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Controllable Video Generation with Text-based
Instructions

Ali Köksal Γ Kenan E. Ak Ying Sun Deepu Rajan Joo Hwee Lim

Abstract—Most of the existing studies on controllable video
generation either transfer disentangled motion to an appearance
without detailed control over motion or generate videos of simple
actions such as the movement of arbitrary objects conditioned
on a control signal from users. In this study, we introduce Con-
trollable Video Generation with text-based Instructions (CVGI)
framework that allows text-based control over action performed
on a video. CVGI generates videos where hands interact with
objects to perform the desired action by generating hand motions
with detailed control through text-based instruction from users.
By incorporating the motion estimation layer, we divide the
task into two sub-tasks: (1) control signal estimation and (2)
action generation. In control signal estimation, an encoder models
actions as a set of simple motions by estimating low-level control
signals for text-based instructions with given initial frames.
In action generation, generative adversarial networks (GANs)
generate realistic hand-based action videos as a combination
of hand motions conditioned on the estimated low control level
signal. Evaluations on several datasets (EPIC-Kitchens-55, BAIR
robot pushing, and Atari Breakout) show the effectiveness of
CVGI in generating realistic videos and in the control over
actions.

Index Terms—Controllable video generation, video generation
with textual instructions, motion generation, conditional genera-
tive models

I. INTRODUCTION

Deep architectural models such as convolutional neural
networks (CNNs) and generative adversarial networks (GANs)
enable the generation of high-dimensional data such as im-
ages, [1]–[6] and videos [7]–[12]. These models can manipu-
late the given high-dimensional data conditioned on the desired
manipulation. For example, image manipulation and editing
architectures [13]–[16] allow users to transfer the style from
another image.

Motion manipulation according to text-based instructions
on a video where human interacts with objects in a complex
scene is indeed extremely more challenging, as there is no
simple way to model the interaction. Besides, building a
semantic association between instructions and motion is also
challenging because text descriptions are often ambiguous for
controllable video generation. In the literature, there exist
video manipulation architectures such as [12], [17]–[20] that
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allow users to manipulate motion of objects on a video. They
can be grouped into two groups according to the source of
manipulation. Most of the existing approaches in the first
group use driving videos as a source of manipulation by
extracting actions. They can disentangle motion and transfer
it to another appearance but they are limited to detailed
control over the motion during the generation [9], [21]–[25].
In the second group, existing approaches use control signals
that are received from an agent such as mouse click [26],
key stroke [8], [27], joystick [28] but in most of them only
video generation of simple actions that can be defined as
displacement-based actions such as moving arbitrary objects
is possible. On the other hand, the proposed framework allows
detailed control over motions of generated videos and it can
generate complex actions as a combination of simple motions.

With the motivation of building an association between text-
based institutions and motions to manipulate the features of the
generated motion such as direction, speed, the target, ..., this
paper introduces a novel framework, named CVGI, that allows
users to manipulate simple human-object interactions such as
hand/s going toward the desired object in videos with complex
scenes by conditioning through text-based instructions. CVGI
receives a text-based instruction from a user and takes an initial
frame as input to generate a video sequence that corresponds
well with the user input. For example, Figure 1 shows that
CVGI can reconstruct the ground truth video by using the
same text-based instruction as the instruction of ground truth.
It can also generate novel videos with different text-based
instructions. As shown, the generated videos are photo-realistic
and correspond well with the text-based instructions. CVGI
divides the task into two sub-tasks by incorporating the motion
estimation layer as seen in Figure 2. The first sub-task, control
signal estimation, encodes high-level text-based instructions to
low-level control signals as a form of motion representation.
The control signal encoder takes instruction and an initial
frame to estimate a set of low-level control signals for motions
on the future frames. Low-level signals define the location
change of the object of interest between two consecutive
frames such as displacement center of mass of hand masks
and displacement of the robot arm’s gripper. The second
sub-task, action generation, generates realistic videos frame-
by-frame in a loop conditioned on low-level signals. First,
it generates the next frame with the initial frame and the
first estimated low-level signal. Then it takes the generated
frame and the second estimated low-level signal to generate
the third frame and so on until n frames are generated for
all estimated low-level signals. EPIC-Kitchens-55 dataset [29]
contains egocentric videos shot by a head-mounted camera.
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Fig. 1: The proposed framework, named CVGI, generates controllable videos conditioned on text-based instructions received
from a user. CVGI generates novel photo-realistic videos from an initial frame and textual instructions. Generated frames are
from top: ground truth, duplication of ground truth, and two novel videos. In the duplication of ground truth, CVGI generates
hands at similar positions to the ground truth. In the novel videos, CVGI generates videos with different hand movements
based on textual instruction. Note that the boundary of the hand masks of the initial frame is indicated as blue in the generated
frames to highlight the difference in hand movements.
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Fig. 2: CVGI divides the task into two sub-tasks: control signal estimation and action generation. In the first sub-task, an
encoder estimates low-level control signals with a given initial frame conditioned on text-based instructions. In the second
sub-task, two GANs (M2M and M2F) are trained one after another in a loop. M2M is trained to control motion and generates
the next mask of the object of interest conditioned on the estimated control signal. M2F is trained to perform motion-aware
mask-to-frame translation and generates realistic frames with given masks.

Egocentric videos capture useful visual input for the under-
standing of the person’s activities because scenes of egocentric
videos approximate the vision of the person who wears the
camera. In spite of useful scenes, wearable cameras lead to
a lot of motion and dynamic scenes in egocentric videos. In
dynamic scenes, it is hard to focus on the object of interest
and represent its meaningful movement and interaction with
low-level control signals. Consequently, motion generation in
egocentric videos is indeed extremely challenging. Moreover,
to the best of our knowledge, CVGI is the first study that
can generate controllable egocentric videos where the motion
of the object of interest is controlled in detail. Therefore,
CVGI incorporates the hand masks to differentiate the object
of interest to control and the action generator synthesizes video

sequences by employing two GANs: mask-to-mask (M2M)
and mask-to-frame (M2F) for egocentric videos. M2M models
the association between motions of masks of the object of
interest, i.e., hand masks and low-level signals and it is trained
to synthesize masks that correspond with low-level signals.
It takes masks of input frames and generates masks for the
next frames conditioned on the low-level signal. M2F GAN
maps masks to frames by being aware of hands’ motion to
generate realistic frames. For BAIR robot pushing [30] and
Atari Breakout datasets [8], we employ a single GAN similar
to M2M.

The contributions of this work can be summarized in three
aspects: (1) We propose CVGI which generates novel human-
object interaction videos where hand/s go toward the desired
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object by manipulating motions on complex scenes condi-
tioned on text-based instructions from users. (2) We overcome
the challenge with two innovations. Control signal estimation
models human-object interaction in terms of motions and
builds the association between text-based instructions and
low-level control signals. Action generation models motions
with low-level signals and generates realistic videos. (3)
With the evaluations on three public datasets: EPIC-Kitchens-
55 [29], BAIR robot pushing [30], and Atari Breakout [8], we
demonstrate that CVGI generates photo-realistic videos that
correspond well with instructions.

II. RELATED WORK

In the literature, many studies for novel video generation
exist they can be grouped into two according to the source
of manipulation. The first group learns a motion that is
extracted from a video and transfers the motion to another
object/subject. The second group receives user input to control
the motion and generates novel videos that correspond well
with user input. Another important difference between the
groups other than the source of manipulation is the ability
of the detailed control over the synthesized motion that can
be defined as explicit control. Although studies in the first
group can control the motion, they are limited to explicitly
controlling the synthesized motion as they transfer the motion
that is learned from a source video as it is. On the other hand,
studies in the second group learn to associate motions and user
input and can manipulate the motion according to user input.

Most existing studies that transfer motions learn content
which is the object and its appearance and motion which is
the dynamics of content and they generate videos of moving
faces, human body, and arbitrary objects. [25] proposes a
framework that generates controllable videos for human faces
conditioned on a driving vector that can be extracted from a
given video, audio, or pose vector. [24] builds separate latent
spaces for content and motion of videos for the generation of
novel videos of faces, human body, and artificial objects by
controlling content and motion latent vectors. [31] and [32]
predict future frames with a given input frame conditioned
on estimated future human body poses. [19] introduces a
framework that animates an arbitrary object on the given
image conditioned on a motion that is derived from a driving
video sequence by using sparse keypoint trajectories. In [33], a
similar framework addresses the same problem without using
any annotation. [23] distinguishes the appearance and pose
of humans and generates images with given appearance with
different poses. Similar to [23], [22] generates controllable
human behavior by transferring motion that is rendered over
keypoints of the human body. [21] generates dance videos by
transferring motion with a network that is trained to translate
pose to appearance and vice versa. [9] introduces a framework
that includes a generator and multiple discriminators disentan-
gles actions and objects of a given video. It generates human-
object interaction videos based on text description by replacing
objects to generate novel videos. The aforementioned studies
disentangle content and motion of videos and transfer motions
to generate novel videos of contents. On the other hand, our

framework controls the motion of objects according to user
input. It generates novel videos by manipulating a given frame
conditioned on control signals that are estimated from user
input.

Most of the studies that receive user input as the source
of manipulation generate novel videos by synthesizing simple
motions as depicting desired motion on the generated frames.
[34] introduces a framework that generates action conditional
videos in Atari games by predicting future frames with given
previous frames and an action label for player actions. [35]
generates action-conditioned videos for robotic arm actions by
predicting future frames in long-range from previous frames.
[18] introduces a framework that generates variable-length
videos for artificial or arbitrary objects conditioned on captions
by separately learning short-term and long-term context. [17]
generates controllable videos with a given frame conditioned
on sparse trajectories specified by users and improves the
video quality by hallucinating pixels that cannot be copied
based-on flow. [28] extracts a character from a given video,
and generates videos of the extracted character performing
motions that are controllable with low-level signals received
from an agent on any background. The framework has two
modules, first generates poses corresponding with signals from
an agent such as a joystick, second translates poses to frames.
[27] is trained to imitate the game engines and renders the
next screen conditioned on keystrokes by users. [8] learns
actions in an unsupervised manner to cluster motions and
then generates videos of discrete actions with a given initial
frame conditioned on keystrokes from users. [26] proposes a
framework that generates videos where the motion of specific
objects can be controlled through mouse clicks. It receives
an input frame, its segmentation map, and mouse click and
incorporates a graph convolution network to model the mo-
tions of objects. As summarized above, most existing studies
generate controllable videos with low-level signals received
by an agent such as keyboard, joystick, and mouse. On
the other hand, our framework builds a semantic association
between text-based instructions and motions. This association
allows controlling generated videos according to text-based
input that can describe complex actions such as human-object
interaction.

In addition to the above-mentioned video generation frame-
works, there exist recent studies that generate videos based
on text. [12] proposes a generic solution for various visual
generation tasks. Its generic model can also generate videos
based on text. [36] proposes a framework, CogVideo, for
text-to-video generation. CogVideo includes a transformer-
based architecture and uses a pretrained text-to-image model.
Similarly, [37] employs bi-directional masked transformers-
based model. It is trained with a large amount of text-image
pairs and a smaller amount of video-text pairs. [38] proposes
an efficient video generation model. It is a GAN-based model
and can control the generated videos by conditioned on the
discrete label of the category. Likewise, [39] is a conditional
model, but it is based on diffusion architecture instead of GAN.
Similarly, [40] employs a diffusion model. The proposed text-
to-video model leverages a text-to-image model. The summa-
rized video generation models can generate videos that are
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Fig. 3: Control signal estimator includes an embedding layer
and a CNN-based encoder. It takes the initial frame and text-
based instructions and estimates low-level control signals for
the object of interest.

aligned with the given text or condition, but they are limited
to explicit control over the motion. For example, [40] can
generate a flying dog based on text, but it cannot manipulate
the generated video by controlling the motion such as changing
direction. Furthermore, they are similar to the second group
in terms of the source of manipulation and similar to the first
group in terms of the ability to explicitly control the generated
motion. On the other hand, our framework can control the
motion explicitly with text-based instructions.

III. APPROACH

CVGI learns to generate realistic and temporally consistent
videos by manipulating motion on complex scenes of ego-
centric videos according to the given text-based instructions.
Figure 2 shows the overall flow of the framework. CVGI takes
an initial frame F0 as context image, mask of the object of
interest M0 such as the mask of hands, instruction d and
it generates n next frames F̂1, F̂2, ..., F̂n that corresponds to
the given instruction. We divide the task into two sub-tasks:
control signal estimation and action generation. Control signal
estimator builds association between text-based instructions
and low-level control signals ∆̂1, ∆̂2, ..., ∆̂n. For egocentric
videos such as videos on EPIC-Kitchens-55, the action gener-
ator which consists of two GANs (M2M and M2F) generates
frames according to the control signal in a loop. First, it
generates future masks and then translates them to frames one
by one. Note that, for BAIR Robot pushing and Atari Breakout
datasets, the action generator consists of one GAN similar to
M2M GAN with two differences. First, it directly takes the
initial frame and generates the next frame conditioned on low-
level signals. Second, its generator’s image loss is changed to
L2 norm instead of L1 norm to improve the visual quality.

A. Control Signal Estimator

As illustrated in Figure 3, control signal estimator E con-
verts high-level text-based instructions that describe the ac-
tions to a set of low-level control signals. It takes initial frames
as context images along with instructions to predict motion for
the next frames. It contains an embedding layer and a CNN-
based encoder. The embedding layer takes a textual instruction
d and computes text embedding. The encoder conditioned
on text embedding predicts a set of low-level control signal
(displacement) ∆̂1, ∆̂2, ..., ∆̂n for the object that is desired to
perform the motion with the given initial frame F0. They are
trained to minimize mean square error (MSE) that is computed

between the ground truth control signals ∆1,∆2, ...,∆n and
estimated control signals ∆̂1, ∆̂2, ..., ∆̂n as follows.

L =
1

n

n∑
i=1

∥∥∥∆i − ∆̂i

∥∥∥
2
, where ∆̂1,2,...,n = E(F0, d). (1)

B. Action Generator

The action generator aims to manipulate the motion of the
object according to low-level signals. It employs two GANs:
mask-to-mask (M2M) and mask-to-frame (M2F) which are
trained in a loop. M2M GAN synthesises the motion over
masks and M2F GAN is responsible for motion-aware photo-
realistic frame synthesis.

Mask-to-mask GAN employs a conditional generator
Gmask and a sequence discriminator Dmask. M2M GAN uses
a continuous signal as a condition in Gmask and ground truth
in Dmask, unlike most existing conditional GANs that usually
use discrete signals such as the label of categories. Using
continuous signals improves the ability to control motion and
it is elaborated in the ablation study. Gmask is an encoder-
decoder-based generator that takes a single mask and is trained
to generate another mask conditioned on the low-level control
signal. During training, it is trained in both forward and
backward directions by changing the order of the frames to
capture more variability. Thus, training with both forward and
backward passes increases the variation of training samples
and is able to learn a motion together with its reverse. Besides,
it improves the understanding of motion’s direction. Figure 4
shows only toward forward for sake of visual simplicity. As
seen in Figure 4 (a), Gmask is trained to generate the next
mask from the initial mask conditioned on the corresponding
low-level control signal, i.e., Gmask(Mi,∆i+1) → M̂i+1. For
backward training, the initial frame is generated from the
next frame conditioned on the inverse of the control signal
(negative displacement), i.e., Gmask(Mi+1, (∆i+1)

−1) → M̃i.
As seen in Figure 4 (b), Dmask takes an input of two consec-
utive frames that are concatenated to train to distinguish real
and fake sequences. Over Dmask, we introduce an auxiliary
regressor to distinguish the motion of objects of interest
on given consecutive frames. Thus, Dmask is a sequence
discriminator with two heads, i.e., Dmask(Mi,Mi+1) →
{Dadv

mask(Mi,Mi+1), D
reg
mask(Mi,Mi+1)}. The first is an ad-

versarial head that distinguishes sequences of two frames as
real and fake and provides adversarial training. The second is
a regressor head and measures the displacement of the objects
of interest on the given two frames.

During training, for each consecutive mask and the
low-level control signal (displacement) {{Mi,Mi+1},∆i+1},
Gmask and Dmask are trained in an adversarial manner where
generated masks towards forward M̂i+1 and backward M̃i are
denoted as follows:

M̂i+1 = E
Mi,∆i+1

Gmask(Mi,∆i+1),

M̃i = E
Mi+1,∆i+1

Gmask(Mi+1, (∆i+1)
−1).

(2)
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Fig. 4: Forward training of M2M GAN that includes (a) a
conditional generator Gmask and (b) a sequence discriminator
Dmask. Gmask is trained to generate masks conditioned on
low-level control signals which contain four floating-point
numbers. The first two control the right hand and the next
two control the left hand. Dmask is a sequence discriminator
with two heads. The first head is trained to distinguish real
and fake sequences. The second head is trained to estimate
the displacement of objects of interest.

Gmask learns to construct the next mask conditioned on
ground truth control signals and given mask by minimizing
the following image loss function:

Limg = ∥Mi+1 − M̂i+1∥1 + ∥Mi − M̃i∥1. (3)

In addition, least squared adversarial loss [41] that is computed
by Dmask’s adversarial head is employed as follows to make
generated masks indistinguishable from real masks:

LG
adv = (Dadv

mask(Mi, M̂i+1))
2 + (Dadv

mask(M̃i,Mi+1))
2. (4)

Besides, the following regression loss (MSE) is computed
between ground truth control signals and estimated control
signals by the auxiliary regressor. This is so as to enforce
generated masks correspond well with low-level control sig-
nals

LG
cs =∥Dreg

mask(Mi, M̂i+1)−∆i+1)∥2
+∥Dreg

mask(M̃i,Mi+1)−∆i+1)∥2.
(5)

The full objective function of Gmask is formulated as follows:

LG
mask = λimgLimg + λadvLG

adv + λcsLG
cs , (6)

where λimg , λadv , and λcs are positive weights to balance
loss functions and their default values are 1.0, 1.0, and 10.0,
respectively.

Fi

Mi+1

Mi

Fi+1
^

Fi+1

M2F
Gen.

Fig. 5: Forward training of Gframe. Gframe is trained to
generate the next frame by taking the initial frame, its mask,
and the mask of the next frame.

Dmask is trained to minimize the following least squared
adversarial loss to distinguish real and fake sequences:

LD
adv = (Dadv

mask(Mi,Mi+1))
2

+
1

2

[
(Dadv

mask(Mi, M̂i+1)− 1)2
]

+
1

2

[
(Dadv

mask(M̃i,Mi+1)− 1)2
]
.

(7)

In addition, Dmask learns to predict the displacement of the
object by minimizing the following loss:

LD
cs = ∥Dreg

mask(Mi,Mi+1)−∆i+1∥2. (8)

The full objective function to optimize Dmask is defined as
follows:

LD
mask = LD

adv + LD
cs. (9)

Mask-to-frame GAN employs a generator Gframe

and three frame-based discriminators Dframe, Dfg, Dbg for
motion-aware mask-to-frame translation. M2F GAN is only
employed for EPIC-Kitchens-55 because videos in this dataset
are egocentric shot by a head-mounted camera. In egocentric
videos, every object appears moving in most of the frames due
to the camera motion. It may cause the generator to confuse
which object is the object of interest. Therefore, controllable
video generation in egocentric videos requires indicating the
object of interest. For this reason, CVGI uses hand masks.
After we achieve controlling hand motions with masks, we
employ M2F GAN to translate masks to frames. As shown
in Figure 5, Gframe takes a context frame (the initial frame),
the corresponding hand mask, and the mask for the next frame
that indicate hands’ new location. It is trained to hallucinate
pixels at the hands’ location on the context images to remove
them and create hands at the new location. Similar to Gmask,
Gframe is trained in the forward and backward directions by
changing inputs. Figures 5 and 6 show only forward training
for simplicity. For forward training, Gframe is trained to
generate the next frame from initial frame, its mask, and the
mask of the next frame, Gframe(Mi, Fi,Mi+1) → F̂i+1. For
backward training, it is trained to generate the initial frame
from the next frame, its mask, and the mask of the initial
frame, Gframe(Mi+1, Fi+1,Mi) → F̃i. As seen in Figure 6,
three frame-based discriminators are employed. Dframe is
trained to distinguish real and fake frames, Dfg takes frames
where the background is masked to distinguish real and fake
objects of interest, and Dbg takes frames where the foreground
is masked to distinguish real and fake background.
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Fig. 6: Forward training of discriminators of M2F GAN. Dframe (a) is trained to distinguish real and fake frames, Dfg (b) is
trained to distinguish real and fake objects of interest, and Dbg (c) is trained to distinguish real and fake background. σ and
ϕ denote operations to compute hand frames and background frames, respectively.

Gframe and Dframe are trained with consecutive frames
and their corresponding masks {{Fi, Fi+1}, {Mi,Mi+1}}
where generated frames towards forward F̂i+1 and backward
F̃i are denoted as follows:

F̂i+1 = E
Mi,Fi,Mi+1

Gframe(Mi, Fi,Mi+1),

F̃i = E
Mi+1,Fi+1,Mi

Gframe(Mi+1, Fi+1,Mi).
(10)

Gframe is trained with an image loss Limg and least
squared adversarial losses LG

frame,LG
fg,LG

bg which are defined
in Equation 11. LG

frame by Dframe leads to generating indis-
tinguishable frames from real frames. LG

fg by Dfg is trained
with hand frames where the background is masked out and
leads to producing realistic hands at the new position. LG

bg

by Dbg is trained with background frames where hands are
masked out and leads to hallucinating pixels at the hands’
previous location.

Limg = ∥Fi+1 − F̂i+1∥2 + ∥Fi − F̃i∥2,
LG
frame = (Dframe(F̂i+1))

2 + (Dframe(F̃i))
2,

LG
fg = (Dfg(σ(F̂i+1,Mi+1)))

2 + (Dfg(σ(F̃i,Mi)))
2,

LG
bg = (Dbg(ϕ(F̂i+1,Mi+1)))

2 + (Dbg(ϕ(F̃i,Mi)))
2,

(11)

where σ and ϕ denote operations to compute hand frames and
background frames, respectively. Gframe is optimized with
the following full objective function:

LG
frame = λimgLimg + λframeLG

frame

+ λfgLG
fg + λbgLG

bg,
(12)

where λimg, λframe, λfg, and λbg are positive weights to
balance loss functions and their default values are 10.0, 1.0,
1.0, and 1.0, respectively. Furthermore, Dframe, Dfg, Dbg are
trained to minimize LD

frame, LD
fg , LD

bg , respectively.

LD
frame = (Dframe(Fi))

2 + (Dframe(Fi+1))
2

+ (Dframe(F̂i+1)− 1)2 + (Dframe(F̃i)− 1)2,

LD
fg = (Dfg(σ(Fi,Mi)))

2 + (Dfg(σ(Fi+1,Mi+1)))
2

+ (Dfg(σ(F̂i+1,Mi+1))− 1)2

+ (Dfg(σ(F̃i,Mi))− 1)2,

LD
bg = (Dbg(ϕ(Fi,Mi)))

2 + (Dbg(ϕ(Fi+1,Mi+1)))
2

+ (Dbg(ϕ(F̂i+1,Mi+1))− 1)2

+ (Dbg(ϕ(F̃i,Mi))− 1)2.

(13)

IV. EXPERIMENTS

We evaluate our approach with three public datasets: EPIC-
Kitchens-55 where there are two objects of interest (hands) to
control the motion in 2D, BAIR robot pushing dataset where
there is a single object of interest (robotic arm) to control the
motion in 2D, and Atari Breakout where there is a single object
of interest (base of breakout game) to control the motion in
1D.

EPIC-Kitchens-55 dataset [29] contains approximately
40k first-person videos where humans interact with objects
during daily activities in the kitchen. Actions on video clips
are annotated with a text-based description composed of an
action label (verb) and an object label (noun). In the evaluation
with EPIC-Kitchens-55, we use the video clips where at
least one hand is visible. CVGI is trained with video clips
of the first kitchen (P01). Hand masks for M2M and M2F
GANs are extracted automatically by the pretrained hand-
segmentation model introduced in [42]. The model is trained
on Extended GTEA Gaze+ dataset [43] for 100 epochs. The
trained model is used to extract hand masks for each frame of
EPIC-Kitchens-55. In addition to extending with hand masks,
we also extend the annotations with the low-level control
signals. As the ground truth control signals, we compute
the displacements of the center of mass of the hand masks
for every consecutive two frames. Furthermore, we augment
the masks of consecutive frames by flipping horizontally
(reflection) and warping masks with random translations in
x and y directions.

BAIR robot pushing dataset [30] contains roughly 44k
video clips of robotic arm pushing objects on a table. Each
video clip consists of 30 frames in 256x256 resolution. Be-
sides, the dataset provides the ground truth location of the
robotic arm’s gripper. In order to evaluate our approach, we
extend the annotations of the dataset with the low-level control
signals and text-based instructions. Thus, we compute the
displacement of the gripper for every two consecutive frames
as ground truth low-level signals. We prepare text-based in-
structions composed of a verb and adjective over the computed
displacements. Verbs depict action with nine variations (8 for
directions and 1 for stationary) and adjectives depict the speed
of the motion with three variations (slowly, -, and quickly).
The combination of verbs and adjectives composes 25 unique
actions in the space of text-based instructions.

Atari Breakout dataset [8] contains roughly 1400 video
clips in resolution 160x210 of the Atari Breakout video game
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Fig. 7: Qualitative evaluation on EPIC-Kitchens-55 dataset. Given initial frame and mask and different instructions, estimated
low-level control signals, estimated masks, and generated frames by CVGI are shown for three different textual instructions.
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y denote the estimated low-level control signals in 2D for right and left hand, respectively.

environment. Similar to BAIR robot pushing dataset, we
extend the annotations of the dataset with the low-level control
signals and text-based instructions. The displacement of the
base is computed with respect to the location of the base’s
most-left pixel. Text-based instructions are prepared by the
computed displacements. Although the variation of adjectives
is three as in the BAIR robot pushing dataset, the variation
of verbs is three due to the one-dimensional motion. So, the
action space of text-based instructions has 7 unique actions.

A. Training Details

CVGI’s modules are trained separately with video
sequences of the training set that contains a set of
frames, a set of masks, low-level control signals,
and a text-based instruction, S : {{F0, F1, ..., Fn},
{M0,M1, ...,Mn}, {∆0,∆1, ...,∆n}, d}. In all experiments,
modules are trained from scratch for 500k iterations and we
use Adam optimizer [44] with batch size of 16, learning rate
of 0.0002, β1=0.5, β2 =0.999. For Epic-Kitchens-55, CVGI
is trained to produce 7 future frames. i.e., the default value
of the hyperparameter n is selected as 7 experimentally.
Based on rigorous experimentation, we observe that 7 is an
optimal number for generating future frames to avoid excess
accumulation of errors in terms of artifacts. On the other
hand, for BAIR robot pushing and Atari Breakout datasets,
CVGI generates frames by producing the next frame (default
value of n is 1) because motions in both datasets are simple

motions that start in a frame and end in the next frame
typically. To produce longer video sequences, generation can
be re-initiated by using the last generated frame, its mask,
and the text-based instruction, for EPIC-Kitchens-55 and the
last generated frame and the text-based instruction for BAIR
robot pushing and Atari Breakout datasets.

B. Qualitative Results

Figures 7, 8, and 9 show the results of qualitative evaluation
of CVGI on EPIC-Kitchens-55, BAIR robot pushing, and Atari
Breakout datasets, respectively. Figure 7 shows the initial
frame, the corresponding mask, and text-based instructions
along with estimated low-level control signals, estimated
masks, and frames of generated sequences. In Figures 8 and 9,
estimated low-level control signals and generated next frames
by CVGI conditioned on different instructions are shown for
one sample initial frame due to space limitations.

In Figure 7, CVGI is able to generate novel videos depict-
ing different hand motions by using the same initial frame
and hand mask according to instructions. Estimated low-
level control signals change according to instructions which
enables M2M GAN to produce different hand masks, which
in turn allow M2F GAN to generate videos with different
hand movements. In addition to the difference in generated
videos, they are semantically consistent with instructions.
As seen in Figure 7, hands in the generated videos move
towards desired objects according to the instruction. Thus,
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Fig. 8: Qualitative evaluation on BAIR robot pushing dataset. Given initial frame and different instructions, estimated low-level
control signals and generated frames by CVGI are shown for different textual instructions. ∆̂x and ∆̂y denote the estimated
low-level control signals in 2D for robotic arm.
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Fig. 9: Qualitative evaluation on Atari Breakout dataset. Given initial frame and different instructions, estimated low-level
control signals and generated frames by CVGI are shown. ∆̂x denotes the estimated low-level control signals in 1D for base
of breakout game.

CVGI comprehends instructions and controls the motion of
both hands to synthesize videos depicting desired hand-based
action.

As shown in Figures 8 and 9, CVGI can control genera-
tion based on instructions since, for the same initial frame,
estimated low-level control signals and generated next frames
differ according to instructions. In addition, generated frames
also depict the desired motion. Thus, the qualitative evaluation
shows that CVGI is able to control 2D and 1D motion of a
single object of interest while producing realistic frames.

C. Quantitative Results

We follow the evaluation protocol proposed in [8] to evalu-
ate the video generation quality of our framework. According
to the protocol, models are used to generate frames of the test
set by starting from the initial frame. Then the quality of gener-
ated frames is measured by three metrics: FID [45], FVD [46],
and LPIPS [47]. They measure the similarity between two
sets of samples and a lower score means more similar sets.
Fréchet Inception Distance (FID) [45] measures similarity
between two sets by comparing Gaussian distribution of deep
features. Fréchet Video Distance (FVD) [46] is a variant of
the FID metric specifically to evaluate the quality of video
generation models. Learned Perceptual Image Patch Similar-
ity (LPIPS) [47] measures the perceptual similarity between
image patches. [8] chooses MoCoGAN [24], SAVP [48], and
SRVP [49] as baseline. As discussed in [8], SAVP and SRVP
are originally proposed to address future frame prediction

TABLE I: Comparison of video generation quality on BAIR
robot pushing dataset: Results are reported as two groups.
In the first group (the first four rows), models are trained to
generate frames in low resolution (64x64). After frames are
generated to reconstruct test videos, they are rescaled to high
resolution (256x256). The second group (the last four rows)
shows the results of models that are trained to generate frames
in high resolution.

Models FID [45] ↓ FVD [46] ↓ LPIPS [47] ↓
MoCoGAN [24] 198 1380 0.466
SAVP [48] 220 1720 0.433
SRVP [49] 224 3540 0.491
CVGI 101 555 0.288
MoCoGAN+ 66.1 849 0.201
SAVP+ 27.2 303 0.154
CADDY [8] 35.9 423 0.202
CVGI 27.1 376 0.125

which is a task to predict future frames with given previous
frames. However, they can be adapted to our task without
requiring major adjustments since future frame prediction is
closely related to the controllable video generation. Besides,
MoCoGAN which generates controllable videos of moving
faces, body parts, artificial objects requires adjustment to
handle the actions.

With this protocol, we evaluate the video generation qual-
ity of CVGI’s action generator on the video reconstruction
task over BAIR robot pushing and Atari Breakout datasets
and compare it with models including MoCoGAN [24],
SAVP [48], SRVP [49], and CADDY [8].
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TABLE II: Comparison of video generation quality on Atari
Breakout dataset: Similar to Table I, results are reported in
two resolution groups. Models in the first group (the first
two rows), are trained to generate frames in low resolution
and rescaled to high resolution. In the second group (the last
four rows), models are trained to generate frames in 160x210
resolution and compared without requiring to rescale.

Models FID [45] ↓ FVD [46] ↓ LPIPS [47] ↓
MoCoGAN [24] 99.9 447 0.234
SAVP [48] 98.4 487 0.239
MoCoGAN+ 10.4 103 0.066
SAVP+ 4.84 84.4 0.039
CADDY [8] 0.72 5.94 0.008
CVGI 9.52 23.84 0.018

In Tables I and II, we report the evaluation results as two
groups according to the resolution of generated frames. The
first group reported at the top shows the comparison of models
that are trained with frames in low resolution (64x64 for
BAIR robot pushing, 128x48 for Atari Breakout). After frames
are generated, they are rescaled to high resolution (256x256
for BAIR robot pushing and 160x210 for Atari Breakout).
MoCoGAN, SAVP, and SRVP are originally proposed to
generate frames in low resolution and adapting them to high-
resolution generation requires to improve the representation
capacity of networks as discussed in [8]. The results of such
improved models for MoCoGAN and SAVP are also reported
in the second group where models are indicated with + sign.
The second group includes CADDY which is proposed to
generate frames in high resolution. Note that scores of other
models in Tables I and II are reported from [8].

Table I shows the superior performance of CVGI in both
resolution groups on BAIR robot push dataset. This could be
attributed to use of L2 norm as reconstruction loss (Limg) to
train out model, which leads to better visual quality scores as
discussed in [48]. On the other hand, the quality of generated
videos on Atari Breakout dataset is comparable to the state-
of-the-art video generation and prediction models as shown in
Table II. The reason for this could be the limited training set.

Moreover, the action generation module of CVGI is capable
to control the motion of the object of interest conditioned
on the displacements which are continuous low-level control
signals despite action space being discretized in the control
signal estimator for the sake of simplicity of the control of
the motion. On the other hand, CADDY framework controls
the motion of the object of interest conditioned on the label of
discrete actions. Thus, although the quality of generated videos
by CADDY framework on Atari Breakout dataset is better as
shown in Table II, controlling the motion of the object of
interest with continuous low-level signals instead of discrete
labels of actions fits better with the motion. And it allows a
better understanding of the motion and increases the flexibility
of the motion control.

The same evaluation protocol cannot be used for EPIC-
Kitchens-55 because other models require major adaptations to
handle complex scenes and actions of EPIC-Kitchens-55. For
this reason, we evaluate the future frame prediction of CVGI
by comparing it with Retrospective CycleGAN [7] which is

one of the state-of-the-art future frame prediction models.
Future frame prediction is a closely related research area and
in the evaluation, we use Retrospective CycleGAN without
adapting it to controllable video generation because such
adaptation requires major modification of the networks and
loss functions. Retrospective CycleGAN originally trained to
predict future frames conditioned on four previous consecutive
frames. Moreover, similar to CVGI, we adapt Retrospective
CycleGAN to predict the future frame conditioned on the
previous frame instead of four previous frames. In addition
to Retrospective CycleGAN and the adapted Retrospective
CycleGAN, we use Video Diffusion Models [39] as it is
one of most recent and powerful model in video synthesis.
However, the Video Diffusion model uses textual conditions
only whereas CVGI uses visual conditions (a single frame)
and textual conditions (text-based instruction) together. Thus,
we adapt Video Diffusion which takes textual and visual
conditions together for generating next frames. The adapted
model is trained from scratch on EPIC-Kitchens-55 dataset
with the default hyper-parameters of Video Diffusion.

The generation quality is measured by three metrics: Mean-
Squared Error (MSE), Peak Signal to Noise Ratio (PSNR),
and Structural Similarity Index Measure (SSIM) [50] instead
of FID [45], FVD [46], and LPIPS [47]. As MSE, PSNR,
and SSIM are the most widely used metrics in the evaluation
of future frame prediction approaches. They measure the
similarity between the generated frame and the ground truth
frame directly rather than measuring the similarity of two
sets of frames. Since metrics are computed for frames one
by one, we report the mean of the scores. MSE is a pixel-
wise metric. PSNR is also a pixel-wise metric and it is based
on MSE. On the other hand, SSIM compares frames based
on image patches instead of pixel-wise comparison. Whereas
a lower MSE score means more similar samples like FID,
FVD, and LPIPS, a higher score means more similar samples
in PSNR and SSIM. In addition to MSE, PSNR, and SSIM,
Inception Score (IS) [51] is used to measure the fidelity of the
generated frames and a higher score means better fidelity for
the generation like PSNR and SSIM.

With this evaluation, we compare the fidelity of the gener-
ated frames and the consistency between the ground truth and
the generated frames that are predicted by CVGI’s action gen-
erator on the video reconstruction task over EPIC-Kitchens-55
dataset. As shown in Table III CVGI is compared with the
adapted Video Diffusion [39] that is indicated as Video Dif-
fusion*, Retrospective CycleGAN, the adapted Retrospective
CycleGAN indicated as Retrospective CycleGAN*, and copy-
last that is commonly used baseline in future frame prediction
means copying the last previous frame as the prediction. In this
evaluation, models are trained from scratch for 500k iterations
with batch size 16 as the training of CVGI and used to predict
the fifth frame of every five consecutive frames of videos at the
test set. In addition, we also present an ablation study where
CVGI without M2M GAN is used to reconstruct the frames
of the test set by taking the ground truth hand masks instead
of hands masks that are generated by M2M GAN. Thus, the
ablation model shows the performance of M2F GAN only.

Table III shows that CVGI is capable to generate frames
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TABLE III: Comparison of CVGI with copy-last that is a com-
monly used baseline, Retrospective CycleGAN, Retrospec-
tive CycleGAN* that is an adapted Retrospective CycleGAN
model to predict next frames by using only the last previous
frame, Video Diffusion* that is adapted Video Diffusion model
to sythesise next frames by using the last previous frame and
text-based instructions, and CVGI w/o M2M GAN which is an
ablation model in predicting next frames on EPIC-Kitchens-
55 dataset. MSE scores are multiplied by 103 to emphasize
the difference. Besides, note that IS of Copy-Last does not
be included as it contains real frames and the best score and
the second-best score are highlighted in bold and underlined,
respectively.

Models MSE ↓ PSNR ↑ SSIM [50] ↑ IS [51] ↑
Copy-last 7.08 13.47 0.59 -
Retrospective 3.24 20.94 0.85 5.42CycleGAN [7]
Retrospective 6.99 17.22 0.68 5.07CycleGAN*
Video Diffusion* 6.47 20.35 0.76 5.49
CVGI w/o 4.62 23.19 0.85 5.56M2M GAN
CVGI 5.45 21.98 0.82 5.54

that are consistent with the ground truth and also it shows
that the generated frames by CVGI are photo-realistic. In the
comparison with Retrospective CycleGAN, CVGI has better
and close scores in PSNR, SSIM, and IS whereas Retrospec-
tive CycleGAN has a better MSE score than CVGI. When
we compare CVGI with Retrospective CycleGAN which is
adapted to predict the next frame by using a single frame,
CVGI consistently has better scores. This indicates when the
supervision (the number of previous frames used to predict the
next frame) in Retrospective CycleGAN decreases, its perfor-
mance also decreases. Consequently, while the performance of
CVGI and Retrospective CycleGAN are close to each other,
CVGI has superior performance to Retrospective CycleGAN*.
Despite the scores of Retrospective CycleGAN, predicting
the future frame conditioned on a single frame as in CVGI
and Retrospective CycleGAN* is indeed more challenging. In
addition, CVGI consistently outperforms the adapted Video
Diffusion model that uses both textual and visual conditions.
In its comparison with Retrospective CycleGAN, it is observed
that Video Diffusion has a better score in IS only. Moreover,
the performance of Video Diffusion and CVGI is relatively
close in IS whereas CVGI outperforms in MSE, PSNR, and
SSIM with larger margins. In other words, the fidelity of
generated frames by CVGI and Video Diffusion is relatively
close to each other but generated frames by CVGI are more
consistent with the ground truth than generated frames by
Video Diffusion. The reason for this, directly using text-
based instructions might be ambiguous for consistent video
synthesis.

Moreover, Table III includes an ablation study. Although
the scores of the ablation model and the complete model
are close to each other, the performance of the ablation
model is slightly better than the complete model. Because
the complete model generates hand masks as well and the
error in M2M GAN is accumulated. We believe these are the

TABLE IV: Comparison of CVGI with existing video gen-
eration models on a benchmark task on BAIR robot pushing
dataset. The benchmark task is video prediction where 15 next
frames are predicted conditioned on a given single frame. The
best score and the second-best score are highlighted in bold
and underlined, respectively.

Models FVD [46] ↓
SVP-FP [52] 315.5
CDNA [35] 296.5
SV2P [53] 262.5
LVT [54] 125.8
SAVP [48] 116.4
DVD-GAN [55] 109.8
VideoGPT [56] 103.3
TrLVD-GAN-FP [57] 103.3
Transframer [58] 100
HARP [59] 99.3
CCVS [60] 99
Phenaki [37] 97
Video Transformer [61] 94
FitVid [62] 93.6
MCVD [63] 89.5
NUWA [12] 86.9
RaMViD [64] 84.2
Video Diffusion [39] 66.92
CVGI 74.54

reasons for the performance difference. On the other hand,
although the ablation model has slightly better performance
than the complete model, it requires masks to control the
hands’ motion which is unreasonable to expect as user input.
Thus, although M2M GAN causes error accumulation, it is
essential for generating controllable videos.

Finally, to compare CVGI with a wider range of existing
video generation models, we evaluated CVGI on the common
benchmark task on BAIR robot pushing dataset (in low res-
olution 64x64). The task is video prediction to reconstruct
test frames by synthesizing next 15 frames priming on a
given single frame. To reconstruct the test frames from the
given single frame, we employ the trained model of CVGI’s
action generator and reconstruct test frames conditioned on the
displacement of the gripper. The frames are generated in a loop
as CVGI is trained to generate a single next frame rather than a
set of next frames. Then, by following the evaluation protocol
in [54], [62], the generation quality of CVGI is measured
with FVD score [46] between generated videos and ground
truth videos. Note that FVD scores of others are reported
from [37], [39], [54], [62]. As shown in Table IV, CVGI has
the second-best score in the benchmark task on BAIR robot
pushing dataset. Although FVD score of Video Diffusion is
better than CVGI, Table IV shows CVGI can generate realistic
videos. In addition to generating high-fidelity videos, CVGI is
capable to control the action to generate novel videos.

D. Ablation Study
An ablation study is performed to analyze the effectiveness

of the motion estimation layer over BAIR robot pushing
and Atari Breakout datasets. This ablation study, therefore,
shows the effect of using continuous signal rather than discrete
signal as a condition. A new ablation model is trained which
includes a GAN. This model manipulates the motion with text-
based instructions directly. The generator takes the label of
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Fig. 10: Ablation results on BAIR robot pushing and Atari
Breakout datasets. Initial frames and the generated frames
with different textual instructions by CVGI and the ablation
model that does not incorporate the motion estimation layer
are shown. Gray vertical dotted lines show the position of the
object of interest on the initial frame for the clarity.

motion instead of control signals along with the frames. The
discriminator of the ablation model is a sequence discriminator
and it has an auxiliary classifier instead of a regressor that
predicts the action performed.

Figure 10 shows the initial frames and textual instructions.
In addition, it shows the different motions on generated frames
conditioned on instructions by our model and the ablation
model. As shown in Figure 10, in the generated frames by
the ablation model, the position of the gripper and the base
are approximately the same whereas in the generated frames
by CVGI that incorporates the motion estimation layer, the
position of the gripper and the base differs according to the
given instruction. Thus, the motion estimation layer is espe-
cially essential to control the motion’s speed. Consequently,
using a continuous signal rather than a discrete signal such as
labels of actions is better to represent the motion of the object
of interest as motions are continuous as well.

V. CONCLUSION

In this work, we propose a controllable video generation
framework that provides detailed control over the motion of
the object of interest to generate novel videos with text-
based instructions. It incorporates a motion estimation layer
to divide the task into two sub-tasks: control signal estimation
and action generation. Our model learns to plan the motion
of the object of interest according to instructions in control
signal estimation and generate photo-realistic action videos in
action generation. Experimental results on benchmark datasets
demonstrate the effectiveness of our model. In the future, we
plan to extend our model into an end-to-end model.
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