
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE GEOMETRY OF SELF-VERIFICATION IN A TASK-
SPECIFIC REASONING MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

How do reasoning models verify their own answers? We study this question by
training a model using DeepSeek R1’s recipe on the CountDown task. We leverage
the fact that preference tuning leads to mode collapse, yielding a model that always
produces highly structured chain-of-thought sequences. With this setup, we do top-
down and bottom-up analyses to reverse-engineer how the model verifies its outputs.
Top-down, we find Gated Linear Unit (GLU) weights encoding verification-related
tokens, such as “success” or “incorrect”. Bottom-up, we find that “previous-token
heads” are mainly responsible for self-verification in our setup. Our analyses meet
in the middle: drawing inspiration from inter-layer communication channels, we
use the identified GLU weights to localize as few as six attention heads that can
disable self-verification, pointing to a necessary component of a potentially larger
verification circuit. Finally, we verify that similar verification components exist in
our base model and a general reasoning DeepSeek-R1 model.

1 INTRODUCTION

Recent language models demonstrate impressive reasoning capabilities. Such models are trained with
reinforcement learning (RL) in which they are rewarded when their final outputs are correct.

Behaviorally, these models generate long chain-of-thought (CoT) (Wei et al., 2022) reasoning traces.
There is an open question on whether monitoring their CoT is worthwhile, given a growing line of
work suggesting that their CoTs do not faithfully reflect the model’s inner computations (Turpin et al.,
2023; Lanham et al., 2023; Arcuschin et al., 2025). Can we monitor their hidden states instead? We
take a step towards investigating this question, by studying a model’s inner mechanism for a crucial
reasoning step, i.e., self-verification.

General reasoning entails a broad range of tasks, requiring a diverse set of skills. In order to conduct
a systematic study, we train and analyze a task-specific reasoning model using the same recipes
from DeepSeek R1. We limit the scope of our study to a specific task that requires search – a core
reasoning skill broadly applicable for many reasoning tasks. We also select a task in which we can
expect the verification mechanism ahead of time, making our analyses easier. Namely, we study
CountDown Gandhi et al. (2024; 2025); Qin et al. (2025); Yao et al. (2023), in which a set of numbers
(operands) and a target number is given, and the model must find the right arithmetic combination
using the operands to reach the target number. Because the target number is specified in the context,
we can expect attention heads to play a role in verification and shed light onto other relevant weights
and subspaces pertaining to self-verification.

Studying a task-specific model has a second non-obvious benefit: training language models with RL
(i.e., with preference signals) can lead to mode collapse towards majority preferences, significantly
reducing the diversity of their outputs (Kirk et al., 2024; Padmakumar & He, 2024; Murthy et al.,
2024; Slocum et al., 2025). Luckily, in the context of model interpretability, this means that our
task-specific model converges to always generating well-structured CoT sequences, allowing us to
easily and systematically parse its reasoning trace (e.g., see Table 1).

We conduct “top-down” and “bottom-up” analyses to reverse-engineer how the model verifies its own
outputs. Our two analyses meet in the middle, revealing key subspaces relevant for model verification.

Going top-down, we leverage linear probes to find Gated Linear Unit (GLU) vectors in late layers that
often encode tokens relevant for verification. Interestingly, these vectors also seem to correlate with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

English or Chinese tokens, like “success” or “不完” (“failed”). Furthermore, the antipodal directions
of these vectors also encode the antonyms of correct or incorrect tokens.

Going bottom-up, given the nature of our task, we hypothesize and verify that attention heads play a
significant role. We find “previous-token heads” – attention heads that attend to previous occurrences
of the current token – that attend to the provided solution in the context. Previous-token heads have
been studied before, for instance in the context of induction heads (Olsson et al., 2022). Through
causal analyses, we find that disabling previous-token heads disables model verification.

Our two analyses meet in the middle: we find that disabling previous-token heads also deactivates
our GLU vectors. Inspired by inter-layer communication channels (Elhage et al., 2021; Merullo
et al., 2024), we look for previous-token heads that most align with the “receptive-field” of our GLU
vectors, allowing us to localize as few as six attention heads that reliably disables model verification.
Thus our work finds necessary components for a potentially larger verification circuit.

Finally, we verify that similar verification components exist in our base model prior to RL, as well as
in a general reasoning model, DeepSeek-R1-Distill-Qwen-14B.

Obviously, most reasoning tasks do not provide an easily verifiable solution in the context. However,
by illustrating a thorough mechanism of verification in our simplified setup, we take a step towards
the possibility of monitoring and interpreting a model’s inner computations in its hidden states.

2 NOTATIONS, KEY TERMINOLOGIES

We first establish key terminologies and notations. A Transformer’s forward pass first embeds the
input using weights WE ∈ IRd×V . The embeddings go through L Transformer blocks, yielding
hidden states xℓ ∈ IRd, ℓ ∈ [L − 1]. The last layer, xL−1, is “unembedded”, or projected back to
the token embedding space using WE , and the nearest neighboring token embedding of W⊤

E xL−1 is
outputted. Each block consists of attention heads and Gated Linear Units (GLUs) (Shazeer, 2020).

Attention. Each attention head consists of key (WK), query (WQ), value (WV), and output (WO)
weights. an attention pattern A is computed using key and query weights:

A = softmax(x⊤
i W

⊤
QWKxj) (1)

where W⊤
QWK is sometimes referred to as a “QK circuit”. A is used to scale the “OV circuit”

(WOWV) to produce an output for each head:

h(x) = (A⊗WOWV) · x (2)

Gated Linear Units and GLUOut Vectors. Given a Gated Linear Unit (GLU) block:

GLU(x) = (ϕ(Wgatex)⊙Wupx)Wout (3)

where ϕ is a non-linearity and Wgate,Wup,Wout ∈ IRdglu×d, we decompose it as following:

M = ϕ(Wgatex)⊙Wupx,M ∈ IRdglu , (4)

GLU(x) = M⊤Wout =

dglu∑
j

mjvj (5)

where mj is the j-th entry in M and vj is the j-th row of Wout.

Importantly, the output of each GLU block can be thought of as the weighted sum of v’s (the rows of
Wout), where the weights are determined by activations M . We refer to elements of M as GLU
neurons and vectors v as GLUOut vectors.

3 TRAINING TASK-SPECIFIC REASONING MODELS

We apply DeepSeek R1-Zero’s setup with Qwen2.5-3B as our base model (Hyperparams: Appx. A).1

1We use TinyZero: https://github.com/Jiayi-Pan/TinyZero/tree/main

2

https://github.com/Jiayi-Pan/TinyZero/tree/main

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: CountDown Task. The model must find an arithmetic combination of the operands to
reach the specified target number. We leverage the fact that preference tuning leads to mode collapse,
resulting in a model that consistently generates structured CoT tokens that we can easily parse.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process and then provides the user with the answer.
User: Using the numbers [20, 14, 40], create an equation that equals 28. You can use basic
arithmetic operations (+, -, *, /) and each number can only be used once. Show your work in
<think> </think> tags. And return the final answer in <answer> </answer> tags, for example
<answer> (1 + 2) / 3 </answer>.
Assistant: Let me solve this step by step. <think> We have the numbers 20, 14, and 40. We need
to use these numbers to make an equation that equals 28 using basic arithmetic operations. Let’s
try different combinations:
40 - 14 - 20 = 10 - 20 = -10 (not 28)
40 - 14 + 20 = 26 + 20 = 46 (not 28)
40 + 14 - 20 = 54 - 20 = 34 (not 28)
40 + 14 + 20 = 54 + 20 = 74 (not 28)
40 * 14 / 20 = 560 / 20 = 28 (this works)
So, the equation that equals 28 is 40 * 14 / 20. </think> <answer> (40 * 14) / 20 </answer>

Our task, CountDown, is a simple testbed frequently used to study recent reasoning models Gandhi
et al. (2024; 2025); Yao et al. (2023); Qin et al. (2025) – given a set of 3 or 4 operands (e.g., 19, 36,
55, 7) and target number (e.g., 65), the task is to find the right arithmetic combination of the operands
to reach the target number (i.e., 55 + 36 - 7 - 19).

The model is given two rewards: accuracy reward for reaching the correct final answer, and a format
reward when it generates its CoT tokens in between “<think>, </think>” tokens. For more details on
how R1-Zero is trained, see (Guo et al., 2025). We refer to our task-specific model as R1CountDown .

One advantage of studying a specific task is in that preference training leads to mode collapse (Kirk
et al., 2024; Padmakumar & He, 2024; Murthy et al., 2024; Slocum et al., 2025), resulting in
a reduction in generation diversity. In our context, this is desirable, as the model converges to
generating a highly structured CoT sequence. See Table 1.

This allows us to easily parse the model’s CoT. Namely, the model enumerates through many attempts,
while always marking each attempt as either “(this works)” or “(not {ans})”. Thus, we can study the
model’s hidden states at specific timesteps, such as right before it produces either “this” or “not”,
which we refer to as tvalid and tinvalid. We refer to the hidden states at these timesteps as xValid and
xInvalid. We refer to the timestep in the prompt at which the target number is specified as tans.

4 COMPONENTS FOR SELF-VERIFICATION IN COUNTDOWN

Here we present a series of analyses to identify weights and subspaces relevant for verification. We
do a “top-down” analysis to find relevant GLU vectors in late layers, and a “bottom-up” analysis to
find relevant attention heads in early layers. Our analyses meet in the middle, to identify relevant
subspaces for verification. We verify the role of such weights and subspaces via causal experiments.

4.1 TOP-DOWN: FINDING VERIFICATION-RELATED GLU VECTORS

LogitLens. We start our analysis by applying LogitLens (Nostalgebraist, 2020) to compare the
hidden states of xValid and xInvalid on a sample size of 300. We apply the unembedding layer at all
intermediate layers xℓ and inspect the resulting nearest neighboring tokens across 300 samples.

Figure 1(a, b) shows our results in the late layers (see Appendix Figure 5 for more layers). Interest-
ingly, we see tokens such as “SUCCESS”, “yes”, “bingo” show up for xValid, and “不符合” (“Does
not conform”), “not”, “不合” (“Incompatible”) for xInvalid. Interestingly, we often observe English
tokens for xValid and Chinese tokens for xInvalid. What drives these tokens to appear?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

 yes (0.64) yes (0.34) Yes (0.01) _yes (0.00)

yes (0.47) yes (0.27) this (0.10) Yes (0.05)

this (0.50) yes (0.40) yes (0.03) works (0.01)

this (0.74) yes (0.21) this (0.01) yes (0.01)

this (0.86) yes (0.12) this (0.01) works (0.00)

this (0.98) yes (0.02) This (0.00) works (0.00)

1 2 3 4

L 31

L 32

L 33

L 34

L 35

L 36

not (0.14) (0.11)
这不是 (0.07)

(This is not)
 = (0.03)

 (0.15) not (0.13) Not (0.04) = (0.03)

not (0.21) (0.16) = (0.04) ((0.04)

not (0.24) (0.15) = (0.04) ((0.04)

not (0.22) (0.18) 2 (0.04) 3 (0.04)

not (0.25) (0.18) 2 (0.05) 3 (0.05)

1 2 3 4

SUCCESS (0.24) success (0.17) success (0.11) bingo (0.06)

 yes (0.67) yes (0.29) Yes (0.02)
符合条件 (0.00)

(Qualifies)

yes (0.35) yes (0.30) SUCCESS (0.07)
符合条件 (0.06)

(Qualifies)

yes (0.48) this (0.20) works (0.07) yes (0.06)

yes (0.42) this (0.37) not (0.03) yes (0.02)

this (0.54) yes (0.31) works (0.04) not (0.03)

1 2 3 4

L 31

L 32

L 33

L 34

L 35

L 36

not (0.04)
不符合 (0.04)

(Does not conform)

不合 (0.03)

(Incompatible)

不满意 (0.03)

(Not satisfied)

 (0.11)
不符 (0.08)

(Does not match)

不满意 (0.05)

(Not satisfied)
 = (0.03)

 (0.15)
不符 (0.05)

(Does not match)
too (0.05) = (0.03)

 (0.16) not (0.11) ((0.04) = (0.04)

 (0.15) not (0.15) = (0.04) ((0.04)

not (0.21) (0.18) 2 (0.04) 3 (0.04)

1 2 3 4

0

0.2

0.4

0.6

0.8

1

Top K Top K

(a) Orig LogitLens ("this") (b) Orig LogitLens ("not")

(c) Intervene GLU Neurons: "this" to "not" (d) Intervene Attn Heads: "this" to "not"

Figure 1: Averaged LogitLens from 300 samples. We see tokens related to verification (“success”,
“不合”) in the last few layers. (a), (b) show the top tokens when (in)correct solutions are reached. (c),
(d) shows results from intervening on either GLU weights or attention heads, given a correct solution.
For (c), while the model is less certain (P(“this”) drops from 0.98 to 0.54), we still see tokens such as
“success” showing up. For (d), we no longer see any tokens related to “success”, and the model’s
final next-token predictions closely resembles when the model has not found a solution (b).

Probing. To answer this question, we train linear probes W ℓ ∈ IR2×d at every layer ℓ from timesteps
right before “this” or “not” is predicted.These timesteps correspond to when an answer is produced,
and an open parenthesis tokens “(” is being predicted next, as opposed to “this” or “not”.

W ℓ is a linear mapping from the hidden states, xℓ, to a binary label of whether the model has found
the solution. Our training data is D = {(xℓ

yi , yi)}N−1
i=0 , yi ∈ {0 (“not”), 1 (“this”)}, N=327,680. We

solve for W ℓ to fit y = softmax(W ℓxℓ) using gradient descent (hyperparameters in Appendix C).

Validation accuracy (N = 512) per layer is provided in the Appendix (Figure 6), with accuracy
usually staying above 90% after the first few layers. High accuracy suggests that our probing vectors
W [0],W [1] identify a direction in the model’s activation space that linearly separates points of xValid
and points of xInvalid (i.e., linearly separable subspaces).

Such vectors can steer the model. Simply adding W [0] or W [1] into hidden states can push x towards
xValid or xInvalid, and change the model’s output to indicate that it has (or has not) found a solution,
even when it has not (or has). We provide qualitative examples of steering results in Appendix E.

GLUValid, GLUInvalid Vectors. Our probe W tells us that mid-layer activations can be linearly
separated to identify solved cases (xValid) from unsolved cases (xInvalid), but also serves a secondary
purpose. Namely, we can use W to identify GLUOut vectors of interest (Lee et al., 2024).

Per layer, we select the top k(= 50) GLUOut vectors by how similar they are to W ℓ[0] or W ℓ[1] using
cosine similarity. One can consider these vectors as weights that contribute the most towards W ℓ[0]
(no solution) or W ℓ[1] (found solution) directions. We refer to them as GLUInvalid and GLUValid
vectors. This results in k × L× 2 GLUValid, Invalid vectors (0.9% of the model’s GLUOut vectors).

Unembedding GLUValid/Invalid vectors reveal which tokens get promoted when they are activated.
Table 2 shows their nearest neighbors in the model’s token embedding space. We observe that
most interpretable GLUValid/Invalid neurons occur in the second half of layers. Interestingly, we again
note that there seems to be a correlation between GLUValid/Invalid and English versus Chinese tokens,
hinting at the underlying geometry of xValid/Invalid and the model’s embedding space.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: GLUOut vectors relevant to verification, and their nearest neighbors. W [0],W [1]
indicate our probe model. “(x, y)” indicates the GLUOut vector at layer x, index y. “−1 × (x, y)”
(marked in red) indicates the antipodes of the GLUOut vector at layer x, index y. Interestingly, we
observe a correlation between valid/invalid vectors and English and Chinese.

Vector Nearest Neighbors
W [0] 不完 (unfinished), 不了 (unable), 不 (not), 不在 (absent), 不该 (should not)
W [1] Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####

(26, 744) 未能 (failed), 不够 (not enough), nicht (not), 不像 (not like), 达不到 (can’t reach)
(26, 6619) 缺乏 (lack), 缺少 (lack), 不方便 (inconvenient), lacks, 难以 (difficult), 未能 (failed)
(27, 4971) inefficient, 没能 (failed), 不方便 (inconvenient), Danger, disadvantage, 不利于

(29, 6676) yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
(27, 10388) mirac, 乐观 (optimism), 安然 (safely), Relief, 幸 (fortunate), .isSuccess
(30, 8233) correctly, 正确 (correct), 恰当 (appropriate), accurately, 符合 (conform)

-1×(26, 744) 慎 (careful), 足 (sufficient), 同等 (equal), tend, ONDON, 足以 (enough)
-1×(26, 6619) 不仅能 (not only can), 不错的 (good), 具有良好 (have good), 总算 (finally)
-1×(27, 4971) successfully, successful, 顺利 (smooth), 成功 (successful), 删除成功

-1×(29, 6676) 都不 (neither), 不太 (not quite), neither, 不予 (not given), 没见过 (never seen)
-1×(27, 10388) 失败 (failure), failure, 不良 (bad), 不利 (unfavorable), 糟糕 (bad), 失误 (mistake)
-1×(30, 8233) wrong, 不良 (bad), incorrect, wrong, invalid, bad, inappropriate, invalid

While GLUValid/Invalid encode verification-related tokens, what role do they play? This can be partially
answered by applying LogitLens again on 300 samples, but now by “turning off” GLUValid vectors
(< 1% of total GLU vectors) by scaling them to zero. Figure 1(c) shows the results: while the
probability of verification-related tokens drop (e.g., P(“this”) drops from 0.98 to 0.70 in layer 36), the
end behavior remains the same (i.e., “this” is still the top-1 token). This tells us that GLUs do not
fully explain self-verification. We demonstrate a more thorough causal analysis in Section 4.4.

4.2 BOTTOM-UP: PREVIOUS-TOKEN ATTENTION HEADS FOR VERIFICATION (APREV)

We next inspect the role of attention heads for verification. One motivation for choosing CountDown
as our task is that the task specifies the target number in the context. Thus we can posit that a
Transformer could verify its CoT tokens by comparing them against the specified target number (at
timestep tans). Such a hypothesis provides an entry way for our bottom-up analysis.

We test our hypothesis by inspecting the attention patterns whenever the model’s CoT produces the
correct answer. We filter for attention heads that spend at least 10% of its attention on tans, and refer
to these as previous-token heads (notated APrev). Previous-token heads are not new: they were first
discussed in the context of induction heads Olsson et al. (2022). We identify 33 previous-token heads
(out of a total of 576 heads). Interestingly, we find that most previous-token heads occur roughly in the
first half layers (except for one at layer 31, all are at or before layer 22). In Section 4.4 we demonstrate
via causal interventions that disabling previous-token heads can disable model verification. But first,
what is the relationship between GLUValid/Invalid vectors and APrev heads? Below we adapt inter-layer
component channels to understand their relationship.

4.3 JOINING GLUVALID AND APREV : IDENTIFYING VERIFICATION SUBSPACES (POLYTOPES)

We identify subspaces for self-verification by studying the relationship between GLUValid vectors and
APrev attention heads. As a reminder, we observe that APrev usually occurs in the first half layers (1 to
22), while GLUValid vectors usually occur in the later half (18 to 36). We hypothesize and empirically
verify that APrev activates GLUValid vectors.

First, we borrow from neuroscience to define receptive fields (Olshausen & Field, 1997). For a single
neuron k that computes an activation function fk : IRd → IR, its receptive field is defined as

Sk =
{
x ∈ IRd | fk(x) > 0

}
(6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In simpler terms, Sk is the subspace that triggers a neuron active. In the context of GLUs, this means

Sk =
{
x ∈ IRd | ϕ(W k

gatex) ·W k
upx > 0

}
(7)

Now consider a set of neurons, K, and the intersection of all of their receptive fields: SK =
⋂|K|

i Si.

SK can be considered a polytope in the model’s activation space parameterized by
{
W i

gate,W
i
up

}|K|
i=1

.
Here we use the receptive fields of GLUValid to further localize self-verification.

Namely, we identify a small subset of as few as six previous-token heads that disables self-verification.
To do so, we look for previous-token heads (as opposed to hidden states) that activate GLUValid
neurons the most. The output of each head is its OV-circuit (i.e., WOWV), scaled by to some attention
distribution. Meanwhile, the strength of each GLUValid activation is determined by Wgate and Wup.

We score each previous-token head h by first decomposing its OV-circuit using SVD:

(WOWV)
h = UΣV⊤,Σ = diag(σh,1 ≥ ... ≥ σh,k ≥ 0)

where k = dhead because WOWV is low-rank. Let uh,j refer to the j-th left-singular vector.

Each head is then assigned the following score:

score(h,GLUValid) =
1

N

N∑
i

k∑
j

σ2
h,j

(
ϕ(W i

gateuh,j) ·W i
upuh,j

)
(8)

where GLUValid = {W i
gate,W

i
up}N−1

i=0 , N = |GLUValid|, W i
gate,W

i
up,uh,j ∈ IRd.

Put differently, we decompose WOWV into singular vectors, and measure how well they each align
with the receptive fields of GLUValid (Wgate,Wup), weighted by their singular values.

Note that we only need the left singular vectors because we only need the output subspace of WOWV ,
which is spanned by the left singular vectors. Also note that weighing by σ2

h,j can be thought of as
distributing the Frobenius norm of WOWV across each mode, as ||WOWV ||2F =

∑
i σ

2
i .

Our score is akin to inter-layer communication channels (Elhage et al., 2021; Merullo et al., 2024),
which scores how strongly two attention heads “talk” with each other using a “composition score”:

CS(W1,W2) =
∥W1W2∥F

∥W1∥F ∗ ∥W2∥F
(9)

where W1 is an OV component of one head and W2 the QK component of another at a later layer.
Our formulation can be considered a composition score between attention heads and GLUs, using
both Wgate and Wup in place of W2 with some additional steps in between.

Once we score each previous-token head using Eq. 8, we incrementally ablate one head at a time
until we achieve perfect intervention scores (Section 4.4). Using this approach, we identify as few as
six attention heads that can disable model verification. We notate this subset as AVerif.

To summarize, we claim that the model has subspace(s) (polytope(s)), SGLUValid , for self-verification.
The model’s hidden state enters this subspace when it has verified its solution. In our setting, given
the nature of our task, previous-token heads APrev take the hidden-state into this subspace, while for
other tasks, different components may be used. This subspace also activates verification-related GLU
weights, promoting the likelihood of tokens such as “success” to be predicted (Figure 3).

We find that alternative hyperparameters or scoring functions can yield different subsets of previous-
token heads that also disable self-verification. We discuss these results in Appendix F. This suggests
that we do not identify a full circuit, but rather a critical component for verification. Also note that
our scoring function makes simplifications by ignoring possible interactive effects across heads, as
well as transformations (layer norms, GLUs) across layers. Regardless, our finding remains robust: a
small subset of previous-token heads can disable verification.

4.4 CAUSAL INTERVENTIONS

We study the role of each component above with causal intervention. Our test set consists of 300
samples in which the model originally correctly finds and validates its solutions. For each test case,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GLUVal GLUVal
+GLUInv

APrev
(N=33)

APrev
Baseline
(N=33)

AVerif
(N=6)

AVerif
Baseline
(N=6)

0

25

50

75

100

Su
cc
es
s
R
at
e
(%
)

Intervention Success Rate

Success
Partial Success

Assistant: Let me solve this step by step.
<think> We have the numbers 11, 5, and 68.
We need to make an equation that equals 62.
Let’s try di೯erent combinations:
68 - 11 - 5 = 52 - 5 = 47 (not 62)
68 - 11 + 5 = 57 + 5 = 62 (not 62 - 11 + 5)
68 - 11 + 5 = 57 + 5 = 62 (not 62 + 11 - 5)
68 + 11 - 5 = 79 - 5 = 74 (not 62)
68 + 11 + 5 = 79 + 5 = 84 (not 62)
68 * 11 - ...

Intervened Output

1
Figure 2: Intervention Results: Disabling as few as 6 attention heads disables self-verification,
rendering the model to generate tokens indefinitely. APrev refers to 33 previous-token heads. AVerif
refers to a subset of 6 previous-token heads. APrev Baseline, AVerif Baseline refer to the average of 5
runs, where each run randomly samples 33 (or 6) attention heads.

GLU Neurons
−5

0

5

10

15

A
ct

iv
a
ti

o
n

Activation of GLUV alid Neurons Before and After Intervening Verification Heads

Orig (Null Interv.)

Intervene Attention

Figure 3: GLUValid activations before and after turning off 6 AVerif attention heads. Adjacent
pairs of blue and orange bars indicate the same GLUValid vector. Turning off our identified attention
heads leads to a significant drop in their activations.

the model generates 100 tokens. Every time an attempt for a solution is made (i.e., “(this works)”
or “(not ({ans})” is about to be predicted), we turn off some of the model weights as described
below. We measure intervention success rate: the percentage of times the model fails to validate
its solution, despite having found the solution within the 100 generated tokens. Interestingly, the
model occasionally marks a correct attempt as invalid (desired intervention result), but continues its
generation to say it has found a solution (e.g., given target number 62, the model will output “68 - 11
+ 5 = 62 (not 62) So, the answer is 68 - 11 + 5”). We mark these cases as partial successes.

We ablate a few components: (1) GLUValid: We zero-out 50 GLUValid vectors per layer from layer
18 to 36 (the second half of the model; 0.45% of all GLU vectors). (2) GLUValid & GLUInvalid: We
zero-out the top 50 GLUValid and top 50 GLUInvalid vectors per layer (0.9% of all GLU vectors). (3)
APrev: We turn off 33 previous-token heads (5.7% of all attention heads) by zeroing-out their WO

weights. (4) AVerif: We turn off 6 verification heads identified via Eq. 8: L17H14, L17H11, L17H10.
We also provide two baselines: APrev Baseline and AVerif Baseline, which each report the average
from 5 runs, where each run randomly samples 33 (or 6) attention heads.

Results are shown in Figure 2, with an example of an intervened output. We achieve near perfect
intervention rates when turning off 33 previous-token heads, or a smaller subset of 6 heads. The
model misclassifies correct solutions as invalid without these heads, and continue its CoT indefinitely.

These attention heads directly affect the GLUValid vectors. Figure 3 demonstrates the activations of
the top GLUValid vectors before and after disabling the subset of 6 previous-token heads. In most
cases, we observe a large drop (to near 0, or often even negative values) in GLUValid activations.

Antipodal GLUOut Vectors. While attention heads achieve near perfect interventions, Figure 2 also
indicates that disabling both GLUValid and GLUInvalid performs better than disabling just GLUValid.
Why should disabling GLUInvalid improve intervening, i.e., make the model fail at verification?

This can be explained by two facts: (1) the geometry of GLUValid and GLUInvalid vectors, and (2) the
nonlinear activation used in GLU. Interestingly, we find that the antipodal directions of GLUValid and
GLUInvalid also often encode tokens relevant for verification. The last 7 rows of Table 2 marked in red

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GLUVal
+GLUInv

APrev
(N=33)

APrev
Baseline
(N=33)

AVerif
(N=6)

AVerif
Baseline
(N=6)

0

25

50

75

100

Su
cc
es
s
R
at
e
(%
) (a) Interv. Success Rate (Base Model)

Success
Partial Success
Out-of-Range

GLUVal
+GLUInv

APrev
(N=552)

APrev
Baseline
(N=552)

AVerif
(N=346)

AVerif
Baseline
(N=346)

0

25

50

75

100
(b) Interv. Success Rate (R1-14B)

1
Figure 4: Intervention Results for the base model and R114B. In the base model, APrev can similarly
disable self-verification, while AVerif only plays a partial role for verification, hinting at the effects
of RL on their weights. In R114B, interventions mostly leads to partial success, in which the model
first marks a solution as incorrect but self-corrects itself, hinting at a larger verification circuit. Also
interestingly, the smaller subset of AVerif is more effective at self-verification than APrev.

indicate the nearest neighbors of the antipodes of GLUValid and GLUInvalid. In addition, Qwen2.5-3B
uses SiLU activations (Hendrycks & Gimpel, 2016). Thus inactive neurons take on small negative
values (as opposed to zero, had ReLU been used).

With that said, consider only zeroing out GLUValid neurons: given a correct CoT sequence, GLUInvalid
vectors are inactive. However, because of SiLU, the inactive GLUInvalid vectors have negative
activations, thus get multiplied by a small negative value, flipping directions, and therefore contribute
towards the “success direction”. In the case of zeroing out both GLUValid and GLUInvalid, we are
further zeroing out the effects of inactive GLUInvalid neurons.

5 SIMILAR VERIFICATION COMPONENTS IN BASE MODEL & DEEPSEEK-R1

We verify that similar verification subspaces exist in our base model (Qwen2.5-3B), as well as a
general reasoning model, DeepSeek-R1-Distill-Qwen-14B (henceforth R114B).

For both models, we provide CountDown as an in-context learning (ICL) task, including 5 demon-
strations of solving CountDown using the structured output of R1CountDown . We find that both models
can solve the ICL version of CountDown while following the same CoT structure of R1CountDown , corrob-
orating recent findings that reasoning capabilities often already exist in pre-trained models (Yue et al.,
2025; Gandhi et al., 2025).

We then repeat our intervention analyses above. In our ICL setting, our interventions sometimes
make the model generate “out-of-range”, by which we mean their generations do not adhere to the
structured CoT of R1CountDown . We mark these cases as out-of-range.

Base Model. Figure 4 (a) shows the interventions from Section 4.4 on our base model. Previous-
token heads still achieve near perfect (partial) intervention rates, suggesting a similar mechanism for
self-verification in the base model. Also note that the six AVerif heads demonstrate a lower success rate.
Similar to Prakash et al. (2024), which demonstrates that fine-tuning enhances existing mechanisms
in a base model, we hypothesize that RL enhances an existing verification mechanism, thus resulting
in highly localized attention heads in R1CountDown that can control self-verification.

DeepSeek-R1 Model. In the case of R114B, we repeat the procedures in Sections 4.1∼4.4. However,
a probe vector W is required to identify GLUValid/Invalid. Thus we apply EMB2EMB (Lee et al., 2025),
a simple technique to transfer and re-use steering vectors across language models (see Appendix G
for a brief explanation). Applying EMB2EMB on R1CountDown ’s probe, W , results in a probe vector WR1

for R114B, allowing us to repeat our analyses from Section 4.1 on R114B.

We find similar GLUValid, Invalid vectors in R114B, analogous to Table 2 (see Appendix H), hinting at
similar verification subspaces in R114B. We identify and intervene on previous-token heads (APrev) in
R114B, following Section 4.2. We use an attention threshold of 5% (as opposed to 10% in R1CountDown)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

to compensate for the longer context induced from our ICL setup, which yields 552 (out of 1920)
previous-token heads. We discuss results from different hyperparameters (thresholds) in Appendix I.

We also replicate Section 4.3 to identify a smaller subset of 351 attention heads that achieve near
perfect (partial) intervention success rates.

Results are shown in Figure 4 (b). Interestingly, our interventions mostly lead to partial successes
in R114B, in which the model initially fails at self-verification (labels a correct solution as “(not
{ans})”), but corrects itself (generates “Wait, 68 - 11 + 5 is 62 so that works.”). This hints at a larger
verification circuit for R114B. We also note that AVerif has a higher success rate than APrev, despite
being a smaller set, suggesting that not all previous-token heads (or their interactions) are helpful in
self-verification. We leave further exploration for future work.

6 RELATED WORK

Decoding Interpretable Representations. A growing line of work focuses on decoding and
manipulating interpretable representations in model activations (Zou et al., 2023). Conveniently,
many concepts take on linear representations (Mikolov et al., 2013; Nanda et al., 2023; Park et al.),
in which simple vectors encode human-interpretable concepts.

For “non-reasoning” models, researchers have studied “truthful” representations before (Burns et al.),
where steering towards a “truthful” direction has led to improvements in tasks related to factual
recall (Li et al., 2023). In a similar vein, researchers have shown that the model’s representations
can reveal whether they will make errors (e.g., hallucinations) (Orgad et al., 2024), or when they are
unable to recall facts about an entity (Ferrando et al., 2024).

Most recently, concurrent work also investigate how models solve reasoning tasks. Zhang et al.
(2025) find that models know when they have reached a solution, while Venhoff et al. (2025) decode
directions that mediate behaviors such as handling uncertainty or self-corrections. In our work, we
take a deeper dive into how a reasoning model verifies its own reasoning trace.

Circuit Analysis. A growing line or work decomposes the forward pass of a neural network as
“circuits” (Olah et al., 2020), or computational graphs. This allows researchers to identify key
components and their causal effects for a given forward pass. A common approach to construct
computational graphs is to replace model components with dense activations with a sparsely-activating
approximation. Dunefsky et al. introduces Transcoders to approximate MLP layers, while Ameisen
et al. (2025) further develops Cross-layer Transcoders to handle inter-layer features. Lindsey et al.
(2025) uses Cross-layer Transcoders to conduct circuit analyses for a wide range of behaviors, such
as multi-step reasoning (for factual recall) or addition, and also investigate when a model’s CoT is
(un)faithful. In our work, we identify key components needed for a potentially larger verification
circuit without the need for separate sparse approximations.

7 DISCUSSION

We studied how a task-specific model verifies its own outputs. We repurposed mode collapse as a
feature, not a bug: by leveraging the fact that preference tuning leads to mode collapse, we train
a model with highly structured CoT, making it easy to parse its reasoning trace. With this setup,
we found GLU weights that encode verification-related tokens, and previous-token heads that can
disable verification. We offer a simple extension to inter-layer communication channels that allow
us to localize as few as six attention heads that can also disable verification. Finally, we verify the
existence of similar components in our base model and a general reasoning DeepSeek-R1 model. We
view our work as a step towards understanding the inner mechanisms of recent reasoning models.

Limitations. Note that we do not claim to have uncovered a full verification circuit, but rather critical
components for verification. We also reiterate the scope of our work: we study a specific task that
allows for context-based verification. Obviously, not all reasoning tasks share this property: many
tasks likely require prior-based verification using general knowledge. We speculate that similar
subspaces are used for prior-based verification, but is less obvious where they show up.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Our code to reproduce all of our experiments can be found in the attached supplementary files.
Appendix A, C, I provide details of our training setup and hyperparameters.

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and
Arthur Conmy. Chain-of-thought reasoning in the wild is not always faithful. arXiv preprint
arXiv:2503.08679, 2025.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
language models without supervision. In The Eleventh International Conference on Learning
Representations.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
circuits. In The Thirty-eighth Annual Conference on Neural Information Processing Systems.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Javier Ferrando, Oscar Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know this entity?
knowledge awareness and hallucinations in language models. arXiv preprint arXiv:2411.14257,
2024.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. In The Twelfth International Conference on Learning Representations, 2024.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in
chain-of-thought reasoning. arXiv preprint arXiv:2307.13702, 2023.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K Kummerfeld, and Rada
Mihalcea. A mechanistic understanding of alignment algorithms: A case study on dpo and toxicity.
In International Conference on Machine Learning, pp. 26361–26378. PMLR, 2024.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrew Lee, Melanie Weber, Fernanda Viégas, and Martin Wattenberg. Shared global and local
geometry of language model embeddings. arXiv preprint arXiv:2503.21073, 2025.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36:41451–41530, 2023.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Talking heads: Understanding inter-layer commu-
nication in transformer language models. Advances in Neural Information Processing Systems, 37:
61372–61418, 2024.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Sonia K Murthy, Tomer Ullman, and Jennifer Hu. One fish, two fish, but not the whole sea: Alignment
reduces language models’ conceptual diversity. arXiv preprint arXiv:2411.04427, 2024.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. In Proceedings of the 6th BlackboxNLP Workshop: Analyzing
and Interpreting Neural Networks for NLP, pp. 16–30, 2023.

Nostalgebraist. Interpreting gpt: The logit lens, 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37(23):3311–3325, 1997. ISSN 0042-6989. doi: https:
//doi.org/10.1016/S0042-6989(97)00169-7. URL https://www.sciencedirect.com/
science/article/pii/S0042698997001697.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan
Belinkov. Llms know more than they show: On the intrinsic representation of llm hallucinations.
arXiv preprint arXiv:2410.02707, 2024.

Vishakh Padmakumar and He He. Does writing with language models reduce content diversity? In
The Twelfth International Conference on Learning Representations, 2024.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. In Forty-first International Conference on Machine Learning.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-tuning
enhances existing mechanisms: A case study on entity tracking. In The Twelfth International
Conference on Learning Representations, 2024.

Tian Qin, David Alvarez-Melis, Samy Jelassi, and Eran Malach. To backtrack or not to backtrack:
When sequential search limits model reasoning. arXiv preprint arXiv:2504.07052, 2025.

11

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://www.sciencedirect.com/science/article/pii/S0042698997001697

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner.
Steering llama 2 via contrastive activation addition. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15504–15522, 2024.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Stewart Slocum, Asher Parker-Sartori, and Dylan Hadfield-Menell. Diverse preference learning for ca-
pabilities and alignment. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=pOq9vDIYev.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952–74965, 2023.

Constantin Venhoff, Iván Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. In Workshop on Reasoning and
Planning for Large Language Models, 2025. URL https://openreview.net/forum?
id=OwhVWNOBcz.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

12

https://openreview.net/forum?id=pOq9vDIYev
https://openreview.net/forum?id=OwhVWNOBcz
https://openreview.net/forum?id=OwhVWNOBcz

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A HYPERPARAMETERS FOR R1

Here we provide the hyperparameters used to train R1CountDown .

Parameter Value
Train Batch Size 256
Validation Batch Size 1312
Max Prompt Length 256
Max Response Length 1024
Actor Learning Rate 1e-6
PPO Mini Batch Size 128
PPO Micro Batch Size 8
Log Prob Micro Batch Size 8
Tensor Model Parallel Size 2
Critic Learning Rate 1e-5
KL Coefficient 0.001

Table 3: Training Hyperparameters.

B LOGITLENS ON MORE LAYERS

Figure 5 demonstrates LogitLens as described in Section 4.1 on more layers.

C HYPERPARAMETERS FOR PROBING

We use a batch size of 8, validation size of 256, weight decay of 0.01, and learning rate of 1e-4. We
validate every 50 gradient steps, and terminate training when validation loss has not improved after a
patience value of 10.

D PROBE ACCURACY

Figure 6 shows probing results. The model has a linear separation in its hidden states given correct
versus incorect CoT tokens.

E EXAMPLES OF STEERING VERIFICATION WITH PROBE

Once we identify a direction that encodes solved versus unsolved states (i.e., Wprobe), we can simply
add this direction into the model’s hidden states to make the model believe that it has found a solution:

xℓ = xℓ + αWprobe (10)

where xℓ,Wprobe ∈ IRd and α ∈ IR. Some hyperparameters include ℓ (which layers to steer on) and
α, where a larger α amplifies the target behavioral effect.

While an extensive hyperparameter search and a systematic experiment may be useful, steering is not
a core component but rather a tangential experiment. We thus provide qualitative examples using
ℓ = {n | 24 ≤ n ≤ 36} and α = 20 (after normalizing Wprobe) in Table 5.

F ALTERNATIVE SUBSETS OF PREVIOUS-TOKEN HEADS

Of the 25 previous-token heads that we identify, there are many ways to identify subsets that
disable verification. We offer a few examples, and document how many heads are needed to disable
verification with perfect success rates (including partial successes).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

...) (0.16) ...) (0.11) none (0.06) not (0.04)

SUCCESS (0.68) success (0.03)
这是一个 (0.03)

(This is a)
 SUCCESS (0.01)

SUCCESS (0.34)
正好 (0.04)

(Exactly)

相符 (0.03)

(Matches)

符合 (0.03)

(Meets requirement

SUCCESS (0.44) OK (0.15) yes (0.10) yes (0.04)

SUCCESS (0.28) yes (0.08) bingo (0.07) success (0.06)

 yes (0.64) yes (0.34) Yes (0.01) _yes (0.00)

yes (0.47) yes (0.27) this (0.10) Yes (0.05)

this (0.50) yes (0.40) yes (0.03) works (0.01)

this (0.74) yes (0.21) this (0.01) yes (0.01)

this (0.86) yes (0.12) this (0.01) works (0.00)

this (0.98) yes (0.02) This (0.00) works (0.00)

1 2 3 4

L 26

L 27

L 28

L 29

L 30

L 31

L 32

L 33

L 34

L 35

L 36

不符合 (0.06)

Does not conform)

不行 (0.02)

(Not okay)
none (0.01) 重伤 (0.01)

不符合 (0.16)

Does not conform)

不行 (0.09)

(Not okay)
 eskort (0.01) SUCCESS (0.01)

不符合 (0.23)

Does not conform)
 eskort (0.02) = (0.01) 俩 (0.01)

不符合 (0.15)

Does not conform)

不行 (0.03)

(Not okay)
 = (0.02) 两位 (0.02)

不符合 (0.04)

Does not conform)

不合 (0.03)

(Incompatible)
not (0.03)

不合格 (0.03)

(Unqualified)

not (0.14) (0.11)
这不是 (0.07)

(This is not)
 = (0.03)

 (0.15) not (0.13) Not (0.04) = (0.03)

not (0.21) (0.16) = (0.04) ((0.04)

not (0.24) (0.15) = (0.04) ((0.04)

not (0.22) (0.18) 2 (0.04) 3 (0.04)

not (0.25) (0.18) 2 (0.05) 3 (0.05)

1 2 3 4

not (0.21) none (0.12) ...) (0.09) ...) (0.06)

SUCCESS (0.49) not (0.05) �� (0.02)
不行 (0.01)

(Not okay)

SUCCESS (0.25) not (0.04) Possible (0.03)
正好 (0.03)

(Exactly)

SUCCESS (0.53) yes (0.07) OK (0.06) success (0.05)

SUCCESS (0.24) success (0.17) success (0.11) bingo (0.06)

 yes (0.67) yes (0.29) Yes (0.02)
符合条件 (0.00)

(Qualifies)

yes (0.35) yes (0.30) SUCCESS (0.07)
符合条件 (0.06)

(Qualifies)

yes (0.48) this (0.20) works (0.07) yes (0.06)

yes (0.42) this (0.37) not (0.03) yes (0.02)

this (0.54) yes (0.31) works (0.04) not (0.03)

this (0.70) yes (0.28) not (0.01) works (0.00)

1 2 3 4

L 26

L 27

L 28

L 29

L 30

L 31

L 32

L 33

L 34

L 35

L 36

不符合 (0.05)

Does not conform)

不行 (0.03)

(Not okay)
none (0.02) iếc (0.01)

不符合 (0.14)

Does not conform)

不行 (0.11)

(Not okay)
 eskort (0.01) SUCCESS (0.01)

不符合 (0.22)

Does not conform)
 eskort (0.02) 不符 (0.01) = (0.01)

不符合 (0.15)

Does not conform)
 = (0.02) 两位 (0.02)

不行 (0.02)

(Not okay)

not (0.04)
不符合 (0.04)

(Does not conform)

不合 (0.03)

(Incompatible)

不满意 (0.03)

(Not satisfied)

 (0.11) 不符 (0.08)
不满意 (0.05)

(Not satisfied)
 = (0.03)

 (0.15) 不符 (0.05) too (0.05) = (0.03)

 (0.16) not (0.11) ((0.04) = (0.04)

 (0.15) not (0.15) = (0.04) ((0.04)

not (0.21) (0.18) 2 (0.04) 3 (0.04)

not (0.25) (0.18) 2 (0.05) 3 (0.05)

1 2 3 4

0

0.2

0.4

0.6

0.8

1

Top K Top K

Orig LogitLens ("this") Orig LogitLens ("not")

Intervene GLU Neurons: "this" to "not" Intervene Attn Heads: "this" to "not"

Figure 5: Averaged LogitLens from 300 samples (Same as Figure 1 but demonstrating more layers).
We see tokens related to verification (“success”, “incorrect”) in the last few layers. (A), (B) show the
top tokens when a correct / incorrect solution is reached. (C), (D) shows results from intervening
on either GLU weights or attention heads, given a correct solution. For (C), while the model is less
certain (P(“this”) versus P(“not”) becomes 0.51 vs. 0.49 in last layer), we still see tokens such as
“success” showing up. For (D), we no longer see any tokens related to “success” show up, and the
model is certain that it has not found a solution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35

Layer

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Linear Probe Accuracy

1Figure 6: Probe Accuracy. The model has a linear separation in its hidden states given correct versus
incorrect CoT tokens.

Attention Density. The simplest method is to sort the heads based on how much they attend to the
target token that timestep tans.

Varying Hyperparameters. Given our approach (Section 4.3), we try different parameters for N.

Sort by Similarity to Wgate,Wup. An alternative approach is to sort the attention heads based on
how similar their OV circuits are to the Wgate and Wup weights of the GLUV alid weights. We simply
take the mean of {W i

gate,W
i
up}Ni vectors from our N GLUV alid weights. We then sort attention

heads based on how similar they are to the resulting mean vector.

Sort by Probe WProbe. An alternative is to sort the attention heads based on how similar their OV
circuits are to the probe vector WProbe.

Table 6 demonstrates how many heads are needed from each approach to disable verification with
perfect accuracy.

G BRIEF EXPLANATION OF EMB2EMB

Language models represent numerous concepts using linear representations (Nanda et al., 2023;
Park et al.), by which we mean one can add a single vector that encodes a specific concept into the
activations during inference-time to raise the probability for the model to exhibit such concept or
behavior (Rimsky et al., 2024; Lee et al., 2024; Li et al., 2023). Researchers often refer to such
vectors as “steering vectors”.

In other words, during the forward pass, imagine the activations at layer i. One can simply add a
steering vector W (scaled by some hyperparameter α) to control the model’s behavior:

xi+1 = xi + F i(xi) + αW (11)

where xi and F i are the hidden state and transformer block at layer i.

EMB2EMB (Lee et al., 2025) is a simple method that transfers a steering vector from one language
model to another, by leveraging the fact that the unembedding spaces of language models are often
quite similar.

EMB2EMB works as following. Given a “source” and “target” language model, MS and MT , first
randomly sample a set of N (= 100,000) tokens, notating their token (un)embeddings as ES and ET .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Vector Nearest Neighbors
(36, 10079) 不失 (not losing), NotNull, 得起 (can afford), 得住 (can endure), 不惜 (not hesitate)
(32, 497) 删除成功 (deletion successful), successes, Success, success, succeeded, favorable

(35, 6041) 的强大 (powerful), excellent, powerful, 强大的 (powerful), 很棒 (great), strong, 优异
(37, 5399) 等于(equal), equal, 同样的(same), 相同(same), equals, 相同的 (same), 同等 (equal)

(32, 13572) successfully, 成功 (success), 解决了 (solved), 实现了 (achieved), 顺利 (smoothly)
(30, 10150) 没问题 (no problem), 无忧 (no worries), .NoError, harmless, 不变 (unchanged)

(45, 6650) 没有 (do not have), 不存在 (does not exist), 没有任何 (do not have any), 不需要
(39, 6070) never, 不会 (will not), doesn, not, 不能 (cannot), nowhere, cannot, neither

(46, 12380) neither, none, nowhere, None, Neither, none, nobody, cannot
(44, 12793) não (not), 不 (not), nicht (not), tidak (no),не(not), ikke (not), niet (not)
(41, 12498) 不在 (not present), 不再 (no longer), non, 非 (non-), 不再是 (is no longer), 不属于
(37, 7636) 不合适 (inappropriate), 不足 (insufficient), 达不到 (cannot reach), 不够 (not enough)
(31, 5164) 没能 (did not), fails, 未能 (failed), 不够 (not enough), 做不到 (cannot), 不及
(35, 2509) 不 (not), 不含 (does not contain), 不对 (incorrect), 不影响 (does not affect),

Table 4: GLUOut vectors relevant to verification in R114B.

Then, learn a linear transformation, T , to map points ES to ET , using something as simple as least
squares minimization. Note that T maps between spaces with different dimensions.

Given transformation T and a steering vector WS from the source model MS , one can steer the
target model MT by simply applying transformation T to WS :

xi+1
T = xi

T + F i
T (x

i
T)+αTWS , (12)

where xT is the activations and FT is the transformer block of target model MT . In our work, we use
EMB2EMB to transfer our probe vector W from R1CountDown to a general reasoning R1 model, R114B.

H GLUVALID, INVALID IN DEEPSEEK-R1-DISTILL-QWEN-14B

Table 4 contains GLUOut weights in R114B related to verification.

I ALTERNATIVE HYPERPARAMETERS FOR R1

We add a quick note on using alternative hyperparameters for the experiment on R114B in Section 5.
Namely, there are two hyperparameters, the attention threshold to categorize an attention head as
a previous-token head (APrev), and the number of GLUValid vectors to include to identify a smaller
subset of attention heads (AVerif).

For the first hyperparameter (attention threshold), we use 5% as our threshold, as reported in the main
text. We find that using a higher threshold (10%) is too constrained and perhaps yields too small of
a set of previous-token heads, leading to a lower intervention success rate (0.4%, with 25% partial
success rate). We believe this is because there are still many attention heads that attends to the correct
solution (say, with an attention pattern < 10% but > 5%) to offset our intervention.

Using a smaller threshold (2.5%) yields too large of a set of previous-token heads. In this case,
interventions now lead to a much higher rate of “out-of-range” results – i.e., the model no longer
adheres to the structured CoT sequence after our interventions.

Regarding the number of GLUValid vectors, we see our results converge to the same results after 200
vectors, which is what we use in our experiments.

J LLM USAGE

We used LLMs to proof read our draft and polish our notations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Operands Target Type Output

3, 87, 38 46 Orig.

<think>
87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 + 38 - 3 = 125 - 3 = 122 (not 46)
38 + 38 - 3 = 76 - 3 = 73 (not 46)...

3, 87, 38 46 Steer

<think>
87 - 38 - 3 = 116 - 3 = 113 (not 46)
87 - 38 + 3 = 49 + 3 = 52 (not 46)
87 - 38 + 3 = 49 + 3 = 52! Yes, we got it!
87 - 38 + 3 = 49 + 3 = 52.
</think>
<answer> 87 - 38 + 3 </answer>

60, 62,
12, 34 68 Orig.

<think>
60 - 62 + 12 + 34 = 54 + 12 + 34 = 66 + 34 = 100 (not 68)
60 + 62 - 12 - 34 = 122 - 12 - 34 = 108 - 34 = 74 - 34 = 40 (not 68)
60 + 62 - 34 + 12 = 122 - 34 + 12 = 88 + 12 = 100 - 34 = 66 (not 68)
60 + 34 + 12 - 62 = 94 + 12 - 62 = 106 - 62 = 44 (not 68)...

60, 62,
12, 34 68 Steer

<think>
60 - 62 + 12 + 34 = 54 + 12 + 34 = 66 + 34 = 100 (not 68)
60 + 62 - 12 - 34 = 122 - 12 - 34 = 108 - 34 = 74 - 34 = 40 (not 68)
60 + 62 - 34 + 12 = 122 - 34 + 12 = 88 + 12 = 100 - 34 = 66 exactly!
So the equation that equals 68 is:
60 + 62 - 34 + 12
</think>
<answer> 60 + 62 - 32 + 12 </answer>

30, 90,
27, 19 74 Orig.

<think>
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 + 27 + 19 - 30 = 117 + 19 - 30 = 136 - 30 = 106 (not 74)...

30, 90,
27, 19 74 Steer

<think>
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52 (not 74)
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52!
Indeed, 90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52
So, let’s try another combination:
90 - 30 - 27 + 19 = 60 - 27 + 19 = 33 + 19 = 52
No luck. Let’s try this:
90 - 30 - 27 + 19 = 60 - 27

Table 5: Steering with probe Wprobe.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Method Num.
Heads Heads

Eq. 8 (N=200) 6 L17H14, L22H14, L3H13, L5H15, L17H11, L17H10

Eq. 8 (N=50) 15
L12H3, L12H8, L11H8, L17H1, L17H3, L10H5, L17H10,
L17H11, L17H13, L21H10, L19H8, L13H3, L13H6,
L5H15, L17H14

Eq. 8 (N=100) 100 L17H3, L17H1, L12H8, L17H10, L17H14, L17H11

Eq. 8 (N=300) 12 L17H14, L5H15, L19H13, L5H14, L13H6, L17H11, L15H8,
L13H3, L19H8, L4H5, L17H3, L17H10

Attention Density 8 L17H14, L17H10, L13H3, L13H6, L5H14, L19H8, L4H3,
L22H14

Sort by Wgate, Wup 17
L18H3, L21H7, L12H8, L21H14, L22H14, L11H8, L21H10,
L12H3, L15H15, L17H3, L17H14, L15H8, L5H15, L13H6,
L17H11, L19H13, L19H8

Sort by WProbe 17
L18H7, L21H2, L22H12, L17H13, L17H11, L17H10, L4H5,
L15H8, L17H14, L5H14, L22H14, L13H5, L5H15, L10H5,
L15H15, L19H13, L13H6

Table 6: Alternative approaches to localize attention heads that disable verification, and the
number of heads required to disable verification.

18

	Introduction
	Notations, Key Terminologies
	Training Task-Specific Reasoning Models
	Components for Self-Verification in CountDown
	Top-Down: Finding Verification-Related GLU Vectors
	Bottom-Up: Previous-Token Attention Heads for Verification (APrev)
	Joining GLUValid and APrev: Identifying Verification Subspaces (Polytopes)
	Causal Interventions

	Similar Verification Components in Base Model & DeepSeek-R1
	Related Work
	Discussion
	Reproducibility Statement
	Hyperparameters for R1
	LogitLens on More Layers
	Hyperparameters for Probing
	Probe Accuracy
	Examples of Steering Verification with Probe
	Alternative Subsets of Previous-Token Heads
	Brief Explanation of Emb2Emb
	GLUValid, Invalid in DeepSeek-R1-Distill-Qwen-14B
	Alternative Hyperparameters for R1
	LLM Usage

