
Generalization Guarantees for Learning Score-Based
Branch-and-Cut Policies in Integer Programming

Hongyu Cheng
Dept. of Applied Mathematics & Statistics

Johns Hopkins University
Baltimore, MD 21218

hongyucheng@jhu.edu

Amitabh Basu
Dept. of Applied Mathematics & Statistics

Johns Hopkins University
Baltimore, MD 21218

basu.amitabh@jhu.edu

Abstract

Mixed-integer programming (MIP) provides a powerful framework for optimiza-
tion problems, with Branch-and-Cut (B&C) being the predominant algorithm in
state-of-the-art solvers. The efficiency of B&C critically depends on heuristic
policies for making sequential decisions, including node selection, cut selection,
and branching variable selection. While traditional solvers often employ heuristics
with manually tuned parameters, recent approaches increasingly leverage machine
learning, especially neural networks, to learn these policies directly from data.
A key challenge is to understand the theoretical underpinnings of these learned
policies, particularly their generalization performance from finite data. This paper
establishes rigorous sample complexity bounds for learning B&C policies where
the scoring functions guiding each decision step (node, cut, branch) have a certain
piecewise polynomial structure. This structure generalizes the linear models that
form the most commonly deployed policies in practice and investigated recently in a
foundational series of theoretical works by Balcan et al. Such piecewise polynomial
policies also cover the neural network architectures (e.g., using ReLU activations)
that have been the focal point of contemporary practical studies. Consequently, our
theoretical framework closely reflects the models utilized by practitioners investi-
gating machine learning within B&C, offering a unifying perspective relevant to
both established theory and modern empirical research in this area. Furthermore,
our theory applies to quite general sequential decision making problems beyond
B&C.

1 Introduction

Mixed-Integer Programming (MIP) provides a powerful optimization tool for problems arising
in diverse fields such as finance [Cornuejols et al., 2018], vehicle routing [Toth and Vigo, 2014],
computational and systems biology [Gusfield, 2019], telecommunications network design [Kerivin
and Mahjoub, 2005], production planning [Pochet and Wolsey, 2006], to name a few, where decisions
involve both discrete choices and continuous adjustments. We focus on problems formulated as
min

{
cTx | Ax ≤ b,x ∈ Zn1

+ × Rn2
+

}
, where A ∈ Qm×(n1+n2), b ∈ Qm, and c ∈ Rn1+n2 . The

predominant methodology for solving such MIPs is the Branch-and-Cut (B&C) algorithm [Jünger
et al., 2009, Conforti et al., 2014] (see Algorithm 1 below for a standard outline). B&C operates
by exploring a search tree where each node represents a linear programming (LP) relaxation of
a subproblem derived from the original MIP. The process involves solving these LP relaxations,
adding valid inequalities (cutting planes) to tighten the relaxations without excluding feasible integer
solutions, and partitioning the solution space (branching) by imposing constraints on variables,
typically integer-constrained variables (j ∈ [n1]) that take fractional values in an LP solution. The
practical performance of the B&C algorithm is critically influenced by the sequence of strategic

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

decisions made during this dynamic process, including how nodes are selected for exploration, which
cutting planes are added, and which variables are chosen for branching [Achterberg et al., 2005].

Algorithm 1 The Branch-and-Cut Algorithm

Require: Initial MIP instance I , maximum rounds M , error tolerance ϵgap.
1: Initialize open node list L ← {N0}, UB←∞, LB← −∞, x∗ ← null, i← 0.
2: while L ≠ ∅ and UB− LB > ϵgap and i < M do
3: Node Selection: Choose N∗ ∈ L via node selection policy; L ← L \ {N∗}.
4: Solve LP at N∗; let solution be xN∗

LP and value be zN
∗

LP .
5: Let zNLP denote the LP value associated with any node N ∈ L.
6: if LP infeasible or zN

∗

LP ≥ UB then goto Line 18
7: end if
8: if xN∗

LP is integer feasible then UB← zN
∗

LP ; x∗ ← xN∗

LP ; Prune (remove) N ∈ Lwith zNLP ≥ UB.
9: goto Line 18

10: end if
11: Decide whether to add cutting planes (goto Line 12) or branch (goto Line 15).
12: Cut Selection: Generate candidate cuts C; Select C∗ ⊆ C via cut selection policy.
13: Add C∗ to N∗’s formulation. Keep N∗ unchanged if C∗ = ∅.
14: Update L ← L ∪ {N∗}, LB← minN∈L{zNLP}, and goto Line 18
15: Branching: Select fractional variable index j ∈ [n1] from xN∗

LP via branching policy.

16: Create NL,NR from N∗ by adding constraints xj ≤
⌊(
xN∗

LP

)
j

⌋
and xj ≥

⌈(
xN∗

LP

)
j

⌉
.

17: Update L ← L ∪ {NL,NR}, LB← minN∈L{zNLP}.
18: i← i+ 1.
19: end while
Ensure: Best found incumbent solution x∗ and final bounds LB,UB.

Heuristic procedures within B&C often rely on scoring rules to guide decisions. A prominent example
arises in the crucial task of cut selection within state-of-the-art solvers like SCIP [Achterberg, 2009,
Gamrath et al., 2020]. At a given state s of the search (characterized, for instance, by the current
problem (A,b, c), current LP solution x∗

LP, and potentially the best known integer feasible solution
x̄, often called the incumbent solution), a set As of candidate cuts is available. A cut selection policy
must then choose a beneficial subset from As.

Many widely-used, human-designed heuristics implement this selection by scoring each candidate
cut a ∈ As, represented by αTx ≤ β. These policies employ various feature extractors, functions
that map the pair (s, a) to a real-valued quality measure. Key feature extractors used in SCIP include
[Achterberg, 2007, Wesselmann and Stuhl, 2012, Gamrath et al., 2020]:

• Efficacy (ϕeff): ϕeff(s, a) := (αTx∗
LP − β)/∥α∥2. This measures the Euclidean distance by

which the current LP solution x∗
LP violates the cut.

• Objective Parallelism (ϕobj): ϕobj(s, a) := |αTc|/(∥α∥2∥c∥2). This measures the similarity
between the cut normal α and the objective vector c.

• Directed Cutoff Distance (ϕdcd): This feature quantifies efficacy specifically in the direction
from x∗

LP towards the incumbent x̄, when x̄ is available and distinct from x∗
LP. It is computed

as ϕdcd(s, a) := (αTx∗
LP − β)/(|αT(x̄− x∗

LP)|/∥x̄− x∗
LP∥2).

• Integral Support (ϕint): ϕint(s, a) := |{j ∈ [n1] | αj ̸= 0}|/|{j ∈ [n] | αj ̸= 0}|, where
n = n1 + n2 is the total number of decision variables. This calculates the fraction of
integer-constrained variables (j ∈ [n1]) among all variables involved in the cut.

These feature extractors produce a vector ϕ(s, a) = (ϕeff(s, a), ϕobj(s, a), ϕdcd(s, a), ϕint(s, a))
T ∈

R4. Policies like SCIP’s default Hybrid selector define the score using a linear function determined
by a parameter vector w = (w1,w2,w3,w4)

T ∈ R4. The score is computed as:

f(s, a,w) = wTϕ(s, a) = w1ϕeff(s, a) +w2ϕobj(s, a) +w3ϕdcd(s, a) +w4ϕint(s, a).

Crucially, the choice of the weight vector w defines a specific cut selection policy within this linear
scoring framework; different weights lead to different prioritizations of cuts. The weights w are

2

typically pre-tuned based on extensive computational experiments. SCIP’s more advanced Ensemble
selector also employs a weighted-sum score f(s, a,w′) = (w′)Tϕ′(s, a), but utilizes an extended
feature vector ϕ′(s, a) ∈ Rℓ (where ℓ may be larger than 4) that includes additional, often normalized,
metrics like density, dynamism, pseudo-cost scores, and variable lock information [Achterberg, 2007].
The selection policy then chooses the cut a∗ that yields the highest score.

This practice of using parameterized, score-based rules is widespread in B&C. For instance, beyond
the linear scoring approach exemplified by SCIP’s Hybrid cut selector, other critical decisions also
rely on similar mechanisms. Branching variable selection frequently employs heuristic scores derived
from informative features, such as pseudo-costs which estimate the impact of branching on candidate
variables [Achterberg, 2007, Achterberg et al., 2005]. Node selection strategies also commonly
utilize scoring based on various node attributes [He et al., 2014, Yilmaz and Yorke-Smith, 2021]. The
prevalence of such score-guided heuristics across multiple B&C components motivates our study of
such policies within the following general framework.

Let S be the state space. Each state s ∈ S contains the information available at a given step of the
branch-and-cut algorithm (Algorithm 1), including the tuple (L,x∗, i,N∗). Let Ak be the space of
possible actions for a specific decision type k (e.g., k = 1 for node selection, k = 2 for cut selection,
k = 3 for branching). For a given state s ∈ S, let As

k ⊆ Ak denote the set of available actions of
type k for state s (e.g., As

2 = As in the example above contains candidate cuts). The goal is to learn
a parameterized scoring function fk : S ×Ak ×Wk → R+, parameterized by wk ∈ Wk, whereWk

is the parameter space (e.g., the weight vector w in the SCIP Hybrid example belongs toW2). This
function evaluates potential actions a ∈ As

k. A fixed feature extractor function ϕk : S ×Ak → Rℓk

maps the state-action pair (s, a) to a feature vector (e.g., ϕ(s, a) ∈ R4 for k = 2 in the example
above). The scoring function often takes the form fk(s, a,w

k) = ψk(ϕk(s, a),w
k), where ψk

could be an ML model like a Multi-Layer Perceptron (MLP, Definition 3.6) or, as exemplified by
SCIP’s Hybrid selector, a linear function ψk(ϕk(s, a),w

k) = (wk)Tϕk(s, a). The chosen action
a∗ is typically one that maximizes the score, selected according to a∗ ∈ argmaxa∈As

k
fk(s, a,w

k)

(with a consistent tie-breaking rule). Training the parameters wk often relies on supervisory signals
from an expert function or oracle, which provides high-quality action evaluations (e.g., Strong
Branching scores [Alvarez et al., 2017], exact bound improvements from cuts [Paulus et al., 2022]) or
assesses the overall impact on the search (e.g., reduction in runtime or tree size [Huang et al., 2022]).
Supervised learning methods then use these expert-derived values as targets or labels to optimize wk.

2 Prior work and our contributions

We first discuss prior computational and theoretical work on using ML techniques to make B&C
decisions, and then describe our contributions in that context. We will use the language of the general
framework described above to discuss everything in a unified way.

2.1 Related empirical work

Learning to select node. (Action type k = 1) Selecting which node to explore next from the queue
L of active nodes (i.e., the set of potential actions As

1 = L) is a critical B&C decision. He et al.
[2014] learn a linear scoring function where f1(s, a,w1) = (w1)Tϕ1(s, a), to score each candidate
node a ∈ As

1. For each candidate node a, its features ϕ1(s, a), categorized as node, branching, and
tree features, are obtained using information typically recorded by solvers. The node with the highest
score is selected, with the policy trained to imitate an oracle that exclusively explores nodes leading
to an optimal integer solution. Differing in scope, Yilmaz and Yorke-Smith [2021] learn a policy for
child selection. Their scoring function uses an MLP classifier ψ1. This MLP takes as input features
comprising 29 base metrics (listed in their Table 1). These include features of the branched variable
(e.g., its simplex basis status), features of the newly created child nodes (e.g., their bounds), and
tree features (e.g., global bounds and current depth). The MLP computes scores f1(s, a,w1) for
three distinct actions following a branch—exploring the left child node, the right child node, or both
children, and selects the action with the highest score. Their expert policy is derived from paths to
the top-k known solutions.

Learning to cut. (Action type k = 2) In state s, an action a ∈ As
2 corresponds to selecting

candidate cuts at node N∗. Huang et al. [2022] use fixed features ϕ2(s, a) ∈ R14 (detailed in their

3

Table 1) as input to an MLP ψ2. This MLP outputs a score f2(s, a,w2) = ψ2(ϕ2(s, a),w
2) for

each cut, and cuts with the highest scores are selected. Their expert oracle assesses the quality of
sets (bags) of cuts based on overall runtime reduction. Paulus et al. [2022] also utilize a fixed initial
feature representation (as detailed in their Table 5, based on Gasse et al. [2019]), encoding the LP
relaxation and candidate cuts As

2 as a tripartite graph. Their scoring function is a complex model
comprising a Graph Convolutional Neural Network (GCNN), an attention mechanism, and a final
MLP (the entire set of parameters for this composite model is learned from data). This function
produces a score for each cut, and cuts with the highest scores are then selected. Their expert signal
is the exact LP bound improvement (Lookahead score) from individual cuts.

Learning to branch. (Action type k = 3) In state s, an action a ∈ As
3 represents choosing a

fractional variable a ∈ [n1] to branch on within node N∗. Strong Branching (SB) often serves as
the expert oracle for this task. Khalil et al. [2016] proposed a linear scoring function f3(s, a,w3) =
(w3)Tϕ3(s, a). Their fixed feature extractor ϕ3(s, a) computes features (based on 72 atomic features
as detailed in their Table 1) describing candidate variable a in the context of the current node. The
variable a with the highest score f3(s, a,w3) is selected for branching. Similarly, Alvarez et al.
[2017] used an Extremely Randomized Trees model [Geurts et al., 2006] to directly predict SB scores
f3(s, a,w

3); here, the parameters w3 define the learned structure of the tree ensemble. Their fixed
feature extractor ϕ3(s, a) calculates features for variable a based on static problem data, dynamic
information from the current LP solution, and optimization history. The variable a ∈ [n1] yielding
the highest predicted SB score is chosen.

These learning-based strategies empirically demonstrate the potential to automate the design of
high-performance policies for various decisions within B&C solvers, including node selection,
cut selection, and branching, by leveraging data and expert knowledge in a structured manner.
Consequently, establishing a rigorous theoretical foundation for these learned policies, particularly
regarding their sample complexity and generalization guarantees, becomes essential.

2.2 Related theoretical work

In statistical learning theory, the goal is to find a parameter w ∈ W that minimizes the expected cost
EI∼D[V (I,w)], where V : I ×W → [0, H] is a cost function bounded above by some H > 0, and
D is an unknown distribution over the instance space I. In the context of branch-and-cut, V (I,w)
represents a measure of the overall performance (e.g., final tree size, solution time) when applying
a policy (for node, cut, and branching variable selections) parameterized by w to solve the initial
problem instance I . Since D is unknown, we usually rely on an empirical estimate derived from a
finite sample {I1, . . . , IN} ⊆ I drawn independently and identically distributed (i.i.d.) from D, by
selecting the parameter w that minimizes the empirical average 1

N

∑N
i=1 V (Ii,w). A fundamental

question concerns the sample complexity of uniform convergence: how fast does the empirical
average converge to the true expectation, uniformly for all parameters w ∈ W , as the sample size N
increases?

Standard results relate this uniform convergence rate to measures of the complexity of the function
class V = {V (·,w) : I → [0, H] | w ∈ W}. One such measure is the pseudo-dimension, Pdim(V),
and classical results (see, e.g., Pollard [1984]) give bounds of the form: with probability at least 1− δ,

sup
w∈W

∣∣∣∣∣ 1N
N∑
i=1

V (Ii,w)− EI∼D[V (I,w)]

∣∣∣∣∣ = O
(
H

√
Pdim(V) + log(1/δ)

N

)
. (1)

A significant line of research establishing rigorous sample complexity bounds for data-driven al-
gorithm configuration was initiated by Gupta and Roughgarden [2016]. This PAC-style approach
inspired investigations into the learnability of parameters for various algorithms by analyzing the
structure of algorithm performance with respect to its parameters. Recent applications include
configuring components within B&C (such as variable selection [Balcan et al., 2024b] and cut
generation/selection [Balcan et al., 2021c, 2022b, 2021a, Cheng et al., 2024, Cheng and Basu, 2024]),
learning heuristic functions for graph search algorithms [Sakaue and Oki, 2022], tuning parameters
for iterative methods like gradient descent [Jiao et al., 2025], configuring data-driven projections for
linear programming [Sakaue and Oki, 2024], analyzing combinatorial partitioning problems [Balcan
et al., 2017], mechanism design for revenue maximization [Balcan et al., 2025b], tuning ElasticNet

4

[Balcan et al., 2022a], hyperparameter tuning in neural networks Balcan et al. [2025a], and learning
decision trees [Balcan and Sharma, 2024]. Building on the techniques used across these diverse
applications, Balcan et al. formalized and generalized the approach, particularly emphasizing the role
of the piecewise structure of algorithm performance in establishing sample complexity guarantees
[Balcan et al., 2024a,c]. Related theoretical foundations, surveys, and analyses are also available in
[Balcan, 2020, Balcan et al., 2021b].

The first application of this PAC learning paradigm specifically to the B&C setting was presented by
Balcan et al. [2024b] (first appearing in ICML 2018), who analyzed learning linear variable selection
policies. They showed that the B&C tree size is a piecewise constant function of the linear weights,
enabling pseudo-dimension bounds. Subsequently, Balcan et al. [2021c] extended this line of research
significantly. They considered learning parameters for generating Chvátal-Gomory (CG) cuts and
policies selecting cuts based on weighted combinations of standard scoring rules. They showed
that sequential CG cuts induce a piecewise structure defined by multivariate polynomials, and that
weighted scoring rules lead to piecewise constant behavior with respect to the weights. Importantly,
Balcan et al. [2021c] also introduced and analyzed a general model of tree search, providing sample
complexity bounds for simultaneously tuning multiple components (like node, variable, and cut
selection) when guided by linear scoring functions. Further refinements came from Balcan et al.
[2021a], who exploited the path-wise nature of many common B&C scoring rules within their general
tree search model to derive exponentially sharper bounds, dependent on tree depth rather than total
nodes, for policies using such rules. Addressing the challenge of infinite cut families, Balcan et al.
[2022b] analyzed the learnability of Gomory Mixed-Integer (GMI) cut parameters, establishing a
piecewise structure defined by degree-10 polynomial hypersurfaces.

More recently, theoretical work has begun to incorporate nonlinear models used in practice. Cheng
et al. [2024] studied the sample complexity of using neural networks to map instances directly to
algorithm parameters (specifically for cut selection), analyzing the complexity in terms of the neural
network weights. Expanding on the types of cuts considered, Cheng and Basu [2024] investigated
learning parameters for general Cut Generating Functions (CGFs). CGFs provide a broad theoretical
framework for deriving cutting planes, generalizing classical families like CG and GMI cuts (see [Basu
et al., 2015] for a survey), and thus represent a promising avenue for enhancing B&C performance.
Cheng and Basu [2024] derived sample complexity bounds for learning parameters within specific
CGF families and also explored learning instance-dependent CGF parameters using neural networks.

2.3 Our contribution

The present paper contributes to this theoretical foundation by establishing rigorous sample complexity
bounds for learning B&C policies where the scoring functions fk(s, a, ·) guiding each decision
step (node/cut/branching variable selection) belong to the class of piecewise polynomial functions
with respect to the parameters w. This class, formalized in Definition 3.1, provides a unifying
lens. It naturally includes the linear models studied previously [Balcan et al., 2024b, 2021c] and,
as shown below in Proposition 3.4, our results improve upon the existing bounds for this case
[Balcan et al., 2021c, Theorem 5.2]. Crucially, this framework also encompasses the neural network
architectures (e.g., MLPs with ReLU activations) prevalent in recent work described above in
Section 2.1. Lemma 3.7 below, building on Anthony and Bartlett [1999] and Bartlett et al. [2019],
confirms that such networks yield scoring functions with the required piecewise polynomial structure.

By establishing that piecewise polynomial scoring functions induce a related piecewise structure in
the overall cost metric V (I, ·) (Theorem 3.3), our work bridges the gap between prior theory (largely
focused on linear scoring rules [Balcan et al., 2021c,a, 2024b]) and current practice involving neural
networks. We derive pseudo-dimension bounds (Propositions 3.4 and 3.8) applicable to both linear
and neural network-based policies, leading to distribution-independent sample complexity guarantees
via (1). The identified structure also opens the door to potentially tighter, data-dependent guarantees
via empirical Rademacher complexity (Proposition 3.9).

Our techniques apply to more general sequential decision making problems beyond branch-and-
cut. We develop this more general theory first in Section 3 and then derive the consequences for
branch-and-cut in Section 4.

5

3 General Framework and Sample Complexity Bounds

We consider a general setting involving an iterative procedure operating on a state s from a state
space S . The procedure starts from an initial state s0 ∈ S, which is typically derived from an initial
problem instance I ∈ I. The procedure may consist of multiple rounds (e.g., corresponding to
processing nodes in a B&C tree), where each round involves executing d distinct types of actions
sequentially. For any state s ∈ S , there exists a set As

k of available actions of action type k ∈ [d]. A
transition function determines the next state s′ if action a ∈ As

k is selected in state s. The selection of
an action a∗ ∈ As

k is guided by a parameterized scoring function fk : S ×Ak ×Wk → R+, where
Ak =

⋃
s∈S As

k. The function fk takes the current state s, a candidate action a, and a parameter
vector wk ∈ Wk ⊆ RWk as input and returns a score. Fixing the parameters w1, . . . ,wd determines
a decision policy, and the goal is to select a good policy, i.e., a good set of parameters, as determined
by penalty functions Pk : S ×Ak × N→ R for each action type k. The value Pk(s, a, i) represents
the penalty obtained when taking action a in state s and round i. Algorithm 2 outlines this general
process, including penalty accumulation, employing a greedy action selection strategy based on the
scoring functions at each step.

Algorithm 2 A Sequential Decision Process that Generalizes B&C

Require: Initial state s0 ∈ S , terminal states S̄ ⊆ S , policy parameters wk ∈ Wk, scoring functions
fk : S ×Ak ×Wk → R, penalty functions Pk : S ×Ak × N→ R for k ∈ [d], max rounds M .

1: Initialize s← s0, i← 0, V ← 0.
2: while s /∈ S̄ and i < M do
3: for k = 1 to d do
4: Determine available actions As

k for state s.
5: if As

k = ∅ then continue
6: end if
7: Select action a∗ ← argmaxa∈As

k
fk(s, a,w

k). Break ties by lexicographic order.
8: Accumulate penalty V ← V + Pk(s, a

∗, i).
9: Compute the state s′ that results from applying action a∗ in state s.

10: Update state s← s′.
11: if s ∈ S̄ then break
12: end if
13: end for
14: i← i+ 1.
15: end while
Ensure: s and V .

3.1 Worst-case sample complexity bounds

Let V (I,w) denote the total penalty (overall cost) obtained when Algorithm 2 is executed starting
from an initial state derived from instance I ∈ I , using a policy parameterized by w = (w1, . . . ,wd),
where each component wk ∈ Wk ⊆ RWk provides the parameters for the k-th action type’s scoring
function. The overall policy parameter space is W =

∏d
k=1Wk ⊆ RW , with W =

∑d
k=1Wk

being the total number of parameters. This overall cost V (I,w) serves as a measure of the policy’s
effectiveness (e.g., runtime), and the goal is to find w that minimizes EI∼D[V (I,w)] (see Section 2).
To analyze the sample complexity of learning w via i.i.d samples from D, we aim to bound the
complexity of the function class V = {V (·,w) : I → [0, H] | w ∈ W}, typically via its pseudo-
dimension Pdim(V). Our theoretical analysis relies on specific structural properties of the scoring
functions fk employed at each step of Algorithm 2. To formalize this, let us first define a general
structural property that has a piecewise behavior.
Definition 3.1. Let G be a class of real-valued functions defined on a domain X ⊆ Rℓ for some
ℓ ∈ N. We say G has a (Γ, γ, β)-structure if for any finite collection of N functions g1, . . . , gN ∈ G
with N ≥ γ, the domain X can be partitioned into at most NγΓ disjoint regions such that within
each region, every function gj : X → R (j = 1, . . . , N) is a fixed polynomial of degree at most β.

Let F∗
k = {fk(s, a, ·) : Wk → R+ | (s, a) ∈ S × Ak} denote the class of functions, indexed by

state-action pairs (s, a), derived from the scoring functions for action type k ∈ [d]. We assume that

6

F∗
k exhibits such a (Γk, γk, βk)-structure over the parameter spaceWk for all k ∈ [d]. Furthermore,

we assume the number of available actions for any state s and action type k is uniformly bounded:
|As

k| ≤ ρk for constants ρk ≥ 2.

The focus on scoring functions arising from classes F∗
k possessing this (Γk, γk, βk)-structure is

well-founded for two main reasons:

1. This structure naturally includes linear policies (fL
k (s, a,w) = (wk)Tϕk(s, a) using fixed

feature extractors ϕk). For any fixed state-action pair (s, a), the function fL
k (s, a, ·) is

a single polynomial (in w) of degree β = 1 over the entire parameter space W . Thus,
the corresponding class (FL

k)
∗ has a (1, 0, 1)-structure. Such linear scoring models were

investigated in [Balcan et al., 2021c] (which generalizes [Balcan et al., 2024b]).
2. This structural assumption allows us to analyze modern deep learning practices. If scoring

functions are implemented as MLPs with piecewise polynomial activations, the resulting
function class (FMLP

k)∗ possesses a (Γk, γk, βk)-structure. Lemma 3.7 formally establishes
this, detailing the specific parameters Γk, γk, βk based on the MLP’s characteristics like
depth, width, degree of activation etc. This confirms our theoretical framework’s applica-
bility to these widely used modern models, aligning with empirical research discussed in
Section 2.1.

The following lemma connects the pseudo-dimension of the function class H = {h(·,w) : I →
R | w ∈ W} to the structural properties of its dual class H∗ = {h(I, ·) :W → R | I ∈ I}, where
h : I ×W → R is a general function mapping instance-parameter pairs to outputs. Specifically, it
bounds Pdim(H) based on the (Γ, γ, β)-structure ofH∗.
Lemma 3.2. Let h : I × W → R, where W ⊆ RW for some W ∈ N+. If H∗ has a (Γ, γ, β)-
structure with (Γ, γ, β) ∈ N+ × N× N, then the pseudo-dimension ofH satisfies:

Pdim(H) ≤ 4 (γ log(2γ + 1) +W log(4eβ + 1) + log(2Γ)) .

Theorem 3.3. Consider the sequential decision process defined in Algorithm 2. Assume each scoring
function class F∗

k has a (Γk, γk, βk)-structure with (Γk, γk, βk) ∈ N+ × N × N+, and |As
k| ≤ ρk.

Let γ̃ =
∑d

k=1 γk, ρ̄ =
∏d

k=1 ρk, Γ̄ =
∏d

k=1 Γk, and recall that W =
∑d

k=1Wk. Then, V∗ has a

(Γ′, γ′, 0)-structure with Γ′ = 2dρ̄(γ̃+W)(M+1)Γ̄
(
e
∑d

k=1 ρ
2
kβk/W

)W
and γ′ = γ̃ +W .

Theorem 3.3 establishes the crucial property that if the scoring function classes F∗
k possess a

(Γk, γk, βk)-structure, then the resulting cost function dual class V∗ exhibits a (Γ′, γ′, 0)-structure,
i.e., a piecewise constant structure. This result, when combined with Lemma 3.2, yields bounds on
the pseudo-dimension Pdim(V). These bounds, in turn, enable the derivation of sample complexity
guarantees through standard uniform convergence results, such as (1). See a more detailed discussion
of the uniform convergence results in Appendix C.2.

As a specific application, consider the case of linear scoring functions:
Proposition 3.4. Let VL be the cost function class obtained when using linear scoring functions
fk(s, a,w

k) = (wk)Tϕk(s, a) for all k ∈ [d]. Then, Pdim
(
VL
)
= O

(
WM

∑d
k=1 log ρk

)
.

Remark 3.5. Proposition 3.4 improves upon the bound established in Theorem 5.2 by Balcan
et al. [2021c] for linear scoring functions: Pdim(VL) = O

(
WM

∑d
k=1 log ρk +W logW

)
. This

improvement stems from our analysis technique, which leverages the particular structure inherent
in our problem setting, rather than relying on the theorems presented in Balcan et al. [2024a] (see a
related discussion in Appendix E, Bartlett et al. [2022]).

Turning to nonlinear models, particularly neural networks, we first establish in Lemma 3.7 that
scoring functions implemented via MLPs (with suitable activations) satisfy the required structural
property. This allows us to apply our general framework (Theorem 3.3 and Lemma 3.2) to derive
pseudo-dimension bounds, and thus sample complexity results, for policies modeled by MLPs.
Definition 3.6. A Multi Layer Perceptron (MLP) computes MLP(x,w) : Rd × RW → Rℓ via
the composition MLP(x,w) = (TL,w ◦ σ(·) ◦ TL−1,w ◦ · · · ◦ σ(·) ◦ T1,w)(x). Here Ti,w denote
affine transformations parameterized by w ∈ RW , and σ(·) denotes the element-wise application of

7

the activation function σ : R → R. The network has L ≥ 1 layers, U total neurons, and W total
parameters. We assume the activation σ is piecewise polynomial: its domain R can be partitioned
into at most p disjoint intervals such that, within each interval, σ is defined by a univariate polynomial
of degree at most α.

Lemma 3.7. Consider an MLP as defined in Definition 3.6, characterized by W,L,U, p, α. Then,
the class {MLP(x, ·) : RW → R | x ∈ Rd} has a

(
2LαL2W (2epU/W)

LW
, LW,LαL

)
-structure.

Proposition 3.8. Let VMLP be the cost function class obtained when using MLP scoring functions
fk(s, a,w

k) = MLPk(ϕk(s, a),w
k) for all k ∈ [d]. Then,

Pdim
(
VMLP

)
= O

((
d∑

k=1

LkWk

)(
M

d∑
k=1

log ρk + log

(
d∑

k=1

pkUk

))
+ W log

(
d∑

k=1

α
Lk
k

)
+

d∑
k=1

L
2
kWk logαk

)
.

Specifically, for ReLU MLPs, we have αk = 1 and pk = 2 for all k ∈ [d], leading to the bound:

Pdim
(
VReLU) = O((d∑

k=1

LkWk

)(
M

d∑
k=1

log ρk + log

(
d∑

k=1

Uk

)))
.

3.2 Data-dependent sample complexity bounds

Alternatively, a uniform convergence result similar to (1) can be obtained using the empirical
Rademacher complexity. Let SN = {I1, . . . , IN} be the sample drawn i.i.d. from D. The empir-
ical Rademacher complexity is R̂SN

(V) = Eσ∼{−1,1}N [supw∈W
1
N

∑N
i=1 σiV (Ii,w)]. Standard

results (e.g., see Theorem 26.5 in [Shalev-Shwartz and Ben-David, 2014] and Theorem 3.3 in [Mohri
et al., 2018]) provide the following uniform convergence guarantee: with probability at least 1− δ,

sup
w∈W

∣∣∣∣∣ 1N
N∑
i=1

V (Ii,w)− EI∼D[V (I,w)]

∣∣∣∣∣ = O
(
R̂SN

(V) +H

√
log(1/δ)

N

)
. (2)

Since R̂SN
(V) is computed directly on the sample SN , this bound is inherently data-dependent and

can sometimes provide tighter estimates than worst-case guarantees like (1), which rely solely on
the distribution-independent pseudo-dimension Pdim(V). Importantly, bounding R̂SN

(V) relies
fundamentally on the structural properties of the dual class V∗, just like the case of pseudo-dimension.

Let QM,k(I) denote the total number of distinct state-action pairs (s, a) of type k ∈ [d] encountered
when Algorithm 2 is executed on an initial state derived from instance I within its firstM rounds. The
proof of Theorem 3.3 uses a worst-case estimate for QM,k(I), namely ρkρ̄M (Lemma B.1). However,
the presence of terminal states in Algorithm 2 often results in the actual number of encountered
state-action pairs, QM,k(I), being substantially smaller than this worst-case bound. The empirical
Rademacher complexity bound presented below directly incorporates the sum of these QM,k(Ii)
values from the sample {I1, . . . , IN}. A more detailed discussion and comparison of the bounds
derived from pseudo-dimension and empirical Rademacher complexity can be found in Appendix C.2.
Proposition 3.9. Under the same hypothesis as Theorem 3.3, for any SN = {I1, . . . , IN} with
N ≥ γ̃ +W , we have

R̂SN (V) ≤ H

√√√√ 2

N

(
d+

d∑
k=1

log Γk + (γ̃ +W) log

(
d∑

k=1

N∑
i=1

QM,k(Ii)

)
+W log

(
e
∑d

k=1 ρkβk

W

))
.

4 Application to Branch-and-Cut

Our general sequential decision process (Algorithm 2) can model the B&C algorithm (Algorithm 1),
as discussed in Section 1 and Section 2. Starting from an initial state s0 derived from an MIP
instance I = (A,b, c), B&C iteratively makes decisions for node selection (k = 1), cut selection
(k = 2), and branching (k = 3), corresponding to the d = 3 action types in our framework. The
parameters w = (w1,w2,w3) governing these scoring functions can be trained via methods like
imitation learning [He et al., 2014, Paulus et al., 2022, Yilmaz and Yorke-Smith, 2021, Alvarez et al.,
2017] or reinforcement learning [Tang et al., 2020] to tune the respective policies (see Section 2.1).

8

Furthermore, the accumulated penalty V in Algorithm 2 can directly measure B&C performance.
For instance, setting immediate penalties P1(s, a, i) = 0, P2(s, a, i) = 1, and P3(s, a, i) = 2 for
all (s, a, i) ∈ S × A× N makes the cost V : I ×W → [0, 3M] equal to the size of the B&C tree.
Consequently, minimizing V is minimizing the total number of explored nodes, which is a common
measure of B&C algorithmic efficiency, although the total runtime is also affected by other factors
such as node processing time [Linderoth and Savelsbergh, 1999].

Modern solvers often prioritize aggressive cut generation at the root node of the B&C tree [Contardo
et al., 2023]. This strategy leverages the global validity of root cuts and their potential for significant
early impact [Contardo et al., 2023]. Theoretical work also suggests that restricting cuts to the root
can be optimal under certain conditions [Kazachkov et al., 2024]. Motivated by these considerations,
we analyze learning a cut selection policy (k = 2) via a ReLU neural network parameterized by w2.
We assume cuts are added only at the root node for R rounds before branching begins, where R is
typically small. In each round i ∈ [R], the policy uses scores f2(s, a,w2) from the ReLU network to
select at most κ cuts from a pool of candidates. We assume a uniform upper bound r on the number
of available candidate cuts (typically, r = O(m+ κR), where m is the number of constraints). We
use fixed, deterministic rules for node and branching variable selection (e.g., depth-first search and a
product scoring rule, respectively). Proposition 3.8 then implies the following.
Proposition 4.1. Let TReLU(I,w2) denote the resulting B&C tree size for instance I under the setup
as discussed above. Then,

Pdim
(
{TReLU(·,w2) : I → R | w2 ∈ W2}

)
= O (L2W2 (κR log r + logU2)) .

Our analysis also extends to simultaneously learning policies for all three core B&C decisions
(k = 1, 2, 3), each governed by a separate ReLU network with parameters wk ∈ Wk. We assume the
standard bounds on the action space sizes: ρ1 ≤M available nodes for selection, ρ2 = O(m+M)
candidate cuts, and ρ3 = n candidate branching variables. Plugging into Proposition 3.8, we obtain:
Proposition 4.2. Let V (I,w) denote the tree size when using B&C policies based on ReLU networks
with parameters w = (w1,w2,w3). For the corresponding class VReLU, we have:
Pdim

(
VReLU) = O ((L1W1 + L2W2 + L3W3) (M (log(m+M) + log n) + log (U1 + U2 + U3))) .

5 Empirical Validation

To complement our theoretical analysis, we conduct an experiment to test for consistency with the
convergence rate suggested by our theoretical upper bounds (Equations (1) and (2)).

Setup. We trained a cut-selection policy1, implemented as an MLP, to imitate an expert oracle based
on normalized LP objective-value improvement, yielding a fixed parameter vector ŵ. The network
uses two inputs (cut efficacy and objective parallelism), has two hidden layers with ten ReLU neurons
each, and a single output with a clipped ReLU activation to produce a score in [0, 1]. We evaluated
this fixed policy on two sets of packing instances from [Tang et al., 2020] with m constraints and
n variables, using the configurations (m = 10, n = 20) and (m = 15, n = 30). The performance
metric, V (I, ŵ), is the B&C tree size obtained when our MLP, parameterized by ŵ, selects the 10
cuts with the highest scores at the root node.

Methodology. Given training and test instances {I train
i }Ni=1 and {I test

j }Nj=1, drawn i.i.d. from a
distribution D, we measure the empirical generalization gap using the quantity

f(N) =

∣∣∣∣∣∣ 1N
N∑
i=1

V (I train
i , ŵ)− 1

N

N∑
j=1

V (I test
j , ŵ)

∣∣∣∣∣∣ .
The motivation for this is grounded in the uniform convergence bounds (Equations (1) and (2)). These
bounds establish that the deviation of any N -sample average from the true expectation is bounded by
some εN = O(1/

√
N). Because this guarantee applies to the averages over both the training and

test sets, it follows from the triangle inequality that their difference, f(N), is bounded by 2εN . Thus,
f(N) serves as a direct, empirically measurable proxy for the convergence rate. To ensure statistical
stability, we report the average f(N) over 30 independent trials for each N ∈ [1, 100].

1Our code is available at https://github.com/Hongyu-Cheng/MLP4ScoreBnC. The experiments were
performed on a desktop computer with an Intel i7-12700F CPU (12 cores, 20 threads) and 32GB of RAM.

9

https://github.com/Hongyu-Cheng/MLP4ScoreBnC

Results. To test whether the empirical data follows the O(1/
√
N) convergence rate suggested by

our theoretical upper bound, we fit the empirical data to the curve g(N ; a, b) = a/
√
N + b. Figure 1

presents the results for both instance sets. The fitted curve closely tracks the empirical data, achieving
high coefficients of determination (R2 = 0.951 and R2 = 0.959). This provides strong evidence that
the generalization error converges in a manner consistent with our theoretical bound. Moreover, the
result suggests that the constants in the generalization bounds are of a practical magnitude for this
distribution of integer programs, bridging the gap between our theory and its application.

(a) m = 10, n = 20 instances. (b) m = 15, n = 30 instances.

Figure 1: Empirical generalization gap f(N) versus sample size N . The blue dots represent the
average gap over 30 trials, the shaded region is the 95% confidence interval, and the red line is the
fitted curve g(N ; a, b) = a/

√
N + b.

6 Conclusions and Future Work

This paper establishes a theoretical framework for analyzing the generalization guarantees of learn-
ing policies within B&C and, more generally, within sequential decision-making processes. We
demonstrate that if the scoring functions that guide the decisions exhibit a piecewise polynomial
structure with respect to their learnable parameters, then the overall performance metric (e.g., tree
size for B&C) is a piecewise constant function of these parameters. This structural insight enables us
to derive pseudo-dimension bounds and corresponding sample complexity guarantees for policies
parameterized not only by traditional linear models but also, significantly, by neural networks with
piecewise polynomial activations such as ReLU. Our results thereby help bridge the gap between
theoretical analyses, which have predominantly focused on linear policy classes, and the increasingly
prevalent use of nonlinear, data-driven heuristics in contemporary algorithm configuration, offering a
unified perspective for understanding their generalization performance.

Future investigations could build upon this work in several promising directions. One key theoretical
challenge is to explore the expressive power and limitations of such parameterized policies. In
particular, we aim to characterize their ability to approximate optimal strategies for these decision
making problems, and analyze the associated bias-variance trade-offs inherent in the learning phase.
A related issue is the critical role of the expert function or oracle that provides training signals; we
need a deeper theoretical understanding of how the choice and quality of this expert influences the
performance of the learned policy, ideally culminating in provable guarantees regarding its proximity
to true optimality. The scope of our current framework could also be expanded. For instance, adapting
the analysis to accommodate structured infinite action spaces, such as those involved in generating
cuts using CGFs [Basu et al., 2015], would enhance its practical utility for integer programming.
Moreover, enriching the underlying sequential decision model to formally include stochasticity in
state transitions would allow our sample complexity results to address a wider set of dynamic and
less predictable algorithmic environments.

Acknowledgments and Disclosure of Funding

Both authors gratefully acknowledge support from Air Force Office of Scientific Research (AFOSR)
grant FA9550-25-1-0038. The first author also acknowledges support from the Johns Hopkins
University Mathematical Institute for Data Science (MINDS) Fellowship and the Duncan Award.

10

References
Tobias Achterberg. Constraint integer programming. 2007.

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computa-
tion, 1:1–41, 2009.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations, volume 9.
Cambridge University Press, 1999.

Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Beyond the Worst
Case Analysis of Algorithms. Cambridge University Press, 2020.

Maria-Florina Balcan and Dravyansh Sharma. Learning accurate and interpretable decision trees.
arXiv preprint arXiv:2405.15911, 2024.

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
foundations of algorithm configuration for combinatorial partitioning problems. In Conference on
Learning Theory, pages 213–274. PMLR, 2017.

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Improved sample
complexity bounds for branch-and-cut. arXiv preprint arXiv:2111.11207, 2021a.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Generalization in portfolio-based
algorithm selection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 12225–12232, 2021b.

Maria-Florina Balcan, Dan Deblasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? J. ACM, 71(5), October
2024a. ISSN 0004-5411. doi: 10.1145/3676278. URL https://doi.org/10.1145/3676278.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch:
Generalization guarantees and limits of data-independent discretization. J. ACM, 71(2), April
2024b. ISSN 0004-5411. doi: 10.1145/3637840. URL https://doi.org/10.1145/3637840.

Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh Sharma. Algorithm configuration for
structured pfaffian settings. arXiv preprint arXiv:2409.04367, 2024c.

Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh Sharma. Sample complexity of data-driven
tuning of model hyperparameters in neural networks with structured parameter-dependent dual
function. arXiv preprint arXiv:2501.13734, 2025a.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Generalization guarantees for multi-
item profit maximization: Pricing, auctions, and randomized mechanisms. Operations Research,
73(2):648–663, 2025b.

Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample com-
plexity of tree search configuration: Cutting planes and beyond. Advances in Neural Information
Processing Systems, 34:4015–4027, 2021c.

Maria-Florina F Balcan, Misha Khodak, Dravyansh Sharma, and Ameet Talwalkar. Provably tuning
the ElasticNet across instances. Advances in Neural Information Processing Systems, 35:27769–
27782, 2022a.

Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural anal-
ysis of branch-and-cut and the learnability of gomory mixed integer cuts. Advances in Neural
Information Processing Systems, 35:33890–33903, 2022b.

11

https://doi.org/10.1145/3676278
https://doi.org/10.1145/3637840

Peter Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven numerical linear
algebra. In Conference on Learning Theory, pages 2013–2040. PMLR, 2022.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Amitabh Basu, Michele Conforti, and Marco Di Summa. A geometric approach to cut-generating
functions. Mathematical Programming, 151:153–189, 2015.

Hongyu Cheng and Amitabh Basu. Learning cut generating functions for integer programming.
Advances in Neural Information Processing Systems, 37:61455–61480, 2024.

Hongyu Cheng, Sammy Khalife, Barbara Fiedorowicz, and Amitabh Basu. Sample complexity of
algorithm selection using neural networks and its applications to branch-and-cut. Advances in
Neural Information Processing Systems, 37:25036–25060, 2024.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming, volume 271.
Springer, 2014.

Claudio Contardo, Andrea Lodi, and Andrea Tramontani. Cutting planes from the branch-and-bound
tree: Challenges and opportunities. INFORMS Journal on Computing, 35(1):2–4, 2023.

Gerard Cornuejols, Javier Peña, and Reha Tütüncü. Optimization methods in finance. Cambridge
University Press, 2018.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse,
Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The scip optimization
suite 7.0. 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning,
63:3–42, 2006.

Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm selection. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
123–134, 2016.

Dan Gusfield. Integer linear programming in computational and systems biology: an entry-level text
and course. Cambridge University Press, 2019.

He He, Hal Daumé, and Jason Eisner. Learning to search in branch and bound algo-
rithms. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/file/
533d190f5aa2926b2a8a30c8bea0e05d-Paper.pdf.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao,
Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming. Pattern
Recognition, 123:108353, 2022.

Xianqi Jiao, Jia Liu, and Zhiping Chen. Learning complexity of gradient descent and conjugate
gradient algorithms. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pages 17671–17679, 2025.

Michael Jünger, Thomas M Liebling, Denis Naddef, George L Nemhauser, William R Pulleyblank,
Gerhard Reinelt, Giovanni Rinaldi, and Laurence A Wolsey. 50 Years of integer programming
1958-2008: From the early years to the state-of-the-art. Springer Science & Business Media, 2009.

Aleksandr M Kazachkov, Pierre Le Bodic, and Sriram Sankaranarayanan. An abstract model for
branch and cut. Mathematical Programming, 206(1):175–202, 2024.

12

https://proceedings.neurips.cc/paper_files/paper/2014/file/533d190f5aa2926b2a8a30c8bea0e05d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/533d190f5aa2926b2a8a30c8bea0e05d-Paper.pdf

Hervé Kerivin and A Ridha Mahjoub. Design of survivable networks: A survey. Networks: An
International Journal, 46(1):1–21, 2005.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Jeff T Linderoth and Martin WP Savelsbergh. A computational study of search strategies for mixed
integer programming. INFORMS Journal on Computing, 11(2):173–187, 1999.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. The MIT Press, 2018. URL https://mitpress.ublish.com/ebook/
foundations-of-machine-learning--2-preview/7093/Cover. Second Edition.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pages 17584–17600. PMLR, 2022.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming, volume
149. Springer, 2006.

David Pollard. Convergence of Stochastic Processes. Springer, 1984.

Shinsaku Sakaue and Taihei Oki. Sample complexity of learning heuristic functions for greedy-
best-first and A* search. Advances in Neural Information Processing Systems, 35:2889–2901,
2022.

Shinsaku Sakaue and Taihei Oki. Generalization bound and learning methods for data-driven
projections in linear programming. Advances in Neural Information Processing Systems, 37:
12825–12846, 2024.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pages 9367–9376. PMLR, 2020.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

Franz Wesselmann and Uwe Stuhl. Implementing cutting plane management and selection techniques.
In Technical Report. University of Paderborn, 2012.

Kaan Yilmaz and Neil Yorke-Smith. A study of learning search approximation in mixed integer
branch and bound: Node selection in scip. Ai, 2(2):150–178, 2021.

13

https://mitpress.ublish.com/ebook/foundations-of-machine-learning--2-preview/7093/Cover
https://mitpress.ublish.com/ebook/foundations-of-machine-learning--2-preview/7093/Cover

A Auxiliary Lemmas

Lemma A.1. Let d be a positive integer, and let a1, . . . , ad, b1, . . . , bd > 0. The following inequali-
ties hold:

(1) log a1 ≤
a1
b1

+ log

(
b1
e

)
,

(2)
d∏

k=1

abkk ≤

(∑d
k=1 akbk∑d
k=1 bk

)∑d
k=1 bk

,

(3)
(
ea1
b1

)b1

<

(
ea1
b2

)b2

, if a1 ≥ b2 > b1.

Proof. (1) This follows from the observation that log(a1/b1) ≤ a1/b1 − 1.

(2) Since f(x) = log x is concave on (0,+∞), Jensen’s inequality gives

log

(
d∑

k=1

bk∑d
j=1 bj

ak

)
≥

d∑
k=1

bk∑d
j=1 bj

log ak =
log
(∏d

k=1 a
bk
k

)
∑d

j=1 bj
,

which implies that

log

(
d∏

k=1

abkk

)
≤

(
d∑

k=1

bk

)
log

(∑d
k=1 akbk∑d
k=1 bk

)
= log

(∑d
k=1 akbk∑d
k=1 bk

)∑d
k=1 bk

 .

The inequality then holds because log x is increasing on (0,+∞).

(3) It suffices to prove that g(x) = x (log(ea1)− log x) is increasing on (0, a1]. Note that its
derivative is g′(x) = (log(ea1) − log x) + x(−1/x) = log(a1) − log(x), which is positive for
x ∈ (0, a1). The result follows since g(x) = log((ea1/x)

x) and log(·) is increasing.

Lemma A.2 (Theorem 8.3 in [Anthony and Bartlett, 1999]). Let ξ1, . . . , ξN : RW → R be N
multivariate polynomials of degree at most β with N ≥W and β ∈ N. Then

|{(sgn(ξ1(w)), . . . , sgn(ξN (w))) : w ∈ RW }| ≤ 2

(
2eNβ

W

)W

, if β ≥ 1,

|{(sgn(ξ1(w)), . . . , sgn(ξN (w))) : w ∈ RW }| = 1, if β = 0.

where e is the base of the natural logarithm.

Definition A.3 (Pseudo-dimension). LetH = {h(·,w) : I → R | w ∈ W} be a class of real-valued
functions defined on an input space I, parameterized by w ∈ W . The pseudo-dimension of H,
denoted Pdim(H), is the largest integer N for which there exist instances {I1, . . . , IN} ⊆ I and real
threshold values y1, . . . , yN ∈ R such that the function classH realizes all 2N possible sign patterns
on these instances relative to the thresholds:

|{(sgn(h(I1,w)− y1), . . . , sgn(h(IN ,w)− yN)) | w ∈ W}| = 2N .

If no such finite largest N exists, then Pdim(H) = +∞.

Proof of Lemma 3.2. Consider any set of N instance-witness pairs (I1, y1), . . . , (IN , yN) ∈ I × R,
where N ∈ N+ and N ≥ γ. By the lemma’s hypothesis, the parameter spaceW can be partitioned
into K ≤ NγΓ disjoint regions Q1, . . . , QK . Within each region Qi (i ∈ [K]), for every instance Ij
(j ∈ [N]), the function h(Ij , ·) coincides with a fixed polynomial ηji(w) of degree at most β for all
w ∈ Qi. Let Π(N) be the total number of distinct sign patterns overW:

Π(N) = |{(sgn(h(I1,w)− y1), . . . , sgn(h(IN ,w)− yN)) | w ∈ W}| .

14

We can bound Π(N) by summing the number of patterns within each region:

Π(N) ≤
K∑
i=1

|{(sgn(h(I1,w)− y1), . . . , sgn(h(IN ,w)− yN)) | w ∈ Qi}|

=

K∑
i=1

|{(sgn(η1i(w)− y1), . . . , sgn(ηNi(w)− yN)) | w ∈ Qi}| . (3)

We consider two cases based on the degree β:

Case 1: β = 0. In this case, each ηji is a constant. Therefore, the sum in (3) is bounded by
K ≤ NγΓ. By Definition A.3, the pseudo-dimension Pdim(H) is the largest integer N such that
2N ≤ Π(N), and upper bounded by the largest N such that 2N ≤ NγΓ. Taking logarithms yields:

N log(2) ≤ log(NγΓ) = γ log(N) + log(Γ)

≤ γ
(

N

e(γ + 1)
+ log

e(γ + 1)

e

)
+ log(Γ)

≤ 1

e
N + γ log(γ + 1) + log Γ,

where the second inequality follows from the first inequality in Lemma A.1. Rearranging gives(
log(2)− 1

e

)
N ≤ γ log(γ + 1) + log(Γ). Since (log(2)− 1/e)−1 < 4, this implies

Pdim(H) ≤ 4(γ log(γ + 1) + log Γ).

Case 2: β ≥ 1. We consider any N ≥ W . Within each region Qi, the functions ηji(w) − yj are
polynomials of degree at most β. Applying Lemma A.2 to bound the number of sign patterns for the
N polynomials within each region Qi gives:

|{(sgn(η1i(w)− y1), . . . , sgn(ηNi(w)− yN)) | w ∈ Qi}| ≤ 2

(
2eNβ

W

)W

.

Substituting this into the sum in (3) and using K ≤ NγΓ, we get:

Π(N) ≤ K · 2
(
2eNβ

W

)W

≤ NγΓ · 2
(
2eNβ

W

)W

.

Similarly, the pseudo-dimension Pdim(H) is bounded by the largest N such that

2N ≤ 2NγΓ

(
2eNβ

W

)W

.

Taking logarithms:

N log(2) ≤ log(2) + γ log(N) + log(Γ) +W log

(
2eNβ

W

)
≤ log(2) + γ

(
N

2eγ + 1
+ log

2eγ + 1

e

)
+ log Γ +W

(
2eNβ/W

4e2β
+ log

4e2β

e

)
≤ log(2) +

1

2e
N + γ log(2γ + 1) +

1

2e
N +W log(4eβ) + log Γ

=
1

e
N + γ log(2γ + 1) +W log(4eβ) + log(2Γ).

Rearranging gives
(
log(2)− 1

e

)
N ≤ γ log(2γ + 1) +W log(4eβ) + log(2Γ). This implies

Pdim(H) ≤ 4 (γ log(2γ + 1) +W log(4eβ) + log(2Γ)) .

Combining both cases yields the claimed bound:

Pdim(H) ≤ 4 (γ log(2γ + 1) +W log(4eβ + 1) + log(2Γ)) .

15

B Proofs of the results from Section 3.1

Lemma B.1. Assuming ρj ≥ 2 for all j ∈ [d], then for all M ≥ 1 and all k ∈ [d], we have

QM,k(I) ≤ ρkρ̄M ,

where ρ̄ =
∏d

j=1 ρj .

Proof of Lemma B.1. Recall that QM,k(I) is the total number of distinct state-action pairs (s, a) of
type k ∈ [d] encountered when Algorithm 2 is executed starting from an initial state derived from I

within its first M rounds. In the first round, it is easy to verify that there are at most
∏k−1

j=1 ρj states

that are about to take a type-k action for all k ∈ [d]. Therefore, Q1,k(I) ≤ ρk ·
∏k−1

j=1 ρj =
∏k

j=1 ρj .
Thus,

QM,k(I) ≤ QM−1,k(I) + ρk ·

k−1∏
j=1

ρj

 ρ̄M−1

≤

 k∏
j=1

ρj

(M−1∑
i=0

ρ̄i

)

=

 k∏
j=1

ρj

 · (ρ̄M − 1

ρ̄− 1

)

≤

 k∏
j=1

ρj

(ρkρ̄M−1
)
,

≤ ρkρ̄M ,

where the second last inequality holds since we assume ρj ≥ 2 for all j. This establishes the claim
for round M ∈ N+ and all k ∈ [d].

Lemma B.2. Consider an arbitrary collection of N instances SN = {I1, . . . , IN}, where N ≥∑d
k=1(γk +Wk). Let Q̃M,k =

∑N
i=1QM,k(Ii) denote the total number of distinct state-action pairs

of type k ∈ [d] encountered across all instances in SN within the first M rounds of Algorithm 2.
Recall Γ̄ =

∏d
k=1 Γk. Then, the number of distinct output vectors satisfies:

r(SN) := |{(V (I1,w), . . . , V (IN ,w)) | w ∈ W}| ≤ 2dΓ̄

(
d∏

k=1

Q̃γk

M,k

)(
e
∑d

k=1 Q̃M,kρkβk
W

)W

.

Proof of Lemma B.2. The set of instances SN = {I1, . . . , IN} define at most N distinct initial states
for Algorithm 2. Our objective is to prove that the parameter spaceW =

∏d
k=1Wk can be partitioned

into at most r(SN) disjoint regions, such that within any given region, the execution sequence of
Algorithm 2 (specifically, the sequence of states visited and actions taken) remains identical for
all instances I1, . . . , IN when parameterized by any w from that region. Consequently, the final
accumulated penalty V (Ii,w) will be constant for each i ∈ [N] within such a region.

Let us fix an action type k ∈ [d]. The total number of distinct type-k state-action pairs encountered
across all N instances is bounded by the sum

∑N
i=1QM,k(Ii) = Q̃M,k. The assumption that the

function class F∗
k = {fk(s, a, ·) :Wk → R+ | (s, a) ∈ S ×Ak} has a (Γk, γk, βk)-structure allows

us to apply Definition 3.1 to the collection of functions {fk(s, a, ·)} corresponding to all distinct state-
action pairs encountered across the N instances (whose total number is at most Q̃M,k ≥ N ≥ γk
by assumption). This application partitions the parameter space Wk into a collection of at most
(Q̃M,k)

γkΓk disjoint regions. Within each such region resulting from this initial partition, every
function fk(s, a, ·) is a fixed polynomial in wk ∈ Wk of degree at most βk.

16

Now, consider any one fixed region obtained from this initial partition ofWk. For the action selection
a∗ ← argmaxa∈As

k
fk(s, a,w

k) to yield a consistent result for all wk within this fixed region and
for all relevant states s, the set of maximizers must be invariant. This invariance is ensured if the
signs of the polynomial differences ξs,ij(wk) := fk(s, a

i,wk)− fk(s, aj ,wk) are constant for all
distinct pairs ai, aj ∈ As

k and all relevant states s ∈ ∆k. Here, ∆k denotes the set of all states, across
the instances, that are encountered during the M rounds of executing Algorithm 2 and at which a
type-k action is about to be taken. Since fk(s, ai, ·) and fk(s, aj , ·) are fixed polynomials of degree
at most βk in the current region, their difference ξs,ij(wk) is also a polynomial of degree at most βk.
Consider the collection of all distinct polynomial differences {ξs,ij(·)} arising from all such states
s and all distinct pairs ai, aj ∈ As

k. For each state s, there are
(|As

k|
2

)
distinct pairs {ai, aj}. Since

|As
k| ≤ ρk, we have

(|As
k|
2

)
≤ |As

k|ρk/2. Thus, the total number of polynomial differences in the
collection is bounded by ∑

s∈∆k

(
|As

k|
2

)
≤ ρk

2

∑
s∈∆k

|As
k| ≤

Q̃M,kρk
2

.

The signs of these polynomial differences induce a refinement of the current fixed region into a finite
number of subregions. According to Lemma A.2, the number of such subregions is at most

2

(
2e(Q̃M,kρk/2)βk

Wk

)Wk

.

Within any single subregion generated by this refinement, the sign of every relevant polynomial
difference ξs,ij(wk) is constant for all wk in that subregion. This constancy of signs implies that
for any relevant state s, the outcome of the comparison between fk(s, ai,wk) and fk(s, aj ,wk)
(i.e., greater than, less than, or equal to) is fixed for all wk in the subregion. Consequently, the
set of actions achieving the maximum score, argmaxa∈As

k
fk(s, a,w

k), is invariant throughout the
subregion.

By applying this sign-based refinement to every region from the initial partition ofWk, we obtain a
final partition ofWk. The total number of regions rk(SN) in this final partition is bounded by the
product of the number of initial regions and the maximum number of subregions per initial region:

rk(SN) ≤ Q̃γk

M,kΓk · 2

(
2e(Q̃M,kρk/2)βk

Wk

)Wk

= Q̃γk

M,kΓk · 2

(
eQ̃M,kρkβk

Wk

)Wk

.

The overall parameter spaceW =
∏d

k=1Wk is then partitioned by the Cartesian product of these
final partitions for eachWk. The total number of resulting regions r(SN) inW satisfies

r(SN) ≤
d∏

k=1

rk(SN) ≤ 2d
d∏

k=1

Γk ·
d∏

k=1

Q̃γk

M,k ·
d∏

k=1

(
eQ̃M,kρkβk

Wk

)Wk

, (4)

Applying the second inequality from Lemma A.1, we bound the product term:

d∏
k=1

(
eQ̃M,kρkβk

Wk

)Wk

≤

(∑d
k=1Wk · (eQ̃M,kρkβk/Wk)∑d

k=1Wk

)∑d
k=1 Wk

=

(
e
∑d

k=1 Q̃M,kρkβk
W

)W

,

where W =
∑d

k=1Wk. Substituting this back gives the final bound on the total number of regions in
W:

r(SN) ≤
d∏

k=1

Q̃γk

M,k · 2
d

d∏
k=1

Γk ·

(
e
∑d

k=1 Q̃M,kρkβk
W

)W

. (5)

Within each of these r(SN) disjoint regions ofW , the set argmaxa∈As
k
fk(s, a,w

k) is invariant for
all relevant decision steps. Assuming a consistent tie-breaking rule (e.g., lexicographical based on

17

action representation), the specific action a∗ chosen at each step is fixed throughout the region. Since
this holds for all decision steps encountered during the execution of Algorithm 2 for any instance
Ii (i ∈ [N]), the entire sequence of states visited and actions taken is invariant for all w within the
region. As the accumulated penalty V (Ii,w) is solely determined by this fixed sequence, V (Ii,w)
must be constant as a function of w in the region. This invariance holds for all i ∈ [N]. This
completes the proof.

Proof of Theorem 3.3. In the worst case, by Lemma B.1, we have the following holds for all k ∈ [d],

Q̃M,k =

N∑
i=1

QM,k(Ii) ≤ Nρkρ̄M ,

where ρ̄ =
∏d

k=1 ρk. Plug this into the inequality (5) from Lemma B.2, we obtain that for N ≥∑d
k=1(γk +Wk):

|{(V (I1,w), . . . , V (IN ,w)) | w ∈ W}|

≤
d∏

k=1

(
Nρkρ̄

M
)γk · 2d

d∏
k=1

Γk ·

(
eNρ̄M

∑d
k=1 ρ

2
kβk

W

)W

=N γ̃ ρ̄(M+1)γ̃ · 2d
d∏

k=1

Γk ·NW ρ̄MW ·

(
e
∑d

k=1 ρ
2
kβk

W

)W

≤N γ̃+W ρ̄(M+1)(γ̃+W) · 2dΓ̄ ·

(
e
∑d

k=1 ρ
2
kβk

W

)W

,

where γ̃ =
∑d

k=1 γk, Γ̄ =
∏d

k=1 Γk, and W =
∑d

k=1Wk.

By Definition 3.1, this establishes that the function class V∗ = {V (I, ·) : W → R | I ∈ I} has a
(Γ′, γ′, 0)-structure, where γ′ = γ̃ +W =

∑d
k=1(γk +Wk), which is no larger than N as assumed

in Lemma B.2, and

Γ′ = 2dρ̄(γ̃+W)(M+1)Γ̄

(
e
∑d

k=1 ρ
2
kβk

W

)W

.

Proof of Proposition 3.4. Direct verification confirms that the linear scoring function class (FL
k)

∗ has
a (1, 0, 1)-structure. In this case, the parameters from Theorem 3.3 specialize to γ̃ =

∑d
k=1 γk = 0,

Γ̄ =
∏d

k=1 Γk = 1, and βk = 1 for all k, which implies
∑d

k=1 ρ
2
kβk =

∑d
k=1 ρ

2
k. Thus, the

associated class
(
VL
)∗

possesses a (Γ′, γ′, 0)-structure with γ′ =W and

Γ′ = 2dρ̄W (M+1)

(
e
∑d

k=1 ρ
2
k

W

)W

.

18

Applying the bound from Lemma 3.2 yields:

Pdim
(
VL
)

≤4 (W log(2W + 1) + log(2Γ′))

=4

(
W log(2W + 1) + (d+ 1) log 2 +W (M + 1)

d∑
k=1

log ρk +W log

(
e

d∑
k=1

ρ2k

)
−W logW

)

=4

(
W log

(
2W + 1

W

)
+ (d+ 1) log 2 +W (M + 1)

d∑
k=1

log ρk +W log

(
e

d∑
k=1

ρ2k

))

≤4

(
W log(3e) + 2W log

(
d∏

k=1

ρk

)
+ (d+ 1) log 2 +W (M + 1)

d∑
k=1

log ρk

)

=O

(
WM

d∑
k=1

log ρk

)
.

Proof of Lemma 3.7. Let Wi locally denote the number of parameters in the first i layers of the MLP,
and let Ui denote the number of neurons in the i-th layer, for i ∈ [L]. Following the proof technique
of Theorem 7 in [Bartlett et al., 2019], for any N inputs x1, . . . ,xN with N ≥ LW , the parameter
spaceW can be partitioned into at most

2L

(
2eNp

∑L
i=1 Ui

(
1 + (i− 1)αi−1

)∑L
i=1Wi

)∑L
i=1 Wi

≤2L
(
2eNp

∑L
i=1 UiLα

L∑L
i=1Wi

)∑L
i=1 Wi

=2L

(
2eNpULαL∑L

i=1Wi

)∑L
i=1 Wi

≤2L
(
2eNpULαL

LW

)LW

=NLW · 2LαL2W

(
2epU

W

)LW

disjoint regions, where the last inequality is due to the third inequality in Lemma A.1 and the fact
that N ≥ LW . Within each region, the function MLP(xj , ·) :W → R is a fixed polynomial in w of
degree at most LαL for every j ∈ [N].

This decomposition shows that the function class {MLP(x, ·) :W → R | x ∈ Rd} has a (Γ, γ, β)-

structure, where Γ = 2LαL2W
(

2epU
W

)LW

, γ = LW , and β = LαL.

Proof of Proposition 3.8. According to Lemma 3.7, we have that

Γk = 2Lkα
L2

kWk

k

(
2epkUk

Wk

)LkWk

, γk = LkWk, and βk = Lkα
Lk

k .

19

Let Λ =
∑d

k=1 LkWk, L̃ =
∑d

k=1 Lk. The parameters in Theorem 3.3 are γ̃ =
∑d

k=1 γk = Λ,∑d
k=1 ρ

2
kβk =

∑d
k=1 ρ

2
kLkα

Lk

k and

Γ̄ =

d∏
k=1

Γk =

d∏
k=1

2Lkα
L2

kWk

k

(
2epkUk

Wk

)LkWk

= 2L̃
d∏

k=1

α
L2

kWk

k

d∏
k=1

(
2epkUk

Wk

)LkWk

≤ 2L̃

(
d∏

k=1

α
L2

kWk

k

)(∑d
k=1 2eLkWkpkUk/Wk∑d

k=1 LkWk

)∑d
k=1 LkWk

= 2L̃

(
d∏

k=1

α
L2

kWk

k

)(∑d
k=1 2epkLkUk

Λ

)Λ

,

where the inequality follows from the second inequality in Lemma A.1. Then, we have that γ′ =
γ̃ +W = Λ+W and

log(Γ′) ≤ log

2dρ̄(Λ+W)(M+1)2L̃

(
d∏

k=1

α
L2

kWk

k

)(∑d
k=1 2epkLkUk

Λ

)Λ(
e
∑d

k=1 ρ
2
kβk

W

)W


=(d+ L̃) log 2 + (Λ +W)(M + 1) log ρ̄+

d∑
k=1

L2
kWk logαk + Λ log

(
d∑

k=1

2epkLkUk

)

− Λ log Λ +W log

(
e

d∑
k=1

ρ2kLkα
Lk

k /W

)
.

Therefore, we can apply Lemma 3.2 to obtain:
Pdim

(
VMLP)

≤4 ((Λ +W) log(2(Λ +W) + 1) + log(2Γ′))

≤4
(
Λ log

(
2(Λ +W) + 1

Λ

)
+W log

(
2(Λ +W) + 1

W

)
+ (d+ L̃+ 1) log 2

+ (Λ +W)(M + 1) log ρ̄+

d∑
k=1

L2
kWk logαk + Λ log

(
d∑

k=1

2epkLkUk

)
+ 2W log

(
eρ̄L̃

)
+W log

(
d∑

k=1

αLk

k

)

≤4

(
Λ log 5 +W log(3 + 2L̃) + (d+ L̃+ 1) log 2 + 2Λ(M + 1) log ρ̄+ Λ log

(
d∑

k=1

2epkLkUk

)

+2W log (eρ̄) + 2W log(L̃) +W log

(
d∑

k=1

αLk

k

)
+

d∑
k=1

L2
kWk logαk

)

=O

(
Λ +W log L̃+ ΛM log ρ̄+ Λ log

(
d∑

k=1

pkLkUk

)
+W log ρ̄+W log

(
d∑

k=1

αLk

k

)
+

d∑
k=1

L2
kWk logαk

)

=O

(
ΛM log ρ̄+ Λ log

(
d∑

k=1

pkU
2
k

)
+W log

(
d∑

k=1

αLk

k

)
+

d∑
k=1

L2
kWk logαk

)

=O

((
d∑

k=1

LkWk

)(
M

d∑
k=1

log ρk + log

(
d∑

k=1

pkUk

))
+W log

(
d∑

k=1

αLk

k

)
+

d∑
k=1

L2
kWk logαk

)
For ReLU MLPs, we have αk = 1 and pk = 2 for all k ∈ [d]. Thus, we can simplify the last term to
obtain:

Pdim
(
VMLP) = O((d∑

k=1

LkWk

)(
M

d∑
k=1

log ρk + log

(
d∑

k=1

Uk

)))

20

C Data-dependent sample complexity

C.1 Proof of Proposition 3.9

Lemma C.1 (Massart’s Lemma). Let X = {x1, . . . ,xr} ⊆ RN be a finite set of vectors. Then we
have

Eσ∼{−1,1}N

[
max
j∈[r]

1

N
⟨σ,xj⟩

]
≤ max

j∈[r]

∥∥∥∥∥xj − 1

r

r∑
i=1

xi

∥∥∥∥∥
2

√
2 log r

N
.

Proof of Proposition 3.9. We aim to bound the empirical Rademacher complexity R̂SN
(V) for a

sample SN = {I1, . . . , IN} ⊆ I with N ≥
∑d

k=1(γk +Wk):

R̂SN
(V) = Eσ∼{−1,1}N

[
sup
w∈W

1

N

N∑
i=1

σiV (Ii,w)

]
.

Let X = {(V (I1,w), . . . , V (IN ,w)) | w ∈ W} be the set of possible output vectors over the
sample SN . Lemma B.2 implies that the parameter spaceW can be partitioned into at most r(SN)
regions, such that within each region, the vector (V (I1,w), . . . , V (IN ,w)) is constant. Therefore,
the set X is finite, containing at most r(SN) distinct vectors, say X = {x1, . . . ,xr(SN)}. The
supremum over w ∈ W can thus be replaced by a maximum over the finite set X:

R̂SN
(V) = Eσ∼{−1,1}N

[
max

j∈[r(SN)]

1

N
⟨σ,xj⟩

]
.

Applying Massart’s Lemma (Lemma C.1), we get

R̂SN
(V) ≤ max

j∈[r(SN)]

∥∥∥∥∥∥xj − 1

r(SN)

r(SN)∑
i=1

xi

∥∥∥∥∥∥
2

√
2 log (r(SN))

N

≤ H
√
N

√
2 log (r(SN))

N

≤ H

√√√√√ 2

N
log

2dΓ̄

(
d∏

k=1

Q̃γk

M,k

)
d∏

k=1

(
eQ̃M,kρkβk

Wk

)Wk


= H

√√√√ 2

N

(
d log 2 + log Γ̄ +

d∑
k=1

γk log Q̃M,k +

d∑
k=1

Wk log

(
eQ̃M,kρkβk

Wk

))

= H

√√√√ 2

N

(
d log 2 + log Γ̄ +

d∑
k=1

(γk +Wk) log Q̃M,k +

d∑
k=1

Wk log

(
eρkβk
Wk

))

≤ H

√√√√ 2

N

(
d log 2 + log Γ̄ +

d∑
k=1

(γk +Wk) log

(
d∑

k=1

Q̃M,k

)
+W log

(
e
∑d

k=1 ρkβk
W

))

≤ H

√√√√ 2

N

(
d+

d∑
k=1

log Γk + (γ̃ +W) log

(
d∑

k=1

N∑
i=1

QM,k(Ii)

)
+W log

(
e
∑d

k=1 ρkβk
W

))
.

The second inequality follows because V (Ii,w) ∈ [0, H] implies that each coordinate of xj and
1
r

∑r
i=1 x

i lies in [0, H]. Thus, each coordinate of the difference vector xj − 1
r

∑r
i=1 x

i is bounded
in absolute value by H . Since this vector is N -dimensional, its L2 norm is therefore upper bounded
by H

√
N . The third inequality is due to (4).

21

C.2 Uniform convergence bounds from pseudo-dimension and Rademacher complexity

As discussed in Section 3.2, both pseudo-dimension and empirical Rademacher complexity yield
uniform convergence guarantees, as stated in (1) and (2), respectively. The pseudo-dimension
provides a data-independent measure of function class complexity. Its calculation (as in Theorem 3.3,
leading to Propositions 3.4 and 3.8) ultimately incorporates worst-case estimates for the number of
distinct state-action pairs, related to ρkρ̄M per instance (derived from Lemma B.1). In contrast, the
empirical Rademacher complexity bound (Proposition 3.9) directly uses the empirically observed
sum

∑d
k=1QM,k(I) for any instance I ∼ D. Since this sum can be substantially smaller than the

worst-case estimate (i.e., ρkρ̄M) in many settings, Rademacher-based bounds can be much tighter in
practice. To facilitate a concrete comparison of the uniform convergence guarantees obtained by these
two measures, we now consider the specific case where ReLU MLPs, characterized by Lk,Wk, Uk

for k ∈ [d], serve as the scoring functions. Given SN = {I1, . . . , IN}
i.i.d∼ DN , substituting the

pseudo-dimension bound for ReLU MLP policies from Proposition 3.8 into (1), we have:

sup
w∈W

∣∣∣∣∣ 1N
N∑
i=1

V (Ii,w)− EI∼D[V (Ii,w)]

∣∣∣∣∣
=O

(
H

√
Pdim(V) + log(1/δ)

N

)

=O

H
√√√√(∑d

k=1 LkWk

)(
M
∑d

k=1 log ρk + log
(∑d

k=1 Uk

))
N

+H

√
log(1/δ)

N

 .

To derive the empirical Rademacher complexity bound for policies employing d ReLU MLP scoring
functions, we apply the results of Lemma 3.7 by taking αk = 1 and pk = 2 (characteristic of
ReLU). Let Λ =

∑d
k=1 LkWk and L̃ =

∑d
k=1 Lk, and for this MLP case γ̃ = Λ based on

Lemma 3.7. Substituting these ReLU-specific structural parameters (Γk, γk, βk) into the general
empirical Rademacher complexity bound from Proposition 3.9 yields:

R̂SN
(V)

≤H

√√√√ 2

N

(
d+ L̃+ Λ log

(∑d
k=1 LkUk

Λ

)
+ (Λ +W) log

(
d∑

k=1

N∑
i=1

QM,k(Ii)

)
+W log

(
e
∑d

k=1 ρkLk

W

))

≤H

√√√√ 2

N

(
d+ L̃+ (Λ +W) log

(
d∑

k=1

N∑
i=1

QM,k(Ii)

)
+W log

(
e

d∑
k=1

ρk

))

=O

H
√√√√ 1

N

(
Λ log

(
d∑

k=1

N∑
i=1

QM,k(Ii)

)
+W log

(
d∑

k=1

ρk

))
Therefore, substituting this into (2), we obtain the following bound with probability at least 1− δ:

sup
w∈W

∣∣∣∣∣ 1N
N∑
i=1

V (Ii,w)− EI∼D[V (Ii,w)]

∣∣∣∣∣
=O

(
R̂SN

(V) +H

√
log(1/δ)

N

)

=O

H
√√√√(∑d

k=1 LkWk

)
log
(∑d

k=1

∑N
i=1QM,k(Ii)

)
+W log

(∑d
k=1 ρk

)
N

+H

√
log(1/δ)

N

 .

(6)

22

The preceding uniform convergence bounds for ReLU MLP policies highlight the key distinc-
tion when comparing their dominant terms. The pseudo-dimension based bound (1), via Proposi-
tion 3.8, is influenced by factors scaling with M

∑d
k=1 log ρk. This term reflects a dependency on

the maximum rounds M and the maximum action space sizes, characteristic of worst-case, data-
independent analysis. In contrast, the Rademacher-based bound (6) has the corresponding leading
term log

(∑d
k=1

∑N
i=1QM,k(Ii)

)
. This shows a dependency on the logarithm of the empirically

observed total number of distinct state-action pairs. As this empirical sum can be substantially smaller
than the quantities implied by the worst-case parameters M and ρ̄ in many practical scenarios, the
Rademacher-based bound may offer a tighter guarantee.

As an example, consider a set of binary integer programming problems, each with variables xj ∈
{0, 1} for j ∈ [n]. Assume that for these problems, the feasible regions of their respective LP
relaxations all have an empty intersection with the boundary of the [0, 1]n hypercube. Suppose that
only the variable branching policy is learned (i.e., d = 1, with ρ1 = n), while other decisions are
deterministic. In such a scenario, any variable branching operation can lead to the termination of
Algorithm 2 in the context of B&C by proving infeasibility for the resulting subproblems. Then, the
total number of distinct branching decision contexts (state-action pairs) for an instance Ii is on the
order of O(n). However, the pseudo-dimension based bound would still have the term M log n. This
term could be much larger than a term like log(Nn), which would be the leading term of the bound
derived from empirical Rademacher complexity in this case (since

∑N
i=1QM,1(Ii) = O(Nn)).

Consequently, the empirical Rademacher complexity’s direct dependence on
∑N

i=1QM,1(Ii) would
yield a tighter sample complexity guarantee.

In a similar vein, if a tighter universal bound onQM,k(I) for all instances I can be established—based
on specific properties or structural characteristics of problems drawn from the distribution under
study—that is better the worst possible ρkρ̄M estimate (which was used in Lemma B.1), then the
bounds in Theorem 3.3 can be improved. Consequently, this would also lead to more refined pseudo-
dimension bounds in Propositions 3.4 and 3.8. A simple bound is |S|, the total number of states in
the state space S. In certain settings, |S| may be much smaller than ρkρ̄M because the latter counts
different paths taken in the decision process which can be exponentially larger than the total number
of states. Another situation is when the termination states/conditions in the decision process imply a
smaller value for QM,k(I) for all I , compared to ρkρ̄M or |S|.

While bounds based on the empirical Rademacher complexity, R̂SN
(V), are valuable as they adapt to

the specific set of instances SN (e.g., via terms involving instance-specific quantities QM,k(Ii) for
Ii ∈ SN), this instance-specificity means their values would be hard to estimate for a different set of
instances S′

N ∼ DN (e.g., when considering a new test set). To obtain a bound that is characteristic
of the distribution D (for a given sample size N), we use the expected Rademacher complexity,
RN (V) = ESN∼DN [R̂SN

(V)]. This quantity reflects the average-case complexity over all possible
samples, depending on distribution-dependent quantities like µM,k = EI∼D[QM,k(I)], rather than
instance-specific values from a particular sample. Formally, this derivation proceeds as follows:

RN (V) = ESN∼DN

[
R̂SN

(V)
]

≤ ESN∼DN

H
√√√√ 2

N

(
d+ L̃+ (Λ +W) log

(
d∑

k=1

N∑
i=1

QM,k(Ii)

)
+W log

(
e

d∑
k=1

ρk

))
≤ H

√√√√ 2

N

(
d+ L̃+ (Λ +W)ESN∼DN

[
log

(
d∑

k=1

N∑
i=1

QM,k(Ii)

)]
+W log

(
e

d∑
k=1

ρk

))

≤ H

√√√√ 2

N

(
d+ L̃+ (Λ +W) log

(
ESN∼DN

[
d∑

k=1

N∑
i=1

QM,k(Ii)

])
+W log

(
e

d∑
k=1

ρk

))

= H

√√√√ 2

N

(
d+ L̃+ (Λ +W) log

(
N

d∑
k=1

µM,k

)
+W log

(
e

d∑
k=1

ρk

))
,

23

where the second and third inequalities utilized Jensen’s inequality. Then, standard uniform conver-
gence results (e.g., [Mohri et al., 2018, Theorem 3.3]) imply that with probability at least 1− δ:

sup
w∈W

∣∣∣∣∣ 1N
N∑
i=1

V (Ii,w)− EI∼D[V (I,w)]

∣∣∣∣∣
= O

(
RN (V) +H

√
log(1/δ)

N

)

= O

H
√√√√(∑d

k=1 LkWk

)
log
(
N
∑d

k=1 µM,k

)
+W log

(∑d
k=1 ρk

)
N

+H

√
log(1/δ)

N

 .

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state the paper’s contributions, which
focus on establishing sample complexity bounds for learning Branch-and-Cut policies
guided by piecewise polynomial scoring functions, and its intended scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This is a theoretical paper. Limitations are stated in the assumptions of
theorems, lemmas, and propositions. The future work section (Section 6) also discusses
current limitations and future extensions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

25

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions are clearly stated within the theorems, lemmas, and propo-
sitions. Complete proofs are provided in the appendix (Appendices A to C), with all
dependencies clearly referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details required to reproduce our experiment are provided in Section 5,
including the source code, model architecture, data distribution, and evaluation procedure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

26

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code to reproduce our experimental results is available at https://
github.com/Hongyu-Cheng/MLP4ScoreBnC.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting and all relevant details are described in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The plots in Figure 1 report 95% confidence intervals for the empirical
generalization gap, calculated over 30 independent trials for each sample size.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

27

https://github.com/Hongyu-Cheng/MLP4ScoreBnC
https://github.com/Hongyu-Cheng/MLP4ScoreBnC
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments were performed on a standard personal computer and did
not require significant computational resources. The entire process for the reported results
completed within a few minutes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research does not involve aspects that would conflict with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents theoretical results on the sample complexity of learning
algorithmic policies. It does not directly lead to societal impacts, so a detailed discussion is
not applicable here.

28

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is purely theoretical and does not involve the release of data or
models that would pose a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper is purely theoretical and does not use any external code, data, or
models as assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

29

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper is purely theoretical and does not introduce or release any new
assets such as datasets or code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research presented in this paper is purely theoretical and does not involve
crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper is purely theoretical and does not involve research with human
subjects, so IRB approval is not applicable.
Guidelines:

30

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This is a theoretical paper, and LLMs are not an important, original, or
non-standard component of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Prior work and our contributions
	Related empirical work
	Related theoretical work
	Our contribution

	General Framework and Sample Complexity Bounds
	Worst-case sample complexity bounds
	Data-dependent sample complexity bounds

	Application to Branch-and-Cut
	Empirical Validation
	Conclusions and Future Work
	Auxiliary Lemmas
	Proofs of the results from sec:general-framework-worst-case
	Data-dependent sample complexity
	Proof of Proposition 3.9
	Uniform convergence bounds from pseudo-dimension and Rademacher complexity

