
Towards Understanding Layer Contributions in
Tabular In-Context Learning Models

Amir Rezaei Balef1,2,3, Mykhailo Koshil2,3 and Katharina Eggensperger2,3
1University of Tübingen 2 TU Dortmund University

3Lamarr Institute for Machine Learning and Artificial Intelligence
{amir.balef, mykhailo.koshil, katharina.eggensperger}@tu-dortmund.de

Abstract

Despite the architectural similarities between tabular in-context learning (ICL)
models and large language models (LLMs), little is known about how individual
layers contribute to tabular prediction. In this paper, we investigate how the latent
spaces evolve across layers in tabular ICL models, identify potential redundant
layers, and compare these dynamics with those observed in LLMs. We analyze
TabPFN and TabICL through the “layers as painters” perspective, finding that
only subsets of layers share a common representational language, suggesting struc-
tural redundancy and offering opportunities for model compression and improved
interpretability.

1 Introduction

Tabular in-context learning (ICL) models have demonstrated that transformer-based architectures can
achieve state-of-the-art performance on small and medium-sized predictive tabular tasks [Erickson
et al., 2025]. However, their internal dynamics remain underexplored, and insights from architecturally
similar LLM interpretability studies [Gromov et al., 2025, Sun et al., 2025] do not directly transfer
due to the differences in inference and training. Unlike LLMs, prominent ICL models (TabICL,
TabPFN) for tabular data do not perform inference in an autoregressive fashion, use attention within
the token, and typically do not use positional encodings. Gaining a deeper understanding of how
these tabular ICL models function can help identify their strengths, expose their failure modes, and
guide future architectural improvements. Motivated by this goal, we aim to open research in this
direction by asking the following question(s): How does data representation evolve in tabular ICL
models, and do such models utilize all layers to perform effectively?

Here we provide a first step to investigate this question based on three popular tabular ICL models,
TabPFN(v1) [Hollmann et al., 2023], TabPFN(v2) [Hollmann et al., 2025], and TabICL [Qu et al.,
2024]. Inspired by the “Layers as Painters” framework of Sun et al. [2025], we modify the internal
embedding flow within a model to analyze how information is transformed across layers.

2 Background and Motivation

We summarize key characteristics of tabular ICL models and findings on layer-wise interpretability.

Tabular ICL models are a particular branch of transformers trained to solve supervised learning
problems via in-context learning. In these settings, the input to the model is a support set (train data;
feature and target values) and a query (test data; only feature values). The model then predicts the
target value for the query, without performing weight updates. Unlike LLMs, tabular ICL models are
mostly trained to learn a map between a query token and a label (or value in case of regression). For
the ICL to reach its full potential in transformer models, a large amount of data is required [Brown
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(d) Probing Classifier

Figure 1: Layer reorganization in tabular ICL models following the “Layers as Painters” framework.

et al., 2020]. To satisfy this need, most ICL models are directly trained to approximate Bayesian
inference on synthetically generated predictive tasks. TabPFN(v1) [Hollmann et al., 2023] was the
first model operating in such fashion on tabular data, where the backbone is a vanilla transformer.
TabPFN(v2) [Hollmann et al., 2025] improves by adding an attention mechanism within the tokens
in addition to cross-tokens attention. TabICL [Qu et al., 2024] shares a similar backbone with
TabPFN(v2), but additionally introduces a transformer-based compression that efficiently transforms
rows into semantically rich embeddings. Specifically, TabICL employs a two-stage architecture. The
first stage, “tabular embedding”, encodes table rows into dense vector representations while explicitly
accounting for the inherent column–row structure through column-wise and row-wise interactions.
The second stage, “ICL prediction”, uses these embeddings along with their corresponding labels to
make predictions.

LLM’s hidden state dynamics is widely studied. Zhang et al. [2024] propose a framework to study
the contribution of the individual layers by performing an ablation study on layer exclusion via an
adapted framework of Shapley values. Results suggest that early layers, called “cornerstone” layers,
process initial embedding into the space where subsequent “non-cornerstone” layers operate. Such
“non-cornerstone” layers can overlap in function, and their individual contribution is not significant.
Gromov et al. [2025] makes an argument that deeper layers do not store knowledge, but rather are
utilized for the computations, e.g., reasoning and dealing with long context. Similar to prior work,
they studied model performance by ablating model layers and optionally fine-tuning. Further works
show that it is possible to improve computational complexity and/or performance by modifying the
flow of the embedding in the model [Heakl et al., 2025, Laitenberger et al., 2025, Li et al., 2025].
Layers as Painters is a particular framework by Sun et al. [2025] that inspired our work. It was
originally designed to verify the hypothesis that different layers express shared representational
“languages” by operating in a common representation space and complement each other’s output.
This contrasts with operating in a hierarchical feature space, similar to models with bottlenecks such
as convolutional networks. If this holds, then the sequence of the trained layers can be reordered as
illustrated in Figure 1 without catastrophic loss of performance.

Lastly, we complement this framework with probing classifiers [Belinkov, 2022], where a classifica-
tion model is trained on an embedding produced by a model (or intermediate stage) that is studied
to infer some (e.g., linguistic) quantity, as illustrated in Figure 1d. The performance of this probing
classifier gives a rough estimation of the mutual information between the embedding and the quantity
of interest. For TabPFN(v2), a fine-tuned decoder can be used to early-exit the forward pass and
reduce inference time while maintaining performance [Küken et al., 2025], suggesting that not all
layers are equally important; however, it remains open to what extent this transfers across models.
Additionally, Ye et al. [2025] analyzed the embeddings of each layer for TabPFN(v2) using PCA.

3 Methodology and Experiment Design

In this section, we formulate the objectives of our structured analysis and describe each of the
experiments. Namely, we focus on three guiding questions:

Q1: Do all layers speak the same language? We analyze whether the application of the layers
is commutative or whether there is hierarchy in the representations. First, to test representational
alignment, we swap the order of layers and measure the performance of the forward pass, as shown
in Figure 1b. If switching layers degrades performance, the representation might have a hierarchy.
Secondly, we perform probing with linear classifiers trained on the representation from the same
and other layers. Representations are similar if a trained probing classifier performs well on another
layer’s embedding. Thirdly, we study repeating layers as shown in Figure 1c. If repeating a layer
increases performance, it might suggest that the layer performs iterative refinement, e.g., as in
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Figure 2: Average AUC for probing classifiers (logistic regression) trained on embeddings at different
layers of the models.

recurrent architectures. This also means that the layers’ in- and output embedding spaces must be
closely aligned for the layer to operate in a recurrent manner [Dehghani et al., 2019].

Q2: Does the model use all layers? To study this, we skip layers in the forward pass (see Figure 1a)
and measure the impact on downstream performance. A negligible change in performance might
indicate that a layer is redundant (or its contribution is not required to solve the task).

Q3: How consistent are findings across models? Finally, to assess whether our findings are specific
to a single instantiation of a tabular ICL model or apply to multiple models, we repeat the analysis
for TABPFN-V1, TABPFN-V2, and TABICL.

Models and Datasets: We run experiments on a subset of TabArena comprising 15 binary classifica-
tion tasks [Erickson et al., 2025] (see Appendix A). We use TabPFN(v1), TabPFN(v2), and TabICL
as tabular ICL models. We use ROC-AUC, averaged across datasets, as the evaluation metric.

Classifier probing. For this task, we use three different models: logistic regression, K-Nearest
Neighbors (KNN), and a fine-tuned MLP from the respective ICL model’s decoder layer. We begin
by extracting embeddings for each layer from its hidden states in the ICL setup. Specifically, we train
and evaluate the probing classifier only on the embedded query set. For this experiment, we extend
the query set by including half of the original training set (excluded from the support set) to serve as
training data for the probing classifier.

4 Experimental Results

Q1: Some layers do speak the same language. The probing results in Figure 2 indicate that while
the outcomes are highly model-dependent, a consistent pattern emerges: A probing classifier trained
on layer i performs well on the embeddings of a later layer j > i, whereas the reverse is not true.
This suggests that later layers still contain information from earlier layers, and that new features
emerge in higher layers not present in earlier ones. This is particularly pronounced for TabPFN(v2).
For TabPFN(v1), this is only noticeable for early layers, whereas for TabICL, this behaviour is least
pronounced. These results support the “layers as painters” hypothesis that the middle layers share a
similar representational space, as probes trained at different layers can operate interchangeably. In
Appendix B.1, we also provide concise similarity analyses between the embeddings of each layer
and include the results of using a KNN classifier and a fine-tuned model decoder as probes. Figure 3
shows the effect of layer swapping. As expected, performance degrades most in the first (or early
layers), indicating that layer order is important. Interestingly, for TabPFN(v2), there is a significant
loss in the middle layers, suggesting that while these layers may share a similar representation
space, they perform different operations. Finally, we study repeating individual layers in Figure 4.
Interestingly, and in contrast to LLMs, where repeating a single layer is highly detrimental [Sun et al.,
2025], in tabular models, repeating a layer seems less harmful or can even improve performance for
some tasks (see Figure 10).

Q2: Yes, some layers can be skipped. Figure 5 shows that skipping early layers of the ICL
prediction stage of TabICL and TabPFN(v1) impacts performance most. This means that earlier
layers are more important for final performance than later ones (and final layers can even be dropped
with minimal loss). This is in line with findings from the LLM literature [Zhang et al., 2024, Sun
et al., 2025]. Results are different for TabPFN(v2); multiple intermediate layers appear essential
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Figure 3: Impact on average AUC when swapping two layers in the forward pass of the models.
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Figure 4: Impact of repeating the layers of the models.

for final performance. Prompted by these findings, we test early exiting like Küken et al. [2025] in
Appendix B.3. Our results indicate that for TabPFN(v1) and TabICL, early exit is feasible without
fine-tuning the decoder components. In contrast, TabPFN(v2) requires an individually fine-tuned
decoder, as also observed by Küken et al. [2025].
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Figure 5: Impact on average AUC when skipping a layer during the forward pass.

Q3: Some common patterns do emerge; the results vary greatly. Our results suggest that early lay-
ers have the most impact for all models. Unlike in LLMs, TabPFN(v2) seems to have less redundancy
according to our probing and layer skipping results. Also, repeating a layer often neither degrades
nor improves performance, suggesting that the layer has learned to modulate its contribution to the
output as needed. Overall results on specific layers are model-specific. Additionally, in Appendix B.2,
we also provide win–tie–lose results for our experiments, which suggest that performance changes
caused by each layer reorganization operation are also task-dependent.

5 Conclusion and Discussion

Our analysis highlights fundamental differences between tabular ICL models and LLM layer dynam-
ics. We find that not all layers in tabular ICL models contribute equally, with some redundancy across
depth. Specifically, we observed that later layers in TabICL and TabPFN(v1) are not critical to the
final performance. We note that our evaluation averages effects over datasets using a single fold,
repetition, and model initialization, and our layer-reorganization experiments modify only one layer
at a time. However, even within these limitations, our empirical study raises promising questions
for future research: How stable are these observations across (1) tasks and (2) initializations [Wang
et al., 2018]? And more broadly, can these insights guide the development of (3) lightweight and (4)
interpretable tabular ICL models?
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A Datasets

Table 1 lists all datasets used in our experiments.

Table 1: Dataset.
index task id dataset name #samples #features #categorical features

1 363619 Bank-Customer-Churn 10000 11 5
2 363621 blood-transfusion-service-center 748 5 1
3 363623 churn 5000 20 5
4 363624 coil2000-insurance-policies 9822 86 4
5 363626 credit-g 1000 21 14
6 363629 diabetes 768 9 1
7 363671 Fitness-Club 1500 7 4
8 363674 hazelnut-spread-contaminant-detection 2400 31 1
9 363682 Is-this-a-good-customer 1723 14 9
10 363684 Marketing-Campaign 2240 26 9
11 363689 NATICUSdroid 7491 87 87
12 363694 polish-companies-bankruptcy 5910 65 1
13 363696 qsar-biodeg 1054 42 6
14 363700 seismic-bumps 2584 16 4
15 363706 taiwanese-bankruptcy-prediction 6819 95 1
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Figure 6: Probing with KNN trained on embedding from different layers of the models.
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Figure 7: Probing with model decoder fine-tuned on embedding from different layers of the models.

B More results

B.1 Probing

We provide more results from linear probing using different classifiers. Figure 6 shows the perfor-
mance of KNN trained on embeddings extracted from different layers of the models, while Figure 7
presents results from model decoders fine-tuned on the same embeddings.

We also report the cosine similarity between embeddings from different layers of the models, as
shown in Figure 8.

B.2 Layer reorganization

Here, we provide win–tie–lose comparison plots against the full model evaluation to examine how
architectural changes in the transformer affect performance across tasks. We adopt a tie threshold of
2 × 10−4 to ensure that numerical precision and minor fluctuations do not result in spurious wins
or losses. Figure 9 shows the effect of skipping layers, Figure 10 illustrates the impact of repeating
layers, and Figure 11 presents the results of swapping layers.

B.3 Early exit

We perform an early-exit strategy, meaning that after each layer, we pass the embeddings to the
decoder. However, we did not fine-tune the decoder layer in contrast to Küken et al. [2025]. As
observed in Figure 12 and Figure 13 for TabPFN(v2), having an individual decoder is necessary, as
shown by Küken et al. [2025], whereas for other models, the performance degradation is not drastic.
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Figure 8: Cosine similarity of embeddings extracted from different layers of the models.
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Figure 9: Effect of skipping layers in the tabular foundation model’s architecture.
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Figure 10: Effect of repeating layers in the tabular foundation model’s architecture.
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Figure 11: Effect of swapping layers in the tabular foundation model’s architecture.
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Figure 12: Effect of the early exit strategy on the tabular foundation model’s performance.
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Figure 13: Comparison of performance with and without the early exit strategy in the tabular
foundation model.
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