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ABSTRACT

How do reasoning models verify their own answers? We study this question by
training a model using DeepSeek R1’s recipe on the CountDown task. We leverage
the fact that preference tuning leads to mode collapse, yielding a model that always
produces highly structured chain-of-thought sequences. With this setup, we do top-
down and bottom-up analyses to reverse-engineer how the model verifies its outputs.
Top-down, we find Gated Linear Unit (GLU) weights encoding verification-related
tokens, such as “success” or “incorrect”. Bottom-up, we find that “previous-token
heads” are mainly responsible for self-verification in our setup. Our analyses meet
in the middle: drawing inspiration from inter-layer communication channels, we
use the identified GLU weights to localize as few as six attention heads that can
disable self-verification, pointing to a necessary component of a potentially larger
verification circuit. Finally, we verify that similar verification components exist in
our base model and a general reasoning DeepSeek-R1 model.

1 INTRODUCTION

Recent language models demonstrate impressive reasoning capabilities. Such models are trained with
reinforcement learning (RL) in which they are rewarded when their final outputs are correct.

Behaviorally, these models generate long chain-of-thought (CoT) (Wei et al.| 2022) reasoning traces.
There is an open question on whether monitoring their CoT is worthwhile, given a growing line of
work suggesting that their CoTs do not faithfully reflect the model’s inner computations (Turpin et al.|
2023} |[Lanham et al., [2023}; |Arcuschin et al., |2025). Can we monitor their hidden states instead? We
take a step towards investigating this question, by studying a model’s inner mechanism for a crucial
reasoning step, i.e., self-verification.

General reasoning entails a broad range of tasks, requiring a diverse set of skills. In order to conduct
a systematic study, we train and analyze a task-specific reasoning model using the same recipes
from DeepSeek R1. We limit the scope of our study to a specific task that requires search — a core
reasoning skill broadly applicable for many reasoning tasks. We also select a task in which we can
expect the verification mechanism ahead of time, making our analyses easier. Namely, we study
CountDown |Gandhi et al.| (20245 2025);|Qin et al.| (2025); Yao et al.[(2023)), in which a set of numbers
(operands) and a target number is given, and the model must find the right arithmetic combination
using the operands to reach the target number. Because the target number is specified in the context,
we can expect attention heads to play a role in verification and shed light onto other relevant weights
and subspaces pertaining to self-verification.

Studying a task-specific model has a second non-obvious benefit: training language models with RL
(i.e., with preference signals) can lead to mode collapse towards majority preferences, significantly
reducing the diversity of their outputs (Kirk et al.,[2024; [Padmakumar & He| 2024; Murthy et al.,
2024} Slocum et al.| [2025)). Luckily, in the context of model interpretability, this means that our
task-specific model converges to always generating well-structured CoT sequences, allowing us to
easily and systematically parse its reasoning trace (e.g., see Table[I).

We conduct “top-down” and “bottom-up” analyses to reverse-engineer how the model verifies its own
outputs. Our two analyses meet in the middle, revealing key subspaces relevant for model verification.

Going top-down, we leverage linear probes to find Gated Linear Unit (GLU) vectors in late layers that
often encode tokens relevant for verification. Interestingly, these vectors also seem to correlate with



Under review as a conference paper at ICLR 2026

English or Chinese tokens, like “success” or “R5z” (“failed”). Furthermore, the antipodal directions
of these vectors also encode the antonyms of correct or incorrect tokens.

Going bottom-up, given the nature of our task, we hypothesize and verify that attention heads play a
significant role. We find “previous-token heads” — attention heads that attend to previous occurrences
of the current token — that attend to the provided solution in the context. Previous-token heads have
been studied before, for instance in the context of induction heads (Olsson et al., [2022)). Through
causal analyses, we find that disabling previous-token heads disables model verification.

Our two analyses meet in the middle: we find that disabling previous-token heads also deactivates
our GLU vectors. Inspired by inter-layer communication channels (Elhage et al., 2021} Merullo
et al.}2024), we look for previous-token heads that most align with the “receptive-field” of our GLU
vectors, allowing us to localize as few as six attention heads that reliably disables model verification.
Thus our work finds necessary components for a potentially larger verification circuit.

Finally, we verify that similar verification components exist in our base model prior to RL, as well as
in a general reasoning model, DeepSeek-R1-Distill-Qwen-14B.

Obviously, most reasoning tasks do not provide an easily verifiable solution in the context. However,
by illustrating a thorough mechanism of verification in our simplified setup, we take a step towards
the possibility of monitoring and interpreting a model’s inner computations in its hidden states.

2 NOTATIONS, KEY TERMINOLOGIES

We first establish key terminologies and notations. A Transformer’s forward pass first embeds the
input using weights W € IR4*V. The embeddings go through L Transformer blocks, yielding
hidden states x¢ € IRd, ¢ € [L — 1]. The last layer, xL=1 is “unembedded”, or projected back to
the token embedding space using W g, and the nearest neighboring token embedding of Wg xE=1is
outputted. Each block consists of attention heads and Gated Linear Units (GLUs) (Shazeer, |[2020).

Attention. Each attention head consists of key (W), query (Wg), value (Wy ), and output (Wo)
weights. an attention pattern A is computed using key and query weights:

A= softmax(xg—WgWKxj) ()

where Wg Wi is sometimes referred to as a “QK circuit”. A is used to scale the “OV circuit”
Wo Wi ) to produce an output for each head:
p p

h(x) = (A® Wolly) - x @)
Gated Linear Units and GLUg, Vectors. Given a Gated Linear Unit (GLU) block:
GLU(x) = (¢(Wyatex) © Wypx) Woue 3)

where ¢ is a non-linearity and Wate, Wap, Wour € IR%14 %4, we decompose it as following:

M = ¢(WyateX) © Wypx, M € Rt 4)
dglu
GLU(X) = M Wour = »_ m;v; )
J

where m; is the j-th entry in M and v; is the j-th row of W,;.

Importantly, the output of each GLU block can be thought of as the weighted sum of v’s (the rows of
Wout), where the weights are determined by activations M. We refer to elements of )/ as GLU
neurons and vectors v as GLUg, vectors.

3 TRAINING TASK-SPECIFIC REASONING MODELS

We apply DeepSeek R1-Zero’s setup with Qwen2.5-3B as our base model (Hyperparams: Appx. @

'"We use TinyZero: https://github.com/Jiayi-Pan/TinyZero/tree/main
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Table 1: CountDown Task. The model must find an arithmetic combination of the operands to
reach the specified target number. We leverage the fact that preference tuning leads to mode collapse,
resulting in a model that consistently generates structured CoT tokens that we can easily parse.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process and then provides the user with the answer.
User: Using the numbers [20, 14, 40], create an equation that equals 28. You can use basic
arithmetic operations (+, -, *, /) and each number can only be used once. Show your work in
<think> </think> tags. And return the final answer in <answer> </answer> tags, for example
<answer> (1 + 2) / 3 </answer>.

Assistant: Let me solve this step by step. <think> We have the numbers 20, 14, and 40. We need
to use these numbers to make an equation that equals 28 using basic arithmetic operations. Let’s
try different combinations:

40-14-20=10-20=-10 (not 28)

40 - 14 4+ 20 =26 + 20 = 46 (not 28)

40 + 14 - 20 = 54 - 20 = 34 (not 28)

40 + 14 + 20 = 54 + 20 = 74 (not 28)

40 * 14 /20 = 560 / 20 = 28 (this works)

So, the equation that equals 28 is 40 * 14 / 20. </think> <answer> (40 * 14) / 20 </answer>

Our task, CountDown, is a simple testbed frequently used to study recent reasoning models Gandhi
et al.| (2024} [2025)); 'Yao et al.| (2023)); \Qin et al.| (2025]) — given a set of 3 or 4 operands (e.g., 19, 36,
55, 7) and target number (e.g., 65), the task is to find the right arithmetic combination of the operands
to reach the target number (i.e., 55 + 36 - 7 - 19).

The model is given two rewards: accuracy reward for reaching the correct final answer, and a format
reward when it generates its CoT tokens in between “<think>, </think>" tokens. For more details on

how R1-Zero is trained, see (Guo et al.,[2025)). We refer to our task-specific model as R15°u0",

One advantage of studying a specific task is in that preference training leads to mode collapse (Kirk
et al.| 2024; Padmakumar & He, 2024; Murthy et al., 2024; [Slocum et al [2025)), resulting in
a reduction in generation diversity. In our context, this is desirable, as the model converges to
generating a highly structured CoT sequence. See Table[T]

This allows us to easily parse the model’s CoT. Namely, the model enumerates through many attempts,
while always marking each attempt as either “(this works)” or “(not {ans})”. Thus, we can study the
model’s hidden states at specific timesteps, such as right before it produces either “this” or “not”,
which we refer to as ¢4 and t;p,41:4- We refer to the hidden states at these timesteps as Xy,jig and
Xvalid- We refer to the timestep in the prompt at which the target number is specified as 4, .

4 COMPONENTS FOR SELF-VERIFICATION IN COUNTDOWN

Here we present a series of analyses to identify weights and subspaces relevant for verification. We
do a “top-down” analysis to find relevant GLU vectors in late layers, and a “bottom-up” analysis to
find relevant attention heads in early layers. Our analyses meet in the middle, to identify relevant
subspaces for verification. We verify the role of such weights and subspaces via causal experiments.

4.1 ToprP-DOWN: FINDING VERIFICATION-RELATED GLU VECTORS

LogitLens. We start our analysis by applying LogitLens (Nostalgebraist, 2020) to compare the
hidden states of Xy,jig and Xyyyaiiq On a sample size of 300. We apply the unembedding layer at all
intermediate layers x’ and inspect the resulting nearest neighboring tokens across 300 samples.

FigureT[a, b) shows our results in the late layers (see Appendix Figure[5|for more layers). Interest-
ingly, we see tokens such as “SUCCESS”, “yes”, “bingo” show up for Xygjg, and “NF A (“Does
not conform”), “not”, “f~&" (“Incompatible”) for Xpaq. Interestingly, we often observe English
tokens for xv,ig and Chinese tokens for Xyuvaig. What drives these tokens to appear?
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(a) Orig LogitLens ("this") (b) Orig LogitLens ("not")
1
this (0.98) yes (0.02) This (0.00) works (0.00) not (0.25) (0.18) 2 (0.05) 3 (0.05)
this (0.86) yes (0.12) this (0.01) works (0.00) not (0.22) (0.18) 2 (0.04) 3 (0.04)
this (0.74) yes (0.21) this (0.01) yes (0.01) not (0.24) (0.15) (0.04) ( (0.04) 0.8
L33 this (0.50) yes (0.40) yes (0.03) works (0.01) not (0.21) (0.16) (0.04) ( (0.04)
L32 yes (0.47) yes (0.27) this (0.10) Yes (0.05) (0.15) not (0.13) Not (0.04) = (0.03)
XAE (0.07) o8
XAz (0. _
L31- yes (0.34) Yes (0.01) _yes (0.00) not (0.14) (0.11) (This is not) = (0.03)
1 2 3 4 1 2 3 4
(c) Intervene GLU Neurons: "this" to "not" (d) Intervene Attn Heads: "this" to "not"
L 36 yes (0.31) works (0.04) not (0.03) not (0.21) (0.18) 2 (0.04) 3 (0.04)
0.4
L35 yes (0.42) this (0.37) not (0.03) yes (0.02) (0.15) not (0.15) = (0.04) ( (0.04)
L34 yes (0.48) this (0.20) works (0.07) yes (0.06) (0.16) not (0.11) ( (0.04) = (0.04)
HERHE (0.06) A (0.05) _ 0.2
L33 yes (0.35) yes (0.30)  SUCCESS (0.07) ™' Jiihce ) (0.15) (Does not match)  t°° (0:05) = (0.03)

HEFMH (0.00) RFF (0.08) A#E (0.05) _
L32 yiEs (2 Yes (0.02) (Qualifies) ((0.10) (Does not match) (Not satisfied) i 0.03)

AEE (0.04) A& (0.03) TR (0.03)
(Does not conform) (Incompatible) (Not satisfied)
1 2 3 4 1 2 3 4

Top K Top K

L 31 SUCCESS (0.24) success (0.17) success (0.11) bingo (0.06) not (0.04)

Figure 1: Averaged LogitLens from 300 samples. We see tokens related to verification (“success”,
“/NE) in the last few layers. (a), (b) show the top tokens when (in)correct solutions are reached. (c),
(d) shows results from intervening on either GLU weights or attention heads, given a correct solution.
For (c), while the model is less certain (P(“this”) drops from 0.98 to 0.54), we still see tokens such as
“success” showing up. For (d), we no longer see any tokens related to “success”, and the model’s
final next-token predictions closely resembles when the model has not found a solution (b).

Probing. To answer this question, we train linear probes W* € IR?2*? at every layer ¢ from timesteps
right before “this” or “not” is predicted.These timesteps correspond to when an answer is produced,
and an open parenthesis tokens “(” is being predicted next, as opposed to “this” or “not”.

W* is a linear mapping from the hidden states, x, to a binary label of whether the model has found
the solution. Our training data is D = {(x}:,y’) Nyt € {0 (“not”), 1 (“this”)}, N=327,680. We
solve for W* to fit y = softmax (7 *x?) using gradient descent (hyperparameters in Appendix .

Validation accuracy (N = 512) per layer is provided in the Appendix (Figure [6), with accuracy
usually staying above 90% after the first few layers. High accuracy suggests that our probing vectors
W 0], W[1] identify a direction in the model’s activation space that linearly separates points of Xvajig
and points of Xyyaiiq (i-€., linearly separable subspaces).

Such vectors can steer the model. Simply adding TW[0] or W[1] into hidden states can push x towards
Xvalid O Xmvalid, and change the model’s output to indicate that it has (or has not) found a solution,
even when it has not (or has). We provide qualitative examples of steering results in Appendix [E]

GLUyajig; GLUjppyaiia Vectors. Our probe W tells us that mid-layer activations can be linearly
separated to identify solved cases (Xyyiiq) from unsolved cases (Xyaiiq), but also serves a secondary
purpose. Namely, we can use W to identify GLUq,, vectors of interest (Lee et al.,[2024]).

Per layer, we select the top k(= 50) GLUg, vectors by how similar they are to W*[0] or W*[1] using
cosine similarity. One can consider these vectors as weights that contribute the most towards WW*[0]
(no solution) or W‘f[l] (found solution) directions. We refer to them as GLUyyai4 and GLU g9
vectors. This results in & X L X 2 GLUvujid, mvalid vectors (0.9% of the model’s GLUqy vectors).

Unembedding GLUvyjig/mvaiia Vectors reveal which tokens get promoted when they are activated.
Table 2] shows their nearest neighbors in the model’s token embedding space. We observe that
most interpretable GLUv,jig/myatia n€Urons occur in the second half of layers. Interestingly, we again
note that there seems to be a correlation between GLUvyjig/mvaiia and English versus Chinese tokens,
hinting at the underlying geometry of Xvaiida/mvalia and the model’s embedding space.
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Table 2: GLUgy vectors relevant to verification, and their nearest neighbors. W0}, W|[1]
indicate our probe model. “(x,y)” indicates the GLUg, vector at layer x, index y. “—1 x (x,y)”
(marked in red) indicates the antipodes of the GLUq, vector at layer x, index y. Interestingly, we
observe a correlation between valid/invalid vectors and English and Chinese.

Vector | Nearest Neighbors
w1o] A5z (unfinished), 77 (unable), & (not), 77 (absent), Fi% (should not)
W(1] Exactly, >(, =yes, =YES, =:, ===, quis, esac, ####
(26, 744) ##¢ (failed), &4 (not enough), nicht (not), =% (not like), ix7%| (can’t reach)

(26, 6619) = (lack), s> (lack), &7if# (inconvenient), lacks, sl (difficult), ##¢ (failed)
(27,4971) inefficient, %t (failed), &7 (inconvenient), Danger, disadvantage, = F

(29, 6676) yes, Yes, Bindable, exactly, Yes, "Yes, yes, Yep, Exactly, included
(27, 10388) mirac, £¥ (optimism), %4 (safely), Relief, 5= (fortunate), .isSuccess
(30, 8233) correctly, iF# (correct), 142 (appropriate), accurately, 74 (conform)

-1x(26, 744) i# (careful), £ (sufficient), M4 (equal), tend, ONDON, 2L (enough)

-1x(26, 6619) | #Mu8 (not only can), R (good), A4 r#F (have good), &% (finally)
-1x(27,4971) | successfully, successful, iifiF] (smooth), sz (successful), Mikkmzh

-1x(29, 6676) | #+ (neither), &~k (not quite), neither, ~F (not given), #% it (never seen)
-1x(27, 10388) | sm (failure), failure, =g (bad), 7~ (unfavorable), ##% (bad), %% (mistake)
-1x(30, 8233) | wrong, &~& (bad), incorrect, wrong, invalid, bad, inappropriate, invalid

While GLU v,jig/mvatia €ncode verification-related tokens, what role do they play? This can be partially
answered by applying LogitLens again on 300 samples, but now by “turning off”” GLUy,)iq vectors
(< 1% of total GLU vectors) by scaling them to zero. Figure [T[c) shows the results: while the
probability of verification-related tokens drop (e.g., P(“this”) drops from 0.98 to 0.70 in layer 36), the
end behavior remains the same (i.e., “this” is still the top-1 token). This tells us that GLUs do not
fully explain self-verification. We demonstrate a more thorough causal analysis in Section4.4]

4.2 BOTTOM-UP: PREVIOUS-TOKEN ATTENTION HEADS FOR VERIFICATION (Apggy)

We next inspect the role of attention heads for verification. One motivation for choosing CountDown
as our task is that the task specifies the target number in the context. Thus we can posit that a
Transformer could verify its CoT tokens by comparing them against the specified target number (at
timestep t4y5). Such a hypothesis provides an entry way for our bottom-up analysis.

We test our hypothesis by inspecting the attention patterns whenever the model’s CoT produces the
correct answer. We filter for attention heads that spend at least 10% of its attention on ¢, and refer
to these as previous-token heads (notated Apy). Previous-token heads are not new: they were first
discussed in the context of induction heads |Olsson et al.[(2022). We identify 33 previous-token heads
(out of a total of 576 heads). Interestingly, we find that most previous-token heads occur roughly in the
first half layers (except for one at layer 31, all are at or before layer 22). In Section[4.4]we demonstrate
via causal interventions that disabling previous-token heads can disable model verification. But first,
what is the relationship between GLUvyjig/mvalia Vectors and Apg, heads? Below we adapt inter-layer
component channels to understand their relationship.

4.3  JOINING GLUvya;;p AND Apggy: IDENTIFYING VERIFICATION SUBSPACES (POLYTOPES)

We identify subspaces for self-verification by studying the relationship between GLUy,j4 vectors and
Ap,., attention heads. As a reminder, we observe that Ap.., usually occurs in the first half layers (1 to
22), while GLUvsqjq vectors usually occur in the later half (18 to 36). We hypothesize and empirically
verify that Ap, activates GLUyyq vectors.

First, we borrow from neuroscience to define receptive fields (Olshausen & Field,|1997). For a single
neuron k that computes an activation function f* : IR¢ — IR, its receptive field is defined as

Sp={x¢€ R | fF(z) > 0} (6)
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In simpler terms, S}, is the subspace that triggers a neuron active. In the context of GLUs, this means
Sp={x R | p(W},.x) W} x>0} @)

gate

Now consider a set of neurons, K, and the intersection of all of their receptive fields: S = ﬂLKl S;.

Sk can be considered a polytope in the model’s activation space parameterized by {Wgate, Wap liz ll
Here we use the receptive fields of GLUyyjq to further localize self-verification.

Namely, we identify a small subset of as few as six previous-token heads that disables self-verification.
To do so, we look for previous-token heads (as opposed to hidden states) that activate GLUvyjiq
neurons the most. The output of each head is its OV-circuit (i.e., WoWy/), scaled by to some attention

distribution. Meanwhile, the strength of each GLUyyjiq activation is determined by W and W),
We score each previous-token head h by first decomposing its OV-circuit using SVD:

(WoWy)" =UXVT Y = diag(op1 > ... > onp > 0)
where k = d"%? because Wo Wy is low-rank. Let uy, ; refer to the j-th left-singular vector.

Each head is then assigned the following score:

N k
1 . .
score(h, GLUvaia) = 4 S or; (¢(W;ateuh,j) : W;puh,j> ®)
i g
where GLUv,q = {Wgatw qup}iisl’ N = |GLUValid|a ngatw Wip, Up,j € IRd.

Put differently, we decompose W Wy into singular vectors, and measure how well they each align
with the receptive fields of GLUvyjiq (Wyate, Wap), weighted by their singular values.

Note that we only need the left singular vectors because we only need the output subspace of Wo Wy,

which is spanned by the left singular vectors. Also note that weighing by 0%7 ; can be thought of as

distributing the Frobenius norm of Wo Wy across each mode, as ||[Wo Wy ||3. = 3, o2

Our score is akin to inter-layer communication channels (Elhage et al.,|2021} Merullo et al.| [2024)),

which scores how strongly two attention heads “talk” with each other using a “composition score’:
[WiWs|

Wil + W2l

where W7 is an OV component of one head and W5 the QK component of another at a later layer.
Our formulation can be considered a composition score between attention heads and GLUs, using
both W and W, in place of W, with some additional steps in between.

CS(Wy,Ws) = ©)

Once we score each previous-token head using Eq.[8] we incrementally ablate one head at a time
until we achieve perfect intervention scores (Section4.4). Using this approach, we identify as few as
six attention heads that can disable model verification. We notate this subset as A vesit.

To summarize, we claim that the model has subspace(s) (polytope(s)), SGLuy,;» for self-verification.
The model’s hidden state enters this subspace when it has verified its solution. In our setting, given
the nature of our task, previous-token heads Ap,., take the hidden-state into this subspace, while for
other tasks, different components may be used. This subspace also activates verification-related GLU
weights, promoting the likelihood of tokens such as “success” to be predicted (Figure[3).

We find that alternative hyperparameters or scoring functions can yield different subsets of previous-
token heads that also disable self-verification. We discuss these results in Appendix [F] This suggests
that we do not identify a full circuit, but rather a critical component for verification. Also note that
our scoring function makes simplifications by ignoring possible interactive effects across heads, as
well as transformations (layer norms, GLUSs) across layers. Regardless, our finding remains robust: a
small subset of previous-token heads can disable verification.

4.4 CAUSAL INTERVENTIONS

We study the role of each component above with causal intervention. Our test set consists of 300
samples in which the model originally correctly finds and validates its solutions. For each test case,
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Intervention Success Rate Intervened Output
100 Frrreremonnn s ra s Assistant: Let me solve this step by step.
e <think> We have the numbers 11, 5, and 68.
< 75 BN Success We need to make an equation that equals 62.
2 Partial Success Let’s try different combinations:
= 68-11-5=52-5=47 (not 62)
@ 507 68-11+5 =57 +5 =62 (not 62 - 11 + 5)
o 68-11+5=57+5=62(not62+ 11-5)
S 251 68 +11-5=79-5 =74 (not 62)
N 68 + 11 +5 =79 + 5 = 84 (not 62)
0 - 68 * 11 - ...

T
GLUy) GLUyq) Aprey APre'v Averif Averif
+GLUInV (N=33) Baseline (N=6) Baseline
(N=33) (N=6)

Figure 2: Intervention Results: Disabling as few as 6 attention heads disables self-verification,
rendering the model to generate tokens indefinitely. Aprey refers to 33 previous-token heads. Averif
refers to a subset of 6 previous-token heads. Aprey Baseline, Aveir Baseline refer to the average of 5
runs, where each run randomly samples 33 (or 6) attention heads.

Activation of GLUy;; Neurons Before and After Intervening Verification Heads

15
B Orig (Null Interv.)
104 Intervene Attention

Activation
&

54
04 Il I I il _I,,._- [ | . s -I-_. - —mrnng P C_am

GLU Neurons

Figure 3: GLUyy,jq activations before and after turning off 6 Ay, attention heads. Adjacent
pairs of blue and orange bars indicate the same GLUyyjiq vector. Turning off our identified attention
heads leads to a significant drop in their activations.

the model generates 100 tokens. Every time an attempt for a solution is made (i.e., “(this works)”
or “(not ({ans})” is about to be predicted), we turn off some of the model weights as described
below. We measure intervention success rate: the percentage of times the model fails to validate
its solution, despite having found the solution within the 100 generated tokens. Interestingly, the
model occasionally marks a correct attempt as invalid (desired intervention result), but continues its
generation to say it has found a solution (e.g., given target number 62, the model will output “68 - 11
+ 5 =62 (not 62) So, the answer is 68 - 11 + 5”). We mark these cases as partial successes.

We ablate a few components: (1) GLUvgyjiq: We zero-out 50 GLUv,jq vectors per layer from layer
18 to 36 (the second half of the model; 0.45% of all GLU vectors). (2) GLUvajia & GLUjpyaiia: We
zero-out the top 50 GLUvyjq and top 50 GLUp,yqiq Vectors per layer (0.9% of all GLU vectors). (3)
Aprev: We turn off 33 previous-token heads (5.7% of all attention heads) by zeroing-out their Wo
weights. (4) Averir: We turn off 6 verification heads identified via Eq. @ L17H14, L17H11, L17H10.
We also provide two baselines: App.y Baseline and A e ir Baseline, which each report the average
from 5 runs, where each run randomly samples 33 (or 6) attention heads.

Results are shown in Figure 2] with an example of an intervened output. We achieve near perfect
intervention rates when turning off 33 previous-token heads, or a smaller subset of 6 heads. The
model misclassifies correct solutions as invalid without these heads, and continue its CoT indefinitely.

These attention heads directly affect the GLUy,jiq vectors. Figure |3| demonstrates the activations of
the top GLUyyjiq vectors before and after disabling the subset of 6 previous-token heads. In most
cases, we observe a large drop (to near 0, or often even negative values) in GLUyyjiq activations.

Antipodal GLUq,; Vectors. While attention heads achieve near perfect interventions, Figure 2] also
indicates that disabling both GLUyyjig and GLUjyy,jiq performs better than disabling just GLUyyjig.
Why should disabling GLUy,yq4 improve intervening, i.e., make the model fail at verification?

This can be explained by two facts: (1) the geometry of GLUyyiq and GLUyyy,14 vectors, and (2) the
nonlinear activation used in GLU. Interestingly, we find that the antipodal directions of GLUyyjiq and
GLU yya1iq also often encode tokens relevant for verification. The last 7 rows of Table 2] marked in red
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Figure 4: Intervention Results for the base model and R1, 4. In the base model, Ap, can similarly
disable self-verification, while Av¢ only plays a partial role for verification, hinting at the effects
of RL on their weights. In R1 45, interventions mostly leads to partial success, in which the model
first marks a solution as incorrect but self-corrects itself, hinting at a larger verification circuit. Also
interestingly, the smaller subset of Aveir is more effective at self-verification than Aprey.

indicate the nearest neighbors of the antipodes of GLUv,jiq and GLUpy;4. In addition, Qwen2.5-3B
uses SiLU activations (Hendrycks & Gimpell 2016). Thus inactive neurons take on small negative
values (as opposed to zero, had ReLU been used).

With that said, consider only zeroing out GLUv,j;q neurons: given a correct CoT sequence, GLUyyy41iq
vectors are inactive. However, because of SiLU, the inactive GLUyy,,9 vectors have negative
activations, thus get multiplied by a small negative value, flipping directions, and therefore contribute
towards the “success direction”. In the case of zeroing out both GLUv,j;q and GLUjyy,1iq, We are
further zeroing out the effects of inactive GLUty,y,jg neurons.

5 SIMILAR VERIFICATION COMPONENTS IN BASE MODEL & DEEPSEEK-R1

We verify that similar verification subspaces exist in our base model (Qwen2.5-3B), as well as a
general reasoning model, DeepSeek-R1-Distill-Qwen-14B (henceforth R115).

For both models, we provide CountDown as an in-context learning (ICL) task, including 5 demon-
strations of solving CountDown using the structured output of R15°%7%. We find that both models

can solve the ICL version of CountDown while following the same CoT structure of R15U"%, corrob-

orating recent findings that reasoning capabilities often already exist in pre-trained models (Yue et al.|
2025} |Gandhi et al.,[2025).

We then repeat our intervention analyses above. In our ICL setting, our interventions sometimes
make the model generate “out-of-range”, by which we mean their generations do not adhere to the
structured CoT of R15°U2%, We mark these cases as out-of-range.

Down

Base Model. Figure (a) shows the interventions from Section 4.4{ on our base model. Previous-
token heads still achieve near perfect (partial) intervention rates, suggesting a similar mechanism for
self-verification in the base model. Also note that the six Ay heads demonstrate a lower success rate.
Similar to |Prakash et al.|(2024), which demonstrates that fine-tuning enhances existing mechanisms
in a base model, we hypothesize that RL enhances an existing verification mechanism, thus resulting
in highly localized attention heads in R152""* that can control self-verification.

Down

DeepSeek-R1 Model. In the case of R11 45, we repeat the procedures in Sections . 1~4.4 However,
a probe vector W is required to identify GLUvqjiq/myaiia- Thus we apply EMB2EMB (Lee et al., 2025),
a simple technique to transfer and re-use steering vectors across language models (see Appendix[G]
for a brief explanation). Applying EMB2EMB on R15°""%’s probe, W, results in a probe vector Wg;

for R114p, allowing us to repeat our analyses from Section @ onR1qg.

We find similar GLUv;jid, mvalia Vectors in R1745, analogous to Table |Z| (see Appendix H) hinting at
similar verification subspaces in R1; 5. We identify and intervene on previous-token heads (Apyy) in
R114z, following Section We use an attention threshold of 5% (as opposed to 10% in R15°12*"

Down
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to compensate for the longer context induced from our ICL setup, which yields 552 (out of 1920)
previous-token heads. We discuss results from different hyperparameters (thresholds) in Appendix [I}

We also replicate Section [.3]to identify a smaller subset of 351 attention heads that achieve near
perfect (partial) intervention success rates.

Results are shown in Figure 4] (b). Interestingly, our interventions mostly lead to partial successes
in R114p, in which the model initially fails at self-verification (labels a correct solution as “(not
{ans})”), but corrects itself (generates “Wait, 68 - 11 + 5 is 62 so that works.”). This hints at a larger
verification circuit for R11,5. We also note that Aveir has a higher success rate than Ap,, despite
being a smaller set, suggesting that not all previous-token heads (or their interactions) are helpful in
self-verification. We leave further exploration for future work.

6 RELATED WORK

Decoding Interpretable Representations. A growing line of work focuses on decoding and
manipulating interpretable representations in model activations (Zou et al.| [2023). Conveniently,
many concepts take on /inear representations (Mikolov et al.,|2013; Nanda et al.| |2023; [Park et al.)),
in which simple vectors encode human-interpretable concepts.

For “non-reasoning” models, researchers have studied “truthful” representations before (Burns et al.),
where steering towards a “truthful” direction has led to improvements in tasks related to factual
recall (Li et al., [2023). In a similar vein, researchers have shown that the model’s representations
can reveal whether they will make errors (e.g., hallucinations) (Orgad et al.,|2024), or when they are
unable to recall facts about an entity (Ferrando et al., 2024).

Most recently, concurrent work also investigate how models solve reasoning tasks. [Zhang et al.
(2025)) find that models know when they have reached a solution, while |[Venhoff et al.| (2025) decode
directions that mediate behaviors such as handling uncertainty or self-corrections. In our work, we
take a deeper dive into how a reasoning model verifies its own reasoning trace.

Circuit Analysis. A growing line or work decomposes the forward pass of a neural network as
“circuits” (Olah et al., 2020), or computational graphs. This allows researchers to identify key
components and their causal effects for a given forward pass. A common approach to construct
computational graphs is to replace model components with dense activations with a sparsely-activating
approximation. Dunefsky et al.| introduces Transcoders to approximate MLP layers, while Ameisen
et al.| (2025) further develops Cross-layer Transcoders to handle inter-layer features. Lindsey et al.
(2025) uses Cross-layer Transcoders to conduct circuit analyses for a wide range of behaviors, such
as multi-step reasoning (for factual recall) or addition, and also investigate when a model’s CoT is
(un)faithful. In our work, we identify key components needed for a potentially larger verification
circuit without the need for separate sparse approximations.

7 DISCUSSION

We studied how a task-specific model verifies its own outputs. We repurposed mode collapse as a
feature, not a bug: by leveraging the fact that preference tuning leads to mode collapse, we train
a model with highly structured CoT, making it easy to parse its reasoning trace. With this setup,
we found GLU weights that encode verification-related tokens, and previous-token heads that can
disable verification. We offer a simple extension to inter-layer communication channels that allow
us to localize as few as six attention heads that can also disable verification. Finally, we verify the
existence of similar components in our base model and a general reasoning DeepSeek-R1 model. We
view our work as a step towards understanding the inner mechanisms of recent reasoning models.

Limitations. Note that we do not claim to have uncovered a full verification circuit, but rather critical
components for verification. We also reiterate the scope of our work: we study a specific task that
allows for context-based verification. Obviously, not all reasoning tasks share this property: many
tasks likely require prior-based verification using general knowledge. We speculate that similar
subspaces are used for prior-based verification, but is less obvious where they show up.
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8 REPRODUCIBILITY STATEMENT

Our code to reproduce all of our experiments can be found in the attached supplementary files.
Appendix [A] [C| | provide details of our training setup and hyperparameters.
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A HYPERPARAMETERS FOR R1

Count
Down *

Here we provide the hyperparameters used to train R1

Parameter Value
Train Batch Size 256
Validation Batch Size 1312
Max Prompt Length 256
Max Response Length 1024
Actor Learning Rate le-6
PPO Mini Batch Size 128
PPO Micro Batch Size 8

Log Prob Micro Batch Size 8
Tensor Model Parallel Size 2
Critic Learning Rate le-5
KL Coefficient 0.001

Table 3: Training Hyperparameters.

B LOGITLENS ON MORE LAYERS

Figure [5|demonstrates LogitLens as described in Section @.T]on more layers.

C HYPERPARAMETERS FOR PROBING

We use a batch size of 8, validation size of 256, weight decay of 0.01, and learning rate of le-4. We
validate every 50 gradient steps, and terminate training when validation loss has not improved after a
patience value of 10.

D PROBE ACCURACY

Figure [6] shows probing results. The model has a linear separation in its hidden states given correct
versus incorect CoT tokens.

E EXAMPLES OF STEERING VERIFICATION WITH PROBE

Once we identify a direction that encodes solved versus unsolved states (i.e., Wpyope), We can simply
add this direction into the model’s hidden states to make the model believe that it has found a solution:

x' = x' + aW,one (10)

where x¢, Worobe € IR¢ and o € IR. Some hyperparameters include ¢ (which layers to steer on) and
«, where a larger o amplifies the target behavioral effect.

While an extensive hyperparameter search and a systematic experiment may be useful, steering is not
a core component but rather a tangential experiment. We thus provide qualitative examples using
¢={n|24 <n <36} and o = 20 (after normalizing W, op.) in Table

F ALTERNATIVE SUBSETS OF PREVIOUS-TOKEN HEADS

Of the 25 previous-token heads that we identify, there are many ways to identify subsets that
disable verification. We offer a few examples, and document how many heads are needed to disable
verification with perfect success rates (including partial successes).

13
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Figure 5: Averaged LogitLens from 300 samples (Same as Figure[I| but demonstrating more layers).
We see tokens related to verification (“success”, “incorrect”) in the last few layers. (A), (B) show the
top tokens when a correct / incorrect solution is reached. (C), (D) shows results from intervening
on either GLU weights or attention heads, given a correct solution. For (C), while the model is less
certain (P(“this”) versus P(“not”) becomes 0.51 vs. 0.49 in last layer), we still see tokens such as
“success” showing up. For (D), we no longer see any tokens related to “success” show up, and the
model is certain that it has not found a solution.
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Figure 6: Probe Accuracy. The model has a linear separation in its hidden states given correct versus
incorrect CoT tokens.

Attention Density. The simplest method is to sort the heads based on how much they attend to the
target token that timestep tq,s.

Varying Hyperparameters. Given our approach (Section[d.3)), we try different parameters for N.

Sort by Similarity to W,:., W,;,. An alternative approach is to sort the attention heads based on
how similar their OV circuits are to the Wy, and W, weights of the GLUy/ ;4 weights. We simply
take the mean of {Wgate, Wép}fv vectors from our N GLUy 4;;4 weights. We then sort attention
heads based on how similar they are to the resulting mean vector.

Sort by Probe Wp,.,,.. An alternative is to sort the attention heads based on how similar their OV
circuits are to the probe vector Wp,gpe.

Table [6| demonstrates how many heads are needed from each approach to disable verification with
perfect accuracy.

G BRIEF EXPLANATION OF EMB2EMB

Language models represent numerous concepts using linear representations (Nanda et al., 2023}
Park et al.), by which we mean one can add a single vector that encodes a specific concept into the
activations during inference-time to raise the probability for the model to exhibit such concept or
behavior (Rimsky et al., |2024; [Lee et al.| [2024; |Li et al., 2023). Researchers often refer to such
vectors as “‘steering vectors”.

In other words, during the forward pass, imagine the activations at layer 7. One can simply add a
steering vector W (scaled by some hyperparameter «) to control the model’s behavior:

xT = x4 Fi(x") + aW (11)
where x* and F'* are the hidden state and transformer block at layer i.

EMB2EMB (Lee et al.| 2025)) is a simple method that transfers a steering vector from one language
model to another, by leveraging the fact that the unembedding spaces of language models are often
quite similar.

EMB2EMB works as following. Given a “source” and “target” language model, Mg and M, first
randomly sample a set of IV (= 100,000) tokens, notating their token (un)embeddings as £g and Er.
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Vector

Nearest Neighbors

(36, 10079) A% (not losing), NotNull, ## (can afford), 1= (can endure), % (not hesitate)
(32, 497) mezpizh (deletion successful), successes, Success, success, succeeded, favorable
(35, 6041) maak (powerful), excellent, powerful, 38k (powerful), &1 (great), strong, {5
(37, 5399) ZEF (equal), equal, FIEER(same), R (same), equals, #F#T (same), F% (equal)

(32, 13572) successfully, 5z (success), ig# T (solved), 58T (achieved), il (smoothly)

(30, 10150) %M (no problem), it (no worries), .NoError, harmless, 7~ (unchanged)

(45, 6650) %% (do not have), &% (does not exist), %HEf (do not have any), ~#FHE

(39, 6070) never, #% (will not), doesn, not, 7% (cannot), nowhere, cannot, neither

(46, 12380) neither, none, nowhere, None, Neither, none, nobody, cannot

(44, 12793) ndo (not), & (not), nicht (not), tidak (no), H € (not), ikke (not), niet (not)

(41, 12498) 7 (not present), ~& (no longer), non, I (non-), ~&EZ (is no longer), NETF
(37, 7636) 43& (inappropriate), &2 (insufficient), 4% (cannot reach), 74 (not enough)
(31,5164) %#¢ (did not), fails, ##¢ (failed), &4 (not enough), %l (cannot), R

(35, 2509) 7+ (not), % (does not contain), 7% (incorrect), A (does not affect),

Table 4: GLUgy vectors relevant to verification in R114z.

Then, learn a linear transformation, 7', to map points £g to &, using something as simple as least
squares minimization. Note that 7" maps between spaces with different dimensions.

Given transformation 7" and a steering vector Wg from the source model Mg, one can steer the
target model M by simply applying transformation 7" to W:

xitt = x4 4+ Fh(xb) +aTWs, (12)

where x7 is the activations and F7 is the transformer block of target model M. In our work, we use

EMB2EMB to transfer our probe vector W from R152%%" to a general reasoning R1 model, R1 1 45.

H GLUvyaup, ivvau IN DEEPSEEK-R1-DISTILL-QWEN-14B

Table ] contains GLUq, weights in R1,45 related to verification.

I ALTERNATIVE HYPERPARAMETERS FOR R1

We add a quick note on using alternative hyperparameters for the experiment on R1145 in Section[3}
Namely, there are two hyperparameters, the attention threshold to categorize an attention head as
a previous-token head (Apey), and the number of GLUyy,4 vectors to include to identify a smaller
subset of attention heads (Averif)-

For the first hyperparameter (attention threshold), we use 5% as our threshold, as reported in the main
text. We find that using a higher threshold (10%) is too constrained and perhaps yields too small of
a set of previous-token heads, leading to a lower intervention success rate (0.4%, with 25% partial
success rate). We believe this is because there are still many attention heads that attends to the correct
solution (say, with an attention pattern < 10% but > 5%) to offset our intervention.

Using a smaller threshold (2.5%) yields too large of a set of previous-token heads. In this case,
interventions now lead to a much higher rate of “out-of-range” results — i.e., the model no longer
adheres to the structured CoT sequence after our interventions.

Regarding the number of GLUyyjiq vectors, we see our results converge to the same results after 200
vectors, which is what we use in our experiments.

J LLM USAGE

We used LLMs to proof read our draft and polish our notations.
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Operands | Target | Type | Output

<think>
87-38-3=116-3=113 (not 46)
87 -38+3=49 + 3 =52 (not 46)

3,87,38 | 46 | Orig. | g7 3843-49 43 =52 (not 46)
87 +38-3=125-3 =122 (not 46)
38 +38-3=76-3=73(not 46)...
<think>
87-38-3=116-3 =113 (not 46)
87 -38+3=49+ 3 =52 (not 46)
3, 87, 38 46 Steer | 87-38+3 =49 + 3 =52! Yes, we got it!
87-38+3=49 +3=52.
</think>
<answer> 87 - 38 + 3 </answer>
<think>
60. 62 60-62+12+34=54+ 12 + 34 =66 + 34 = 100 (not 68)
12’34’ 68 Orig. | 60+62-12-34=122-12-34=108 - 34 =74 - 34 = 40 (not 68)
i 60+62-34+12=122-34+12=88 +12 =100 - 34 = 66 (not 68)
60+34+12-62=94+12-62 =106 - 62 =44 (not 68)...
<think>
60-62+12+34=54+ 12+ 34 =66 + 34 = 100 (not 68)
60+62-12-34=122-12-34=108 - 34 =74 - 34 =40 (not 68)
60, 62, 68 Steer 60+62-34+12=122-34+12=88 + 12 =100 - 34 = 66 exactly!
12,34 So the equation that equals 68 is:
60+62-34+12
</think>
<answer> 60 + 62 - 32 + 12 </answer>
<think>
30. 90 90-30-27+19=60-27+19=33+ 19 =52 (not 74)
27’ 19’ 74 Orig. | 90-30-27+19=60-27+19=33+19 =52 (not 74)
’ 90-30-27+19=60-27+19=33+19 =52 (not 74)
90 +27+19-30=117+19-30=136 - 30 = 106 (not 74)...
<think>
90-30-27+19=60-27+19=33+19 =52 (not 74)
90-30-27+19=60-27+19=33+19=152!
30, 90, 74 Steer Indeed, 90-30-27+19=60-27+19=33+19=52
27,19 So, let’s try another combination:

90-30-274+19=60-27+19=33+19=52
No luck. Let’s try this:
90-30-27+19=60-27

Table 5: Steering with probe W, ..
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Num.
Method Heads Heads
Eq.[§] (N=200) 6 L17H14, L22H14, L3H13, L5H15, L17H11, L17H10
L12H3, L12HS, L11HS, L17H1, L17H3, L10HS, L17H10,
Eq. |8/ (N=50) 15 L17H11, L17H13, L21H10, L19H8, L13H3, L13H6,
L5HI5. L17H14
Eq.[§| (N=100) 100 | L17H3, L17H1, L12HS, L17H10, L17H14, L17H11
L17H14, L5H1S, L19H13, L5H14, L13H6, L17H11, L15HS,
Eq. §|(N=300) 12 L13H3, LI9HS, L4H5, L17H3, L17H10
Attention Densit . L17H14, L17H10, L13H3, L13H6, L5H14, L19HS, L4H3,
ention Densit y L22Hl4
LISH3, L21H7, L1218, L21H14, L22H14, L11H8, L21H10,
Sort by Wyate. Wup | 17 L12H3, LI5HI15, L17H3, L17H14, L15H8. L5H15, L13H6,
L17H11, L19H13, L19HS
L18H7, L21H2, L22H12, L17H13, L17H11, L17H10, LAH5,
Sort by Wprope 17 LISHS, L17H14, L5H14. L22H14. L13H5, L5H15, L10HS5,

L15H15, L19H13, L13H6

Table 6: Alternative approaches to localize attention heads that disable verification, and the
number of heads required to disable verification.

18



	Introduction
	Notations, Key Terminologies
	Training Task-Specific Reasoning Models
	Components for Self-Verification in CountDown
	Top-Down: Finding Verification-Related GLU Vectors
	Bottom-Up: Previous-Token Attention Heads for Verification (APrev)
	Joining GLUValid and APrev: Identifying Verification Subspaces (Polytopes)
	Causal Interventions

	Similar Verification Components in Base Model & DeepSeek-R1
	Related Work
	Discussion
	Reproducibility Statement
	Hyperparameters for R1
	LogitLens on More Layers
	Hyperparameters for Probing
	Probe Accuracy
	Examples of Steering Verification with Probe
	Alternative Subsets of Previous-Token Heads
	Brief Explanation of Emb2Emb
	GLUValid, Invalid in DeepSeek-R1-Distill-Qwen-14B
	Alternative Hyperparameters for R1
	LLM Usage

