x, but also the α and R specified at test-time without
retraining. We formulate MOFT using multi-objective RL [25] and consider a vectorial reward
R(s, a) ∈ Rm whose linear scalarizations {w>R(·) : w ∈ ∆m} capture all possible trade-offs
at test-time, where ∆m is the (m − 1)-simplex. The goal is to learn parameters φ such that, for
all weightings α ∈ [αmin, 1] and w ∈ ∆m, the conditioned policy πφ(·;α,w) maximizes Vα,w>R,
the objective with KL-regularizer α and reward function w>R(·). We frame MOFT as multi-task
training over the weighting distribution Q, and aim to maximize:

Vmoft(φ) = E(α,w)∼Q[Vα,w>R(πφ(·;α,w))]. (2)

MOFT Desiderata – Pareto-dominance & steerability. A multi-objective LM π Pareto-dominates
another π′ if Vα,w>R(π(·;α,w)) ≥ Vα,w>R(π′(·;α,w)) for all values of α,w that one cares about.
New MOFT algorithms should ideally Pareto-dominate existing baselines to ensure that generation
quality is improved along all axes. Steerability is another important goal for MOFT algorithms. In
Fig. 1, full-CLP and prompting both satisfy the first goal of Pareto-dominance, but full-CLP is desirable
since its Pareto-curve has much better spread, i.e., it is more steerable.

1For distributions P � Q, the KL-divergence is defined as KL(P ‖ Q) := EP [log dP
dQ

].
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Algorithm 1 CLP: Conditional Language Policy
Input: Weightings sampler Q, number of training steps T , learning rates {ηt}Tt=1.

1: Init CLP: φ0 = (θref[SC ], {θref[S]}i∈[m]).
2: for t in 0 . . . T − 1 do
3: Sample prompt xt ∼ D and KL & reward weightings (αt, wt) ∼ Q.
4: Get conditioned policy πt(·;αt, wt) from running Alg. 2 with αt, wt, φt.
5: Conditioned generation yt ∼ πt(xt;αt, wt) (same computation as single LM).
6: Objective: rt ← (1− αt) · w>t R(xt, yt)− αt ·KL(πt(· | xt;αt, wt) ‖ πref(· | xt)).
7: Update CLP parameters: φt+1 ← φt + ηt · gt where gt = rt · ∇φt log πt(yt | xt;αt, wt).
8: end for
9: Output: CLP parameters φT .

Algorithm 2 Conditioning Mechanism
Fixed: KL-mixing function fmix(·), index of conditioning params S, CONDPROMPT = FALSE.
Input: KL & reward weightings (α,w), CLP parameters φ = (θSC , {θ

(i)
S }i∈[m]).

1: Set β = fmix(α) and compute:

θα,wS ← (1− β)
∑m
i=1 w[i] · θ(i)S + β · θref[S]. (3)

2: Combine params θα,w = θα,wS ⊕ θSC .
3: Return: Policy that concatenates weights to input {x 7→ πθα,w(CONCAT([w, x]))} if COND-

PROMPT. Else, return policy πθα,w

Notation. θ refers to LM parameters, while φ refers to CLP parameters (different structure from θ),
which can be conditioned on (α,w) to produce a conditioned LM parameter θα,w (same structure
as θ). θ[S] or θS refer to the subset of parameters indexed by S. We use ⊕ to combine disjoint
parameter subsets, i.e., θ = θ[SC ]⊕ θ[S]. We assume θ and θref have the same structure.

3 Conditional Language Policy (CLP)

We describe the CLP algorithm in Alg. 1, illustrated in Fig. 12), where each training round t =
1, 2, . . . , T consists of three steps. First, we sample a prompt xt and reward & KL weightings
wt, αt ∼ Q for this round (Line 3). Second, we condition CLP on weightings (αt, wt) and sample
generations yt ∼ πt(xt;αt, wt) (Line 5). Third, we compute the conditioned objective (Line 6) and
update the CLP parameters with policy gradient (Line 7). The policy optimization step uses gradient
ascent to maximize the objective in Eq. (2) and can be implemented by any standard approaches such
as REINFORCE [39, 2], PPO [28], and also DPO [20] when given preference data.

We also describe the mechanism for computing conditional policies π(·;α,w) in Alg. 2. Let S denote
an index set on the LM parameters that we wish to use for parameter-conditioning [23], e.g., attention
weights, and its choice can trade-off steerability and memory cost of CLP. Then, we maintain (1) m
sets of conditioned parameters {θ(i)S }i∈[m] indexed by S , and (2) one set of unconditioned parameters
θSC . To condition the S-part on (α,w), we linearly combine the m conditioning parameters with
weightings w, and we then combine the result with θref[S] weighted by fmix(α) (Eq. (3)). Then, we
concatenate the conditioned part θα,wS with the unconditioned part to obtain the full LM parameters
θα,w = θα,wS ⊕ θSC . The parameter count of CLP is thus O(m|S|+ |SC |). We note that inference
with CLP only requires one forward pass through the LM and the above parameter-averaging cost is
amortized since it is done only once at the beginning.

The choice of S influences both the steerability and memory usage of CLP. On one extreme, the
most steerable and high parameter count choice is to condition on all LM parameters and we call
this full-CLP, i.e., Sfull = {indices of all LM parameters}. This instance is inspired by model soups
[41]. On the other extreme, logit-CLP only conditions on the final linear layer (a.k.a. logit layer),
i.e., Slogit = {indices of last linear layer of LM}. This instance is theoretically grounded [17] but we
found it to have inferior steerability. Finally, a great middle ground for transformer LMs is to condition
on the attention parameters and we call this attn-CLP, i.e., Sattn = {indices of attention layers of LM}.
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attn-CLP is more parameter-efficient and nearly as steerable as full-CLP in our experiments. We
highlight that CLP is agnostic to the LM architecture and S can be set appropriately for other models.

In our experiments, we observe that the more expressive parameterizations of S (e.g., Sfull and Sattn)
robustly lead to Pareto-dominating and highly steerable behaviors than existing baselines such as
Rewarded Soups. We remark that expressivity is determined not just by the number of parameters in
S but also where those parameters are in the LM (e.g. earlier vs. later layers).

Prompt-based conditioning: One can also augment the prompt with the reward weightings (Line 3
in Alg. 2); see also App. F.2 for more details on prompt-design. Prompting based MOFT has
been explored in recent manuscripts [15, 11, 35] and has the advantage of not requiring additional
parameters, but consumes part of the context and is sensitive to how these are encoded in the context.
In App. A.2.2, we consider augmenting parameter-space conditioning with prompting.

4 Experiments

We consider the following questions:

• Benchmarking: How do different methods perform in terms of performance (ability to push out
the Pareto Front) and steerability (ability to generate content that trades-off different objectives)?

• Ablations: How does the behavior of different approaches vary as a function of (a) number of
finetuning steps, (b) model size? Furthermore, is parameter space conditioning composable with
prompting based methods?

• Automated Evaluations: Going beyond Pareto fronts, we present automated evaluations that
compare generations from CLP against baselines by having Gemini [33] rate the summaries in
terms of quality and steerability.

Data and models. A majority of our experiments/ablations are performed using summarization with
the widely-used XSum dataset [18]. We initialize the reference policy πref and reward models from
the instruction finetuned (FLAN) checkpoints for T5 [4]. We use the large size (770M parameters) for
reward models and we mostly use the base size (220M parameters) for policies, except in our model
size ablation where we also use large size for policies. For policy optimization, we use REINFORCE
with control variate, which is a lighter implementation than PPO [28] and has been successfully used
for summarization [27].

Reward functions. We consider three reward functions: (1) ROUGE, a formulaic reward that
measures similarity of generation to the ground truth summary [16]; (2) natural language inference
(NLI), a learnt reward model for textual entailment and factuality [19, 27]; and (3) a reward model
for summary quality learnt from the “too long; didn’t read” (TLDR) dataset [32]. ROUGE and the
quality model (referred to as TLDR) tend to favor verbose and descriptive summaries while NLI
favors concise summaries; this gives our setup a distinct tension between various reward pairs.

Methods. We benchmark the three instances of CLP in Sec. 3: full-CLP, attn-CLP, logit-CLP. As a
gentle reminder, full-CLP maintains one full LM per reward, akin to standard model soups; attn-CLP
maintains replicas of all attention layers thus being more parameter efficient; and logit-CLP maintains
replicas only the logit layer which is theoretically grounded but less expressive.

Baselines. We consider (a) Rewarded Soups (RS) [23] which independently trains one policy per
reward and linearly interpolates the parameters with weightings at inference time – this is a ‘zero-shot’
version of full-CLP; (b) a prompting baseline [15, 11], which encodes the reward weightings into
the prompt and is trained with our multi-task objective – for details on the prompt and how it was
selected, see App. F.2. For the “single-reward, multi-KL” setting (App. A.1.1), instead of RS, we
consider (c) the recent Decoding-time Realignment (DeRA) [17], which maintains two LMs (an LM
optimized for αmin and reference LM πref) and linearly interpolates their logits. All methods and
baselines are run for same number of training iterations.

Note. Due to lack of space, we present experiment results in App. A, where we find that CLP
consistently improves over the baselines in both steerability and Pareto-dominance. In addition, we
also scale up the policy (to T5-xl size) and reward models (to T5-xxl size) and train the policy on the
TLDR dataset in App. A.4 to check if our observations robustly translate to larger scales and other
datasets, which we find that they do.
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Appendices

A Experimental Results

A.1 Core Benchmarking Results

A.1.1 Single Reward, Multi KL Regularizer

In the first setting, we fix a single reward function and vary the KL regularizer α to test the KL-reward
trade-off. We use the reward R = 0.9Rnli + 0.1Rrouge, where Rrouge is mixed in to mitigate reward
hacking the NLI model. In Fig. 2(a), we see that all methods except logit-CLP are able to evenly trade-
off reward and KL, enabling a smooth transition from πref (when α = 1) to a maximally finetuned
model (when α = 0.01). This suggests that parameter-mixing trained with the multi-task objective
is competitive with the baseline DeRa, which is state-of-the-art for reward-KL trade-off. Moreover,
Fig. 2(b) shows that CLP is also ∼ 2× more computationally efficient than DeRa at inference-time,
because DeRa performs two LM calls (both πref and παmin

) per token. Hence, inference speed is a
major benefit of parameter-mixing over logit-ensembling.

(a) reward-KL curve

(b) relative generation time for 1000 prompts.

Figure 2: Pareto curves for single-reward, multi-α. Observe CLP variants (full-CLP and attn-CLP) are
competitive with DeRA, a baseline that is nearly 2× expensive to run at inference time.

A.1.2 Two Rewards, Fixed KL Regularizer

Here, we consider a pair of rewards with a fixed KL regularizer, to test the trade-off between both
rewards. Fig. 3 shows the Pareto curves for (a) NLI v. Rouge and (b) NLI v. TLDR, where the
x,y-axes are the KL-regularized rewards, i.e., x = Vα,R1

(π(·;α,w)), y = Vα,R2
(π(·;α,w)), which

recall is the true objective being maximized by finetuning (Eq. (1)). We see that CLP and prompting
largely Pareto-dominate the baseline RS, which shows the benefits of multi-task training compared to
RS’s zero-shot approach. full-CLP and attn-CLP both exhibit Pareto-fronts that are more steerable
(evenly spaced and spread out) than those of logit-CLP and prompting, which largely exhibit a mode-
collapsed behavior. Importantly, while efficiently replicating only the attention weights, attn-CLP can
Pareto-dominate the baseline RS while maintaining steerable Pareto-curves. Thus, attn-CLP offers
the best trade-off between steerability and parameter count. See App. H.2 for more results.

A.1.3 Three Rewards, Fixed KL Regularizer

We now consider the three-reward setting to test the trade-off between all reward functions. Fig. 4
plots the KL-regularized value Vα,w>R(π(·;α,w)), normalized w.r.t. RS, for 13 different reward
weightings w shown below the x-axis. At the extreme weights w = ei, i ∈ {1, 2, 3}, RS is
equivalent to single-objective finetuning and naturally outperforms CLP and prompting as expected.
At the intermediate weights w 6= ei, full-CLP consistently outperforms RS. We find that attn-CLP
is competitive to full-CLP despite incurring only 20% of the memory overhead. Thus, akin to the
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(a) NLI v. Rouge (b) NLI v. TLDR

Figure 3: Pareto-curves for two-reward & α = 0.01. Observe CLP variants (full-CLP and attn-CLP) offer
improved spread (compared to prompting) while Pareto-dominating the Rewarded Soups (RS) baseline.

two-reward setting, attn-CLP achieves the best balance in terms of steerability and parameter count.
For additional three reward results, see App. H.3.

Figure 4: Barplot of 1.0 − Vw>R(πAlg(·;w))/Ṽ RS
w>R for three-reward experiments, where Ṽ RS

w>R is the KL-
regularized reward of RS for weighting w. Lower is better and 0 is on-par with RS.

Summary of core benchmarking results. In terms of performance, we find that multi-task training
enables CLP to improve over the zero-shot RS baseline. Importantly, we find that full-CLP and attn-
CLP robustly maintain a steerable Pareto-front that is more spread out than logit-CLP and prompting
baseline. In sum, attn-CLP presents a favorable trade-off in terms of Pareto-front and steerability,
while using fewer parameters than existing baselines.

A.2 Ablation Studies

A.2.1 Effect of Training Iterations

Fig. 5 shows the progression of Pareto-curves over 90k training steps for CLP instances. full-CLP and
attn-CLP are steerable after just 10k steps. In contrast, prompting becomes steerable at 60k steps;
logit-CLP has a similar trend of being not as steerable at earlier training iterations. Furthermore, the
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optimization dynamics of full-CLP and attn-CLP are much smoother than prompting and logit-CLP.
Complete results are presented in App. H.4.

Figure 5: Pareto-curves at 10k, 60k, 90k training steps. Observe that prompting shows slightly improved
steerability with a 3× larger training budget but still isn’t as steerable as full-CLP which exhibits a strong
steerability even at 10k iterations.

A.2.2 CLP With Prompt Conditioning

Fig. 6 shows the Pareto-fronts of full-CLP, the prompting baseline, and full-CLP with prompting
(CONDPROMPT = TRUE). For NLI v. Rouge, full-CLP with prompting showed a slight improvement
in steerability, whereas there was little difference for NLI v. TLDR. Hence, prompt conditioning does
not hurt performance but can be slightly beneficial. See App. H.5 for more results.

(a) NLI v. Rouge (b) NLI v. TLDR

Figure 6: Combining Prompt-based conditioning with Parameter-space condtioning for full-CLP. Observe that
prompting slots in with full-CLP to produce steerable and Pareto dominating behaviors.

A.2.3 Model Size

We rerun our experiments with T5-small (60M) and T5-large (770M) to check how our findings
change with different model sizes. Fig. 7 shows the NLI v. TLDR Pareto-fronts. We see that
full-CLP and attn-CLP still robustly Pareto-dominate the RS baseline and maintain steerable fronts.
Interestingly, prompting collapses to a point for T5-small but has much better spread for T5-large,
suggesting that prompting is sensitive to model size and a larger model can improve the steerability of
prompting. We provide results for other reward pairs in App. H.6.

Summary of ablations. While combining prompting with CLP did not significantly improve steer-
ability, prompting may exhibit more steerability with larger models or training time. Across different
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(a) Size: T5-small (b) Size: T5-large

Figure 7: Ablation on model size for NLI v. TLDR. Observe that across model sizes, full-CLP and attn-CLP
learn steerable (compared to prompting) and Pareto-dominating behaviors (compared to Rewarded Soups).

settings, full-CLP and attn-CLP consistently maintain their superior performance and steerability
suggesting they are robust conditioning architectures.

A.3 Automated Evaluation

In order to understand if CLP’s improved Pareto-fronts translate to improvements in generations
compared to baselines (prompting and Rewarded Soups), we conduct an automated evaluation of
generation quality and steerability. For this evaluation, we consider the NLI v. TLDR setup with
T5-large models (from App. A.2.3) and use 2000 articles from the XSum validation set. We utilize
Gemini 1.0 Ultra [33] as an automated evaluator to compare summaries from CLP instances to each
baseline in terms of their conciseness and summary quality. Specifically, for each article, we sample
conditioned summaries from both CLP and a baseline on weightings w = (0.8, 0.2) for high NLI
(resp. weightings w = (0.2, 0.8) for high TLDR) and we ask the automated evaluator to compare
which summary is more concise (resp. has higher quality). We permute the comparison order to
account for position bias [38], marking a comparison as consistent if both permutations agree – please
see App. I.1 for details. Then, for each article, we consider an algorithm to be the winner (i.e.,
more steerable) if either the auto evaluator prefers its summary in both comparisons, or the auto
evaluator prefers its summary in one case and was inconsistent in the other. If neither algorithm is the
winner, we consider it a tie. With this setup in place, Fig. 8 shows the win-rate across different CLP
variants against the two baselines. We observe that full-CLP (and attn-CLP) offers 11.6% (and 16.5%)
improvement in raw win rates compared to the multi-task trained prompting baseline, and 4.9% (and
9.5%) improvements over RS. logit-CLP tends to fair comparably to prompting while being inferior to
RS (dropping win rate by 3.1%). Notably, attn-CLP and full-CLP achieve the best win-rate relative to
both baselines in this automatic evaluation, with attn-CLP having an additional desirable property of
being more parameter-efficient. In sum, our automatic evaluation is consistent with prior Pareto-front
results and validates that CLP produces higher quality multi-objective LMs with superior steerability
both quantitatively and qualitatively.

A.4 Scaling up CLP with larger policy and reward models

In the following experiment, we perform multi-reward finetuning on the TLDR dataset [34, 32] and
increase the model size of both the policy and reward models. Namely, we train two reward models
with T5-XXL (11B parameters), one for factuality (which we call NLI) and one for summary quality
(which we call TLDR) where we adopt the same reward model training procedure as in [7]. For
our policy model, we use T5-XL (3B parameters) initialized from the FLAN checkpoint [4] and all
methods were trained for 6000 steps. We keep other configurations unchanged from the two-reward
experiments on XSum (e.g., App. A.1.2). We repeat this experiment for three sampling distributions
and show these results in Fig. 9. We observe that attn-CLP and full-CLP both largely Pareto-dominate
the baselines while maintaining smoothly steerable behaviors Pareto-curves. logit-CLP collapses to a
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(a) CLP vs. prompting (b) CLP vs. Rewarded Soups

Figure 8: Automated Evaluation Win Rate comparison of CLP variants against prompting and Rewarded Soups
baselines. CLP variants (full-CLP and attn-CLP) improve win rates by 5 to 10 (and 10 to 15) % compared to
Rewarded-Soups (and prompting) baselines.

(a)Qw ∼ Dir(0.3) (b)Qw ∼ Dir(0.5) (c)Qw ∼ Dir(1.0)

Figure 9: Results on the TLDR dataset with T5-XL policy and T5-XXL reward models. These experiments
vary the sampling distributionQw of reward weightings (Dirichlet(0.3) is more narrow while Dirichlet(1.0) is
uniform). We observe that the steerability of different methods improve asQw becomes narrower, though this
may come at the cost of a slightly inferior Pareto front.

small region likely due to its representational bottleneck. We also observe that the steerability of the
learned policy may improve as the weight sampling distribution becomes more narrow, though this
may come at a cost of less Pareto-optimality. Finally, we have observed this trend repeatedly across
different model sizes, datasets and sampling distributions, which gives credence to the robustness and
reliability of CLP for multi-objective finetuning.

B Related Works

Approaches for multi-reward alignment (or MOFT) can be broadly classified into two categories:
prompt-based and parameter-based conditioning. Prompt-based conditioning approaches include
Personalized Soups [15] which use hand-crafted prompts for personalizing LMs based on binary
weights on different rewards; CPO [11] which employs prompting within a DPO framework; RiC [42],
DPA [35] use prompting within a supervised finetuning setup that differs from this paper which
focuses on RL finetuning. On the parameter-conditioning front, Rewarded Soups (RS) [23]
presents a zero-shot approach (i.e. without multi-task training) to multi-reward alignment by inference
time averaging of parameters for LMs that are independently trained to optimize each of the rewards.
A more recent manuscript [44] presents an approach where the reward weightings are embedded as
singular values within the AdaLoRA framework [12, 43]; this can be framed as an instance of the
proposed CLP framework.

With regards to KL realignment, decoding time realignment (DeRa) [17] linearly mixes logits between
πref and another LM learned via SOFT with the minimum KL weight αmin. Shi et al. [30] showed
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that this idea is also effective for trading off multiple rewards. Finally, model souping [40, 41],
learning policy sub-spaces [9, 5], and objective weight conditioning [6] have been applied in domains
beyond LMs. We leverage these advances along with multi-task training to develop steerable LMs at
inference time.

C Theory for Logit Mixing and CLP

In this section, we perform a sensitivity analysis for logit mixing and derive regret bounds for its
Pareto-front. While CLP uses parameter mixing instead of logit mixing, this analysis is still be
instructive due to the similarity between parameter and ensemble mixing [41, 22].

C.1 Sensitivity Analysis for Logit Mixing

We focus on the “two-reward, fixed α” setting for simplicity and our analysis can be extended
to the general case. For any λ ∈ [0, 1], let ζλ be the logits of the optimal policy π?α,w =
arg maxπ Vα,w>R(π) for weightings w = [1− λ, λ]. Via the analytical solution of KL-regularized
reward maximization, Liu et al. [17] observed that the optimal logits at λ is expressible as mixture
of the optimal logits for each individual reward, i.e., ζλ = (1 − λ)ζ0 + λζ1. Thus, given optimal
policies for R1 & R2, logit-mixing provides a zero-shot way to compute the optimal policy at any
intermediate λ ∈ [0, 1].

However, in practice, we of course are not given optimal policies and only have access to ε-
approximations, so it is important to understand the sensitivity of logit-mixing. We now bound
the sub-optimality of logit-mixing in terms of ε and a concentrability coefficient that measures policy
coverage, defined as Cπ1,π2

:= maxx,y π2(y | x)/π1(y | x), i.e. what is the least overlap in terms of
ratio of probabilities of each policy (one per reward) over the actions (for e.g. tokens).
Theorem 1. Suppose π̂1, π̂2 are ε-optimal policies for Eq. (1) with R1, R2, respectively. For any
λ ∈ [0, 1], let π̂λ be the logit mixture of π̂1 and π̂2. Then, the sub-optimality of π̂λ is bounded by:

O(((1− λ)Cλπ̂2,π̂1
+ λC1−λ

π̂1,π̂2
+ p−2min) · ε),

where pmin is the minimum probability of π̂1, π̂2 over all input-outputs (x, y) that we care about.

The coverage terms however can be infinite if the policies π̂1, π̂2 don’t cover each other. A zero-shot
method will be robust to approximations when expert policies for each individual reward cover each
other. But, as we show next, zero-shot approaches will fail when this coverage condition doesn’t exist
anymore. The full proof is in App. J.

C.2 Counterexample for zero-shot MOFT

Logit mixing cannot induce new behaviors since it can only mix behaviors from the two extremes,
and so if an intermediate weighting requires a new behavior, logit mixing provably fails. Consider
a toy problem with one context and three possible outputs y1, y2, y3 with rewards R1(x, ·) =
(1, 0, 0.75), R2(x, ·) = (0, 1, 0.75). The optimal policies for R1, R2 (with α = 0) are π?1(x) =
(1, 0, 0) and π?2(x) = (0, 1, 0). However, π?0.5 = (0, 0, 1), which is a qualitatively new behavior that
cannot arise from zero-shot logit mixing thus being a failure case for zero-shot logit mixing. In
appendix Fig. 21, we show that the RS baseline, which is zero-shot empirically fails to learn the
Pareto-optimal policy in this example, while CLP which uses multi-task training succeeds.

D Additional Algorithmic Details

D.1 Illustration of CLP

The following supplemental figure illustrates one training round of CLP (Alg. 1).

D.2 Prompt-based Conditioning

We use prompt-conditioning only to trade-off between rewards (i.e., not for trading off KL). Given an
input prompt x and reward weightings w, we propose to concatenate w to the prompt by prefixing x
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Figure 10: CLP samples diverse reward weightings wt at training time to facilitate multi-task learning and uses
parameter-space conditioning to compute a conditioned policy πt(·;wt).

with a formatted string. For example if R1 is NLI (a measure of factuality) and R2 is Rouge, and
w = [0.4, 0.6], we used the the prefix string

p = ‘‘factuality: 0.4 0.4 0.4 0.4 0.4; rouge: 0.6 0.6 0.6 0.6 0.6.’’

We repeat the weights multiple times such that the LM can better pay attention to it and we found
5 repetitions to be reasonable. We found that repeating weights multiple times is helpful but the
benefits are not monotonic with more repetitions.

D.3 Analysis of CLP Gradients

While computing CLP’s gradient gt in Line 7 is easy with autodiff libraries, it is insightful to analyze
how gradient propagates through CLP’s parameter conditioning step. Let γt = rt∇θαt,wtt

log πt(yt |
xt;αt, wt) denote the gradient w.r.t. LM parameters evaluated at θαt,wtt = θt,SC ⊕ θαt,wtt,S , where
θt,SC is the unconditioned parameter and θαt,wtt,S is the (αt, wt)-conditioned S-parameter at round

t. We decompose gt = (gt,SC , {g
(i)
t,S}i∈[m]) where gt,SC = γt[SC ], and g(i)t,S = (1 − fmix(αt)) ·

wt[i] · γt[S] for all i ∈ [m]. Thus, the gradient for CLP’s unconditioned parameters is exactly the
LM gradient at SC , and the gradient for CLP’s conditioned parameters point in the direction of the
LM gradient at S, and are scaled by the reward weights wt and 1− fmix(αt). E.g., i-th conditioned
parameter θ(i)t,S is updated more if Ri has high weight (i.e., wt[i] is large); conversely, it is not updated
at all if Ri has zero weight. The scaling by 1− fmix(αt) implies that the conditioning parameters are
updated more when αt is small and close to αmin, and updated less when αt is close to 1.

D.4 Weightings Distribution and KL-Mixing

We suggest a default sampling distribution Q for the reward and KL weightings. We also suggest a
compatible KL-mixing function fmix, which transforms α before applying parameter-mixing in the
conditioning mechanism.

First, a natural sampling distribution for reward weights w ∈ ∆m is the Dirichlet distribution
Qw = Dir(β) with parameters β ∈ Rm+ . Concentrated sampling (e.g., large β[i]→∞ values) can
more easily cause unsteerable “mode-collapsed” behavior. From our experience, a good default is
uniform Dirichlet with β = (1, 1, . . . , 1) which consistently led to steerable behaviors in full-CLP
and attn-CLP.

Next, we discuss how to set the KL-mixer map fmix(α). As motivation, recall the following theorem
about KL-realignment from Liu et al. [17]. Let ζα(x) ∈ R|Y| be the logits of the optimal policy
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with KL-weight α. Then, ζα(x) = ζref(x) + (1 − α)R(x, ·)/α, where ζref are the logits of πref(x).
Rearranging terms, for all α ∈ [αmin, 1], we have ζα = (1− β)ζαmin + β · ζref where β = fmix(α)
and

fmix(α) =
α− αmin

α(1− αmin)
. (4)

Note that fmix satisfies fmix(1) = 1, so when α = 1 we use purely θref[S] and do not mix in any
learned θS ; this makes intuitive as the minimizer of KL is indeed πref. Conversely, fmix(αmin) = 0,
meaning that θref is not mixed in when α = αmin. Thus, since fmix is the right mixing function for
logits, we adopt this fmix for general parameter mixing in CLP.

To sample KL weights αt ∼ Qα, we suggest to use the inverse CDF method with f−1mix(u) =
αmin

αmin·u+(1−u) , i.e., αt = f−1mix(U) with U ∼ unif[0, 1]. This ensures that the KL-mixing weights are
uniformly distributed, i.e., fmix(αt) ∼ unif[0, 1]. Since the median is 2αmin

αmin+1 , this distribution also
places higher probabilities on smaller α values. This is desirable since small α corresponds to larger
learning signals (large α just forces the model to be close to θref). In App. F.5, we show samples from
αt ∼ Qα and fmix(αt). Finally, we note that w or α can be fixed to a specific value if one cares about
only varying the other.

D.5 KL weight distribution and mixing function

(a) Distribution of αt ∼ Qα. (b) distribution of fmix(αt) ∼ unif[0, 1].

Figure 11: Distributions of αt ∼ Qα and fmix(αt) withQα, fmix defined in App. F.4.

E Experiment Details

Reward and normalization. For Rouge, we use the LSum variant [16] throughout the paper. Both
the NLI and TLDR models were trained with T5-large [21]. We normalize rewards such that they all
approximately lie in the range [0, 1] to ensure they are on a comparable scale. This is important as
otherwise it is easy for a reward with large scale to dominate the objective. In particular, we linearly
mapped the following ranges for each reward to [0, 1]: {Rnli : (−7, 0), Rrouge : (19, 29), Rtldr :
(−1.6, 2)}.
KL regularizer. In the single-reward, multi-KL experiments, we use αmin = 0.01, and in the
two-reward and three-reward experiments with fixed KL regularizer, we use α = 0.01. This α value
is chosen based on observing that, under our normalized reward setup, it is high enough to prevent
reward hacking and low enough to exhibit interesting qualitative differences from the SFT πref.

Training. To train CLP and all our baselines, we use a batch size of 32. For CLP, we sample fresh
reward or KL weightings per batch, instead of per example, as it is more efficient to only condition
once per batch. We also do this for prompting for consistency. We use the T5X implementation
[24] and the Adafactor optimizer [29]. In terms of training budget, we ran 10, 000 iterations for the
single-reward, multi-KL experiments, and we ran 30, 000 iterations for the multi-reward, fixed-KL
experiments. For the RS baseline, the training steps were divided evenly between the rewards; e.g., in
the two-reward setting, RS learns two LMs each trained for 15, 000 and initialized from πref. Thus
CLP and RS are trained with the same number of iterations. For all results, we train on the XSum
training set and report the reward functions and/or qualitative generations on the validation set.
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Hyper-Parameter Value
Model Family Details

Policy/Value Model T5-Base (220M)
(ablations: T5-small (60M) and T5-large (770M))

Reward Models Rouge LSum
NLI/TLDR (learnt - T5-large)

Reward Normalization
Rnli : (−7, 0)→ (0, 1)
Rtldr : (−1.6, 2)→ (0, 1)
Rrouge : (19, 29)→ (0, 1)

Tokenizer Sentence Piece Tokenizer (32k vocabulary size)
Code T5X [24]
Computing Infra TPU-v5e chips
Experiment Time Using 16 TPU-v5e chips, our T5-base runs that includes 30k training

steps and evaluations every 10k steps took 8 hours. Note that each
evaluation over the validation set takes roughly 1 hour.

Policy Optimization Hyper-parameters
Batch Size 32

Policy Optimizer Adafactor [29]
learning rate 3e− 5

Value Optimizer Adafactor [29]
learning rate 1e− 4

CLP/Multi-task training Hyper-parameters

KL-Strength α
Multi-Reward Single KL: 0.01

Also tried 0.1 in ablations
Single-Reward Multi KL: αmin = 0.01

Training Budget

2 Reward, Single KL:
Rewarded Soups: 15, 000 (×2, one per reward)

CLP variants: 30, 000.
Single Reward, Multi KL:TODO:FILL

3 Reward, Single KL:
Rewarded Soups: 10, 000 (×3, one per reward)

CLP variants: 30, 000.

Sampling Distribution D Dirichlet(1.0) for main results
Also Dirichlet(0.3) in ablations.

E.1 Policy Optimization

Recall that the policy optimization step in Line 7 can be implemented with any RL method (policy
gradients, actor-critic etc.). This paper uses REINFORCE with a control variate (i.e., baseline) which
uses fewer hyper-parameters and lighter implementation than PPO [28], and has been successfully
used in prior works [27, 13]. To train the control variate, we maintain a value network of the same
architecture as the policy network where the prediction is the logit value for some fixed token id. For
example, in a problem with m rewards, we use the first m token ids where the i-th token’s logit serves
as the value function for the i-th reward, i.e., V̂i(x) ≈ Ew∼Q,y∼π(·;w)Ri(x, y). This value network is
trained by minimizing MSE, which is standard in RL. Then, these predictions are linearly combined
with weightings to compute the value estimate for the weighted reward, i.e., V̂t =

∑
i wi · V̂i(xt).

The advantage is computed as usual At = rt − V̂t and is batch-normalized before being multiplied
with the∇φt log πt term.

F Additional Algorithmic Details

F.1 Illustration of CLP

The following supplemental figure illustrates one training round of CLP (Alg. 1).
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Figure 12: CLP samples diverse reward weightings wt at training time to facilitate multi-task learning and uses
parameter-space conditioning to compute a conditioned policy πt(·;wt).

F.2 Prompt-based Conditioning

We use prompt-conditioning only to trade-off between rewards (i.e., not for trading off KL). Given an
input prompt x and reward weightings w, we propose to concatenate w to the prompt by prefixing x
with a formatted string. For example if R1 is NLI (a measure of factuality) and R2 is Rouge, and
w = [0.4, 0.6], we used the the prefix string

p = ‘‘factuality: 0.4 0.4 0.4 0.4 0.4; rouge: 0.6 0.6 0.6 0.6 0.6.’’.

We repeat the weights multiple times such that the LM can better pay attention to it and we found
5 repetitions to be reasonable. We found that repeating weights multiple times is helpful but the
benefits are not monotonic with more repetitions.

F.3 Analysis of CLP Gradients

While computing CLP’s gradient gt in Line 7 is easy with autodiff libraries, it is insightful to analyze
how gradient propagates through CLP’s parameter conditioning step. Let γt = rt∇θαt,wtt

log πt(yt |
xt;αt, wt) denote the gradient w.r.t. LM parameters evaluated at θαt,wtt = θt,SC ⊕ θαt,wtt,S , where
θt,SC is the unconditioned parameter and θαt,wtt,S is the (αt, wt)-conditioned S-parameter at round

t. We decompose gt = (gt,SC , {g
(i)
t,S}i∈[m]) where gt,SC = γt[SC ], and g(i)t,S = (1 − fmix(αt)) ·

wt[i] · γt[S] for all i ∈ [m]. Thus, the gradient for CLP’s unconditioned parameters is exactly the
LM gradient at SC , and the gradient for CLP’s conditioned parameters point in the direction of the
LM gradient at S, and are scaled by the reward weights wt and 1− fmix(αt). E.g., i-th conditioned
parameter θ(i)t,S is updated more if Ri has high weight (i.e., wt[i] is large); conversely, it is not updated
at all if Ri has zero weight. The scaling by 1− fmix(αt) implies that the conditioning parameters are
updated more when αt is small and close to αmin, and updated less when αt is close to 1.

F.4 Weightings Distribution and KL-Mixing

We suggest a default sampling distribution Q for the reward and KL weightings. We also suggest a
compatible KL-mixing function fmix, which transforms α before applying parameter-mixing in the
conditioning mechanism.

First, a natural sampling distribution for reward weights w ∈ ∆m is the Dirichlet distribution
Qw = Dir(β) with parameters β ∈ Rm+ . Concentrated sampling (e.g., large β[i]→∞ values) can
more easily cause unsteerable “mode-collapsed” behavior. From our experience, a good default is
uniform Dirichlet with β = (1, 1, . . . , 1) which consistently led to steerable behaviors in full-CLP
and attn-CLP.

Next, we discuss how to set the KL-mixer map fmix(α). As motivation, recall the following theorem
about KL-realignment from Liu et al. [17]. Let ζα(x) ∈ R|Y| be the logits of the optimal policy
with KL-weight α. Then, ζα(x) = ζref(x) + (1 − α)R(x, ·)/α, where ζref are the logits of πref(x).
Rearranging terms, for all α ∈ [αmin, 1], we have ζα = (1− β)ζαmin

+ β · ζref where β = fmix(α)
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and

fmix(α) =
α− αmin

α(1− αmin)
. (5)

Note that fmix satisfies fmix(1) = 1, so when α = 1 we use purely θref[S] and do not mix in any
learned θS ; this makes intuitive as the minimizer of KL is indeed πref. Conversely, fmix(αmin) = 0,
meaning that θref is not mixed in when α = αmin. Thus, since fmix is the right mixing function for
logits, we adopt this fmix for general parameter mixing in CLP.

To sample KL weights αt ∼ Qα, we suggest to use the inverse CDF method with f−1mix(u) =
αmin

αmin·u+(1−u) , i.e., αt = f−1mix(U) with U ∼ unif[0, 1]. This ensures that the KL-mixing weights are
uniformly distributed, i.e., fmix(αt) ∼ unif[0, 1]. Since the median is 2αmin

αmin+1 , this distribution also
places higher probabilities on smaller α values. This is desirable since small α corresponds to larger
learning signals (large α just forces the model to be close to θref). In App. F.5, we show samples from
αt ∼ Qα and fmix(αt). Finally, we note that w or α can be fixed to a specific value if one cares about
only varying the other.

F.5 KL weight distribution and mixing function

(a) Distribution of αt ∼ Qα. (b) distribution of fmix(αt) ∼ unif[0, 1].

Figure 13: Distributions of αt ∼ Qα and fmix(αt) withQα, fmix defined in App. F.4.

G Experiment Details

Reward and normalization. For Rouge, we use the LSum variant [16] throughout the paper. Both
the NLI and TLDR models were trained with T5-large [21]. We normalize rewards such that they all
approximately lie in the range [0, 1] to ensure they are on a comparable scale. This is important as
otherwise it is easy for a reward with large scale to dominate the objective. In particular, we linearly
mapped the following ranges for each reward to [0, 1]: {Rnli : (−7, 0), Rrouge : (19, 29), Rtldr :
(−1.6, 2)}.
KL regularizer. In the single-reward, multi-KL experiments, we use αmin = 0.01, and in the
two-reward and three-reward experiments with fixed KL regularizer, we use α = 0.01. This α value
is chosen based on observing that, under our normalized reward setup, it is high enough to prevent
reward hacking and low enough to exhibit interesting qualitative differences from the SFT πref.

Training. To train CLP and all our baselines, we use a batch size of 32. For CLP, we sample fresh
reward or KL weightings per batch, instead of per example, as it is more efficient to only condition
once per batch. We also do this for prompting for consistency. We use the T5X implementation
[24] and the Adafactor optimizer [29]. In terms of training budget, we ran 10, 000 iterations for the
single-reward, multi-KL experiments, and we ran 30, 000 iterations for the multi-reward, fixed-KL
experiments. For the RS baseline, the training steps were divided evenly between the rewards; e.g., in
the two-reward setting, RS learns two LMs each trained for 15, 000 and initialized from πref. Thus
CLP and RS are trained with the same number of iterations. For all results, we train on the XSum
training set and report the reward functions and/or qualitative generations on the validation set.
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G.1 Policy Optimization

Recall that the policy optimization step in Line 7 can be implemented with any RL method (policy
gradients, actor-critic etc.). This paper uses REINFORCE with a control variate (i.e., baseline) which
uses fewer hyper-parameters and lighter implementation than PPO [28], and has been successfully
used in prior works [27, 13]. To train the control variate, we maintain a value network of the same
architecture as the policy network where the prediction is the logit value for some fixed token id. For
example, in a problem with m rewards, we use the first m token ids where the i-th token’s logit serves
as the value function for the i-th reward, i.e., V̂i(x) ≈ Ew∼Q,y∼π(·;w)Ri(x, y). This value network is
trained by minimizing MSE, which is standard in RL. Then, these predictions are linearly combined
with weightings to compute the value estimate for the weighted reward, i.e., V̂t =

∑
i wi · V̂i(xt).

The advantage is computed as usual At = rt − V̂t and is batch-normalized before being multiplied
with the∇φt log πt term.

Hyper-Parameter Value
Model Family Details

Policy/Value Model T5-Base (220M)
(ablations: T5-small (60M) and T5-large (770M))

Reward Models Rouge LSum
NLI/TLDR (learnt - T5-large)

Reward Normalization
Rnli : (−7, 0)→ (0, 1)
Rtldr : (−1.6, 2)→ (0, 1)
Rrouge : (19, 29)→ (0, 1)

Tokenizer Sentence Piece Tokenizer (32k vocabulary size)
Code T5X [24]
Computing Infra TPU-v5e chips
Experiment Time Using 16 TPU-v5e chips, our T5-base runs that includes 30k training

steps and evaluations every 10k steps took 8 hours. Note that each
evaluation over the validation set takes roughly 1 hour.

Policy Optimization Hyper-parameters
Batch Size 32

Policy Optimizer Adafactor [29]
learning rate 3e− 5

Value Optimizer Adafactor [29]
learning rate 1e− 4

CLP/Multi-task training Hyper-parameters

KL-Strength α
Multi-Reward Single KL: 0.01

Also tried 0.1 in ablations
Single-Reward Multi KL: αmin = 0.01

Training Budget

2 Reward, Single KL:
Rewarded Soups: 15, 000 (×2, one per reward)

CLP variants: 30, 000.
Single Reward, Multi KL:TODO:FILL

3 Reward, Single KL:
Rewarded Soups: 10, 000 (×3, one per reward)

CLP variants: 30, 000.

Sampling Distribution D Dirichlet(1.0) for main results
Also Dirichlet(0.3) in ablations.
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H Additional Experimental Results

H.1 Additional Multi-KL Results

This section focuses on the single-reward, multi-KL setup as in App. A.1.1. We report CLP results
with two choices of the KL-mixing function fmix. First, linear mixing function is fmix(x) = x.
Second, softmdp mixing function is defined in Eq. (5) of App. F.4, which is more principled from the
perspective of DeRa [17]. We see that softmdp mixing indeed yields better steerability for CLP.

(a) linear mixing (b) softmdp mixing

Figure 14: Ablation on the KL-weight mixing function fmix. Linear mixing sets fmix(α) = α. Softmdp mixing
is the one described in App. F.4.
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H.2 Additional Two-Reward Results

Results for (1) NLI v. Rouge, (2) NLI v. TLDR for fixed α ∈ {0.01, 0.1}.

(a) α = 0.01, nli vs. rouge (b) α = 0.01, nli vs. tldr

(c) α = 0.1, nli vs. rouge (d) α = 0.1, nli vs. tldr

Figure 15: Plots comparing CLP instances (full-CLP, attn-CLP, logit-CLP) against Rewarded Soups (RS) [23]
and prompting in the two-reward experiments.
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H.3 Additional Three-Reward Results

(a) full-CLP, attn-CLP, prompting (b) logit-CLP, prompting

Figure 16: Plots comparing CLP instances (full-CLP, attn-CLP, logit-CLP) against Rewarded Soups (RS) [23]
and prompting in the three-reward experiments.

H.4 Effect of Training Iterations

Figure 17: Effect of Training Iterations. Observe that CLP variants such as full-CLP and attn-CLP tend to
present reasonably strong spread out behaviors even with smaller training budgets. prompting and logit-CLP
tend to start spreading out just a little after running the expensive RLHF training procedure for 3× – note that
the spread of these methods is still far inferior to ones obtained by full-CLP and attn-CLP.
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H.5 Combining Prompt and Parameter Conditioning

(a) full-CLP, nli vs. rouge (b) attn-CLP, nli vs. rouge (c) logit-CLP, nli vs. rouge

(d) full-CLP, nli vs. tldr (e) attn-CLP, nli vs. tldr (f) logit-CLP, nli vs. tldr

Figure 18: Ablation study that enables prompting for different CLP instances, across different experiments with
a pair of reward functions.

In the above figures, we see that prompt-conditioning does not always contribute to more steerability
in CLP, but it also does not hurt the steerability. We remark that the aberration in Fig. 18(c) is simply
a zoomed in version of Fig. 18(b), showing that logit-CLP and prompting are not very steerable in this
example.
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H.6 Ablation on Model Size

We present results across two paired-reward setups (NLI vs. Rouge, NLI vs. TLDR) and three model
sizes (T5-small, T5-base, T5-large). In T5-large which has 24 attention layers, we only mix the first
12 layers of the attention parameters for attn-CLP. We believe that mixing all attention layers can only
further improve steerability. For the T5-large model, the first 12 attention layer parameters account
for around 20% of the total parameter count.

(a) t5-small, nli vs. rouge (b) t5-base, nli vs. rouge (c) t5-large, nli vs. rouge

(d) t5-small, nli vs. tldr (e) t5-base, nli vs. tldr (f) t5-large, nli vs. tldr

Figure 19: Ablation study involving different model sizes for parameterizing the steerable policy with the
t5 family of models. Observe that CLP variants tend to perform in a predictable and robust manner across
these model sizes and choices of rewards. Other distinct observations include (a) prompting behaves in rather
unpredictable manners (collapsing and spreading out in rather non-transparent manners, see nli vs. rouge plots
in 2nd row), (b) Rewarded Soups show predictable behavior that attempts to catch up with CLP variants but still
retaining a healthy gap in terms of Pareto front even with t5-large model sizes.
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H.7 Ablation on Sampling Strategy

(a) nli vs. rouge, sampling∼ Dirichlet(0.3) (b) nli vs. rouge, sampling∼ Dirichlet(1.0)

Figure 20: Ablation on the weight sampling distribution. Setting is NLI v. Rouge with α = 0.01. Observe that
the behaviors of CLP variants tend to offer broadly consistent behaviors regardless of the choice of the reward
weighting sampling distributions D while prompting tends to be sensitive to this choice – finding an reasonable
sampling strategy for a new problem can be tricky to solve when employing prompting, while CLP variants
remain robust to this choice.
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I Additional Qualitative Results

I.1 Details of Automatic Evaluation

We evaluate generations from CLP variants (full-CLP, attn-CLP, logit-CLP) against both prompting
and Rewarded Soups baselines. For this, we pick the NLI vs. TLDR setup, use the T5-large models
trained in App. A.2.3) and evaluate on 2000 prompts from the XSum validation set.

We employ the following prompt to compare which one of a pair of summaries is more concise while
being reasonable in quality in terms of capturing relevant information in the article.

You are an expert summary rater. Given an ARTICLE and two summaries SUMMARY1
and SUMMARY2, compare SUMMARY1 and SUMMARY2 based on how **concise the
summary is in capturing relevant information** in the ARTICLE.

Output SUMMARY1 if it **more concisely captures relevant information** in the
ARTICLE compared to SUMMARY2. Alternatively, output SUMMARY2 if it **more
concisely captures relevant information** in the ARTICLE compared to SUMMARY1.

ARTICLE: ¡Insert article to summarize here.¿
SUMMARY1: ¡Insert summary from ALG1 here.¿
SUMMARY2: ¡Insert summary from ALG2 here.¿
Which summary **more concisely captures information** in the ARTICLE? You can answer
one of SUMMARY1 or SUMMARY2. ANSWER:

Similarly, for capturing how comprehensive and high quality a summary is relative to the other, we
employ the following prompt.

You are an expert summary rater. Given an ARTICLE and two summaries SUMMARY1
and SUMMARY2, compare SUMMARY1 and SUMMARY2 based on **the quality and
comprehensiveness of the summary** in the ARTICLE.

Output SUMMARY1 if it is of **higher quality and more comprehensive** in sum-
marizing the ARTICLE compared to SUMMARY2. Alternatively, output SUMMARY2 if it
is of **higher quality and more comprehensive** in summarizing the ARTICLE compared
to SUMMARY1.

ARTICLE: ¡Insert article to summarize here.¿
SUMMARY1: ¡Insert summary from ALG1 here.¿
SUMMARY2: ¡Insert summary from ALG2 here.¿
Which summary is of **higher quality and more comprehensive** in capturing information
in the ARTICLE? You can answer one of SUMMARY1 or SUMMARY2. ANSWER:

For each instance in the validation set, we compare swapped pairs (SUMMARY1, SUMMARY2) and
(SUMMARY2, SUMMARY1) with an automatic evaluator [33] for both the conciseness prompt and
comprehensiveness prompt. We consider it to be a win for one of the algorithm if it wins with both of
the swapped pairs on one of the prompts while at least obtaining a tied result on the other prompt.

I.2 Generations for NLI v. Rouge

In this section, we provide sample summaries from full-CLP, attn-CLP, logit-CLP and the prompting
baseline on NLI v. Rouge where we evaluate three weightingsw1 = (0.8, 0.2), w2 = (0.5, 0.5), w3 =
(0.2, 0.8).

I.2.1 Document 9
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Document #9. summarize: Cash, who still presents shows on BBC radio in the South, played his
first record, Bill Haley and His Comets’ Rock Around the Clock, in Canada. ”This little job came
up as holiday relief on 15 August 1964,” he said. ”It feels more like 50 minutes than 50 years. There
were times when things weren’t the best in the west, but 99.99% of the time they were great.” Cash,
aged 72, was born in London but went to Canada with the Merchant Navy. His first broadcast give
him an audition tape to take to the pirate ships broadcasting offshore to Britain, and he joined Radio
London. ”I saw this guy huddling over and being very ill, because the ship was going up and down
at a heck of a pace,” he said. ”He said, ’I’m Maurice Cole - they call me Kenny Everett’.” When the
pirates, which inspired the 2009 film The Boat That Rocked, were outlawed, Cash became one of
the first DJs on Radio 1 in 1967 alongside the likes of Tony Blackburn, Pete Murray, Ed Stewart and
John Peel. He also worked for Capital Radio for 20 years from 1973 before rejoining the BBC in
1999. ”I love talking to the people and getting their reaction,” he said. ”And, of course, you get to
play the best music on the planet, which can’t be bad.” Cash’s shows are broadcast at weekends in
Kent - where he lives - Surrey, Sussex, Berkshire, Dorset, Oxfordshire and Hampshire. There will
be a special show on 25 August, but he said he was spending the 50th anniversary of his first show
getting an MOT for his car. ”Maybe I’ll have a cup of coffee or something later on with the wife.”
Ground Truth Summary: Former pirate radio and Radio One DJ Dave Cash is celebrating 50
years of broadcasting.
Algorithm High nli, Low rouge Mid nli, Mid rouge Low nli, High rouge
full-CLP A radio DJ has marked the

50th anniversary of his first
broadcast.

A BBC DJ has marked the
50th anniversary of his first
broadcast on the air.

DJ Kenny Cash has marked
the 50th anniversary of his
first radio show on Radio Lon-
don 50 years ago.

attn-CLP DJ Kenny Cash has marked
the 50th anniversary of his
first radio show.

DJ Kenny Cash has marked
the 50th anniversary of his
first radio show.

DJ Kenny Cash has marked
the 50th anniversary of his
first radio show 50 years ago.

logit-CLP Kenny Cash has celebrated
the 50th anniversary of his
first radio show.

Kenny Cash has celebrated
the 50th anniversary of his
first radio show.

Kenny Cash has celebrated
the 50th anniversary of his
first radio show.

prompting DJ Kenny Cash has marked
the 50th anniversary of his
first broadcast on the BBC.

DJ Kenny Cash has marked
the 50th anniversary of his
first radio broadcast.

DJ Kenny Cash has marked
the 50th anniversary of his
first broadcast on the BBC.

I.2.2 Document 11

Document #11. summarize: The game set a new record for the most-watched event in US television,
beating last year’s audience of 112.2 million. Viewing peaked at 120.8 million during the last quarter,
which saw the New England Patriots beat the Seattle Seahawks 28-24. Some 118.5 million watched
Katy Perry’s half-time show - three million more than last year’s show with Bruno Mars. Ratings
compiler Nielsen said the 12-minute performance - which also featured Lenny Kravitz and Missy
Elliot - attracted the biggest half-time audience since 1991. NBC, which broadcast the game, said the
actual audience was likely to have been higher because official ratings did not count people watching
in locations such as sports bars. An additional 600,000 viewers watched the game with Spanish-
language announcers on NBC’s Universo cable network. NBC Sports also offered a live stream
to computers and tablets - attracting an average 800,000 people, according to Adobe Analytics.
After the game, an estimated 26.5 million people kept their TVs on NBC to watch an episode of
James Spader’s crime drama The Blacklist, making it the most-watched scripted programme on the
network in more than a decade. Next year’s Super Bowl will be played in Santa Clara, California,
and will be broadcast by CBS.
Ground Truth Summary: An estimated average of 114.4 million people watched Sunday’s Super
Bowl on NBC, according to initial figures.
Algorithm High nli, Low rouge Mid nli, Mid rouge Low nli, High rouge
full-CLP The Super Bowl has attracted

a huge audience.
Some 120.8 million people
watched the Super Bowl on
TV on Sunday.

US viewers watched the Su-
per Bowl in the United States
with 120.8 million viewers.

27



attn-CLP US viewers have watched the
Super Bowl.

US viewers have watched the
Super Bowl attracting more
than 12 million people.

US viewers have watched the
Super Bowl attracting more
than 12 million people to
watch the game.

logit-CLP US viewers watched the Su-
per Bowl with a huge audi-
ence.

US viewers watched the Su-
per Bowl with a huge audi-
ence.

US viewers watched the Su-
per Bowl with a huge audi-
ence.

prompting Some 120.8 million viewers
tuned in to the Super Bowl in
the United States.

Some 120.8 million viewers
tuned in to the Super Bowl in
the United States.

Some 120.8 million viewers
tuned in to the Super Bowl in
the United States.

I.2.3 Document 16

Document #16. summarize: Colombian leader Juan Manuel Santos and the Farc rebel commander
known as Timochenko signed the deal in an emotional ceremony on Monday evening. ”I would
like to ask for forgiveness for all the pain that we may have caused during this war,” he said. The
guests at the ceremony in Cartagena cheered when Timochenko apologised. Some shouted ”Yes,
we can!” while Farc members and heads of state from Latin America rose to their feet on the stage
and applauded. The ceremony which marks the end of 52 years of armed conflict was broadcast
live and shown on giant screens in the capital, Bogota, and other large cities. Farc rebels gathered
in a number of camps also followed the broadcast. There was so much symbolism in this historic
signing - a pen made from a bullet to sign the peace deal, the singing of Beethoven’s Ode to Joy,
everyone dressed in white. President Santos said this historic moment was a message from Colombia
to the world: no more war. ”No more war,” the crowd chanted in return. This was the first time
Timochenko addressed the nation live on TV. He promised the Farc would give up its guns, and
more than that, he asked for forgiveness. It earned him a standing ovation. That would have been
unthinkable not long ago. But after 50 years of war, many Colombians still aren’t ready to forgive.
As President Santos put it, the hard work of building peace now lies ahead. Under the deal, the Farc
will now become a political party. The rebels will take part in legislative elections in 2018, and
- as part of the peace deal - they will be guaranteed a minimum of 10 seats in Congress for their
first two legislative periods. President Santos addressed the Farc rebels directly and praised their
decision to lay down arms. ”Swapping bullets for votes and weapons for ideas is the bravest and
most intelligent decision that any rebel group could take,” he said. ”When you begin your return
to society (...) as head of state of the homeland that we all love, I welcome you to democracy.”
Timochenko said that the rebels would not take up arms anymore. ”War is over, we’re starting to
build peace,” he said before his speech was interrupted by the sound of Colombian Air Force fighter
jets flying over the venue. Looking up startled, Timochenko’s worried expression then turned into a
smile and he joked: ”Well, this time they came to pay their respects to peace and not to drop bombs.”
A number of Farc leaders, such Raul Reyes and Mono Jojoy, were killed in bombing raids over
the past decade. The peace deal was reached after four years of formal peace talks in the Cuban
capital, Havana, which were preceded by two years of secret talks. But before it can come into force
it will have to be approved by Colombians in a public vote scheduled for Sunday. While recent
polls suggest that a majority of Colombians back the deal, there has been vocal opposition to the
agreement. Those in the ”no” camp, which is led by former President Alvaro Uribe, say that they do
not trust the Farc to stick to their promises. They are also angry that Farc leaders will be entering
Congress without serving time in jail for crimes committed during the conflict. President Santos has
stressed that there is ”no Plan B”. He said that if the Colombian people were to reject the peace deal,
the country would face more conflict. 1964: Set up as armed wing of Communist Party 2002: At
its height, it had an army of 20,000 fighters controlling up to a third of the country. Senator Ingrid
Betancourt kidnapped and held for six years along with 14 other hostages 2008: The Farc suffers a
series of defeats in its worst year 2012: Start of peace talks in Havana 2016: Definitive ceasefire
Full timeline of Farc conflict
Ground Truth Summary: The leader of the Farc rebel group has apologised to the victims of
Colombia’s armed conflict which ended with Monday’s signing of a peace deal.
Algorithm High nli, Low rouge Mid nli, Mid rouge Low nli, High rouge
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full-CLP A historic peace deal between
Colombia’s Farc rebels and
the country’s government has
been signed.

Colombia has signed a peace
deal with the Farc rebel group
to end the 52-year conflict.

Colombia has signed a peace
deal with the Farc rebel group
to end the 50-year conflict.

attn-CLP Colombia’s Farc rebels have
signed a peace deal.

Colombia’s Farc rebel group
have signed a peace deal to
end the country’s 52-year con-
flict.

Colombia’s Farc rebel group
have signed a peace deal to
end the country’s 52-year con-
flict.

logit-CLP Colombia has signed a peace
deal with the Farc rebels.

Colombia has signed a peace
deal with the Farc rebels to
end the 52-year war.

Colombia has signed a peace
deal with the Farc rebels to
end the 52-year war.

prompting Colombia’s Farc rebel group
has signed a peace deal with
the country.

Colombia’s Farc rebel group
has signed a peace deal with
the country.

Colombia’s Farc rebel group
has signed a peace deal with
the country.

29



I.3 Generations for NLI v. TLDR

In this section, we provide sample summaries from full-CLP, attn-CLP, logit-CLP and the prompting
baseline on NLI v. TLDR where we evaluate three weightingsw1 = (0.8, 0.2), w2 = (0.5, 0.5), w3 =
(0.2, 0.8).

I.3.1 Document 2

Document #2. summarize: Two-time major winner McIlroy, 25, and Danish former world number
one Wozniacki, 23, announced their engagement on New Year’s Eve. Media playback is not
supported on this device ”The problem is mine,” McIlroy said. ”The wedding invitations issued
at the weekend made me realise that I wasn’t ready for all that marriage entails.” The couple had
been together for more than two years. McIlroy is currently at Wentworth for the BMW PGA
Championship, the European Tour’s flagship event which starts on Thursday. Wozniacki is set
to compete in the French Open in Paris starting on 25 May. In a statement issued through his
management company, McIlroy added: ”There is no right way to end a relationship that has been so
important to two people. ”I wish Caroline all the happiness she deserves and thank her for the great
times we have had.” ”The news has shocked the worlds of both golf and tennis, particularly with the
timing of the split. McIlroy is due to start a crucial run of tournaments, while Wozniacki is playing
the upcoming French Open.” Speaking at Wentworth on Wednesday, McIlroy said the decision to
end the engagement had been mutual and amicable. He said it was a difficult time, but that the
move was best for both of them. McIlroy won the US Open in 2011 and US PGA Championship
the following year. Wozniacki, who has reached the final of one grand slam tournament - the US
Open in 2009 - is currently ranked 13th in the world. When McIlroy announced their engagement,
he tweeted: ”I have a feeling it is going to be a great year.”
Ground Truth Summary: Northern Irish golf star Rory McIlroy has broken off his engagement
with tennis player Caroline Wozniacki.
Algorithm High nli, Low tldr Mid nli, Mid tldr Low nli, High tldr
full-CLP Rory McIlroy and Caroline

Wozniacki have announced
they are splitting up.

Rory McIlroy has announced
that he and Caroline Wozni-
acki have split up after two
years of passionate commit-
ment.

Rory McIlroy has announced
he has ended his engagement
with tennis player Caroline
Wozniacki, stressing the tim-
ing of the split was ”shocking”
and that the move was best for
both partners.

attn-CLP Rory McIlroy has announced
that he is ending his engage-
ment with former tennis part-
ner Caroline Wozniacki.

Rory McIlroy has announced
he has ended his engagement
with tennis player Caroline
Wozniacki, saying the split
was mutual and mutually am-
icable.

Rory McIlroy has announced
he has ended his engagement
with tennis player Caroline
Wozniacki, saying the split
was mutual and mutually am-
icable.

logit-CLP Rory McIlroy has announced
he has ended his engagement
with Caroline Wozniacki.

Rory McIlroy has announced
he has ended his engagement
with Caroline Wozniacki after
realising he was not ready for
the commitment.

Rory McIlroy has announced
he has ended his engagement
with Caroline Wozniacki after
realising he was not ready for
the commitment.

prompting Rory McIlroy has announced
he has ended his engagement
with Caroline Wozniacki.

Rory McIlroy has announced
he has ended his engagement
with tennis player Caroline
Wozniacki, saying the split is
”no right way to end a rela-
tionship that has been so im-
portant to two people”.

Rory McIlroy has announced
he has ended his engagement
with tennis player Caroline
Wozniacki, saying the split is
”no right way to end a rela-
tionship that has been so im-
portant to two people”.

I.3.2 Document 3
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Document #3. summarize: The Battle of Britain Memorial Flight’s Lancaster, known as Thumper,
based at RAF Coningsby, took the skies for a test flight on Monday. The Lancaster, one of only two
in the world able to fly, missed most of the 2015 display season. Squadron Leader Martin Morris
said a schedule for subsequent flights will be announced over the next few weeks. Sqd Ldr Morris,
who heads up the Battle of Britain Memorial Flight, said: ”Spares and parts are difficult to find and
some had to be manufactured. ”The aluminium for the bulkhead had to be sourced from the same
type of aluminium as the original aircraft - so it has not been without challenge - but our engineers
have succeeded.” Hundreds of people turned out to watch as Thumper took to the skies at about
14:00 BST.
Ground Truth Summary: The last airworthy Lancaster bomber in Britain has flown for the first
time since being grounded by a fire in May.
Algorithm High nli, Low tldr Mid nli, Mid tldr Low nli, High tldr
full-CLP A WWII aircraft that missed

most of the plane display sea-
son has returned to the skies.

A WWII airworthy Lancaster
aircraft which missed much
of the 2015 display season
has taken to the skies.

A WWII vintage Lancaster
aircraft has successfully
tested flight following consid-
erable engineering and spares
challenges, with a schedule
for subsequent flights to be
announced in the coming
weeks.

attn-CLP A WWII aircraft that missed
most of the plane display sea-
son has successfully flown.

A WWII Lancaster that
missed most of the plane dis-
play season has successfully
flown for an initial test flight.

A WWII Lancaster that
missed most of the plane
display season has success-
fully flown for an initial
test flight after overcoming
”not without challenges” in
sourcing spare parts and
aluminium.

logit-CLP A WWII airworthy Lancaster
has flown for the first time
since last year.

A WWII airworthy Lancaster
has flown for the first time
since last year after an exten-
sive overhaul which proved
challenging, an RAF unit has
said.

A WWII airworthy Lancaster
has performed its first test fly
since it missed much of 2015
display season, with organis-
ers promising to announce fu-
ture flights in coming weeks.

prompting A historic aircraft that missed
most of the plane display sea-
son has successfully flown.

A historic Lancaster bomber
has successfully tested for the
first time after some challeng-
ing parts had to be manufac-
tured.

A replica Lancaster aircraft
which missed most of the
2015 display season has
flown for an initial test flight
after overcoming ”difficult”
requirements, including the
need to source the exact alu-
minium type as the original.

I.3.3 Document 6
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Document #6. summarize: After the draft deal was published two weeks ago, an irate editorial in
the French newspaper Le Monde fumed that the concessions made to Britain were ”exorbitant”.
And while some in Mr Cameron’s own Conservative Party dismiss his renegotiation as a watery
fudge, politicians in Paris have a very different view. Of particular concern here is the question of
future financial regulation. UK ministers, too, think this is the most important part of the whole
renegotiation. The issue is this: The majority of EU countries that have the euro are integrating
further and building a banking union with common rules and regulations. That process will deepen
in the coming years. Mr Cameron wants legal guarantees that the eurozone will not rig the rules
in a way that could harm the interests of countries that do not have the euro. But France frets that
the UK is seeking special treatment for the City of London, that could harm the single market in
financial services. France is also concerned a new mechanism that would allow non-euro countries
to escalate their concerns could clog up decision-making. The UK insists it is not asking for any
veto or competitive advantage, but this is likely to be the focus of the hastily arranged talks here this
evening. President Hollande also faces an election next year - and while he wants the UK to stay in
the EU, he will not do a deal that gives his opponents a chance to claim he sold out to Britain. EU
renegotiation: Did Cameron get what he wanted? Referendum timeline: What will happen when?
The view from Europe: What’s in it for the others? More: BBC News EU referendum special
Ground Truth Summary: Prime Minister David Cameron is to meet French President Francois
Hollande in Paris shortly - the latest leg in his drive to negotiate new EU membership terms for the
UK.
Algorithm High nli, Low tldr Mid nli, Mid tldr Low nli, High tldr
full-CLP Talks to re-build the EU with

David Cameron are being
held in Paris this evening.

As Britain prepares to begin
negotiations on a deal with
the European Union, debate is
likely to turn to the future of
financial regulation, and the
way this could harm non-euro
countries in the single market.

Britain’s discussions with
French President Hollande on
a renegotiation of the EU’s
terms for the UK’s bid to
stay remain closely watched
but France is concerned that
the UK’s request for special
treatment in financial services
may seriously harm the single
market in Europe.

attn-CLP Britain’s discussions with
French officials on a deal to
resurrect Britain in the EU are
likely to be marked by a num-
ber of concerns.

Britain’s discussions with
French officials on a deal to
resurrect Britain in the EU
have drawn some ire, with
French politicians concerned
about future financial regula-
tion issues.

Britain’s discussions with
French officials on a deal to
resurrect Britain in the EU
this evening will likely be
dominated by issues includ-
ing future financial regulation
and concerns that the UK is
seeking special treatment for
the City of London.

logit-CLP Prime Minister David
Cameron is negotiating with
France on a renegotiated EU
membership deal that will
set out the UK’s demands
in terms of banking and
financial regulation.

Prime Minister David
Cameron’s proposed EU
renegotiation has faced
heated criticism in France,
with some worrying about the
UK’s bid to extract special
treatment for London.

Prime Minister David
Cameron’s proposed EU
renegotiation has faced
heated criticism in France,
with some worrying about the
UK’s bid to extract special
treatment for London in the
single market.

prompting There is concern that re-
cent EU negotiations on
Britain’s membership of the
EU have left some countries
concerned.

As Britain prepares to begin
negotiations on a deal with
the European Union, debate
is about whether British min-
isters are getting what they
want and whether France har-
bours fears that the UK is
seeking special treatment for
the City of London.

As Britain prepares to begin
negotiations on a deal with
the European Union, debate
is about the crucial issue of
future financial regulation -
and with France worried over
fears that the UK is seeking
special treatment for City of
London.
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J Theory of Logit Mixing for Multi-Objective Finetuning

Recall that logit-CLP (described in ??) amounts to linear combination of the logits. In this section, we
show that mixing the logits of expert policies for each individual reward has provable guarantees under
coverage conditions. We also provide a counterexample that rules out the optimality of zero-shot
methods when this coverage condition is not satisfied. For simplicity, we focus on the two reward
case as the general case follows naturally.

In this section, we will use s to denote the input prompt, a to denote the output generation and |A|
to the cardinality of possible outputs. Recall that the optimal policy for a fixed (α,R) has the form:
π?α,R(a | s) ∝ πref(a | s) exp((1− α)R(s, a)/α) [20]. Taking the logarithm gives

log π?α,R(a | s) = log πref(a | s) +
1− α
α

R(s, a)− logZα,R(s),

where Zα,R(s) =
∑
a′ πref(a | s) exp((1− α)R(s, a)/α) in the partition function. Fix any reward

functions R1, R2 and weight λ ∈ [0, 1], and define Rλ := (1− λ)R1 + λR2, we have

log π?α,Rλ(a | s) = (1− λ) log π?α,R1
(a | s) + λ log π?α,R2

(a | s)
+ (1− λ) logZα,R1

(s) + λ logZα,R2
(s)− logZα,Rλ(s).

Since the partition terms are independent of a, this implies that linearly interpolating the logits of
π?α,R1

and π?α,R2
produces logits of the optimal policy for the combined reward. In other words, the

optimal policy for the combined reward can be expressed as a multiplicative interpolation of the two
expert policies. This was also alluded to in Liu et al. [17, Appendix B].

However, since we never know the optimal policy in practice, we can only assume access to ε-optimal
policies for each individual reward. The following theorem quantities the sensitivity to ε for the logit
mixing approach.

Theorem 2. Fix any α, λ ∈ [0, 1]. Suppose π̂1 is an ε-optimal policy for R1, i.e., V ?α,R1
−

Vα,R1
(π̂1) ≤ ε. Similarly assume π̂2 is ε-optimal for R2. Let π̂λ be the logit mixing of π̂1, π̂2

as described above. Then,

V ?α,Rλ − Vα,Rλ(π̂λ) ≤ ε ·
(

exp(η2/8)
(

(1− λ)Cλπ̂2,π̂1
+ λC1−λ

π̂1,π̂2

)
+ 4|A|p−1min

)
,

where η is the maximum `∞ logit value of π̂1 and π̂2, and pmin = mini∈{1,2}minx,y π̂i(y | x) is the
minimum probability of an action.

Counterexample with bad coverage. In App. C.2, we describe a counterexample for which the
zero-shot logit mixing approach provably fails due to lack of coverage. In the following experiment,
we also find that zero-shot RS cannot learn the Pareto-optimal policy for this task, whereas CLP
ultimately learns the Pareto optimal policy.

J.1 Proofs

Proof of Theorem 2. By Lemma 1, we can focus on bounding KL(π̂λ(s) ‖ π?λ(s)), we can be
simplified as follows:

KL(π̂λ(s) ‖ π?λ(s))

= Ea∼π̂λ [log π̂λ(a | s)− log π?λ(a | s)]
= Ea∼π̂λ [(1− λ)(log π̂1(a | s)− log π?1(a | s)) + λ(log π̂2(a | s)− log π?2(a | s))]
+ (1− λ)(log Ẑ1(s)− logZ?1 (s)) + λ(log Ẑ2(s)− logZ?2 (s))− (log Ẑλ(s)− logZ?λ(s)).

Bounding the log partition terms. First, we bound the difference of log partition functions.
Let us parameterize the policies π̂1(· | s) = σ(θ̂1(s)) where θ̂1(s) ∈ RA (where A = |A|)
and σ is the softmax operation, i.e., σ(x)[i] = exp(xi)∑

j exp(xj)
. Without loss of generality, we fix

θ̂1(s)[A] = 0 and thus can rewrite Ẑ1(s) = 1 +
∑A−1
a=1 exp(θ̂(s)[a]). In particular, we have

log π̂1(a | s) = θ(s)[a]− log Ẑ1(s).
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Figure 21: Pareto-fronts of RS and CLP in the counterexample of App. C.2.

We abuse notation and let Z(θ(s)) =
∑
a exp(θ(s)[a]). Notice that KL(π̂(s) ‖ π?(s)) is the

Bregman divergence of f(θ(s)) := logZ(θ(s)) because ∇θf(θ(s)) = σ(θ(s)) = πθ(s), i.e., we
have,

KL(π̂(s) ‖ π?(s)) = Ea∼π̂(s)[θ̂(a | s)− θ?(a | s)] + logZ(θ?(s))− logZ(θ̂(s)) = ∆f (θ?(s), θ̂(s)).

By Lemma 4, we have that f is σ-strongly convex where σ = pmin

A , and hence:

‖θ?1(s)− θ̂1(s)‖2 ≤
2

σ
∆f (θ?1(s), θ̂1(s)) =

2

σ
KL(π̂1(s) ‖ π?1(s)) ≤ 2εσ−1,

where the last inequality is due to the premise.

Since∇f(θ) = σ(θ), its `2-norm is bounded by 1 and thus f is 1-Lipschitz. Hence:∣∣∣f(θ?1(s))− f(θ̂1(s))
∣∣∣ ≤ ‖θ?1(s)− θ̂1(s)‖2 ≤ 2εσ−1.

Thus, the log partition terms are bounded as follows:

(1− λ)(log Ẑ1(s)− logZ?1 (s)) + λ(log Ẑ2(s)− logZ?2 (s))− (log Ẑλ(s)− logZ?λ(s))

≤ (1− λ)2εσ−1 + λ2εσ−1 + ‖θ?λ(s)− θ̂λ(s)‖2
≤ 2εσ−1 + (1− λ)‖θ?1(s)− θ̂1(s)‖2 + λ‖θ?2(s)− θ̂2(s)‖2
≤ 4εσ−1.

Bounding the on-policy term. To perform a change of measure, we can compute the density of
π̂λ with π̂1 and π̂2 as follows:

π̂λ(a|s)
π̂1(a|s) =

(
π̂2(a|s)
π̂1(a|s)

)λ
Ẑ1(s)

1−λẐ2(s)
λ

Ẑλ(s)
,

π̂λ(a|s)
π̂2(a|s) =

(
π̂1(a|s)
π̂2(a|s)

)1−λ
Ẑ1(s)

1−λẐ2(s)
λ

Ẑλ(s)
.

Thus,
Ea∼π̂λ [(1− λ)(log π̂1(a | s)− log π?1(a | s)) + λ(log π̂2(a | s)− log π?2(a | s))]

= Ẑ1(s)
1−λẐ2(s)

λ

Ẑλ(s)

(
(1− λ)Ea∼π̂1(s)

(
π̂2(a|s)
π̂1(a|s)

)λ
(log π̂1(a | s)− log π?1(a | s))

+ λEa∼π̂2(s)

(
π̂1(a|s)
π̂2(a|s)

)1−λ
(log π̂2(a | s)− log π?2(a | s))

)
≤ exp(η2/8)

(
(1− λ)Cλπ̂2,π̂1

+ λC1−λ
π̂1,π̂2

)
ε,
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where we used Lemma 3 to bound the factor in front, bounded the density ratios, and used the fact
that KL(π̂1(s) ‖ π?1(s)) ≤ ε and KL(π̂2(s) ‖ π?2(s)) ≤ ε by premise.

Lemma 1. For any π:

Vα,R(π) = αEs∼µ[logZα,R(s)−KL(π(s) ‖ π?α,R(s))].

Therefore,

V ?α,R − Vα,R(π) = αEs∼µ[KL(π(s) ‖ π?α,R(s))].

Proof. Recall that π?α,R(a | s) = πref(a|s) exp((1−α)R(s,a)/α)
Zα,R(s) , where Zα,R(s) =

∑
a′ πref(a

′ |
s) exp((1− α)R(s, a′)/α) is the partition function. Then,

Vα,R(π) = Es∼µ,a∼π(s)[(1− α)R(s, a)− α(log π(a | s)− log πref(a | s))]
= αEs∼µ[log π?α,R(a | s)− log π(a | s) + logZα,R(s)]

= αEs∼µ[logZα,R(s)−KL(π(s) ‖ π?α,R(s))].

Lemma 2 (Hoeffding’s Lemma). Let X be a random variable such that X ∈ [a, b] w.p. 1. Then for
all λ ∈ R,

logE exp(λX) ≤ λEX + λ2(b−a)2
8 .

Lemma 3. For any x, y ∈ Rn and λ ∈ [0, 1], we have

log

(
(
∑
i exp(xi))

1−λ(
∑
i exp(yi))

λ∑
i exp((1− λ)xi + λyi)

)
≤ B2/8,

where B = ‖x‖∞ ∨ ‖y‖∞.

Proof.

(1− λ) log
∑
i exp(xi) + λ log

∑
i exp(yi)

= (1− λ) logEi∼U([n]) exp(xi) + λ logEi∼U([n]) exp(yi) + log(n)

≤ (1− λ)Ei∼U([n])xi + (1− λ)B2/8 + λEi∼U([n])yi + λB2/8 + log(n) (Lemma 2)

= Ei∼U([n])[(1− λ)xi + λyi] + log(n) +B2/8

≤ logEi∼U([n]) exp((1− λ)xi + λyi) + log(n) +B2/8 (Jensen’s inequality)

= log
∑
i exp((1− λ)xi + λyi) +B2/8.

Lemma 4. Let x ∈ Rn−1 and f(x) = log(1 +
∑
i exp(xi)). Then f is σ-strongly convex for

σ ≥ pmin

n where pmin = min( 1
1+

∑
i exp(xi)

, exp(x1)
1+

∑
i exp(xi)

, . . . , exp(xn−1)
1+

∑
i exp(xi)

).

Proof. The gradient and Hessian of f are:

∇f(x) = σ(x)

∇2f(x) = diag(σ(x))− σ(x)σ(x)>.

Now, apply Lemma 5 to the Hessian, which completes the proof.

Lemma 5. Let p ∈ Rn−1+ such that
∑
i pi < 1. Then H = diag(p)− pp> satisfies λmin(H) ≥ pmin

n
where pmin = min(p1, p2, . . . , pn−1, 1−

∑
i pi).
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Proof. To lower bound the minimum eigenvalue, we’ll lower bound the quadratic form for any
v ∈ Rn−1 with ‖v‖2 = 1. Let µ =

∑
i pivi and note that∑

i pi(vi − µ)2 =
∑
i piv

2
i − µ2 + (

∑
i pi − 1)µ2.

Hence,

v>Hv =
∑
i piv

2
i − µ2

=
∑
i pi(vi − µ)2 + (1−

∑
i pi)µ

2

≥ pmin(
∑
i(vi − µ)2 + µ2).

It remains to show that f(µ) :=
∑
i(vi − µ)2 + µ2 ≥ 1

n . Note that f ′(µ) = 2nµ − 2
∑
i vi and

f ′′(µ) = 2n. Thus, f is convex and its minimizer is µ̃ := 1
n

∑
i vi. Finally,

f(µ̃) = nµ̃2 +
∑
i v

2
i − 2

∑
i viµ̃

= 1 + µ̃(nµ̃− 2
∑
i vi) (‖v‖2 = 1)

= 1− 1
n (
∑
i vi)

2

≥ 1− n−1
n = 1

n . ( (
∑
i vi)

2 ≤ (n− 1)
∑
i v

2
i = n− 1)

Thus, we’ve shown that v>Hv ≥ pmin

n for all v ∈ Rn−1 with ‖v‖2 = 1, which implies the claim.

K Conclusion

We introduced CLP, a flexible framework for MOFT that leverages techniques from multi-task
training and parameter efficient finetuning to develop steerable LMs that adapt their generations to
produce near Pareto optimal behavior across different weightings of individual rewards. We provide
extensive benchmarking and ablations to better understand factors that enable the development of
steerable LMs within the CLP framework. We supplement this with theoretical results that present
conditions under which zero shot approaches work and when multi-task training is necessary to obtain
near-optimal behavior. Promising future directions include (a) understanding other conditioning
mechanisms such as soft tokens [14], (b) automated tuning of the weight sampling distributions [10],
(c) non-linear reward scalarizations [26] and risk-sensitive RL alignment [37], and (d) designing
adaptive algorithms with instance-dependent guarantees [36].

36


	Introduction
	Problem Setup
	Conditional Language Policy (CLP)
	Experiments
	Experimental Results
	Core Benchmarking Results
	Single Reward, Multi KL Regularizer
	Two Rewards, Fixed KL Regularizer
	Three Rewards, Fixed KL Regularizer

	Ablation Studies
	Effect of Training Iterations
	CLP With Prompt Conditioning
	Model Size

	Automated Evaluation
	Scaling up CLP with larger policy and reward models

	Related Works
	Theory for Logit Mixing and CLP
	Sensitivity Analysis for Logit Mixing
	Counterexample for zero-shot MOFT

	Additional Algorithmic Details
	Illustration of CLP
	Prompt-based Conditioning
	Analysis of CLP Gradients
	Weightings Distribution and KL-Mixing
	KL weight distribution and mixing function

	Experiment Details
	Policy Optimization

	Additional Algorithmic Details
	Illustration of CLP
	Prompt-based Conditioning
	Analysis of CLP Gradients
	Weightings Distribution and KL-Mixing
	KL weight distribution and mixing function

	Experiment Details
	Policy Optimization

	Additional Experimental Results
	Additional Multi-KL Results
	Additional Two-Reward Results
	Additional Three-Reward Results
	Effect of Training Iterations
	Combining Prompt and Parameter Conditioning
	Ablation on Model Size
	Ablation on Sampling Strategy

	Additional Qualitative Results
	Details of Automatic Evaluation
	Generations for NLI v. Rouge
	Document 9
	Document 11
	Document 16

	Generations for NLI v. TLDR
	Document 2
	Document 3
	Document 6


	Theory of Logit Mixing for Multi-Objective Finetuning
	Proofs

	Conclusion

