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ABSTRACT

In machine learning, model-agnostic explanation methods try to give explanation
to model prediction by assessing the importance of input features. While linear
simplification methods guarantee good properties, they have to include nonlinear
feature interactions into linear coefficients. On the other hand, feature influence
analysis methods examine feature relevance, but do not consistently preserve the
desirable properties for robust explanations. Our approach seeks to inherit prop-
erties from linear simplification methods while systematically capturing feature
interactions. To achieve this, we consider the explained model from two aspects:
the linear aspect, which focuses on the independent influence of features to model
predictions, and the nonlinear aspect, which concentrates on modeling feature in-
teractions and their collaborative impact on model predictions. In practice, our
method initially investigates both the linear and nonlinear aspects of the model
being explained. It then extracts the independent and collaborative importance of
features on model predictions and consistently combines them to ensure that the
resulting feature importance preserves the desirable properties for robust explana-
tions. Consequently, our Linear-Nonlinear Explanation (LNE) method provides
a comprehensive understanding on how features influence model predictions. To
validate its effectiveness, experiments demonstrate that linear, nonlinear, and the
combined feature importance all offer valuable insights for explaining model pre-
dictions. We also compare the performance of LNE with other methods on ex-
plaining well-trained classifiers, and find our explanations align more closely with
human intuitions. Additionally, user study shows our method can hint humans
with potential biases in classifiers.

1 INTRODUCTION

Due to their black-box nature, machine learning models can easily contain biases and errors that
often go unnoticed by humans. This necessitates the development of explanation methods to peek
inside these opaque models and understand their inner workings. Among numerous approaches,
model-agnostic explanation methods don’t rely on specific structure or type of the model being
explained. This makes them particularly advantageous and straightforward to implement (Arrieta
et al., 2020). However, due to the lack of detailed information, conventional model-agnostic expla-
nation methods typically involve simplifying the explained model using a highly interpretable proxy,
or analyzing feature influence to the model predictions. Do these methods faithfully adhere to the
original model and provide accurate explanations?

There have been some methods aimed at explaining models through simplification. One such
method is LIME (Ribeiro et al., 2016), which locally approximates the explained model using a
linear model centered around the input instance. However, (Zhang et al., 2019) claims LIME’s
interpretations introduce uncertainty for different data types due to its sampling procedure. Subse-
quently, SHAP (Lundberg & Lee, 2017) has highlighted that the heuristic selection of parameters
in LIME struggles to provide guaranteed properties. SHAP addresses this by unifying similar ap-
proaches to propose additive feature attribution methods employing the Shapley value (Shapley,
1953) from cooperative game theory. It guarantees three desirable properties, i.e. (1) local accu-
racy: simplified model matches output of original model; (2) missingness: features missing in input
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have no impact to output; (3) consistency: feature contribution increases caused by original model
changes should reflect on simplified model. Computing Shapley values requires checking all subsets
of features within the input instance, thus is NP-hard. Therefore, SHAP makes an assumption of
feature independence, and approximate Shapley values using Shapley kernel weighted linear regres-
sion. Nevertheless, (Aas et al., 2021) points out this independence assumption results in misleading
explanations when features are correlated. Furthermore, (Alvarez-Melis & Jaakkola, 2018) claims
when dealing with complex models like neural network classifiers, both LIME and SHAP explana-
tions can exhibit significant variation within very small neighborhoods and may be inconsistent with
each other. There have other been attempts. (Tan et al., 2018) introduces a distillation way to extract
transparent version of the original model. In specific, they simplify original model to iGAM (Lou
et al., 2013). It adds pair-wise feature interaction terms to addictive model, thus describes nonlin-
ear aspect of the explained model. However, feature interactions could be very complex, whether
pair-wise interactions cover higher order interactions needs further exploration. To give thorough
study on nonlinear aspect caused by feature interactions, some works have abandoned the simpli-
fication way, and turn into analyzing feature influence to model prediction (Cortez & Embrechts,
2013; Datta et al., 2016). They apply sensitivity analysis, aggregating marginal influence, or co-
operative game theory to reveal the complex nonlinear relationships between features. But these
methods typically require extra information such as a baseline vector, distribution of the inputs, or
datasets on which the original model is trained. It makes them less easy to implement compared
with local simplification methods. Additionally, they don’t satisfy desirable properties all the time.

To sum up, linear simplification method like SHAP (Lundberg & Lee, 2017) considers coopera-
tive effects of features, and guarantees local accuracy, missingness and consistency of the feature
attribution. It tries to include nonlinear feature interactions into linear coefficients. As previous
works have pointed out, this design contains much uncertainty. Nonlinear simplification methods
like Distillation (Tan et al., 2018) or iGAM (Lou et al., 2013) also preserve local accuracy. They
try to inadequately include nonlinear part in the simplified model, by only considering pair-wise
interactions. Feature influence analyzing methods give detailed investigation on how features inter-
act, but they don’t always satisfy desirable properties. Therefore, we seek for a connection point
for the previous works. We’d like to propose an method that inherits good properties from linear
simplification methods, and in the meantime systematically describes feature interactions as well.
In our design, the explained model is considered as two aspects: linear aspect, in which features
independently contribute to model prediction, thus handy to simplify it using additive model. Non-
linear aspect, in which features collaboratively contribute to output, and feature influence analyzing
method is applied to check feature’s importance. Importantly, the two aspects information must
be combined together consistently. We achieve this by LNE (Linear-Nonlinear Explanations): (1)
simultaneously investigate linear and nonlinear aspect of the explained model, (2) correspondingly
design indicators to extract feature importance from linear and nonlinear aspects, (3) consistently
combine the two aspects to get a comprehensive understanding of feature importance, so that they
still preserve desirable properties. See Figure (1) for an overview of the LNE method.

Specifically, the linear aspect focuses on features’ independent influence to model prediction. We
do this by approximating the explained model with an additive model. Since we only concentrate
on independent feature importance in the linear aspect, by assuming feature independence, we can
linearly decompose the explained model, and take the coefficients as linear indicator of feature
importance. Except for independent influence, features also collaboratively contribute to model
prediction. Thus, the nonlinear aspect focuses on non-linearity caused by feature interactions. To
construct the nonlinear indicator showing features’ collaborative importance, we follow the classic
way to aggregate marginal influence for different subsets of features like in (Datta et al., 2016).
After obtaining independent and collaborative importance of feature, we combine them to get com-
prehensive information. Because they stand for distinct meanings, we have to unify their scales
but keep the sign unchanged for each importance value. Therefore, we use a hyperbolic tangent
function to unify their scales to [−1, 1] and maintain the original signs. Since we treat both aspects
equally important, we average the rescaled values to combine them. It proves that the combined
linear-nonlinear feature importance preserves desirable properties of missingness and a conditional
consistency. Experiments show dynamically that the linear and nonlinear indicators both provide
insights to explain model predictions, and the combined indicator provides a comprehensive under-
standing. We also compare LNE’s performance with other methods, and find our explanation for
well-trained classifiers are more consistent with human intuitions. Additionally, user study shows
our method can hint humans with potentially biased classifiers.
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Our main contributions states as follows:

• Instead of simplifying the explained model to a specific form, we investigate linear and
nonlinear aspects of the model simultaneously. They stands for features contributing both
independently and collaboratively to model prediction.

• We construct meaningful indicators for both aspects. The linear indicator measures fea-
ture’s independent importance, while the nonlinear indicator represents feature’s collabo-
rative importance.

• The two aspects of importance combine consistently to provide comprehensive understand-
ing of feature’s influence. And they still preserve desirable properties. Thereby, we give
explanation to any classifiers by the combined linear-nonlinear feature importance values.

Figure 1: Overview

2 HOW LOCAL EXPLANATION METHOD WORKS

Before diving into the proposed LNE method, we’d like to go through some basic concepts on local
explanation method. It will help understanding the mechanism of our method.

2.1 MODEL & INSTANCE TO BE EXPLAINED

Local explanation method tries to explain a model f locally at input x, figure out how it leads to pre-
diction f(x). Specifically, f is a classifier in most cases, since classification task is the fundamental
task in machine learning. A typical classifier is a vector function f , which predicts probabilities of
input x belonging to certain class over all n labels:

f(x) = (f1(x), f2(x), · · · , fi(x), · · · , fn(x)), fi(x) ∈ R

For example, a classifier on the MINST dataset (Deng, 2012) predicts 10 real numbers based on input
image. Each one represents the probability of input being classified to number 0 − 9. One certain
label function fi is referred to as the explained model f . Correspondingly, x is called the explained
instance. We talk about model-agnostic methods in this paper, which means specific structures or
parameters of f are unknown. With so little information, one has to work with interpretable features
within x to give explanation.

2.2 INTERPRETABLE FEATURES

Interpretable features are attributions in input x that humans can understand. Such features are
various for different datatype: for table data, the column features are interpretable. For text, its
interpretable features are naturally words. For image, they can be segmented image patches. Assume
the explained instance x contains m interpretable features, it can be represented as set:

x = {x1, x2, · · · , xi, · · · , xm} (1)
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With these features, explanation method will check each feature’s influence to model prediction. To
do this, the so-called perturbed instance z will be sampled by blocking some features in x. A
binary vector z′ will indicate the presence of features:

z ⊆ x, z′ = (z1, z2, · · · , zi, · · · , zm), zi ∈ {0, 1} (2)

in which zi = 0 indicates feature xi of x is blocked. For instance, if x is an image, then the i-
th image patch will be replaced by meaningless background in z. If all elements of z′ equal one,
z = x. We also call z as subset of x. Explanation methods utilize z to check importance of each
feature xk in different ways, as shown below.

2.3 EXPLAIN FEATURE IMPORTANCE

Take the addictive feature attribution method (Lundberg & Lee, 2017) as example. It utilizes linear
model g to simplify f centered around x. It tries to minimize discrepency between f, g on sampled
perturbed instances z and ensure local accuracy, i.e. f(z) = g(z′) when z = x.

g(z′) = ϕ0 +

m∑
i=1

ϕizi, ϕi ∈ R, zi ∈ {0, 1} (3)

Specifically, SHAP (Lundberg & Lee, 2017) proves only when coefficients of g are Shapley val-
ues (Shapley, 1953), g will satisfy desirable properties of local accuracy, missingness, and consis-
tency. ϕi is formulated as:

ϕi =
∑

z⊆x\[xk]

(|z|+ 1)!(m− |z|)!
m!

[f(z + [xk])− f(z)] (4)

where |z| stand for number of features within z. [xk] is the perturbed instance consisting of feature
xk alone. z + [xk],x\[xk] stand for the perturbed instances adding, dropping xk respectively.
Particularly, 0 stands for no features at all, and f(0) = 0. The term of [f(z + [xk]) − f(z)] is
the marginal influence. It is applied to analyze feature influence in method like (Datta et al., 2016).
Consequently, {ϕi} explains f at x by showing each feature’s importance value.

3 LINEAR-NONLINEAR EXPLANATION METHOD

In this section, we propose our Linear-Nonlinear Explanation (LNE) method to explain any classi-
fiers. We consider the explained model as two aspects, f = (L,N ). L is the linear aspect, which
models features’ independent importance to f . N is the nonlinear part, which simulates features’
collaborative importance to f . In our design, to get a comprehensive understanding of feature in-
fluence to model prediction, we will go through three steps: (1) investigate linear and nonlinear
aspect simultaneously. (2) construct corresponding indicators to extract feature importance from
the two aspects. (3) combine the two indicators in a consistent way to get linear-nonlinear feature
importance value, so that they still preserve desirable properties. An overview of the proposed LNE
method can be seen in Figure 1. We start from the linear aspect.

3.1 LINEAR ASPECT

In linear aspect L of the explained model, we focuses on feature’s independent influence to model
prediction. Thus, we will first define feature independence. As we will see, by assuming feature
independence, we are able to give an linear decomposition of the explained model. It approximates f
at x with local accuracy. This linear decomposition also reveals independent importance of features.

3.1.1 FEATURE INDEPENDENCE

As a simple intuition, feature independence refers to a constant marginal influence by adding feature
xk to any subsets z ⊂ x, where xk /∈ z. Conventional marginal influence is defined by f(z +
[xk])− f(z), where the group feature influence is measured by f(z). However, we argue that f(z)
is not enough to judge z’s influence from a class label information coverage prospective. Consider
z = x\z, i.e. complement of z according to x. Let z∗ already contains all features that contribute
highly to f ’s prediction, then features in z∗ contribute little, f(z∗) = f(x\z∗) → 0. Conversely,
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if z and z both includes some deterministic features, then f(z) can be as large as f(z). Because
the numbers of important features are different, z carries less information than z∗, and is not as
influential as z∗. Therefore, we define the influence for group feature by checking the gap between
it and its complement. See the following definition.
Definition 1. (Influence of group feature) Let z = {xi1 , xi2 , · · · , xil , · · · , xis}, xil ∈ x, 1 ≤ il ≤
m. z is the complement of z according to x. Then, the group influence of z is defined as:

F (z) := f(z)− f(z) (5)

It is easy to check by this influence definition, F (z) = −F (z). Complement of z has precisely
the opposite influence as z does. It considers z’s influence to f from both side of the coin, thus it
carries more information than conventional influence indicator f(z). We are now prepared to define
the feature independence using (5).
Definition 2. (Feature independence) For any xk ∈ x, and z ⊆ y ⊂ x, in which xk /∈ z, feature
independence indicates constant marginal influence by adding xk:

F (z + [xk])− F (z) = F (y + [xk])− F (y) (6)

3.1.2 LINEAR DECOMPOSITION OF THE EXPLAINED MODEL

Following the design of our method, we seek to approximate the explained model f by an additive
model with feature independence assumption (Definition 2). The following theorem shows how to
obtain the additive model by linearly decomposing f .
Theorem 1. (Linear decomposition of explained model) With feature independence, f can be

linearly decomposed as f(z)|z=x = l(z′) =
∑m

i=1 ϕizi, where ϕi =
F ([xi]) + f(x)

2
.

Proof. With feature independence, for any xk /∈ z ⊆ y ⊂ x, it holds F (y + [xk]) − F (y) =
F (z + [xk])− F (z). We can decompose F by:

F (x)− F (x\[x1]) = F ([x1])− F (∅)
F (x\[x1])− F (x\[x1 + x2]) = F ([x2])− F (∅)

. . .

F (x\[x1 + · · ·+ xk])− F (x\[x1 + · · ·+ xk+1]) = F ([xk+1])− F (∅)
. . .

F ([xm−1 + xm])− F ([xm]) = F ([xm−1])− F (∅)

Therefore, F (x) =
∑m

i=1 F ([xi])− (m−1)F (∅) = F (∅)+
∑m

i=1(F ([xi])−F (∅)). Consequently,
f(z)|z=x = F (x) = ϕ0 +

∑m
i=1 ϕi, in which ϕ0 = F (∅) = −f(x), ϕi = F ([xi]) − F (∅) =

F ([xi]) + f(x). Move ϕ0 to left side, and get f(z)|z=x = l(z′) =

m∑
i=1

F ([xi]) + f(x)

2
zi

It is important to note this decomposition only holds when z = x. It is not true when z ̸= x,
because f(z) = F (z) + f(z), in which F (z) can be decomposed while f(z) cannot. Thus, the
additive model l(z′) approximates f locally at x with local accuracy. Since l(z′) is directly derived
from feature independence assumption, its coefficients represent feature’s independent importance
to model prediction. Therefore, we obtain the linear indicator.

3.1.3 LINEAR INDICATOR

Linear indicator is responsible for measuring independent contribution of features. This indicator
directly comes from linear decomposition coefficients in Theorem 1, namely F([xk]) + f(x) =
f([xk])− f(x\[xk]) + f(x). On one hand, it stands for feature xk’s importance in the linear aspect
of f . On the other hand, this term itself is meaningful. f([xk]) directly shows xk’s importance by
its value; higher value means more importance. f(x)− f(x\[xk]) shows the marginal loss when x
drops this feature. f([xk])−f(x\[xk]) = F ([xk]) is the influence of xk by Definition 1. Therefore,
this term is meaningful, and it describes feature’s independent importance from the linear aspect.
Consequently, we have the linear indicator of feature xk as L(xk):

L(xk) =
f([xk]) + f(x)− f(x\[xk])

2
(7)
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3.2 NONLINEAR ASPECT

After analyzing the linear aspect, we turn to the nonlinear aspectN , which concentrates on feature’s
collaborative importance caused by feature interactions. We first model the feature interactions.
Then, we follow a classic way to aggregate marginal influence for different subsets of features.
Finally, we construct the nonlinear indicator measuring collaborative importance of features.

3.2.1 FEATURE INTERACTIONS

Unlike linear aspect, it is impractical to approximate nonlinear aspect of f with any specific forms.
However, it is still possible to model the process by dividing them according to the number of
features involving interactions:

N (x) =
∑
i<j

I(xi, xj) +
∑

i<j<k

I(xi, xj , xk) + · · ·+ I(x1, x2, . . . , xm) (8)

in which I(·) represents the interaction of features. For feature xk, its interactions with others are:

N (x;xk) =
∑
i1 ̸=k

I(xk, xi1) +
∑

i1,i2 ̸=k

I(xk, xi1 , xi2) + · · ·+ I(xk, xi1 , . . . , xim−1
)

=
1

2
(
∑
i1 ̸=k

I(xk, xi1) + I(xk, xi2 , · · · , xim−1)) +
1

2
(
∑

i1,i2 ̸=k

(I(xk, xi1 , xi2) + I(xk, xi3 , · · · , xim−1))

+ · · ·+ 1

2
(

∑
i1,i2,···im−2 ̸=k

I(xk, xi1 , · · · , xim−2
) + I(xk, xim−1

)) + I(xk, xi1 , . . . , xim−1
)

Detailed form of I could be very complex to investigate. However, we only concern certain feature
xk’s importance within I. It can be expressed by derivative of I according to xk, which means the
variation of model prediction with & without xk. Specifically, such derivative can be formulated by
marginal influence adding xk:

∂

∂xk
I(xk, xi1 , · · · , xis) := (f(z + [xk])− f(z))P (z), xih ∈ z, h = 1, 2, · · · , s (9)

in which P (z) represents the probability of z as subset of x. We follow the Banzhaf in-
dex (Banzhaf III, 1964) to consider P (z) = 2−(m−1), which means all subsets of x\[xk] equally
involve and uniformly aggregate. Therefore, we formulate collaborative importance of xk asN (xk):

N (xk) :=
∂

∂xk
N (x;xk) =

∑
1≤|z|≤m−1

N(xk, z)P (z) =

m−1∑
d=1

∑
|z|=d

N(xk, z)P (z) (10)

where N(xk, z) =
1
2 [f(z + [xk])− f(z) + f(z)− f(z\[xk])].

3.2.2 NONLINEAR INDICATOR

Precisely computing (10) consumes exponential time. The complexity originates from choosing
subset z from x\[xk]. In practice, to construct an indicator to measure collaborative importance of
xk, we just draw approximate information from (10). Specifically, instead of checking numerous
N(xk, z) with |z| = d, we use a meaningful zd to delegate them, and formulate the approximation:

N(xk) =

m−1∑
d=1

∑
|z|=d

N(xk, zd)P (z) =

m−1∑
d=1

N(xk, zd)
∑
|z|=d

P (z) (11)

≈
m−1∑
d=1

N(xk, zd)
1√

π(m− 1)/2
exp{− (d− ((m− 1)/2))2

(m− 1)/2
} (12)

where ≈ in (12) is the Gaussian approximation of binomial distribution when m is large, within
O( 1√

n
) error. Each zd is obtained dynamically. Until s step, the cumulative value of Ns(xk) =∑s

d=1 N(xk, zd)
1√

π(m−1)/2
exp{− (d−((m−1)/2))2

(m−1)/2 }. zs+1 is then obtained by adding the feature

xi with the maximum Ns(xi) value to zs. In case xk ∈ zd, the term N(xk, zd) = 1
2 [f(z) −
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f(z\[xk])+ f(z+[xk])− f(z)]. The series of z1, z2, · · · , zm−1 stands for greedy pick of features
with the highest collaborative importance. This makes features in each zd interact fiercely, so that
marginal influence performed on it shows significant characteristics. We called the series as the
sampling trace for computing collaborative importance. Consequently, N(xk) is called nonlinear
indicator of xk.

3.3 COMBINE LINEAR-NONLINEAR INDICATORS

The linear and nonlinear indicators L(xk), N(xk) have distinct meanings and different scales. They
both show one aspect of the explained model, and only together they offer comprehensive under-
standing of feature importance. To combine them, we have to re-scale the two and keep each values’
sign unchanged. Hyperbolic tangent function maps input to [−1, 1] without changing the sign, thus
perfectly meet our need. Since we consider linear and nonlinear aspect equally important, we aver-
age the rescaled values to combine them.

C(xk) =
1

2
(tanh(L(xk)) + tanh(N(xk))), tanh(x) =

ex − e−x

ex + e−x
(13)

C(xk) is the linear-nonlinear feature importance of xk. We will show in the next theorem, that it
preserves the desirable properties of missingness and a conditional consistency.

Theorem 2. The combined linear-nonlinear feature importance C(xk) satisfies properties: (1) miss-
ingness, features missing in the original input x have no impact to model output. zi = 0⇒ C(xi) =
0. (2) conditional consistency, for any two models f, f ′, if f ′(z+[xk])−f ′(z) ≥ f(z+[xk])−f(z)
holds for all z ⊆ x, then with fixed sampling trace z1, z2, · · · , zm−1, C ′(xk) ≥ C(xk).
Proof. Missingness is obvious. If there are missing features in x, they won’t involve into computa-
tion of the linear and nonlinear indicator. Let z = ∅ and z = x\[xk], then L′(xk) ≥ L(xk). With
fixed sampling trace, N ′(xk, zd) ≥ N(xk, zd) is always true, thus N ′(xk) ≥ N(xk). Since tanh(·)
is monotonically increasing, C ′(xk) ≥ C(xk).
Therefore, our LNE method still preserves some good properties. We propose Algorithm 1 for
our method. The time complexity is O(m2), space complexity is O(m). Therefore, it can be
implemented within reasonable computing cost.

Algorithm 1: Linear-Nonlinear Explanation for any classifiers
Input: Explained model f , input instance x
Initialization: N(xk) = 0, k = 1, 2, . . . ,m
for xk ∈ x do

compute L(xk) using ( 7)
z1 ← [x∗], x∗ = argmax

xk∈x
L(xk)

for 1 ≤ d ≤ m− 1 do
for xk ∈ x do

compute N(xk, zd) using (12)

N(xk)← N(xk) +N(xk, zd)
1√

π(m− 1)/2
exp{− (d− ((m− 1)/2))2

(m− 1)/2
}

xi = argmax
xk∈zd

N(xk)

zd+1 ← zd + [xi]

for xk ∈ x do
Compute C(xk) using (13)

Output: Feature’s linear-nonlinear importance measured by C(xk)

4 EXPERIMENTS

In this section, we conduct experiments to validate effectiveness of the proposed LNE method.
Firstly, we will show the linear and nonlinear indicators are both meaningful to provide insights,
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and the combined indicator provides a comprehensive understanding. Secondly, we compare LNE’s
explanation with other methods to see if it is consistent with human intuitions. Additionally, we do
a user study to examine whether our method can hint humans of potential bias of model.

4.1 LINEAR AND NONLINEAR ASPECTS BOTH PROVIDE INSIGHTS

In our design, we investigate both the linear and nonlinear aspects of the model, and combine them
consistently. The two aspects of feature importance are both meaningful. As shown in Figure 2,
we visualize the linear and nonlinear indicators. It shows that the two indicators capture different
features from the input image. By combining them into one, they complement information from
each other to offer a comprehensive understanding.

Figure 2: The linear and nonlinear indicators capture different aspects of information, and comple-
ment with each other

4.2 EXPLANATION COMPARISON ON WELL-TRAINED MODEL

In this part, we visually examine whether LNE’s explanation for a well-trained model is consistent
with human intuitions. Image classifiers trained on the ImageNet database (Deng et al., 2009) are
widely used as benchmarks for visualization tasks. These models are trained on hundreds of thou-
sands of images to learn to classify them into one thousand labels. Thus, they have a wide range of
cognition, and are capable of dealing various images. For this reason, we choose one of ImageNet
model, the Google Inception v3 (Szegedy et al., 2016) as the well-trained model to explain. We
assume its prediction of common images are based on human-agreed features. When explaining
image classifier, super-pixel algorithm can help clustering pixels into superpixels. SLIC (Achanta
et al., 2012) can generate compact, nearly uniform superpixels. Thus, we choose it to segment input
images to generate interpertable features.

We compare the performance of LIME, SHAP, and proposed LNE, as shown in Figure 3. The
number of superpixels is set to 50 for LIME and LNE, i.e. number of features m = 50. In this
case, LNE calls the explained model 2 × (50)2 = 5000 times. For fairness, LIME & SHAP will
also sample 5000 times. In the open-source implementation, kernel SHAP will exceed maximum
memory if sampled so many times, thus we replace it by partition SHAP. It can be seen that, LNE’s
explanation are more consistent with human intuitions.

4.3 USER STUDY ON WHETHER LNE HINTS POTENTIAL BIAS

To check LNE’s ability on detecting biases in classifiers, we design a user study experiments. In
specific, we train a binary image classifier to distinguish dogs from cats. We collect 50 images, 25
of them are dog images, the rest are cat images. However, we embed a vague watermark at random
locations in half of the images. These watermarked images are labeled as dogs, regardless of what
the image truly is. The rest images are labeled as cats. We then train a ResNet (He et al., 2016)
model on these images, and in fact we get a classifier to distinguish whether the input image is
watermarked or not. As a result, our biased model is able to classify all watermarked images as
dogs, the others as cats.

The user study is designed as follows. First, We show users 5 watermarked dog images, 1 water-
marked cat image, and 4 cat images without watermarks, and the corresponding model predictions.
Then, users are asked to vote whether the image classifier could be trust or not. After this, we show
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Figure 3: Performance Comparison between LIME, SHAP and LNE. Green area increases proba-
bility of the class label, red area decreases probability.

users the explanations on these images by LNE method, and they are asked to vote once again, to
decide if they trust the classifier. Finally, we ask users if they notice that watermark is the true reason
of model prediction. The results is shown in Table 1. As we can see, before LNE’s explanations,
the 10 images indicates 90% accuracy of the classifier, thus the better part of users tend to trust the
classifier. However, after seeing the explanations, most users are aware of potential biases, and tend
to distrust it. Through the explanations, more than half users notice the watermarks. The user study
shows our LNE method is capable of hinting potential bias in classifiers.

Before After

Trust 14 / 19 2 / 19
Distrust 5 / 19 17 / 19

Find watermark secret 2 / 19 13 / 19

Table 1: User study on whether a biased classifier can be trusted, before and after LNE’s explanations

5 CONCLUSION

Model-agnostic explanation methods rely on assessing feature influence to model prediction. In
order to get a good explanation, feature influence must be investigated systematically.

In this paper, we propose a new explanation method that integrates independent and collaborative
feature influence from linear and nonlinear aspects of the explained model. Our method approx-
imates the linear aspect by assuming feature independence, and models the nonlinear aspect by
analyzing feature interactions. The combined linear-nonlinear feature importance still preserves
desirable properties for a robust explanation. Experiments validate the effectiveness of our method.
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