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CIEASR: Contextual Image-Enhanced Automatic Speech
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ABSTRACT
Automatic Speech Recognition (ASR) models pre-trained on large-
scale speech datasets have achieved significant breakthroughs com-
pared with traditional methods. However, mainstream pre-trained
ASR models encounter challenges in distinguishing homophones,
which have close or identical pronunciations. Previous studies have
introduced visual auxiliary cues to address this challenge, yet the
sophisticated use of lip movements falls short in correcting ho-
mophone errors. On the other hand, the fusion and utilization of
scene images remain in an exploratory stage, with performance
still inferior to the pre-trained speech model. In this paper, we in-
troduce CIEASR (Contextual Image-Enhanced Automatic Speech
Recognition), a novel multimodal speech recognition model that
incorporates a new cue fusion method, using scene images as soft
prompts to correct homophone errors. To mitigate data scarcity,
we refine and expand the VSDial dataset for extensive experiments,
illustrating that scene images contribute to the accurate recogni-
tion of entity nouns and personal pronouns. Our proposed CIEASR
achieves state-of-the-art results on VSDial and Flickr8K, signifi-
cantly reducing the Character Error Rate (CER) on VSDial from
3.61% to 0.92%.

CCS CONCEPTS
• Computing methodologies→ Speech recognition.

KEYWORDS
Multimodal speech recognition, Multimodal fusion, Homophone
discrimination

1 INTRODUCTION
Automatic Speech Recognition (ASR) systems are designed to tran-
scribe spoken utterances into text with precision and reliability. Pre-
trained speech models, includingWav2Vec 2.0 [4] andWhisper [37],
which leverage large-scale speech datasets, have demonstrated
remarkable performance in ASR tasks, exhibiting high recogni-
tion accuracy and maintaining robustness across various scenarios.
However, these methods lack the functionality to utilize visual con-
textual information, making it challenging to achieve high precision
with closely pronounced words or homophones. As demonstrated
in Figure 1, semantically valid homophones can neither be dis-
tinguished by pronunciation nor be corrected by language model
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decoders. It is challenging to correct homophone recognition errors
using purely auditory information.

Figure 1: Introducing contextual images into the ASR sys-
tem plays a significant role in correcting homophone errors.
The blue words represent recognition confusion caused by
homophones or near homophones, while the red indicates
the correction results using scene images.

Previous studies have demonstrated the potential benefits of
integrating visual cues such as lip movements [41, 49] and ges-
tures [29] into ASR systems. They are suitable for enhancing speech
recognition systems’ noise robustness and recognition performance
in scenarios such as multi-person meetings and intelligent cock-
pits [8, 32, 54]. However, these methods require strict synchroniza-
tion of timestamps, posing a relatively challenging requirement for
real-world applications. Because relying solely on lip movements
allows for the transcription of spoken content into text [10, 12, 27],
such visual cues essentially act as a visual representation of speech,
rather than offering visual semantic information. Therefore, these
approaches remain inadequate for tackling the challenge of homo-
phone discrimination.

A viable solution leverages semantic-level visual context infor-
mation to supplement and enhance referential information missing
in speech, thereby clarifying the actual meaning of homophones.
Previous work has shown that contextual images can enhance the
robustness and accuracy of ASR systems. Srinivasan et al. [43]
adopts the Faster-RCNN model [38] to obtain fine-grained visual
representations and conducts a detailed analysis of the alignment
between visual and auditory elements, confirming the reliance
of multimodal speech recognition models on relevant visual con-
texts during prediction. Ni et al. [31] utilizes context-dependent
visual and corresponding linguistic cues to correct homophone
errors distinguishable from scene images. However, their methods
of integrating cues, predominantly through concatenation [33], at-
tention mechanisms [43] or Multi-Layer Perceptron (MLP) fusion
modules [31], are in a developing stage of utilizing contextual cues.
These methods do not yet match the recognition performance of the
cue-less speech pre-training model Whisper in terms of recognition
capabilities.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To effectively address the challenge of correcting homophone
errors, it is essential to better utilize the semantic information
within scene images. Inspired by the multimodal alignment strate-
gies of Multimodal Large Language Models (MLLMs) [6, 20, 23],
we integrate scene images as soft prompts, diverging from the tra-
ditional methods of integrating cues. Specifically, we utilize the
Q-Former [20], an efficient image-text alignment model, to extract
semantic information from scene images which provides richer
content than textual prompts such as key phrases, captions, and
descriptions. To address the scarcity of tri-modal alignment data
among images, speech, and text, we revise and expand the VSDial
dataset. Furthermore, we exploit the prompt interface of the Whis-
per model to integrate image-derived soft prompts in a seamlessly
natural manner.

The performance of our proposed model demonstrates on both
the synthetic dataset VSDial and the real dataset Flickr8K, with
speech recognition error rates decreasing from 3.61% and 2.42% to
an impressive low of 0.92% and 2.05%, respectively. We indicate
that when it comes to speech recognition involving homophones,
the relevant entity information provided by contextual images can
accurately identify key vocabulary within the speech. Our contri-
butions are summarized as follows:

• We introduce CIEASR, a novel multimodal ASR model that
enhances the contextual visual comprehension of ASR sys-
tems, offering an effective solution to the challenge of ho-
mophone discrimination.

• We propose a new method of cue integration, incorporating
scene image cues as soft prompts under the pre-training par-
adigm which yields significant improvements in the recog-
nition of entity nouns and pronouns.

• We revise and expand the VSDial datasets and conduct com-
prehensive experiments on both VSDial and Flickr8K, demon-
strating the significance of scene images in ASR systems.
CIEASR achieves new state-of-the-art results on these datasets.

2 RELATEDWORK
2.1 Pre-trained Speech Models
The field of speech recognition significantly progressed with the in-
troduction of unsupervised pre-training techniques such asWav2Vec
2.0 [4], HuBERT [17], w2v_BERT [11], etc. The unsupervised pre-
trained speech models analyze vast amounts of data to capture the
underlying patterns of speech. However, they require an additional
fine-tuning step due to the lack of a decoding mapping to useful
outputs. Whisper [37] is a speech recognition model pre-trained
in a weakly supervised fashion across large-scale speech datasets.
Goron et al. [14], Moor et al. [30], Zhang et al. [53], among others,
adopt Whisper as a backbone for downstream tasks due to its flexi-
ble Encoder-Decoder architecture and robust speech pre-training
capabilities. In this work, Whisper is adopted as our foundation
model to obtain strong speech recognition performance.

2.2 Cue-enhanced Speech Recognition
Traditional speech recognition methods have primarily focused
on robustly and effectively transferring speech to text using only
auditory inputs [15, 16, 47, 50]. The integration of multimodal cues

into ASR systems has been identified as a potent means to en-
hance robustness and accuracy [2]. Commonly used cues include
lip movements [28, 34, 40, 41, 49] and gestures [29]. Notably, lip
movements require precise synchronization of video frames and
speech segments to be effective [35], and cannot adequately address
the problem of correcting homophone errors. Recent studies have
increasingly investigated the application of readily accessible vi-
sual contexts, including images and videos, to enhance recognition
performance [13, 26, 31, 36, 42, 43]. Srinivasan et al. [42] found that
visual context can help ASR systems recover masked speech of ob-
jects by using images as auxiliary signals. Based on this discovery,
Srinivasan et al. [43] automatically detects object proposals and
directly grounds speech into regions of an image, Ma et al. [26]
adopts a self-supervised pre-trained text-video embedding model to
extract visual information and improve the recognition of specific
words. Other applications include extracting visual context by a
visual detector for embodied agents[36] and exploring various cross-
modal fusion schemes to combine visual and linguistic information
to make speech recognition more accurate and versatile [31].

2.3 Multimodal Fusion and Alignment
Multimodal models, such as GPT-4V [1] and Gemini [46], have
demonstrated considerable versatility across diverse fields. Exist-
ing multimodal models primarily leverage Visual-Language Pre-
training (VLP) techniques to align vision and language represen-
tations [7]. Typically, VLP models that emphasize multimodal un-
derstanding comprise three components: Modality Encoder, LLM
Backbone, and Input Projector which transforms encoded visual
features into linguistic embedding space [52]. This methodology
is adaptable to other modalities, such as audio and video, through
modifications to the encoding mechanism [9, 22, 51]. LLaVA [23],
Qwen-VL [5], Qwen-Audio [9], among others, use an MLP to map
encoded features to textual feature space. Flamingo [3] fuses com-
pressed input feature sequence with text through cross attention.
Q-Former [20] extracts relevant features from the encoded fea-
tures with fixed-length learnable queries and treats the selected
features as cross-modal prompts, thereby enhancing the model’s
interpretative and generative capabilities.

3 METHOD
3.1 Model Architecture
The CIEASR model is a novel approach for addressing homophone
errors in speech recognition by leveraging the contextual infor-
mation of scene images. It incorporates scene image cues as soft
prompts into the speech recognition framework, distinct from tra-
ditional fusion approaches.

As illustrated in Figure 2, raw images are encoded by a Visual
Encoder. Encoded image features are distilled and condensed into
high-level semantic features through a Q-Former. These seman-
tic features are aligned with the textual prompt interface space
of the Whisper model through a projection layer, enabling the
speech recognition system to gain nuanced insights derived from
images without fine-tuning theWhisper model itself. This approach
maintains Whisper’s multilingual and robust capabilities while in-
tegrating image understanding. Specifically, the handling of scene
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Figure 2: The overall architecture of CIEASR: The scene image is transformed into an image prompt through a Visual Encoder,
a Q-Former, and a projection layer, which is then concatenated with the text embedding before entering the Whisper Decoder
while speech is processed through a Speech Processor and Whisper Encoder, interacting with the image and text information
in the form of cross attention.

images via Q-Former is presented in section 3.2 while the fusion
strategy and the speech decoder are presented in section 3.3

3.2 Contextual Images Alignment Strategy
To enhance the speech decoder’s capacity for effective interpre-
tation of image information, we employ the Q-Former [20] for
the strategic extraction of semantic visual features. This approach
aligns encoded visual representations seamlessly with the textual
space. The training of Q-Former is divided into two stages:

3.2.1 Representation Learning Stage. The first phase involves image-
text contrastive learning, where images 𝑖 are transformed into fixed-
length image embeddings 𝐸𝑖 by a visual encoder EVA_CLIP [45]. 𝐸𝑖
interact with learnable queries𝑄𝑖 through cross attention. Training
is conducted using image-text pairs with a contrastive loss, which
includes Image-Text Contrastive Learning (ITC), Image-grounded
Text Generation (ITG), and Image-Text Matching (ITM). The train-
ing in the first phase effectively extracts semantic information from
images and compresses the length of the image embeddings.

3.2.2 Generative Learning Stage. After extensive training with
paired image-text data endows the Q-former with the ability to
extract image representations, Q-Former is linked to a frozen Whis-
per decoder through a fully connected layer to establish a bridge

between the image space and the textual space of the Whisper de-
coder. At this stage, our model performs autoregressive predictions
of textual labels Y corresponding to both speech and image inputs.
The detailed Speech Decoding process is presented in Section 3.3.

The addition of visual context 𝑋𝐼 from Q-Former significantly
enhances the decoder’s understanding of semantic content within
speech signals, bridging the gap between visual inputs and textual
transcriptions. This integration approach ensures the generation
of textual labels coherent with both the acoustic information and
visual context, leading to improved accuracy and robustness in
speech recognition tasks.

3.3 Infusing Visual Cues into Speech Decoding
In large-scale pre-trained models employing autoregressive decod-
ing, the critical function of text prompts in determining model
outputs has been well-documented. Research in prompt engineer-
ing [18, 19, 48] demonstrates that meticulously designed prompts
can significantly enhance the performance of generative models.
Drawing on these insights, our study explores using contextual im-
ages as soft prompts in the Whisper framework, aiming to harness
their potential to refine the model’s output.

Though Whisper may not strictly be a Large Language Model
(LLM), its autoregressive decoding aligns with LLM functionalities,
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endowing it with substantial inferential capabilities. With scene
image cues provided by Q-Former, the Whisper decoder essentially
assumes the role of a language model, possessing capabilities for
inference and error correction. It produces textual predictions 𝑌
that mirror speech transcriptions 𝑆 , utilizing image semantics 𝑋𝐼

as prompts for enriched speech transcription.
The origin speech 𝑠 is first transformed into a log-magnitude

Mel spectrogram and then preprocessed by the Speech Processor,
detailed in section 4.2. Then the processed speech signal 𝑆 is ex-
tracted to a series of acoustic features 𝑋𝑆 by the Whisper Encoder,
which are then fed into the decoder using cross attention. This
attention mechanism allows for a seamless blend of auditory and vi-
sual data in generating speech transcriptions. We have adapted the
prompt interface of the Whisper decoder, shifting from text token
IDs to image embeddings 𝑋𝐼 . Utilizing the vocabulary of Whisper,
we convert text label IDs into text embeddings 𝑌 , allowing them to
be concatenated with 𝑋𝐼 .

For a text label 𝑌 with a length of 𝐿, the decoding process of the
Speech Decoder can be represented by the equation (1):

𝑃 (𝑌 | 𝑋𝑆 , 𝑋𝐼 ) =
𝐿∏
𝑗=1

𝑃decoder (𝑦 𝑗 | 𝑋𝑆 , 𝑋𝐼 , 𝑋𝑠𝑝 , 𝑌𝑖< 𝑗 ) (1)

In this equation, 𝑌 represents the final output transcription text.
𝑋𝑆 denotes the speech features obtained from the Speech Encoder,
while 𝑋𝐼 refers to the aligned image features derived from the Vi-
sual Encoder and Multimodal Alignment Module. 𝑋𝑠𝑝 represents
special tokens controlling the model’s output, including language
specification, task definition, and whether to use timestamps. Dur-
ing the decoding process, 𝑋𝑆 is inputted into each decoder block
through cross-attention mechanisms. The special tokens 𝑋𝑠𝑝 and
text embeddings generated from previous outputs 𝑌𝑖< 𝑗 are concate-
nated with the image representations 𝑋𝐼 and jointly fed into the
Speech Decoder module for decoding.

4 EXPERIMENTS
4.1 Datasets
We conduct our experiments on the multimodal dataset VSDial
and Flickr8K.

VSDial is a synthetic dataset consisting of 120,000 images. Each
sample includes one image, its English description, and ten rounds
of dialogue surrounding the image. The images are sourced from
COCO and VisDial, while the synthetic speech is generated from
VSDial using Fairseq to convert each image’s corresponding ten
segments of text questions into speech. The image caption serves as
a linguistic cue for speech recognition. We have expanded the syn-
thetic speech to include both questions and captions. We develop
two versions of the caption in Chinese and English. Using Paddle-
Speech for multi-speaker voice synthesis, we address the issue of
the original VSDial dataset neglecting English words interspersed
within Chinese sentences, ensuring comprehensive language pro-
cessing. The expanded dataset VSDial-caption is set to be accessi-
ble for download under an open-source license, facilitating broader
research utilization. For distinction, we refer to the original VSDial
set as VSDial-question.

Flickr8K is a real speech dataset, serving as a subset of the
larger image corpus Flickr30K, wherein captions are articulated by
human voices. It encompasses 8,000 images, each associated with
five unique English-recorded captions.Flickr8K totally contains a
total of 30,000 audio samples for training and 5,000 samples each
for validation and testing.

4.2 Experimental Setup
We conduct experiments on the original dataset VSDial-question,
our expanded dataset VSDial-caption, and the real speech dataset
Flickr8K.

For every ten pairs of questions and answers of an image in
VSDial-question, only one question is randomly used, resulting in
a total of 120,000/2,000/8,000 training/validation/testing samples,
respectively. For the Flickr8k dataset, one corresponding speech
sample is randomly selected for each image, resulting in a total of
8,000 samples for one training epoch.

We conduct experiments utilizing VSDial-caption across three
linguistic settings: Chinese, English, and a random selection of
Chinese and English speech utterances which is analyzed in section
4.4.

In practical training, we employ a ViT model with a resolution
of 224 × 224. We initialize a Q-Former model which has completed
stage one training, and the Whisper large-v2 model, with both the
ViT and Whisper models being frozen. Consequently, our model
is highly lightweight, with a parameter count of 1.0B when using
CIEASR and 40k when using learned queries alone.

For speech preprocessing, speech utterances are uniformly re-
sampled to 16,000 Hz and transformed to a log-magnitude Mel
Spectrogram, computed using 25ms windows with a stride of 10ms.
Inputs undergo global scaling to ensure they range between -1 and
1, achieving an approximately zero mean across the pre-training
dataset.

4.3 Results on VSDial-question
Generally, for speech in logographic languages such as Chinese,
researchers pay more attention to the Character Error Rate (CER),
whereas for alphabetic languages like English, the Word Error Rate
(WER) is of greater concern. We provide both metrics for reference.

Table 1: MainWER(%) and CER(%) results on VSDial-question.
Text-cn/en means using Chinese/English image captions as
text prompts.

Model Language Cues WER ↓ CER ↓
VILAS[31] cn image / 4.40
VILAS[31] cn image+text-cn / 4.70

WHISPER cn none 3.81 3.61

CIEASR cn image 1.02 0.92
CIEASR cn text-cn 2.80 2.41
CIEASR cn text-en 3.47 3.31
CIEASR cn image+text-cn 1.20 1.02
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As shown inTable 1, we can conclude from the Chinese question
experiment that:

• Performance improvement with the introduction of con-
textual images: The introduction of contextual visual cues
results in a significant performance enhancement. Compared
to the pre-trained ASR model Whisper, our performance has
improved by approximately 2.7 percentage points of CER.
This proves that the integration of cues from other modalities
can greatly enhance the performance of speech recognition
systems.

• Effects of the introduction of contextual images on recogni-
tion: Introducing images enables the recognition of gender
and entity information, including actual items present and
other entities suggested by the scene. For instance, when
given an image of an office scene, visual contextual informa-
tion can provide details about items directly appearing in
the image, as well as entities related to the office scene that
are not present in the image.

In speech recognition systems, both scene image cues and textual
cues offer vital contextual information. Textual cues within ASR
systems deliver a focused subset of semantic information. In our ex-
periment, image captions serve as highly pertinent textual cues for
speech utterances linked to the respective image, thus qualifying as
textual cues. Moreover, scene image cues not only furnish semantic
information exceeding that provided by textual cues, encompassing
aspects like background, texture, and spatial relationships but also
reduce the high costs associated with manually designing textual
cues in speech systems.

Upon examining the differences between scene image cues and
textual cues, we find that scene images offer abundant visual in-
formation. This wealth of information further enhances automatic
recognition performance, specifically resulting in a 1.5 percentage
point improvement of CER compared to using textual cues in the
same language.

In an analysis comparing the use of textual cues across various
languages, we observe that employing Chinese textual prompts
leads to an improvement in the performance of Chinese speech
recognition. In contrast, the effect of cross-lingual textual prompts
appears to be less significant. Quantitatively, utilizing textual cues
in the same Chinese language enhances performance by 1.2 per-
centage points of CER, whereas different English language cues lead
to a mere 0.3 percentage point increase, underscoring a limitation
of textual cues in a cross-lingual context.

Furthermore, a common phenomenon is observed. In both our
model and the VILAS model, the performance of simultaneously
using both image and textual cues tends to be slightly lower com-
pared to using scene image cues alone. This may be attributed to
the scene image encapsulating the semantics of the textual cues
described in the image, rendering the textual cues redundant in
this context. However, the potential for further enhancing ASR
system performance by simultaneously using scene images and tex-
tual cues that provide non-overlapping semantic information is an
area left for future research in our work on the field of multimodal
complementary fusion.

Table 2: Main WER(%) and CER(%) results on VSDial-caption.
Language "cn+en" indicates that a random speech segment is
selected from the corresponding Chinese and English speech
for training and testing.

Model Language Cues WER ↓ CER ↓
WHISPER cn none 3.04 2.51
CIEASR cn image 1.42 1.22

WHISPER en none 4.24 1.80
CIEASR en image 2.12 0.78

WHISPER cn+en none 3.61 2.13
CIEASR cn+en image 1.93 1.10

4.4 Results on VSDial-caption
As shown in Table 2, the following conclusions can be drawn:

• From the Chinese experiments, it can be deduced that due
to the dataset’s characteristics that the translated captions
contain a significant number of numerals and phrases, the
performancewith the introduction of images is slightly lower
than in the question experiments. However, there is still a
considerable improvement of 1.3 percentage points of CER.

• The performance in the English experiments meets expecta-
tions, aligning with the higher WER and lower CER typically
observed in English sentence recognition, with an enhance-
ment in performance upon introducing images; there is a
2.2 percentage point improvement in WER.

• We also add mixed-language experiments and find that the
performance of the ASR system lies between the Chinese
and English experiments. This suggests that utilizing the
Whisper multilingual pre-trained model as the backbone
for the ASR system provides certain robustness to mixed
languages.

In conclusion, contextual images, as a form of visual cue, can
effectively enhance the entity information recognition capability
of pre-trained language models, all without the need for any fine-
tuning and efficiently improving system practicality with low com-
putational resources. Compared with textual cues, image cues, as
a denser form of information, can provide more context knowl-
edge independent of text, and image information does not have
the cross-language limitations of textual prompts. The preliminary
mixed-language experiments in Chinese and English also align
more closely with the applications of real-world speech recogni-
tion, offering a solution for complex multilingual mixed speech
recognition.

4.5 Results on Flickr8K
In the context of the real-world speech dataset Flickr8K, the pre-
trained Whisper model showcases a notable advantage in English
speech recognition, surpassing the performance of most conven-
tional models. These traditional models often conclude that incor-
porating visual cues fails to offer additional improvements. Ni et al.
[31] suggests that this phenomenon occurs because speech serves
as the primary input for ASR systems, with visual cues playing
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Table 3: MainWER(%) results on Flickr8K. The visual column
indicates the use or non-use of visual cues.

Model Visual WER ↓ CER ↓
Sun et al. [44] 14.75 /
Sun et al. [44] ✓ 13.81 /

Srinivasan et al. [43] 13.60 /
Srinivasan et al. [43] ✓ 14.10 /
Oneat,ă and Cucu [33] 3.80 /
Oneat,ă and Cucu [33] ✓ 4.30 /

VILAS[31] 3.40 /
VILAS[31] ✓ 3.40 /

WHISPER 2.42 1.02
CIEASR ✓ 2.05 0.89

merely an auxiliary role. When the speech input is sufficiently
clear, the inclusion of other modalities might lead to interference,
potentially impairing recognition capabilities.

As shown in Table 3, our model enhances the ASR capabilities
built on the Whisper by integrating visual cues as soft prompts.
Given that the visual component functions independently and does
not contribute directly to the loss computation, it effectively serves
as a soft prompt for speech decoding. This approach to cue inte-
gration minimizes the disruption caused by redundant multimodal
information, emphasizing the supportive function of multimodal
cues instead. Our findings offer fresh perspectives on cue integra-
tion techniques, promising valuable directions for future research
in multimodal speech recognition.

4.6 Ablation Study on prefix tuning

Figure 3: Ablation study on learned prefix matrix: exploring
the impact of trainable prefix on model performance.

In our approach, we froze the Whisper model to ensure its origi-
nal configuration remains unaltered. Recent studies [21, 24, 25] have
indicated that adding a prefix to pre-trained models significantly
enhances their performance, and our approach of incorporating an
image soft prompt similarly introduces a prefix-like element.

To discern the unique contribution of contextual visual cues
beyond the impact of prefix addition, we design an ablation study
utilizing learnable parameters that mimic the form of the image

prompt but function as blank cues. This setup aims to neutralize
the potential performance enhancements attributed solely to the
prefix structure, allowing for a focused examination of the impact
of visual cues. The rationale behind this method is to isolate and
quantify the specific advantages that contextual images confer
on speech recognition, thereby clearly distinguishing between the
effects of prefix addition and the substantive enhancement provided
by visual information. This approach enables a detailed analysis
of the effectiveness of visual cues while keeping all other model
hyperparameters and training conditions constant, as detailed in
Figure 3.

Specifically, we define a learnable parameter matrix with the
same shape as the Q-Former queries, which can be considered a
blank image cue. This approach aims to isolate the effect of intro-
ducing this prefix matrix on the overall ASR performance of the
Whisper model.

Figure 4: Improvement of prefix and scene image cues. None
denotes pure speech recognition, Prefix indicates the addi-
tion of a trainable prefix, and Image represents using scene
image cues. The Chinese dataset (left half) uses CER(%), and
the English dataset (right half) uses WER(%).

Our experiments meticulously assess the impact of integrating
contextual visual cues alongside the structural addition of a prefix
to the Whisper model. The experimental results are presented in
Figure 4.We can conclude that:

• The introduction of a prefix prompt has been observed to
enhance the performance of speech recognition systems,
particularly in synthetic speech datasets. Synthetic speech
collections harbor more distinct speech domain features,
which can be effectively captured and learned through the
utilization of prompts. Similarly, although real-world speech
datasets present a higher level of complexity, they also ex-
hibit domain-specific characteristics, such as speakers’ vocal
habits and regional dialects, which still hold potential for
further investigation in future research endeavors.

• Compared to prefix prompts, image prompts can further en-
hance performance, especiallywithin Chinese speech datasets,
as indicated by the first two columns in the table. This im-
provement can be attributed to the widespread presence of
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homophones in Chinese. In section 4.7, we delve deeper
into the corrective capabilities of image prompts concerning
homophones.

Through the comparison with the blank image experiment, we
observe its adaptability to the features of the speech dataset, which
can enhance the ASR recognition accuracy to a certain extent.

4.7 Experimental Analyses on Noun and
Pronoun Recognition

Table 4: Total number of nouns contained and correctly iden-
tified in three test sets. Among them, VSDial includes 8k test
samples, and Flickr8K includes 5k test samples.

Dataset Cues Correct Total Acc(%) ↑
VSDial-question none 9743 10273 94.84
VSDial-question prefix 10015 10273 97.48
VSDial-question image 10119 10273 98.50

VSDial-caption none 27457 28777 95.41
VSDial-caption prefix 27682 28777 96.19
VSDial-caption image 27959 28777 97.16

Flickr8K none 15517 15958 97.24
Flickr8K prefix 15512 15958 97.21
Flickr8K image 15563 15958 97.52

Table 5: Total number of pronouns contained and correctly
identified in three test sets.

Dataset Cues Correct Total Acc(%) ↑
VSDial-question none 1929 2252 85.73
VSDial-question prefix 1980 2252 87.92
VSDial-question image 2175 2252 96.58

VSDial-caption none 380 435 87.36
VSDial-caption prefix 385 435 88.51
VSDial-caption image 392 435 90.11

Flickr8K none 1006 1023 98.34
Flickr8K prefix 1003 1023 98.04
Flickr8K image 1000 1023 97.75

We investigate the contribution of contextual images to the recog-
nition of specific types of vocabulary by analyzing the accuracy of
noun recognition as well as pronoun recognition.

We use the Spacy model to identify nouns and pronouns in 8,000
samples each from the VSDial-question and VSDial-caption test sets
and 5,000 samples from Flickr8K test sets. From this, we calculate
the Noun Recognition Rate (NRR) and Pronoun Recognition Rate
(PRR), with the results presented in Table 4 and Table 5.

The VSDial-caption, being a comprehensive description of im-
ages, frequently utilizes numerals and thus contains more nouns

and fewer pronouns. Conversely, VSDial-question primarily poses
questions about the most prominent entities in images, containing
a higher frequency of personal pronouns and exhibiting stronger
significance. In English, the phenomenon of homophonic nouns and
pronouns is less common, hence the system’s correction capability
is not significant for the Flickr8K dataset.

The provision of contextual image cues in the VSDial-question
dataset resulted in improvements of 3.66% for NRR and 10.85% for
PRR; in the VSDial-caption dataset, these cues led to enhancements
of 1.75% for NRR and 2.75% for PRR. Utilizing a prefix also signifi-
cantly boosts performance, primarily in the case of abstract nouns,
as well as demonstrative pronouns, relative pronouns, and indefi-
nite pronouns, where images cannot provide auxiliary support.

To more vividly illustrate the impact of scene image cues, we
delve into error examples from VSDial in the absence of such cues,
highlighting the corrective potential of image cues. This analysis is
clearly depicted in Figure 5.

The VSDial-question dataset exhibits a high correction rate for
erroneous samples, achieving 75% for nouns and 82% for pronouns.
Conversely, the VSDial-caption dataset shows correction rates of
50% for nouns and 36% for pronouns. This discrepancy arises be-
cause the question format directly inquires about the image, focus-
ing more on the most prominent entities within it, and includes a
greater number of personal pronouns that can be corrected. On the
other hand, the caption format provides a comprehensive descrip-
tion of the image, prioritizing a thorough depiction of entities and
tending to describe using numerals rather than pronouns.

Figure 5: The number of corrected nouns and pronouns in
VSDial dataset. Warm colors represent error samples from
VSDial-question, and red for corrections. Cool colors repre-
sent error samples from VSDial-caption, and blue for correc-
tions.

We can conclude that contextual images make a significant con-
tribution to the identification and correction of entity information in
homophone errors within the Chinese speech dataset. Our method
offers a viable and rapid solution for the recognition of homophones,
which can alleviate to some extent the high costs and inconvenience
of artificial auxiliary cues in ASR systems.

4.8 Experimental Analyses with Activation Map
In order to further analyze our CIEASR model for enhanced trans-
parency and interpretability, we have integrated the Grad-CAM[39]
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Figure 6: The visualization of activation maps between
speech and the scene image.

technique to examine the impact of image information on the prob-
ability of label predictions made by the whisper decoder. More
precisely, we initially acquire the probability distribution 𝑦𝑐 for
each word as predicted by the whisper decoder for the 𝑐𝑡ℎ token,
and compute the gradient of𝑦𝑐 with respect to the final feature map
𝐴 extracted by the vision encoder, expressed as 𝜕𝑦𝑐

𝜕𝐴
. Subsequently,

the gradients derived via backpropagation are averaged across each
channel dimension for every pixel value—reminiscent of Global
Average Pooling—to determine the significance weights for each
channel, delineated by Equation 2:

𝛼𝑐
𝑘
=

1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

(2)

Herein, 𝑍 signifies the count of pixels within the feature map,
and 𝐴𝑖 𝑗 symbolizes the pixel value at the 𝑖, 𝑗 position of the 𝑘𝑡ℎ
feature map.

Utilizing the importance weights ascertained heretofore, the
channel features of the feature map are weighted accordingly, and
through the application of a ReLU function, the activation map is
procured, as demonstrated in Equation 3:

𝐿𝑐Grad-CAM = ReLU

(∑︁
𝑘

𝛼𝑐
𝑘
𝐴𝑘

)
(3)

The utilization of the ReLU function is intended to exclusively
consider those pixels that positively influence the token 𝑐 .

During the practical analysis, we eschewed token-level predic-
tions in favor of utilizing the predicted probabilities of each indi-
vidual word to construct the activation map. This methodology
enabled us to scrutinize the impact of each pixel on the predictive

accuracy of every word. We curated a selection of images that exem-
plified the model’s proficiency in correcting errors. By leveraging
the Grad-CAM approach, we illustrated the critical image regions
that were instrumental in the model’s sequential word predictions.

As shown in Figure 6, the Chinese speech means "How many
giraffes are there?" Without scene images, "giraffe" is confused with
the phonetically similar "scene objects". When our scene images
are presented, our model is adept at correcting errors to predict the
correct word “giraffes”. Furthermore, by analyzing the activation
map, it becomes evident that the image region corresponding to the
giraffes plays a pivotal role in the prediction of the word “giraffes”,
while this area does not attract attention during the prediction of
other words. This indicates that the error correction capability of
our model is attributed to the presence of giraffes in the image.

In a similar vein, in the second example, the completely identi-
cal pronunciation of third-person pronouns (he/she/it) in Chinese
poses a challenge for pure speech recognition systems to determine
the semantic gender based solely on the speech signal itself. How-
ever, the scene image provided offers visual cues about the person’s
gender, and it is observed that this specific region contributes sig-
nificantly to the accurate prediction of the correct pronoun "he".
In contrast, when predicting the incorrect pronouns "she" or "it",
there is almost no attention paid to the image (in our system, the
probabilities of "she" and "it" are extremely low).

The focus areas of the activation map provide excellent inter-
pretability for our method of integrating scene images as soft
prompts. The fusion of contextual visual information is profoundly
effective, especially for homophone confusion errors involving en-
tity nouns and pronouns.

5 CONCLUSION
In this study, we introduce CIEASR, a pioneering approach to ASR
that leverages unsupervised pre-trained speech models and en-
hances them with visual contextual information, particularly scene
images, to address the challenge of homophone discrimination—a
task where traditional speech-only models falter. By integrating
image semantic information as soft prompts, our model not only
improves interpretability but also paves the way for innovative cue
fusion methods in speech recognition. The efficacy of CIEASR is
underscored by its achievement of state-of-the-art results on both
VSDial and Flickr8K datasets. Our comprehensive analyses further
validate that scene images significantly contribute to the precise
recognition of entity nouns and Chinese personal pronouns with
identical pronunciations. Moving forward, we will further investi-
gate how to more effectively integrate an increased range of multi-
modal cues into speech recognition systems under the paradigms
of pre-training and prompts, aiming to study the complementary
mechanisms between multimodal information.
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