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Abstract

Existing auto-regressive large language mod-001
els (LLMs) are primarily trained using docu-002
ments from general domains. In the biomedical003
domain, continual pre-training is a prevalent004
method for domain adaptation to inject pro-005
fessional knowledge into powerful LLMs that006
have been pre-trained in general domains. Pre-007
vious studies typically conduct standard pre-008
training by randomly packing multiple docu-009
ments into a long pre-training sequence. Re-010
cently, some existing works suggest that en-011
hancing the relatedness of documents within012
the same pre-training sequence may be advanta-013
geous. However, these studies primarily focus014
on general domains, which cannot be readily015
applied in the biomedical domain where the016
distinction of fine-grained topics is harder. Is017
it possible to further improve the pre-training018
for biomedical language models (LMs) using019
exactly the same corpus? In this paper, we020
explore an improved approach to continual pre-021
training, which is a prevalent method for do-022
main adaptation, by utilizing information from023
the citation network in this challenging sce-024
nario. Empirical studies demonstrate that our025
proposed LinkLM data improves both the intra-026
sample and inter-sample referring abilities of027
auto-regressive LMs in the biomedical domain,028
encouraging more profound consideration of029
task-specific pre-training sequence design for030
continual pre-training.031

1 Introduction032

Pre-trained language models (PLMs) benefit from033

large-scale, readily accessible, unsupervised texts.034

Particularly in the biomedical domain, numerous035

studies conducted pre-training on academic pa-036

pers and abstracts to enhance representations and037

professional knowledge (Gu et al., 2021; Beltagy038

et al., 2019; Bolton et al., 2024). Most of them039

are encoder-based language models (Ho et al.,040

2024). With the development of auto-regressive041

# PubMedQA
Abstract: 
To examine patterns of knowledge and attitudes among 
adults aged>65 years unvaccinated for influenza. […]
Question: 
Do patterns of knowledge and attitudes exist among 
unvaccinated seniors?
Answer: yes

# MedMCQA
Question: 
In a 6-month-old child, thick curd like white patch 
appears on the buccal mucosa. On rubbing it leaves an 
erythematous patch. Most likely diagnosis is: 
A. Tuberculosis
B. Lichen planus
C. Lupus erythematous
D. Candidiasis
Answer: Candidiasis

Figure 1: Examples of PubMedQA and MedMCQA
datasets. PubMedQA requires intra-sample referring
ability, whereas MedMCQA mainly measures acquired
knowledge from the LM itself or needs to refer to few-
shot examples (inter-sample referring).

language models (LMs), numerous studies have 042

demonstrated their superior generalization ability 043

and performance compared to encoder-based PLMs 044

when the models are sufficiently large (Brown et al., 045

2020; Ouyang et al., 2022; Taylor et al., 2022). 046

They can not only understand instructions or back- 047

ground information provided in the context, which 048

can be considered as the intra-sample referring 049

ability (as shown in Figure 1), but also adapt to 050

new tasks by referring several provided demonstra- 051

tions, which can be regarded as the inter-sample 052

referring ability. Moreover, with the advent of 053

remarkable open-sourced large language models 054

(LLMs), such as the Llama family (Touvron et al., 055

2023a,b), researchers turn to explore the possibil- 056

ity of conducting continual pre-training to develop 057

LLMs tailored for specific-domains (Chen et al., 058

2023; Huang et al., 2023; Wu et al., 2024). 059

Several pre-training methods have been pro- 060

posed for encoder-based models, including masked 061
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language modeling, next sentence prediction (De-062

vlin et al., 2019), document relation prediction (Ya-063

sunaga et al., 2022), translation language modeling064

(CONNEAU and Lample, 2019). These methods065

have effectively helped in learning specific knowl-066

edge and significantly promoted the development067

of encoder-based LMs. However, to the best of068

our knowledge, most auto-regressive LMs adhere069

to a conventional method for preparing input se-070

quences for pre-training or continual pre-training,071

which involves first shuffling the corpora, followed072

by the random packing (concatenation) of docu-073

ments until the concatenated sequence reaches the074

prescribed maximum input length (Radford et al.,075

2019; Brown et al., 2020; Touvron et al., 2023a;076

Chen et al., 2023).077

Recently, some studies demonstrate that the stan-078

dard pre-training method for auto-regressive LMs079

can be further improved by designing appropriate080

pre-training sequences (Levine et al., 2021; Gu081

et al., 2023; Shi et al., 2023; Zhao et al., 2024),082

such as incorporating relevant texts into the pre-083

ceding context. LinkBERT (Yasunaga et al., 2022)084

constructs three types of segment pairs based on085

a citation network to classify whether they are086

continuous, linked, or random, motivating mod-087

els to capture the citing relationship between two088

text segments. Considering its success, we con-089

sider whether this methodology can be extended090

to auto-regressive LMs, helping them learn to cap-091

ture relationships between multiple text segments092

and improving their referring ability. Therefore,093

in this paper, we explore the linking information094

from the citation network to construct sequences095

for training an auto-regressive LM, which we call it096

as LinkLM. Specifically, we design the pre-training097

sequences by organizing the documents based on098

their citing relationships. When optimizing the099

language modeling objective, auto-regressive LMs100

can learn to refer to possible information from the101

previous context. As illustrated in Figure 2, when102

predicting the tokens in the abstract D1
1 (<PMID103

37893869>), models can access information from104

its citing papers, learning from the findings about105

other detection tools (e.g., ENFEN Battery in D1
2)106

and different aspects (e.g., neurobiology in D2
2).107

Furthermore, by referring D1
2, D1

3, and D1
4, we can108

understand Attention Deficit Hyperactivity Disor-109

der (ADHD) with a series of related works along110

the science history. Therefore, training with Lin-111

kLM data encourages LMs to refer to necessary112

information from the previous context, and there-113

fore enhances models’ referring ability, which can 114

be used in tasks such as open-book question an- 115

swering (Mihaylov et al., 2018; Jin et al., 2019) 116

and the In-Context Learning (ICL) setting (Dong 117

et al., 2022). 118

Though the success of constructing appropriate 119

pre-training sequences has been revealed by some 120

previous works (Gu et al., 2023; Shi et al., 2023; 121

Zhao et al., 2024), they primarily focus on gen- 122

eral domains where the distinction of topics is less 123

challenging than that in the biomedical domain. 124

Additionally, they only trained their models from 125

scratch. However, after pre-training with large- 126

scale, randomly concatenated documents, LMs 127

may tend to avoid breaking document boundaries 128

(i.e., [EOS] token) to refer to adjacent concate- 129

nated documents. Whether the conclusion still 130

holds under the continual pre-training scenario is 131

not clear. Since continual pre-training is a preva- 132

lent practice for developing biomedical LLMs, we 133

focus on this setting in our experiments. 134

In summary, our contributions are threefold: 135

• We propose a novel algorithm for pre-training 136

sequence design exploiting citation informa- 137

tion from a citation network to improve refer- 138

ring ability for biomedical language models. 139

• Our empirical studies fill the gaps in previ- 140

ous research, demonstrating that construct- 141

ing appropriate pre-training sequences is also 142

promising under the continual pre-training set- 143

ting, improving both intra-sample and inter- 144

sample referring ability of auto-regressive lan- 145

guage models. 146

• Our experiments on one-shot evaluation 147

with retrieved demonstrations show that our 148

method can further boost performance in this 149

scenario, emphasizing the potential of design- 150

ing task-specific pre-training sequences. 151

2 Related Work 152

2.1 Domain Adaptation 153

Among domain-specific LMs, there are three 154

dominant architectures: encoder-only, encoder- 155

decoder, and decoder-only Transformer (Ho et al., 156

2024). For encoder-only models, BioLinkBERT 157

(Yasunaga et al., 2022) introduced a pre-training 158

objective, document relation prediction (DRP), to 159

identify whether a pair of segments is contiguous, 160

linked, or random. For encoder-decoder models, 161
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(part of) Citation Network
[Cognitive-behavioural guidance interventions in adolescents with attention deficit 
hyperactivity disorder] … In 50-70% of children diagnosed with the disorder …

!!": <PMID 25726815>

Emotion Regulation in Participants Diagnosed With Attention Deficit Hyperactivity 
Disorder, Before and After an Emotion Regulation Intervention … there was a 
significant decrease in scores associated with emotional regulation …

!#": <PMID 31178779>

Detection of Executive Performance Profiles Using the ENFEN Battery in Children
Diagnosed With Attention-Deficit Hyperactivity Disorder … 

!$": <PMID 33364993>

The Poten]al of Digital Screening Tools for Childhood ADHD in School 
Environments: A Preliminary Study … Electronic health (e-health) systems offer 
promising possibili]es to enhance the diagnos]c process for ADHD, par]cularly 
concerning the execu]ve func]ons (EFs) that play a direct role.

!"": <PMID 37893869>

Neurobiology of ADHD … There is evidence of a genetic basis for ADHD … 
reinforcement may play a central role in the symptoms of ADHD …

!$$: <PMID 19627998>

……

Input Order

Data Construction Order

(Anchor)

Figure 2: Example of LinkLM data construction. The detailed process is described in Algorithm 1. In this example,
the pre-training sequence contains a series of works discussing Attention Deficit Hyperactivity Disorder (ADHD).
Training with LinkLM data, models can not only learn to predict an anchor abstract by referring to its citing
references, but also benefit from the multi-hop references, which are not linked directly.

BioT5 (Pei et al., 2023) constructed various tasks162

by incorporating molecule and protein representa-163

tions into pure texts, learning the relation between164

biochemistry representations and their surround-165

ing contexts. For decoder-only models, Galactica166

(Taylor et al., 2022) and Meditron (Chen et al.,167

2023) carefully processed input texts by inserting168

the title of the cited paper when the input texts169

contain citation annotations. This series of work170

shows that careful design of pre-training input se-171

quences can indeed improve LMs beyond the stan-172

dard pre-training. However, most of them require173

fine-grained annotations, which are expensive to174

collect. Although BioLinkBERT exploited the ci-175

tation network, it remains unclear whether it is176

still available and how it can be applied to auto-177

regressive LMs.178

2.2 Pre-training Sequence Design179

Recently, in the general domain, some researchers180

have shown that even without fine-grained anno-181

tations, we can still construct meaningful and use-182

ful input sequences for pre-training. Levine et al.183

(2021) proved that by pre-pending semantically re-184

lated texts based on RoBERTa (Liu et al., 2019)185

sentence embeddings, sentence representations and186

open-domain question-answering abilities of auto-187

regressive LMs can be improved. Gu et al. (2023)188

trained a task-specific classifier to identify the in-189

trinsic tasks within the pre-training texts and clus-190

tered those whose intrinsic tasks are the same into191

the same context, improving the in-context learning192

ability of LMs. Shi et al. (2023) retrieved similar193

texts using Contriever (Izacard et al., 2022) and 194

concatenated them one by one to form long input 195

sequences. Zhao et al. (2024) showed that packing 196

documents from a single source could be more ef- 197

fective than packing documents sampled randomly 198

from the entire pre-training corpora. 199

In this paper, we explore a more challenging 200

case, where all documents discuss a similar topic. 201

Even the standard way can provide pre-training 202

sequences with relevant context (belonging to the 203

biomedical-related topics). Therefore, this leads 204

to a research question: Is it possible to further 205

improve the pre-training for biomedical language 206

models using exactly the same corpus? 207

Additionally, existing studies primarily explore 208

training models from scratch (Gu et al., 2023; Shi 209

et al., 2023; Zhao et al., 2024). However, it is 210

unclear whether this conclusion still holds in con- 211

tinual pre-training, which is a prevalent method 212

in domain adaptation. Levine et al. (2021) inte- 213

grated similar texts selected via K-Nearest Neigh- 214

bor (KNN) into the context after several steps of 215

warming up, which could be considered as an at- 216

tempt at continual pre-training. However, the LMs 217

they used were relatively small, containing only 218

345M parameters. In this paper, we focus on this 219

continual pre-training setting to improve the refer- 220

ring ability of biomedical language models. 221

3 Preliminary Experiment 222

All references of a given paper can serve as back- 223

ground information, but their importance towards 224

the given paper is different. Therefore, it is neces- 225
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sary to rank them based on their significance. A226

natural solution is using retrievers. As one of our227

preliminary experiments, we realize that retriev-228

ers are not as reliable as we expect in identifying229

the most appropriate reference for a given abstract.230

Before using the retriever to select references that231

provide sufficient background information for the232

following anchor abstract, we should first under-233

stand how well a retriever can find out the reference234

that provides the most information for predicting235

a given abstract. We know the information that a236

reference provides can be measured by237

I(ref ; anchor) = P (anchor)− P (anchor|ref)
(1)238

where P (anchor) is the perplexity of an anchor239

abstract, and P (anchor|ref) is the perplexity of240

the anchor abstract when the reference is provided241

in the context. For each reference, P (anchor) is242

constant, so we can measure the information and243

rank references directly by P (anchor|ref).244

To the best of our knowledge, Meditron (Chen245

et al., 2023) is currently the best open-sourced246

biomedical LM because it is continually pre-trained247

with biomedical texts on the top of the powerful248

LLM, Llama-2 (Touvron et al., 2023b), so that it249

can provide a relatively accurate measurement for250

conditional perplexity. Therefore, we use Meditron-251

7B to compute the ranking of references as the252

ground truth. Subsequently, we use some popular253

models including the Contriever1 to rank the refer-254

ences of a given abstract. We selected 1,000 anchor255

abstracts for this analysis. Results are summarized256

in Table 1. Kendall’s Tau measures the correspon-257

dence between two rankings, while HitN@Top5258

represents the proportion that one of the top-N259

predictions exists in top-5 references ranked by260

Meditron-7B.261

Model Params Kendall’s Tau Hit1@Top5 Hit3@Top5

GPT-2 0.1B 0.087 43.4% 69.0%
GPT-2 medium 0.3B 0.665 69.5% 88.5%
GPT-2 large 0.6B 0.664 70.3% 88.3%
BioMedLM 2.7B 0.590 66.0% 86.8%

Llama-2-7B 7B 0.882 89.7% 98.5%

Contriever 0.1B 0.098 48.6% 71.4%

Meditron-7B 7B 1.000 100% 100%

Table 1: Ranking performance of models. HitN@Top5
represents the proportion that one of the top-N predic-
tions exists in top-5 references ranked by Meditron-7B.

1We use facebook/contriever-msmarco checkpoint (su-
pervised version) from Hugging Face.

Considering Kendall’s Tau and HitN@Top5, we 262

realize that Contriever cannot accurately provide 263

the most appropriate reference for the given ab- 264

stract, despite its widespread usage in information 265

retrieval. Specifically, only 48.6% of the top-1 266

retrieved reference falls in the top-5 references 267

ranked by Meditron-7B. And the proportion of 268

the cases where at least one of the top-3 retrieved 269

references falls in the top-5 references ranked by 270

Meditron-7B is 71.4%. Compared to GPT-2 (Rad- 271

ford et al., 2019) which has a similar number of 272

parameters, Contriever does not show a superior 273

performance. However, we should point out that 274

the dense passage retriever (DPR) is more computa- 275

tionally efficient than auto-regressive LMs because 276

it decouples the encoding of a pair of texts. Nev- 277

ertheless, it is still a good choice in the field of 278

information retrieval. Therefore, as a trade-off, us- 279

ing DPR necessitates retrieving multiple references 280

simultaneously to ensure that the selected refer- 281

ences can provide sufficient information to predict 282

the following anchor abstract. 283

4 Methodology 284

In the scenario of pre-training biomedical LMs, 285

we usually collect abstracts or full papers as the 286

pre-training corpus. The key of our methodology 287

is to construct a long input sequence containing 288

relevant information in the context. Scientific re- 289

searchers typically cite pertinent papers to support 290

their conclusions and these citing papers are often 291

previous stages of their research. Based on this, we 292

construct the pre-training input sequence with the 293

help of the citation network, which is easy to obtain 294

in the biomedical domain. Algorithm 1 shows the 295

procedure of our methodology. 296

To develop biomedical LMs, we use one of the 297

most commonly used data sources, PubMed Ab- 298

stract2. After pre-processing the raw data, we ex- 299

tract both textual and citing information, forming 300

a citation network G. We begin with a randomly 301

selected abstract as the anchor (e.g., D1
1 in Figure 302

2). Unlike previous works (Shi et al., 2023; Zhao 303

et al., 2024), we select multiple relevant references 304

at the same time to increase the hit rate of selected 305

references. This approach addresses the limitations 306

of retrievers, which do not always retrieve the most 307

relevant reference from the given candidates, as 308

discussed in Section 3. To increase the diversity of 309

our LinkLM data, we randomly sample the num- 310

2https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/

4

facebook/contriever-msmarco


Algorithm 1 LinkLM Sequence Construction

Require: G = (D,L): Citation network
Require: R(d): Return the citing references
Require: Retriever

1: P ← [], Q← []
2: while |D| > 0 do
3: Randomly select di from D
4: Q.append(di)
5: D.remove(di)
6: whileR(di) ∩ D ≠ ∅ do
7: K ← Poisson(3)
8: D̄ ← TopK(R(di)∩D, Retriever,K)
9: dj ← argmaxd∈D̄ indegree(d)

10: Q.extend(D̄\dj)
11: Q.append(dj)
12: D.remove(D̄)
13: di ← dj
14: end while
15: P.append(Q[:: −1])
16: Q← []
17: end while
18: Shuffle P
19: return P : List of abstracts

ber of selected references, K, following a Poisson311

distribution with an expected value of three. With312

the help of a given retriever, we select the top-K313

relevant references (e.g., D1
2, D2

2, and D3
2 in Figure314

2) from all references. To increase the possibil-315

ity of constructing longer sequences, we select the316

reference with the largest in-degree among these317

K selected references. Assuming that D1
2 has the318

largest in-degree, we continue the construction with319

D1
2 until none of the references have any citing pa-320

pers (e.g., D1
4 in Figure 2 has no citing papers).321

After the construction, we reverse the constructed322

sequence so that the later documents are supported323

by the earlier ones.324

At the beginning of the data construction, we325

easily obtain multi-hop long sequences. However,326

since we delete nodes once they are visited to pre-327

vent duplication of pre-training samples, the origi-328

nal citation graph becomes sparse gradually. Many329

sequences will be composed by a single document330

at the end of the process. Therefore, after con-331

structing the sequences, we perform sequence-wise332

shuffling so that the sequences comprising a single333

document will be distributed uniformly alongside334

other longer sequences. In this way, each batch335

contains linked long sequences, making full use of336

the constructed LinkLM data.337

5 Experiments 338

5.1 Datasets 339

In the continual pre-training stage, we download 340

the raw data from the PubMed 2024 Annual base- 341

line3 updated until December 14, 2023. We use 342

PubMed parser (Achakulvisut et al., 2020) to ex- 343

tract necessary information including the title, ab- 344

stract, and citations. We exclude isolated data 345

points that are not cited by any paper and their 346

citations are missing. We also exclude data points 347

without any title or abstract. After preprocessing, 348

we obtain approximately 25 million samples as the 349

source for pre-training. 350

For evaluation, we use four widely used biomed- 351

ical multi-choice question-answering (MCQA) 352

datasets, as listed below. 353

• MedMCQA (Pal et al., 2022) is a large-scale 354

MCQA dataset collected from the AIIMS & 355

NEET PG entrance exam, containing more 356

than 194k QA pairs. In the default evaluation 357

setting, LMs can only access the question and 358

four candidate options. Therefore, it is usu- 359

ally used to assess the biomedical knowledge 360

memorized by models. Since the testing set 361

does not provide the ground-truth answers, we 362

use its validation set for evaluation. 363

• MMLU-medical is a subset derived from 364

MMLU (Hendrycks et al., 2020), containing 365

57 tasks across various fields. We select the 366

QA pairs if they belong to one of the following 367

topics: high school biology, college biology, 368

college medicine, professional medicine, med- 369

ical genetics, virology, clinical knowledge, nu- 370

trition, and anatomy. MMLU-medical is also 371

a four-choice MCQA task and it is mainly de- 372

signed to measure knowledge acquired during 373

pre-training. We adhere to the official setting 374

using development set for few-shot learning. 375

• USMLE-QA (Zhang et al., 2018) is an 376

MCQA task based on United States Medi- 377

cal License Exams (USMLE), which requires 378

a certain piece of knowledge or an answer 379

based on a patient’s condition description. We 380

use the English four-choice version subset for 381

evaluation. 382

• PubMedQA (Jin et al., 2019) is a three-choice 383

MCQA task (yes/no/maybe). For each ques- 384

3https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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Train Evaluation #Choice #Token/Sample w/ ContextAver Max

MedMCQA 182,822 4,183 4 61.5 573 ✗
MMLU-Medical 45 1,871 4 124.1 1,192 ✗
USMLE-QA 10,178 1,273 4 251.8 1,152 ✗
PubMedQA 211,269 1,000 3 437.1 1,909 ✓

Table 2: Statistics of four biomedical MCQA datasets. Different from the other three MCQA datasets, an extra
abstract is provided for each question in the PubMedQA dataset.

tion, a related abstract from PubMed is pro-385

vided, making it suitable for evaluating the386

intra-sample referring ability of LMs.387

Table 2 summarizes their statistics. We compute388

the probability of generating each option and se-389

lect the one with the lowest perplexity as the final390

prediction. We report model accuracy and calcu-391

late micro-average accuracy since different datasets392

have different numbers of testing samples.393

5.2 Experimental Settings394

Due to the limitation of our computation resources,395

we chose TinyLlama-1.1B4 as our experimental396

subject, which was pre-trained sufficiently using397

3T tokens (Zhang et al., 2024). After tokenization,398

we obtained approximately 8B tokens for contin-399

ual pre-training. We followed most of the original400

hyperparameters of pre-training TinyLlama with a401

context length of 2048 tokens. Further details are402

provided in Appendix B.1. In the following com-403

parisons, ‘Vanilla’ denotes the original TinyLlama.404

‘Standard’ and ‘LinkLM’ represent the continually405

pre-trained TinyLlama with randomly packed doc-406

uments and LinkLM data, respectively.407

5.3 Intra-Sample Referring Ability408

As discussed in Section 5.1, among these four med-409

ical MCQA tasks, PubMedQA requires LMs to410

answer questions by referring to the given related411

abstract. Therefore, we perform a zero-shot evalu-412

ation on PubMedQA to evaluate the intra-sample413

referring ability of LMs. We observe fluctuations414

across different checkpoints. To better visualize415

their differences, we smooth the average accuracy416

with windows of size three. Figure 3 illustrates417

the zero-shot performance on PubMedQA. We find418

that after training approximately 3B tokens, the419

LM pre-trained with LinkLM data consistently and420

significantly outperforms standard pre-training, in-421

dicating the effectiveness of our proposed method.422

4We used TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T checkpoint from
Hugging Face.

Additionally, Table 3 shows the quantitative per- 423

formances of four biomedical MCQA datasets. 424

Compared to the vanilla TinyLlama, continual 425

pre-training enriches the biomedical knowledge 426

of LMs, leading to a 10.3% relative improvement 427

(from 29.59 to 32.63) from vanilla TinyLlama to 428

continual pre-trained TinyLlama. However, with 429

our designed LinkLM data, though it can also 430

achieve a 9.4% relative improvement compared 431

to the vanilla TinyLlama, performances on some 432

datasets (e.g., MedMCQA) slightly drop compared 433

to standard pre-training. This observation indicates 434

that while using LinkLM data encourages LMs 435

to refer to previous contexts, it may also weaken 436

memorization during pre-training. 437
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Figure 3: Comparison between different pre-training
strategies on PubMedQA (Smoothing window size=3).
The full and dotted lines represent the exact and
smoothed values of performances, respectively. The
colored area represents the standard deviation within a
smoothing window.

5.4 Inter-sample Referring Ability 438

Auto-regressive biomedical LMs are usually em- 439

ployed under the in-context learning scenario, 440

learning from the input-label mapping in previous 441

demonstrations, which can be considered as the 442

inter-sample referring ability. Therefore, we per- 443

form a few-shot evaluation on these four datasets, 444

specifically conducting a three-shot evaluation. 445

6

TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T


Accuracy (%) MedMCQA MMLU-Medical USMLE-QA PubMedQA Average (Micro)

Vanilla (0 shot) 25.34 24.91 26.47 60.10 29.59
Standard (0 shot) 29.55 25.98 28.83 62.80 32.63
LinkLM (0 shot) 28.97 25.44 27.26 66.00 32.36

Vanilla (3 shot, Random) 22.96±0.52 26.03±0.32 25.56±0.37 64.80±1.40 29.05
Standard (3 shot, Random) 25.78±0.61 26.53±0.94 26.34±1.20 63.73±0.53 30.59
LinkLM (3 shot, Random) 27.13±0.28 25.24±1.26 27.36±0.84 65.67±0.87 31.37

Vanilla (1 shot, KNN) 30.10 26.94 26.55 62.30 32.69
Standard (1 shot, KNN) 36.96 25.98 30.32 64.20 36.75
LinkLM (1 shot, KNN) 38.47 25.01 30.48 64.10 37.30

Table 3: Quantitative performances of the vanilla TinyLlama and final checkpoints that are continually pre-trained
in the standard way or with our LinkLM data on four biomedical MCQA datasets. The best and second-best
performances are highlighted in bold and underlined, respectively. For standard few-shot evaluation, we run multiple
times with three different random seeds to reduce the variant of the results.
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(a) Smoothed average accuracy across four biomedical
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Figure 4: Comparison between different pre-training strategies under few-shot evaluation. The full and dotted lines
represent the exact and smoothed values of performances, respectively. The colored area represents the standard
deviation within a smoothing window.

Figure 4a illustrates that pre-training with Lin-446

kLM data significantly outperforms the standard447

pre-training under few-shot evaluation. Remark-448

ably, 90.48% of the checkpoints have better aver-449

age accuracy across the four datasets than stan-450

dard pre-training, which confirms again the ef-451

fectiveness of LinkLM data under continual pre-452

training. However, compared to zero-shot perfor-453

mance, TinyLlama-1.1B does not consistently ben-454

efit from the provided demonstrations in standard455

few-shot settings, as evidenced by its performance456

on MedMCQA and USMLE-QA. The average per-457

formances even drop slightly for TinyLlama pre-458

trained in the standard way (about 6.3% relative459

degradation) and TinyLlama pre-trained with Lin-460

kLM data (about 3.1% relative degradation). We461

hypothesize that it is due to the quality of randomly462

sampled demonstrations that fail to provide useful463

information and may even disrupt LM predictions.464

Inspired by KATE (Liu et al., 2022), which re- 465

trieves similar demonstrations to boost few-shot 466

performance, we use Contriever to retrieve the 467

top-K similar demonstrations from each training 468

set. Contrary to the findings reported in Min et al. 469

(2022), our results suggest that it is possible to 470

retrieve helpful demonstrations from the training 471

set, whose input-label mapping can benefit the pre- 472

diction of the query. We perform a one-shot eval- 473

uation here since adding more retrieved demon- 474

strations does not improve the performance in our 475

case. Figure 4b shows the comparison between our 476

method and standard pre-training. Under this exper- 477

imental setting, we observe obvious improvements 478

over standard few-shot evaluation, highlighting the 479

importance of high-quality demonstrations in the 480

ICL scenario. Although the LM trained with Lin- 481

kLM data only slightly outperforms standard pre- 482

training at the end of continual pre-training, there 483
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are 71.43% of checkpoints that have better aver-484

age accuracy across four datasets than the standard485

pre-training. After pre-training for several steps,486

the LM pre-trained with LinkLM data can achieve487

good performance under this setting, indicating that488

LinkLM data can activate their potential on inter-489

sample referring ability when the demonstrations490

are closely related to the following query.491

Table 3 demonstrates that using retrieved demon-492

strations instead of using randomly sampled ones493

as in standard ICL can significantly boost few-shot494

performance. With appropriate demonstrations,495

LMs perform significantly better than those un-496

der the zero-shot setting. Compared to zero-shot497

performance, LMs continually pre-trained in the498

standard way and with our designed LinkLM data499

achieve 12.4% and 15.3% of relative improvement,500

respectively. We believe the reason is that in the501

standard ICL setting, the sampled demonstrations502

may not be strongly related to the current question,503

so they can only provide shallow information like504

task format (Min et al., 2022). Sometimes, they505

even distract the LMs. However, when using re-506

trieved demonstrations, current questions can not507

only understand the task format but also learn from508

the input-label mapping and knowledge shown in509

the demonstrations. LMs trained with LinkLM data510

can further improve inter-sample referring ability511

during the continual pre-training stage, thus achiev-512

ing larger improvement in few-shot evaluation.513

Especially, on MedMCQA, LM trained with Lin-514

kLM data significantly outperforms LM trained515

in a standard way, no matter whether the demon-516

strations are randomly sampled or retrieved. By517

conducting a case study on MedMCQA, shown in518

Table 5, we find that retrieved demonstrations from519

the training set are highly related to the follow-520

ing question and usually provide pertinent knowl-521

edge. Since TinyLlama pre-trained with LinkLM522

data can memorize knowledge and learn to refer to523

necessary information across different documents524

meanwhile during continual pre-training, it is also525

encouraged to refer to some information from previ-526

ous contexts in downstream tasks after pre-training.527

Note that in domain adaptation, we usually use528

documents in a single focused domain, and there-529

fore even the standard approach concatenates doc-530

uments with similar topics within the context, help-531

ing LMs to refer to necessary information across532

document boundaries (i.e., [EOS] token). In our533

method, we explicitly arrange the related refer-534

ences in the context, improving the inter-sample535

One-shot example (with retrieved demonstration) for MedMCQA
Question: A 60 year old male presents with a creamy curd 
like white patch on the tongue. The probable diagnosis is -
A. Candidiasis
B. Histoplasmosis
C. Lichen planus
D. Aspergillosis
Answer: Candidiasis

Question: In a 6-month-old child, thick curd like white 
patch appears on the buccal mucosa. On rubbing it leaves an 
erythematous patch. Most likely diagnosis is:
A. Tuberculosis
B. Lichen planus
C. Lupus erythematous
D. Candidiasis
Answer:

Prediction: Candidiasis

Figure 5: Example of one-shot ICL with the retrieved
demonstration on the MedMCQA dataset

referring ability further. From another aspect, our 536

pre-training method narrows the gap between pre- 537

training phases and ICL with retrieved demonstra- 538

tions. Therefore, we can expect that the inter- 539

sample referring ability will be improved further 540

and more robust if we construct more LinkLM data 541

for further training. 542

6 Conclusions 543

In this paper, we propose a pre-training sequence 544

construction method for improving the referring 545

ability of biomedical language models. Previous 546

studies mostly focus on general domains and they 547

train the LMs from scratch with designed pre- 548

training sequences. In contrast, we explore this 549

topic in a more challenging scenario, where the 550

distinction of fine-grained topics is more difficult 551

in the biomedical domain. Moreover, we explore it 552

under the continual pre-training setting, since it is 553

a prevalent method for developing domain-specific 554

LMs now, filling the gap in this series of work. In 555

this paper, we construct pre-training sequences by 556

concatenating relevant references into the previous 557

context using linking information from a citation 558

network. Empirical studies show that compared to 559

the standard pre-training (i.e., randomly packing 560

documents), our method significantly improves the 561

intra-sample referring ability and the inter-sample 562

referring ability on biomedical MCQA tasks, which 563

answers our research question: by carefully design- 564

ing pre-training sequences, we can still improve the 565

pre-training for biomedical language models by re- 566

ordering the pre-training documents (using exactly 567

the same corpus). Especially, pre-training using 568

LinkLM data can further improve the performance 569

when using retrieved demonstrations, revealing the 570

future potential of our proposed methodology. 571
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Limitations572

Owing to limited computation resources, we only573

conducted experiments on a language model with574

1.1B parameters (TinyLlama-1.1B) using up to 8B575

tokens, which may not be sufficient for biomedical576

LLM applications. Experiments on larger models577

with larger amounts of biomedical pre-training data578

are needed in the future. However, according to579

the current trend shown in our experiments, after580

training with more LinkLM data, the improvement581

compared to the standard pre-training would be582

larger.583

Another limitation is that our methodology re-584

quires a citation network, restricting its applica-585

bility to other scientific domains where it is not586

easy to build the citation network. To address this,587

we believe that training a classifier for link predic-588

tion may be a possible solution. However, due to589

the constraints of this paper’s length, we will not590

explore this direction in depth.591

Besides, full papers from PubMed Central5 are592

also commonly used for pre-training biomedical593

LMs. However, most of the full papers exceed the594

maximum input length of existing foundation LMs.595

Although these full papers are also linked to the596

citation network, how to construct LinkLM data for597

them remains a challenge. Future efforts will con-598

sider separating full papers into several paragraphs599

and constructing better pre-training sequences to600

improve the referring ability of biomedical LLMs.601

Ethics Statement602

Though using LinkLM data can improve the refer-603

ring ability for biomedical language models, par-604

ticularly in retrieval-augmented tasks (e.g., Pub-605

MedQA) and in-context learning scenarios, some606

potential issues for biomedical LMs may also ap-607

ply to our case, such as generating inappropriate608

clinical suggestions accompanied by hallucinations.609

We strongly recommend conducting a thorough as-610

sessment and careful alignment (e.g., employing611

RLHF (Ouyang et al., 2022)) before deployment to612

the real world.613

The involved pre-trained language model, TinyL-614

lama, is licensed under Apache License 2.06. We615

adhere strictly to this license during our experi-616

ments. Regarding the involved dataset, PubMed617

Abstract, we collected the raw data following in-618

5https://www.ncbi.nlm.nih.gov/pmc
6http://www.apache.org/licenses/LICENSE-2.0

structions on the official website7, ensuring not to 619

violate their terms. 620
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A Perplexity Evaluation 858

In addition to evaluating on downstream tasks, we 859

also tracked the loss on the evaluation set. We 860

sampled 10,000 abstracts from the excluded iso- 861

lated data points to serve as the evaluation set for 862

perplexity evaluation. As shown in Table 4, no 863

significant difference was observed between the 864

standard pre-training and pre-training with our Lin- 865

kLM data, which is consistent with the findings 866

of Liu et al. (2023) stating that LMs with simi- 867

lar pre-training losses may perform differently on 868

downstream tasks. 869

Strategy Eval Loss Eval PPL

Standard 1.871 6.49
LinkLM 1.874 6.51

Table 4: Loss and perplexity on evaluation set.

B Experimental Details 870

B.1 Implementation Details 871

We chose TinyLlama-1.1B8 as our experimental 872

subject, which had been pre-trained sufficiently 873

using 3T tokens (Zhang et al., 2024). After tok- 874

enization, we obtain approximately 8B tokens for 875

continual pre-training. We follow most of the orig- 876

inal hyperparameters for pre-training TinyLlama, 877

using a context length of 2048 tokens. The global 878

batch size we use is 0.5M tokens. According to 879

the conclusions from Goyal et al. (2017), we use a 880

smaller learning rate of 1e-4. 881

8We used TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T checkpoint from
Hugging Face.
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We used PyTorch (Paszke et al., 2019) and trans-882

formers library (Wolf et al., 2020) for implemen-883

tation. Pre-trained checkpoints were downloaded884

from Hugging Face9. We also adopted Deepspeed885

Zero3 (Rajbhandari et al., 2020), flash-attention886

(Dao et al., 2022; Dao, 2024), and checkpointing887

techniques to speed up training. All experiments888

were conducted on 8 NVIDIA A100 (40GB) GPUs.889

Continual pre-training TinyLlama-1.1B with ap-890

proximately 8B tokens cost approximately 24 hours891

on these 8 NVIDIA A100 GPUs.892

B.2 Prompt Engineering893

In our zero-shot and few-shot evaluation, we used894

the prompts following Gao et al. (2023) to com-895

plete the multi-choice question-answering tasks as896

shown in Table 5. And Table 6 shows an exam-897

ple for MedMCQA under the few-shot evaluation898

(#Shot=3). With the help of a retriever, we can899

retrieve relevant demonstrations from the training900

set to assist the prediction of the following queries,901

as shown in Figure 5, where we also find that the902

retrieved demonstrations actually provide not only903

the task format but also relevant knowledge, and904

therefore benefits the in-context learning.905

Prompt template for MedMCQA, USMLE-QA,
and MMLU-Medical

Question: {question}
A. {option_a}
B. {option_b}
C. {option_c}
D. {option_d}
Answer:

Prompt template for PubMedQA

Abstract: {context}
Question: {question}
Answer:

Table 5: Prompt templates for MCQA tasks.

9https://huggingface.co/models
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Three-shot example for MedMCQA

Question: Claw sign on x-ray is seen in?
A. Ischemic colitis
B. Intussusception
C. Sigmoid volvulus
D. Crohn’s disease
Answer: Intussusception

Question: All of the following are microsomal enzyme inhibitors except
A. Glucocoicoids
B. Cimetidine
C. Ciprofloxacin
D. INH
Answer: Glucocoicoids

Question: A young female presents with a history of dyspnoea on exertion. On
examination, she has wide, fixed split S2 with ejection systolic murmur (III/VI)
in left second intercostal space. Her ECG shows left axis deviation. The most
probable diagnosis is –
A. Total anomalous pulmonary venous drainge.
B. Tricuspid atresia.
C. Ostium primum atrial septal defect.
D. Ventricular septal defect with pulmonary arterial hypertension.
Answer: Ostium primum atrial septal defect.

Question: Which of the following is not true for myelinated nerve fibers:
A. Impulse through myelinated fibers is slower than non-myelinated fibers
B. Membrane currents are generated at nodes of Ranvier
C. Saltatory conduction of impulses is seen
D. Local anesthesia is effective only when the nerve is not covered by myelin
sheath
Answer:

Table 6: An example of three-shot in-context learning for MedMCQA.
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