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ABSTRACT

We consider the problem of sampling from a log-concave distribution π(θ) ∝
e−f(θ) constrained to a polytope K := {θ ∈ Rd : Aθ ≤ b}, where A ∈ Rm×d

and b ∈ Rm. The fastest-known algorithm Mangoubi & Vishnoi (2022) for the set-
ting when f is O(1)-Lipschitz or O(1)-smooth runs in roughly O(md×mdω−1)
arithmetic operations, where the mdω−1 term arises because each Markov chain
step requires computing a matrix inversion and determinant (here ω ≈ 2.37 is
the matrix multiplication constant). We present a nearly-optimal implementation
of this Markov chain with per-step complexity which is roughly the number of
non-zero entries of A while the number of Markov chain steps remains the same.
The key technical ingredients are 1) to show that the matrices that arise in this
Dikin walk change slowly, 2) to deploy efficient linear solvers that can leverage
this slow change to speed up matrix inversion by using information computed in
previous steps, and 3) to speed up the computation of the determinantal term in the
Metropolis filter step via a randomized Taylor series-based estimator. This result
directly improves the runtime for applications that involve sampling from Gibbs
distributions constrained to polytopes that arise in Bayesian statistics and private
optimization.

1 INTRODUCTION

We consider the problem of sampling from a log-concave distribution supported on a polytope:
Given a polytope K := {θ ∈ Rd : Aθ ≤ b}, where A ∈ Rm×d and b ∈ Rm, and a convex
function f : K → R, output a sample θ ∈ K from the distribution π(θ) ∝ e−f(θ). This problem
arises in many applications, including in Bayesian inference, differentially private optimization, and
integration. For instance, in Bayesian Lasso logistic regression, f(θ) =

∑n
i=1 ℓ(θ

⊤xi) where ℓ is
the logistic loss and xi are datapoints with ∥xi∥2 ≤ 1, and K = {θ ∈ Rd : ∥θ∥1 ≤ O(1)} is
an ℓ1-ball (see e.g., Tian et al. (2008); Zhang et al. (2017); Kim et al. (2018)). The closely related
optimization problem of minimizing a L-Lipschitz or β-smooth convex function f constrained to a
polytope arises in numerous contexts as well. A special case is the setting where f is linear on K,
which corresponds to linear programming, since in this case β = 0. In applications where one must
preserve privacy when minimizing f constrained to K, sampling from the exponential mechanism
of McSherry & Talwar (2007), where π(θ) ∝ e−

1
ε f(θ) on K, allows one to obtain optimal utility

bounds under ε-differential privacy (see also Bassily et al. (2014); Munoz et al. (2021); Kapralov &
Talwar (2013)). Depending on the application, the polytopeK could be e.g. the probability simplex,
hypercube, or ℓ1-ball, where m = O(d) and nnz(A) = O(d), as well as many applications where
the number of constraints defining the polytope is m ≥ d2 and nnz(A) = O(m) (see e.g. Hsu et al.
(2014), Barvinok & Rudelson (2021) for some examples). Here nnz(M) denotes the number of
non-zero entries of a matrix M .

This sampling problem, and its generalization to convexK, has been studied in multiple prior works.
One line of work Kannan & Narayanan (2012) Narayanan (2016), Lee & Vempala (2018), Cousins
& Vempala (2018), Chen et al. (2017), Jia et al. (2021) focuses on the special case (f ≡ 0). In
particular, Narayanan (2016) gives an algorithm, the Dikin walk Markov chain, which takesO(md×
mdω−1)× log(wδ ) arithmetic operations to sample within total variation (TV) error δ > 0 from the
uniform distribution on a polytope K ⊆ Rd given by m inequalities from a w-warm start. Here,
ω = 2.37 · · · is the matrix-multiplication constant and a distribution µ is w-warm for w ≥ 1 w.r.t.
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the target distribution π if µ(z)/π(z) ≤ w for every z ∈ K. Other works consider the more general
problem when π may not be the uniform distribution. Multiple works Applegate & Kannan (1991);
Frieze et al. (1994); Frieze & Kannan (1999); Lovász & Vempala (2006; 2007); Brosse et al. (2017)
have given algorithms that apply in the general setting when K is a convex body with access given
by a membership oracle (or related oracles).

Narayanan & Rakhlin (2017) give an algorithm based on the Dikin-walk Markov chain to sample
from any log-concave π ∝ e−f on K where f is L-Lipschitz or β-smooth. Building upon the work
of Narayanan & Rakhlin (2017), Mangoubi & Vishnoi (2022) presented a Dikin walk which utilizes
a “soft-threshold” regularizer, which takesO((md+dL2R2)× log(wδ )× (mdω−1+Tf )) arithmetic
operations to sample from an L-log-Lipschitz log-concave distribution π on a polytope K within
error δ > 0 in the TV distance from a w-warm start. Here Tf is the number of arithmetic operations
to compute the value of f . Specifically, each iteration in their soft-threshold Dikin walk algorithm
requires mdω−1 arithmetic operations to compute the (inverse) Hessian of the log-barrier function
for the polytope K and its determinant.

Our contributions. We show that the per-iteration cost of computing the (inverse) Hessian of the
log-barrier with soft-threshold regularizer, and its determinant, at each step of the soft-threshold
Dikin walk can be reduced from mdω−1 to nnz(A) + d2 (see Theorem 2.1). More specifically, our
version of the Dikin walk algorithm (Algorithm 1) takes Õ((md + dL2R2) log(wδ )) × (nnz(A) +

d2 + Tf ) arithmetic operations to sample within total variation error O(δ) from an L-log-Lipschitz
log-concave distribution on a polytopeK defined bym inequalities, and Õ((md+dβR2) log(wδ ))×
(nnz(A) + d2 + Tf ) arithmetic operations to sample from a β-log-smooth log-concave distribution
on K. Compared to the implementation of the soft-threshold Dikin walk in Mangoubi & Vishnoi
(2022), we obtain an improvement in the runtime for the case of L-log-Lipschitz or β-log-smooth
log-concave distributions of at least dω−2 in all cases where, e.g., Tf = Ω(d2). If one also has
nnz(A) = O(m), the improvement is dω−1 if m ≥ d2 and mdω−3 if m ≤ d2; see Table 1 for
comparison to prior works.

The main challenge in improving the per-step complexity of the soft-threshold Dikin walk is that
the current algorithm uses dense matrix multiplication to compute the Hessian of the log-barrier
function with soft-threshold regularization, as well as its determinant, which requires mdω−1 arith-
metic operations. The fact that the Hessian of the log-barrier function oftentimes changes slowly
at each step of interior point-based methods was used by Karmarkar (1984), Vaidya (1989), and
Nesterov & Nemirovsky (1991), and later by Lee & Sidford (2015), to develop faster linear solvers
for the Hessian to improve the per-iteration complexity of interior point methods for linear program-
ming. To obtain similar improvements in the computation time of the soft-threshold Dikin walk,
we need to show that the regularized barrier function proposed by Mangoubi & Vishnoi (2022)
changes slowly as well. The notion of a barrier function changing slowly with respect to the Frobe-
nius norm proposed in Laddha et al. (2020) suffices, but we have to show that this notion holds for
the soft-threshold regularized log-barrier function. To improve the per-iteration complexity of the
soft-threshold Dikin walk, we show how to use the efficient inverse maintenance algorithm of Lee
& Sidford (2015) to maintain a linear system solver for the Hessian of the log-barrier function with
soft-threshold regularizer, and then show how to use this solver to efficiently compute a random es-
timate whose expectation is the Hessian determinant in nnz(A) + d2 arithmetic operations. This is
accomplished by first computing a randomized estimate for the log-determinant of the Hessian, and
then converting this estimate into a randomized estimate for a “smoothed” Metropolis acceptance
probability via a piecewise-polynomial series expansion for the acceptance probability. We present
a detailed overview of the techniques in Section 4.

2 MAIN RESULT

Theorem 2.1 (Main result) There exists an algorithm (Algorithm 1) which, given the following
inputs, 1) δ,R > 0 and either L > 0 or β > 0, 2) A ∈ Rm×d, b ∈ Rm that define a polytope
K := {θ ∈ Rd : Aθ ≤ b} such that K is contained in a ball of radius R and has nonempty interior,
3) an oracle for the value of a convex function f : K → R, where f is either L-Lipschitz or β-
smooth, and 4) an initial point sampled from a distribution supported on K which is w-warm with
respect to π ∝ e−f for some w > 0, outputs a point from a distribution µ where ∥µ − π∥TV ≤ δ.
This algorithm takes at most
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• Õ((md+dL2R2) log(wδ ))×(nnz(A)+d2+Tf ) arithmetic operations in the setting where
f is L-Lipschitz,

• or Õ((md + dβR2) log(wδ )) × (nnz(A) + d2 + Tf ) arithmetic operations in the setting
where f is β-smooth,

where Tf is the number of arithmetic operations to evaluate f .

Theorem 2.1 improves by a factor of mdω−1+Tf

max(nnz(A),d2)+Tf
arithmetic operations on the previous bound

of Mangoubi & Vishnoi (2022) of Õ((md + dL2R2) × (mdω−1 + Tf )) arithmetic operations for
sampling from a distribution ∝ e−f where f is L-Lipschitz from a w-warm start. Here Õ hides
logarithmic factors in δ, w, L,R, d. When f is instead β-smooth their bound is Õ((md+ dβR2)×
(mdω−1 + Tf ), and the improvement is the same. When Tf ≤ O(d2) (as may be the case when
evaluating f requires computing inner products with n = d datapoints in Rd), the improvement is (at
least) dω−2. If one also has that A is O(m)-sparse, (nnz(A) = O(m), as is the case in applications
where each constraint inequality involves O(1) variables), the improvement is dω−1 in the regime
m ≥ Ω(d2) and mdω−3 if m ≤ O(d2).

Theorem 2.1 also improves on the bound of (Lovász & Vempala (2006); Theorem 1.1) of
Õ(d2(R/r)2)(md + Tf ) arithmetic operations by min((Rr )

2, d
r2L2 ) when e.g. Tf = Ω(d2) and

m = O(d). In the setting where f is β-smooth, the improvement is min((Rr )
2, d

r2β ).

In the Bayesian Lasso logistic regression example considered in Mangoubi & Vishnoi (2022), our
algorithm takes Õ(d4) operations from a w-warm start as f is β-smooth and L-Lipschitz, with
β = L = n = m = d, R = 1, r = 1/

√
d, nnz(A) = O(d). This improves by dω−2 on their bound

of Õ(d2+ω), and by d on the bound of Õ(d5) implied by Lovász & Vempala (2006).

Theorem 2.1 also improves upon the running time for (ε, 0)-differentially private low-rank approx-
imation by a factor of dω−2 on the bound of O(d2+ω log(wδ )) operations of Mangoubi & Vishnoi
(2022). Moreover, it improves by a factor of mdω−1

nnz(A)+d2 on their bound of O((md + dn2ε2)(εn +

dlog(nRd/(rε))(mdω−1 + Tf )) arithmetic operations for the problem of finding a minimizer θ̂ ∈ K
of a convex empirical risk function f(θ, x) =

∑n
i=1 ℓi(θ, xi) under (ε, 0)-differential privacy, when

the losses ℓi(·, x) are L̂-Lipschitz, for any L̂ > 0 and dataset x ∈ Dn. See the details in their paper.

Algorithm
Arithmetic

operations per
iteration

Iterations for
L-Lipschitz f

Iterations for
�-smooth f

Arithmetic operations if
m, nnz(A) = O(d2),

L, r = O(1), R = O(d),
Tf = O(d2)

Arithmetic operations if
m = O(d), r = O( 1p

d
)

� = L = O(d),
R = O(1), Tf = O(d2)

Proximal Langevin MC
(Brosse et al. (2017)) O(md!�1) + Trf Õ(d5��6L2(R

r )4) — Õ(d10+!��6) Õ(d9+!��6)

Hit-and-run
(Lovász & Vempala (2006)) O(md) + Tf Õ(d2(R

r )2) same Õ(d7) Õ(d5)

Dikin Walk of
Narayanan & Rakhlin (2017) O(md!�1) + Tf Õ(d5+d3L2R2) Õ(d5+d3�R2) Õ(d6+!) Õ(d5+!)

Soft-Threshold Dikin Walk
(Mangoubi & Vishnoi (2022)) O(md!�1) + Tf Õ(md+dL2R2) Õ(md+d�R2) Õ(d5+!) Õ(d2+!)

This paper O(nnz(A)+d2)+Tf Õ(md+dL2R2) Õ(md+d�R2) Õ(d6) Õ(d4)
wwwwwwwwww
wwwwwwww

Table 1: Number of iterations (and arithmetic operations per-iteration) of different algorithms which imply bounds for sampling within TV error O(�)

from a logconcave ⇡ / e�f on a polytope K when f is L-Lipschtiz or �-smooth, from a w-warm start. Tf and Trf are, respectively, the
number of operations to compute f orrf . The Õ notation hides logarithmic factors of d, �, r, R, w. The fifth column gives runtimes when K is
a polytope with m, nnz(A) = O(d2) and R = O(d) that contains the unit ball (and is thus not well-rounded), and f is O(1)-Lipschitz. The sixth
column corresponds to sampling a Bayesian Lasso logistic regression posterior distribution with O(d) datapoints, where K is the unit `1-ball.

1

3 ALGORITHM

For input θ ∈ Int(K), let S(θ) := Diag(Aθ − b), and Φ(θ) := α−1Â⊤Ŝ(θ)2Â, where

Ŝ(θ) :=

(
S(θ) 0

0 α
1
2 η−

1
2 Id

)
and Â :=

(
A
Id.

)
For input W ∈ Rd×d and t ∈ [0, 1], let

Γ(W, t) := Im+d + t(W − Im+d). For a rectangular matrix M , a vector v ∈ Rd, a diagonal matrix
D, and a set of algorithmic parameters P , Solve(v,D,M ;P ) outputs a vector w which is (ideally)
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a solution to the system of linear equations M⊤DMw = v. Given an initial diagonal matrix D0,
Initialize(D0,M) generates parameters P corresponding to D0. Given a new diagonal matrix D,
and a set of parameters P , Update(D,M ;P ) updates the parameters P and outputs some new set
of parameters P ′ corresponding to the new diagonal matrix D. For any S ⊂ Rd denote the interior
of S by Int(S) := {θ ∈ S : B(θ, t) ⊆ S for some t > 0}.

Algorithm 1: Fast implementation of soft-threshold Dikin walk
Input: m, d ∈ N, A ∈ Rm×d, b ∈ Rm, which define the polytope K := {θ ∈ Rd : Aθ ≤ b}
Input: Oracle returning the value of a convex function f : K → R. Initial point θ0 ∈ Int(K)

1 Hyperparameters: α > 0; η > 0; T ∈ N;N ∈ N; γ > 0

2 Set θ ← θ0, Â =

(
A
Id,

)
, a = log det(Â⊤Â) , P = Initialize(Ŝ(θ)2, Â) , Q0 = Initialize(Id, Â)

3 for i = 1, . . . , T do
4 Sample a point ξ ∼ N(0, Id)

5 Set u = Â⊤Ŝ(θ)ξ

6 Set z = α− 1
2Solve(u, Ŝ(θ)2, Â;P ) {Computes Gaussian z with covariance α−1Â⊤Ŝ(θ)2Â}

7 if z ∈ Int(K) then
8 Set W = Ŝ(θ)−2Ŝ(z)
9 for j = 1, . . . ,N do

10 Sample v ∼ N(0, Id)
11 Sample t from the uniform distribution on [0, 1].
12 Set Q = Update(Γ(W, t), Â ; Q0)

13 Set w = Â⊤(W − Id)Âv

14 Set Yj = v⊤Solve(w, Γ(W, t), Â ; Q) + a
15 {Computes a random variable Yj with expectation log detΦ(z)− log detΦ(θ)}
16 end
17 if 1

4
≤ Y1 < 2 log 1

γ
then

18 Set X = 1 + 1
2

∑2N−1
k=1

∑N
ℓ=0

(
(−1)k 1

ℓ!

∏ℓ
j=1(−2kYj)

)
19 if Y1 < 1

4
then

20 Set c0, . . . , cN to be the firstN coefficients of the Taylor expansion of 1
1+e−t at 0

21 Set X =
∑N

ℓ=0

(
cℓ

∏ℓ
j=1(Yj)

)
22 if Y1 ≥ 2 log( 1

γ
) then

23 Set X = 1
24 end
25 Accept θ ← z with probability 1

2
min(max(X, 0), 1)min

(
e−f(z)

e−f(θ) e
∥z−θ∥2Φ(θ)−∥θ−z∥2Φ(z) , 1

)
26 Set P = Update(Ŝ(θ)2, Â ; P )
27 else
28 Reject z
29 end
30 end
31 Output: θ

In Theorem 1, we set γ = δ 1
1020(md+L2R2) log

1.02(w/δ). We set the step size hyperparameters

α = 1/(105d) log−1 (1/γ) and η = 1/(104dL2) if f is L-Lipschitz, and the number of steps to be
T = 109

(
2mα−1 + η−1R2

)
× log(w/δ) × log1.01(109

(
2mα−1 + η−1R2

)
× log(w/δ)) When f

is β-smooth (but not necessarily Lipschitz), we instead set γ = δ 1
1020(md+βR2) log

1.01(w/δ), and

α = 1/(105d) log−1 (1/γ) and η = 1/(104dβ). Thus, in either case, we have γ ≤ δ/(1000T ). Finally, we
set the parameter N , the number of terms in the Taylor expansions, to be N = 10 log( 1γ ).

4 OVERVIEW OF PROOF OF MAIN RESULT

We give an overview of the proof of Theorem 2.1. Suppose we are given A ∈ Rm×d, b ∈ Rm

that define a polytope K := {θ ∈ Rd : Aθ ≤ b} with non-empty interior and contained in a ball
of radius R > 0, and an oracle for the value of a convex function f : K → R, where f is either
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L-Lipschitz or β-smooth. Our goal is to sample from π ∝ e−f on K within any TV error δ > 0
in a number of arithmetic operations which improves on the best previous runtime for this problem
(when, e.g., L, β,R = O(1)), which was given for the soft-threshold Dikin walk Markov chain. We
do this by showing how to design an algorithm to implement the soft-threshold Dikin walk Markov
chain with faster per-iteration complexity.

Dikin walk in the special case f ≡ 0. First, consider the setting where one wishes to sample from
the uniform distribution (f ≡ 0) on a polytope K, where K is contained in a ball of radius R > 0
and contains a ball of smaller radius r > 0.

Kannan & Narayanan (2012) give a Markov chain-based algorithm, the Dikin walk, which uses
the log-barrier function from interior point methods to take large steps while still remaining inside
the polytope K. The log-barrier φ(θ) = −∑m

j=1 log(bj − a⊤j θ) for the polytope K defines a
Riemannian metric with associated norm ∥θ∥H(θ) :=

√
u⊤H(θ)u, where H(θ) := ∇2φ(θ) =∑m

j=1

aja
⊤
j

(bj−a⊤
j θ)2

is the Hessian of the log-barrier function. At any point θ ∈ Int(K), the unit ball

with respect to this norm, E(θ) := {z ∈ Rd : ∥z − θ∥H(θ) ≤ 1}, referred to as the Dikin ellipsoid,
is contained in K. To sample from K, from any point θ ∈ Int(K), the Dikin walk proposes steps
z from a Gaussian with covariance αH−1(θ), where α > 0 is a hyperparameter. If one chooses
α ≤ O( 1d ), this Gaussian concentrates inside E(θ) ⊆ K, allowing the Markov chain to propose
steps which remain inside K w.h.p.

To ensure the stationary distribution of the Dikin walk is the uniform distribution on K, if
z ∈ Int(K), the Markov chain accepts each proposed step z with probability determined by the

Metropolis acceptance rule min(p(z→θ)
p(θ→z) , 1) =

√
det(H(θ))√
det(H(z))

e∥θ−z∥2
H(θ)−∥z−θ∥2

H(z) , where p(θ →

z) ∝ (detH(θ))−
1
2 e−∥θ−z∥2

H(θ) denotes the probability (density) that the Markov chain at θ pro-
poses an update to the point z.

If one chooses α too large, each step of the Markov chain will be rejected with high probability.
Thus, ideally, one would like to choose α as large as possible such that the proposed steps are ac-
cepted with probability Ω(1). To bound the terms

√
det(H(z))/

√
det(H(θ)) and e∥z−θ∥2

H(z)−∥θ−z∥2
H(θ) ,

Kannan & Narayanan (2012) use the fact that the Hessian of the log-barrier changes slowly w.r.t.
the local norm ∥ · ∥H(θ). More specifically, to bound the change in the determinantal term, they use
the following property of the log-barrier, discovered by Vaidya & Atkinson (1993), which says its
log-determinant V (θ) := log detH(θ) satisfies

(∇V (θ))⊤[H(θ)]−1∇V (θ) ≤ O(d) ∀θ ∈ Int(K).

Since the proposed update (z− θ) is Gaussian with covariance αH−1(θ), if one chooses α = 1
d , by

standard Gaussian concentration inequalities (θ−z)⊤∇V (θ) ≤ O(1) w.h.p. Thus, log det(H(z))−
log det(H(θ)) = V (z)− V (θ) = Ω(1), and

√
det(H(z))/

√
det(H(θ)) = Ω(1) w.h.p.

To bound the total variation distance between the target (uniform) distribution π and the distribution
νT of the Markov chain after T steps, Kannan & Narayanan (2012) use an isoperimetric inequality
of Lovász & Vempala (2003) which is defined in terms of the Hilbert distance on the polytope K.
For any distinct points u, v ∈ Int(K) the Hilbert distance is

σ(u, v) := ∥u−v∥2×∥p−q∥2

∥p−u∥2×∥v−q∥2
,

where p, q are endpoints of the chord through K passing through u, v in the order p, u, v, q.

To apply this isoperimetric inequality to the Dikin walk, which proposes steps of size roughly O(α)
w.r.t. the local norm ∥ · ∥α−1H(θ), they show that the Hilbert distance satisfies

σ2(u, v) ≥ 1
m

∑m
i=1

(a⊤
i (u−v))2

(a⊤
i u−bi)2

≥ 1
mα−1 ∥u− v∥2α−1H(θ). (1)

They then use the isoperimetric inequality w.r.t. the Hilbert distance together with standard conduc-
tance arguments for bounding the mixing time of Markov chains (see e.g. Lovász & Simonovits
(1993)), to show that, if the Markov chain is initialized with a w-warm start, after i steps, the total
variation distance to the stationary distribution π satisfies

∥νi − π∥TV ≤ O(
√
w(1−mα−1)i) ∀i ∈ N,
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provided that each step proposed by the Markov chain is accepted with probability Ω(1). For α =
O( 1d ), after T = O(mα−1 log(wδ )) = O(md log(wδ )) steps, ∥νT − π∥TV ≤ δ.

At each step in their algorithm they compute the proposed update z = α− 1
2

√
H−1(θ)ξ where

ξ ∼ N(0, Id), and the terms
√

det(H(z))/
√

det(H(θ)) and e∥z−θ∥2
H(z)−∥θ−z∥2

H(θ) in the acceptance
probability. Writing H(θ) = A⊤S(θ)−2A where S(θ) = Diag(Aθ − b), these computations can
be done in O(mdω−1) arithmetic operations using dense matrix multiplication. Their algorithm’s
runtime is then T ×mdω−1 = O(md×mdω−1 × log(wδ )) arithmetic operations.

Dikin walks for sampling from Lipschitz/smooth log-concave distributions. One can extend the
Dikin walk to sample from more general log-concave functions on a polytope K, by introducing
a term ef(θ)−f(z) to the Metropolis acceptance probability. This causes the Markov chain to have
stationary distribution π(θ) ∝ e−f(θ), since for every θ, z ∈ Int(K),

min
(

p(z→θ)
p(θ→z)e

f(θ)−f(z), 1
)
p(θ → z)π(θ) = min

(
p(θ→z)
p(z→θ)e

f(z)−f(θ), 1
)
p(z → θ)π(z).

However, the term ef(θ)−f(z) can become exponentially small with the distance ∥z − θ∥2 (and thus
with the step-size α) even if, e.g., f is L-Lipschitz. Thus, to obtain a runtime polynomial in L, d,
one may need to re-scale the covariance αH−1(θ) to ensure ef(θ)−f(z) ≥ Ω(1).

One approach, taken by Mangoubi & Vishnoi (2022), is to propose steps with (inverse) covariance
matrix equal to a regularized log-barrier Hessian, Φ(θ) = α−1H(θ) + η−1Id, for some η > 0.
Setting η = 1

dL2 ensures (by standard Gaussian concentration inequalities) that the proposed step z
satisfies ∥z − θ∥2 ≤ O(1) w.h.p. and hence ef(θ)−f(z) = Ω(1) w.h.p.

To bound the total variation distance, in place of (1), they show a lower bound on the Hilbert distance
w.r.t. the local norm ∥ · ∥Φ(u),

σ2(u, v) ≥ 1
2
∥u−v∥2

2

R2 + 1
2m

∑m
i=1

(a⊤
i (u−v))2

(a⊤
i u−bi)2

≥ 1
2mα−1+2η−1R2 ∥u− v∥2Φ(u).

This leads to a bound of O(mα−1 + η−1R2) log(wδ )) = O(md + L2R2) log(wδ )) on the number
of steps until the Markov chain is within O(δ) of π in the total variation distance. In addition to the
operations required in the special case when f ≡ 0, each step requires calling the oracle for f which
takes Tf arithmetic operations. Thus, they obtain a runtime of O((md+L2R2)× (mdω−1 +Tf )×
log(wδ )) arithmetic operations to sample from π ∝ e−f .

Faster implementation of matrix operations when f ≡ 0. When f ≡ 0, one can use that the
log-barrier Hessian H(θ) changes slowly at each step of the Dikin walk to compute the proposed
step, and determinantal terms in the acceptance probability, more efficiently.

The fact that the Hessian of the log-barrier function oftentimes changes slowly at each step of interior
point-based methods was used by Karmarkar (1984), and later by Vaidya (1989), and Nesterov &
Nemirovsky (1991) when developing faster linear solvers for H(θ) to use in interior point methods
for linear programming. Specifically, they noticed for many interior point methods, which take
steps θ1, θ2, . . . ∈ Int(K), the update to H(θi) = A⊤DiA at each iteration i, where Di := S(θi),
is (nearly) low-rank, since in these interior point methods most of the entries of the diagonal matrix
D−1

i+1Di are very small at each step i. This allowed them to use the Woodbury matrix formula
to compute a low-rank update for the inverse Hessian H(θi), reducing the per-step complexity of
maintaining a linear solver for H(θi) at each iteration i. Specifically, the Woodbury matrix formula
says

(M + UCV )−1 =M−1 −M−1U(C−1 + VM−1U)−1V −1M), (2)

for any M ∈ Rd×d, U ∈ Rd×k, V ∈ Rk×d, C ∈ Rk×k, where k may be much smaller than d.

Lee & Sidford (2015) obtain an improved algorithm for maintaining linear solvers for sequences
of matrices {A⊤DiA}i=1,2,... under the assumption that Di changes slowly at each iteration i with
respect a weighted Frobenius norm, ∥(Di+1 − Di)D

−1
i ∥F ≤ O(1). This assumption is weaker

than requiring most of the entries to be nearly constant at each step, as it only requires a (weighted)
sum-of-squares of the change in the entries of Di to be O(1). To obtain their method, they sample
diagonal entries of Di with probability proportional to the (change in) the entries’ leverage scores,
a quantity used to measure the importance of the rows of a matrix (for a matrix M the i’th leverage
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score is defined as [M(M⊤M)−1M⊤]ii)). Using these subsampled diagonal entries they show how
to obtain a spectral sparsifier for the updates A⊤(Di+1 − Di)A, allowing them to make low-rank
updates to the matrix A⊤DiA at each iteration. Specifically, for any sequence of diagonal matrices
D1, D2, . . . satisfying

∥(Di+1 −Di)D
−1
i ∥F ≤ O(1) (3)

at each i ∈ N, they show that they can maintain a O(nnz(A) + d2)-time linear system solver for the
matrices A⊤DiA, at a cost of O(nnz(A) + d2) arithmetic operations per-iteration. (plus an initial
cost of O(nnz(A) + dω) to initialize their algorithm).

Laddha et al. (2020) apply the fast linear solver of Lee & Sidford (2015) to the Dikin walk in the
special case where f ≡ 0. Specifically, they show the sequence of log-barrier Hessians A⊤DiA
where Di = S2(θi), also satisfies (3) when θi are the steps of the Dikin walk. They then use the
fast linear solver of Lee & Sidford (2015) to evaluate the matrix operations (A⊤S(θi)−2A)−

1
2 ξ and

compute an estimate for det(A⊤S(θi)−2A) at each iteration. This gives a per-iteration complexity
of nnz(A) + d2 for the Dikin walk in the special case f ≡ 0.

Our work. To obtain a faster implementation of the (soft-threshold) Dikin walk in the general
setting where f is Lipschitz or smooth on K, we would ideally like to apply the efficient inverse
maintenance algorithm of Lee & Sidford (2015) to obtain a fast linear solver for the log-barrier
Hessian with soft-threshold regularizer Φ(θ) = α−1A⊤S(θ)−2A + ηId. Specifically, writing

Φ(θ) = α−1Â⊤Ŝ(θ)2Â where Â :=

(
A
Id,

)
and Ŝ(θ) :=

(
S(θ) 0

0 α
1
2 η−

1
2 Id

)
, we would like

to obtain a fast linear solver for the sequence of matrices Φ(θ1),Φ(θ2), . . ., where θ1, θ2, · · · are
the steps of the soft-threshold Dikin walk, and use it to improve the per-iteration complexity of the
walk. This poses two challenges:

1. To obtain anO(nnz(A)+d2)-time linear solver with the efficient inverse maintenance algorithm,
we need to show that Φ(θi) = α−1Â⊤Ŝ(θi)2Â does not change too quickly at each step i of the
soft-threshold Dikin walk. Specifically, we need to show, at each i w.h.p.,

∥(Ŝ2(θi+1)− Ŝ2(θi+1))Ŝ
−2(θi+1)∥F ≤ O(1). (4)

Once we have a linear solver for Φ(θ), this immediately gives us a way to compute the proposed
updates of the Markov chain by solving a system of linear equations (see e.g. Section 2.1.1 of
Kannan & Narayanan (2012)).

2. We also need to evaluate the terms det(Φ(θ)) in the acceptance probability. However, access to a
linear solver for Φ(θ) does not directly give a way to compute its determinant.

Bounding the change in the soft-threshold log-barrier Hessian. From concentration inequalities
for multivariate Gaussian distributions, one can show that, with high probability, the Dikin walk
proposes updates z ← θ which have length O(

√
d) in the local norm: ∥z − θ∥Φ(θ) = O(

√
d)

w.h.p. To bound the change in the soft-threshold-regularized log-barrier Hessian matrix Φ(θ) at
each step of the walk, we would ideally like to show that the Frobenius norm of the derivative of
this matrix changes slowly with respect to the local norm ∥ · ∥Φ(θ). The soft-threshold-regularized
log-barrier function Φ satisfies the self-concordance property DΦ(θ)[h] ⪯ 2

√
v⊤Φ(θ)vΦ(θ) for

any θ, z ∈ Int(K), and v ∈ Rd, where DM(θ)[h] denotes the derivative of a matrix-valued function
M(θ) in the direction h. However, the self-concordance property does not directly imply that (4)
holds, as (4) contains a bound in the Frobenius norm. To overcome this issue, we show that (a
rescaling of) the regularized log-barrier Hessian, Ψ(θ) := α

1
2Φ(θ) = ∇2φ(θ) + α

1
2 η−

1
2 Id satisfies

the following strengthening of the self-concordance property w.r.t. the Frobenius norm:

∥(Ψ(z)−Ψ(θ))−1Ψ−1(θ)∥F ≤ ∥θ−z∥Ψ(θ)

(1−∥θ−z∥Ψ(θ))2
∀θ, z ∈ Int(K). (5)

Laddha et al. (2020) show that (5) holds in the special case when Φ is replaced with the HessianH(θ)
of the log-barrier function without a regularizer. However, the soft-threshold log-barrier Hessian, Φ,
is not the Hessian of a log-barrier function for any set of equations defining the polytope K. To get
around this problem, we instead use the fact (from Mangoubi & Vishnoi (2022)) that Φ is the limit
of a sequence of matrices {Hj(θ)}∞j=1 where each Hj is the Hessian of a log-barrier function for
an increasing set of (redundant) inequalities defining the polytope K. Combining these two facts
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allows us to show Equation (5) holds for the Hessian Φ of the log-barrier function with soft-threshold
regularizer (Lemma B.1). Next, we apply (5) to show that (Lemma B.2),

∥(Ŝ2(z)− Ŝ2(θ))Ŝ−2(θ)∥F ≤ ∥(Ψ(z)−Ψ(θ))−1Ψ−1(θ)∥F ≤ α− 1
2 ∥θ−z∥Φ(θ)

(1−α− 1
2 ∥θ−z∥Φ(θ))2

≤ O(α− 1
2

√
d),

w.h.p. As the step size α = Θ(1/d), we get that ∥(Ŝ2(z)− Ŝ2(θ))Ŝ−2(θ)∥F ≤ O(1). w.h.p.

Computing a randomized estimate for the determinantal term. To compute an estimate for the
determinantal term in the Metropolis acceptance rule, we use a well-known method for estimating
matrix-valued functions using polynomials (see e.g. Barvinok (2017) Rudelson & Zeitouni (2016)).
A related approach to the one presented here for computing the determinant in the special case when
f ≡ 0 was given in Laddha et al. (2020), however it contains a number of gaps in the proof and
algorithm. We discuss these gaps, and the differences between their approach and the one given
here, in Section C.

Towards this, one can apply the linear solver for Φ(θ) to compute a random estimate Y with
mean log det(Φ(θ)) − log det(Φ(z)): Y = v⊤(Â⊤(tŜ(θ)−2 + (1 − t)Im+d)Â)

−1Â⊤(Ŝ(θ)−2 −
Im+d)Âv + log det Â⊤Â, Where v ∼ N(0, Id) and t ∼ uniform(0, 1). While this provides an
estimate for the log-determinant of Φ, it does not give an estimate with mean equal to a Metropolis
acceptance rule for π.

We first replace the Metropolis acceptance rule min(p(z→θ)
p(θ→z)e

f(z)−f(θ), 1) =

min

(√
det(Φ(z))√
det(Φ(θ))

e∥z−θ∥2
Φ(θ)−∥θ−z∥2

Φ(z)ef(θ)−f(z), 1

)
with a (different) Metropolis acceptance

rule, a(θ, z) :=
(
1 + (det(Φ(z))

det(Φ(θ)) )
− 1

2

)−1

× min
(

e−f(z)

e−f(θ) × e∥z−θ∥2
Φ(θ)−∥θ−z∥2

Φ(z) , 1
)

, whose
determinantal term is a smooth function of det(Φ(θ)) and det(Φ(z)):(

1 + (det(Φ(z))
det(Φ(θ)) )

− 1
2

)−1

= sigmoid
(
1
2 log det(Φ(z))− 1

2 log det(Φ(θ))
)
, (6)

where sigmoid(t) := 1
1+e−t . Since a(θ, z)p(θ → z)π(θ) = a(z, θ)p(z → θ)π(z), this acceptance

rule preserves the target stationary distribution π(θ) ∝ e−f(θ) of the Markov chain.

Next, we would ideally like to plug i.i.d. samples Y1, · · · , Yn of mean log detΦ(θ) − log detΦ(z)
into a Taylor series for sigmoid(t) to obtain an estimate with mean equal to the l.h.s. of (6). Unfor-
tunately, the Taylor series of sigmoid(t) at 0 has finite region of convergence (−π, π).
While one can use convexity of the function log det(Φ(θ)), together with a bound on the gradient
of log det(Φ(θ)), to show that 1

2 log det(Φ(z))− 1
2 log det(Φ(θ)) > −π w.h.p., one may have that

1
2 log det(Φ(z))− 1

2 log det(Φ(θ)) > π with probability Ω(1).

To get around this problem, we use two different series expansions for sigmoid(t) with overlapping
regions of convergence:

1. a Taylor series expansion centered at 0 with region of convergence (−π, π),
2. a series expansion “at +∞” with region of convergence (0,+∞), which is a polynomial in
e−t: sigmoid(t) =

∑∞
k=0 cke

−kt.

To determine which series expansion to use at each step of the Dikin walk, we show that each random
estimate Y concentrates in the ball of radius 1

8 about its mean E[Y ] = log det(Φ(z))−log det(Φ(θ))
w.h.p. (Lemma B.3). As the regions of convergence of the two series expansions have intersection
(0, π), this allows us to use the value of the random estimate Y to select a choice of series expansion
that, with high probability, contains E[Y ] = log det(Φ(z))− log det(Φ(θ)).

Bounding the number of arithmetic operations. We have already shown that computing the
proposed update z (Line 6 of Algorithm 1) and computing each random estimate Yj for the log-
determinant (Line 14) can be done in O(nnz(A) + d2) arithmetic operations at each step of the
Markov chain by using the efficient inverse maintenance linear solver.

As both series expansions converge exponentially fast in the number of terms, only log(1/δ)
terms in the series expansion are needed to compute an estimate X (Lines 18 and 21) with

8
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mean within error O(δ) of the determinantal term in the Metropolis acceptance probability∣∣∣∣E[X]−
(
1 + (det(Φ(z))

det(Φ(θ)) )
− 1

2

)−1
∣∣∣∣ ≤ O(δ). Thus, the number of calls to the linear solver at each

Markov chain step is O(log(1/δ)), taking O((nnz(A) + d2) log(1/δ) arithmetic operations.

Computing the terms f(θ) and f(z) in the Metropolis acceptance rule requires two calls to the oracle
for f , which takes O(Tf ) arithmetic operations, at each step of the Markov chain. The other steps
in the Algorithm take no more time to compute. In particular, while several “initialization” steps for
the linear solver and other computations (Lines 4-6) require O(mdω−1) arithmetic operations, these
computations are not repeated at each step of the Markov chain, and thus do not change the overall
runtime.

Since the Markov chain is run for roughly T = O((md + L2R2) log(w/δ) steps, the runtime is
roughly O(T ((nnz(A) + d2) log(1/δ + Tf )) = O((md+ L2R2)(nnz(A) + d2 + Tf ) log

2(w/δ).

Bounding the total variation distance. Mangoubi & Vishnoi (2022) show that the soft-threshold
Dikin walk outputs a point with distribution µT within TV distance O(δ) of the target distribution π
after roughly T = O((md + L2R2) log(w/δ) steps; the same TV bound holds if one replaces their
acceptance rule with the smooth acceptance rule we use.

Our bound on the TV distance follows directly from their bound, with some minor adjustments.
This is because, while we give a more efficient algorithm to implement the soft-threshold Dikin walk
Markov chain, the Markov chain itself is (approximately) the same as the Markov chain considered
in their work. The main difference (aside from our use of a smoothed Metropolis acceptance rule) is
that the (mean of) the randomized estimate we compute for the acceptance probability is accurate to
within some small error O(δ), since we only compute a finite number of terms in the Taylor series.

Thus, we can define a coupling between the Markov chain θ1, θ2, . . . , θT generated by our algorithm
and the Markov chain Y1,Y2, . . .YT defined in their paper (with smoothed acceptance rule), such
that θi = Yi at every i ∈ {1, · · · , T} with probability ≥ 1 − Tδ. This implies that the distribution
µ of the last step of our Markov chain is within total variation distance O(Tδ) of the distribution νT
of YT . Thus, ∥µ − π∥TV ≤ ∥µ − νT ∥TV + ∥νT − π∥TV ≤ O(Tδ) + O(δ). Pluggining in δ/T in
place of δ, we get ∥µ− π∥TV ≤ δ.

5 CONCLUSION

Our main result improves on the runtime bounds of a line of previous works for the problem of
sampling from a log-Lipschitz or log-smooth log-concave distribution on a polytope (Table 1). Key
to our result is showing that the regularized log-barrier Hessian changes slowly at each step of
the soft-threshold Dikin walk, which allows us to deploy fast linear solvers from the interior point
method literature to reduce the per-iteration complexity of the walk.

The use of fast linear solvers allows us to achieve a per-iteration complexity nnz(A) + d2 for the
soft-threshold Dikin walk that is nearly-linear in the input complexity of the problem when A is
a dense matrix; when A is sparse, the dependence of the per-iteration complexity on nnz(A) is
nearly-linear as well. On the other hand, it would be interesting to see if the d2 term can removed
by deploying a different choice of fast linear solver for the Hessian.

Finally, while the fastest-known algorithms for minimizing linear functions on a polytope K have
runtime (nearly) equal to the matrix multiplication time Cohen et al. (2021); Jiang et al. (2021),
the best runtime bounds for sampling from a distribution π ∝ e−f on a polytope (even when f
is uniform) are a larger polynomial in the dimension d. Thus, it would be interesting to see if the
overall runtime (i.e., number of steps times the per-step complexity) of sampling methods can be
improved to match the runtime of linear programming methods.
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A PRELIMINARIES

The following lemma of Lee & Sidford (2015) allows us to maintain an efficient linear systems
solver for the Hessian of the regularized barrier function Φ:

Lemma A.1 (Efficient inverse maintenance, Theorem 13 in Lee & Sidford (2015),) Suppose
that a sequence of matrices A⊤C(k)A for the inverse maintenance problem, where the se-
quence of diagonal matrices C(1), C(1) . . ., with C(k) = diag(c

(k)
1 , . . . , c

(k)
d ), satisfies∑d

i=1

(
c
(k+1)
i −c

(k)
i

c
(k)
i

)2

= O(1) for all k ∈ N. Then there is an algorithm that maintains

a Õ(nnz(A) + d2) arithmetic operation linear system solver for the sequence of matrices
{A⊤C(k)A}Tk=1 for T rounds in a total of Õ(T (nnz(A) + d2) + dω) arithmetic operations over all
rounds T rounds.

For any symmetric positive definite matrix M ∈ Rd×d, define ∥h∥M := h⊤Mh.

The following lemma is useful in bounding the change in the log-barrier Hessian:

Lemma A.2 (Lemmas 1.2 & 1.5 in Laddha et al. (2020)) Let K := {θ ∈ Rd : Aθ ≤ b},
where A ∈ Rm×d and b ∈ Rm such that K is bounded with non-empty interior. Let H(θ) =∑m

j=1

aja
⊤
j

(bj−a⊤
j θ)2

be the Hessian of the log-barrier function for K. Then for any x, y ∈ Int(K) with

∥x− y∥H(x) < 1, we have ∥H− 1
2 (x)(H(y)−H(x))H− 1

2 (x)∥F ≤ ∥x−y∥H(x)

(1−∥x−y∥H(x))2
.

The following lemma gives a high-probability lower bound on the determinantal term det(Φ(z))
det(Φ(θ)) in

the Metropolis acceptance ratio.

Lemma A.3 (Lemma 6.9 in Mangoubi & Vishnoi (2022)) Consider any θ ∈ Int(K), and ξ ∼
N(0, Id). Let z = θ + (Φ(θ))−

1
2 ξ. Then

P
(
det (Φ(z))

det(Φ(θ))
≥ 48

50

)
≥ 1− 98

100
, (7)

and

P
(
∥z − θ∥2Φ(z) − ∥z − θ∥2Φ(θ) ≤

2

50

)
≥ 98

100
. (8)

The following lemma of Mangoubi & Vishnoi (2022) says that the Hessian Φ of the regularized bar-
rier function, while not the Hessian of a log-barrier function for any system of inequalities defining
K, is nevertheless the limit of an infinite sequence of matrices Hj , where each Hj the Hessian of a
logarithmic barrier function for a system of inequalities defining the same polytope K.

Lemma A.4 (Lemma 6.7 in Mangoubi & Vishnoi (2022)) There exits a sequence of matrix-
valued functions {Hj}∞j=1, where each Hj is the Hessian of a log-barrier function on K, such
that for all w ∈ Int(K),

lim
j→∞

Hj(w) = αΦ(w), and lim
j→∞

(Hj(w))
−1 = α−1(Φ(w))−1,

uniformly in w.

The following Lemma (Lemma A.5) gives a mixing time bound for a basic implementation of the
soft-threshold Dikin walk (Algorithm 2, below):
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Algorithm 2: Basic implementation of soft-threshold Dikin walk

Input: m, d ∈ N, A ∈ Rm×d, b ∈ Rm, which define the polytope K := {θ ∈ Rd : Aθ ≤ b}
Input: Y0 ∈ Int(K), T ∈ N

1 Hyperparameters: α > 0; η > 0; T ∈ N;
2 for i = 0, . . . , T − 1 do
3 Sample ζi ∼ N(0, Id)

4 Set H(Yi) =
∑m

j=1

aja
⊤
j

(bj−a⊤
j Yi)2

5 Set Φ(Yi) = α−1H(Yi) + η−1Id
6 Set Zi = Φ(Yi)−

1
2 ζi

7 if Zi ∈ Int(K) then
8 Set H(Zi) =

∑m
j=1

aja
⊤
j

(bj−a⊤
j Zi)2

9 Set Φ(Zi) = α−1H(Yi) + η−1Id

10 Set pi = 1
2

det(Φ(Zi))

det(Φ(Yi))

det(Φ(Yi))

det(Φ(Zi))
+

det(Φ(Zi))

det(Φ(Yi))

×min
(

e−f(Zi)

e−f(Yi)
× e∥Zi−Yi∥2

Φ(Yi)
−∥Yi−Zi∥2

Φ(Zi) , 1
)

11 Set Yi+1 = Zi with probability pi,
12 else
13 Reject Zi.
14 end
15 Output: YT
16 end

Lemma A.5 (Lemma 6.15 of Mangoubi & Vishnoi (2022)) Let Y0,Y1, · · · ,YT be the Markov
chain generated by Algorithm 2. Let δ > 0. Suppose that f : K → R is either L-Lipschitz (or
has β-Lipschitz gradient). Suppose that Y0 ∼ ν0 where ν0 is a w-warm distribution with respect to
π ∝ e−f with support on K. For any t > 0 denote by νt denote the distribution of Yt, for α ≤ 1

105d

and η ≤ 1
104dL2 (or η ≤ 1

104dβ ). Then for any T ≥ 109
(
2mα−1 + η−1R2

)
× log(wδ ) we have that

∥νT − π∥TV ≤ δ.

Note: Lemma A.5 is given in Mangoubi & Vishnoi (2022) for the same Markov chain as in Algo-

rithm 2, but with acceptance rule 1
2 ×min

(
e−f(Zi)

√
det(Φ(Zi))

e−f(Yi)
√

det(Φ(Yi))
× e∥Zi−Yi∥2

Φ(Yi)
−∥Yi−Zi∥2

Φ(Zi) , 1

)
in place of the acceptance rule pi used in Algorithm 2. The same proof of Lemma A.5 given in
Mangoubi & Vishnoi (2022) holds for the above acceptance rule in Algorithm 2 with minor modifi-
cations.

The following trace inequality is needed in the proofs.

Lemma A.6 (von Neumann trace Inequality Von Neumann (1962)) LetM,Z ∈ Rd×d be matri-
ces, and denote by σ1 ≥ · · · ≥ σd the singular values of M and by γ1 ≥ · · · ≥ γd the singular
values of Z. Then

|tr(MZ)| ≤
d∑

i=1

σiγi.

We need the following fact.

Proposition A.7 Let D ∈ R(d+m)×(d+m) be a diagonal matrix. Then

log det(Â⊤DÂ)− log det(Â⊤Â) =
∫ 1

0

tr
(
τÂ⊤DÂ+ (1− τ)Â⊤Â)−1(Â⊤DÂ− Â⊤Â

)
dτ.

Proof:

14
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Let Θ(τ) := τÂ⊤DÂ+ (1− τ)Â⊤Â for any τ ≥ 0. Then

d
dτ log detΘ(τ) = tr

(
d

dτ
log(Θ(τ))

)
= tr

(
Θ−1(τ)

d

dτ
Θ(τ)

)
= tr

(
(τÂ⊤DÂ+ (1− τ)Â⊤Â)−1(Â⊤DÂ− Â⊤Â)

)
.

Thus,

log det(Â⊤DÂ)− log det(Â⊤Â) =
∫ 1

0

d

dτ
log detΘ(τ)dτ

=

∫ 1

0

tr
(
(τÂ⊤DÂ+ (1− τ)Â⊤Â)−1(Â⊤DÂ− Â⊤Â)

)
dτ.

Finally, we need the following concentration inequality to show a high probability bound on the
error Y − E[Y ] of the estimator Y for log detΦ(z)− log detΦ(θ).

Lemma A.8 (Hanson-Wright concentration inequality) LetM ∈ Rd×d. Let v ∼ N(0, Id). Then

for all t > 0, P(|v⊤Mv| > t) ≤ 2 exp
(
−8min

(
t2

∥M∥2
F
, t
∥M∥2

))
.

B PROOF OF THE MAIN RESULT

To prove Theorem 2.1, we first show that the Frobenius norm of the Hessian of the log-barrier
function with soft-threshold regularizer changes slowly with respect to the local norm (Lemmas
B.1 and B.2). We also prove a concentration inequality for the random estimate Y for the log-
determinant (Lemma B.3).

We then give a proof of Theorem 2.1. The first part of the proof of Theorem 2.1 bounds the running
time, by using Lemma B.2 together with Lemma A.1 in the preliminaries to show that one can
deploy the fast linear solver to obtain a bound of nnz(A) + d2 on the per-iteration complexity of
Algorithm 1.

The second part of the proof bounds the total variation distance between the output of Algorithm 1
and the target distribution π. Towards this, we use the concentration bound in Lemma B.3 to show
that the series expansions in Lines 18 and 21 of Algorithm 1 converge w.h.p. and give a good estimate
for the Metropolis acceptance probability. To conclude, use this fact to show that there exists a
coupling between the Markov chain computed by Algorithm 1 and an “exact” implementation of
the soft-barrier Dikin walk Markov such that these two coupled Markov chains are equal w.h.p.
This allows us to use the bound on the total variation for the “exact” Markov chain (Lemma A.5 in
the preliminaries) to obtain a bound on the total variation error of the output of Algorithm 1.

Lemma B.1 Let φ(θ) := −∑m
j=1 log(bj − a⊤j θ) be a log-barrier function for K := {θ ∈ Rd :

Aθ ≤ b}, where A ∈ Rm×d and b ∈ Rm. Let c ≥ 0, and define the matrix-valued function
Ψ(θ) := ∇2φ(θ)+cId. Then for any θ, z ∈ Int(K) with ∥θ−z∥Ψ(θ) < 1, we have ∥Ψ− 1

2 (θ)(Ψ(z)−
Ψ(θ))Ψ− 1

2 (θ)∥F ≤ ∥θ−z∥Ψ(θ)

(1−∥θ−z∥Ψ(θ))2
.

Proof:

Let θ, z ∈ Int(K) be any two points in Int(K) such that ∥θ − z∥Ψ(θ) < 1.

From Lemma A.4, we have that there exits a sequence of matrix functions {Hj}∞j=1, where each
matrix is the Hessian of a log-barrier function on K, such that for all w ∈ Int(K),

lim
j→∞

Hj(w) = Φ(w), (9)

uniformly in w, and
lim
j→∞

(Hj(w))
−1 = (Φ(w))−1, (10)

15
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uniformly in w.

Thus we have

lim
j→∞

∥θ − z∥Hj(θ) = lim
j→∞

√
(θ − z)⊤Hj(θ)(θ − z)

=
√

(θ − z)⊤ lim
j→∞

Hj(θ)(θ − z)

Eq. (9)
=

√
(θ − z)⊤Ψ(θ)(θ − z)

= ∥θ − z∥Ψ(θ). (11)

In particular, since ∥θ − z∥Ψ(θ) < 1, (11) implies that there exists J ∈ N such that

∥θ − z∥Hj(θ) < 1 ∀j ≥ J. (12)

Moreover, since Hj(w) is the Hessian of a log-barrier function on K for every j ∈ N, by Lemma
A.2 and (12) we have that

∥H− 1
2

j (θ)(Hj(z)−Hj(θ))H
− 1

2
j (θ)∥F ≤

∥θ − z∥Hj(θ)

(1− ∥θ − z∥Hj(θ))
2

∀j ≥ J. (13)

Moreover,

lim
j→∞

∥H− 1
2

j (θ)(Hj(z)−Hj(θ))H
− 1

2
j (θ)∥F

Eq. (13)
= ∥( lim

j→∞
H

− 1
2

j (θ))( lim
j→∞

Hj(z)− lim
j→∞

Hj(θ))( lim
j→∞

H
− 1

2
j (θ))∥F

Eq. (9),(10)
= ∥Ψ− 1

2 (θ)(Ψ(z)−Ψ(θ))Ψ− 1
2 (θ)∥F (14)

Therefore, plugging (14) and (11) into (13), we have that

∥Ψ− 1
2 (θ)(Ψ(z)−Ψ(θ))Ψ− 1

2 (θ)∥F ≤
∥x− y∥Ψ(θ)

(1− ∥θ − z∥Ψ(θ))2
.

Lemma B.2 Let z = θ + Φ(θ)−
1
2 ξ where ξ ∼ N(0, Id). Then we have with probability at least

1− γ that

∥Ŝ(θ)−2Ŝ(z)2 − Im∥F ≤
1

1000 log( 1γ )
.

Proof: Setting Ψ(θ) = Â⊤Ŝ(θ)2Â, we have that Ψ(θ) = αΦ(θ) = H(θ) + αη−1Id.

16
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Hence, we have by Lemma B.1 that, with probability at least 1− γ,

∥Ŝ(θ)−2Ŝ(z)2 − Im∥F = ∥Ŝ(θ)−1Ŝ(z)2Ŝ(θ)−1 − Im∥F
≤ ∥(Â⊤Ŝ(θ)2Â)−

1
2 Â⊤Ŝ(z)2Â(Â⊤Ŝ(θ)2Â)−

1
2 − Id∥F

= ∥Φ− 1
2 (x)Φ(y)Φ− 1

2 (x)− Id∥F
= ∥Φ− 1

2 (x)(Φ(y)− Φ(x))Φ− 1
2 (x)∥F

= ∥α− 1
2Φ− 1

2 (x)(αΦ(y)− αΦ(x))α− 1
2Φ− 1

2 (x)∥F
= ∥Ψ− 1

2 (x)(Ψ(y)−Ψ(x))Ψ− 1
2 (x)∥F

≤ ∥x− y∥Ψ(x)

(1− ∥x− y∥Ψ(x))2

=
α− 1

2 ∥θ − z∥Φ(θ)

(1− α− 1
2 ∥θ − z∥Φ(θ))2

≤ α− 1
2 8
√
d log

1
2

(
1

γ

)
≤ 1

1000
,

where the second inequality holds by Lemma B.1. The fourth inequality holds because α =
1

105d log
−1
(

1
γ

)
. The third inequality holds with probability at least 1− γ because

∥θ − z∥2Φ(θ) = (θ − z)⊤Φ(θ)(θ − z) = (Φ(θ)−
1
2 ξ)⊤Φ(θ)(Φ(θ)−

1
2 ξ) ≤ 8

√
d log(

1

γ
)

with probability at least 1− γ by the Hanson-Wright inequality (Lemma A.8).

Lemma B.3 LetW ∈ Rm+d×m+d be a diagonal matrix, and let t > 0. Define Θ(t) := Â⊤(Im+d+

t(W − Im+d))Â. Let v ∼ N(0, Id), and let

Y = v⊤Θ(t)−1Â⊤(W − Im)Âv + log det Â⊤Â. (15)

Suppose that 1
2Im ⪯W ⪯ 2Im and that ∥W − Im∥F ≤ c for some c > 0. Then

P(|Y − E[Y ]| ≥ s · c) ≤ e− 1
8 s ∀s ≥ 0. (16)

Proof:

∥Θ(t)−1Â⊤(W − Im)Â∥F ≤ ∥(Â⊤(tW + (1− t)Im)Â)−1∥2 · ∥A⊤(W − Im)A∥F
≤ ∥(Â⊤(

1

2
Im)Â)−1∥2 · ∥Â⊤(W − Im)Â∥F

= 2∥(Â⊤Â)−1∥2 · ∥Â⊤(W − Im)Â∥F
= 2∥(Â⊤Â)−1∥2 · Tr

1
2 ((Â⊤(W − Im)Â)2)

= 2∥(Â⊤Â)−1∥2 · Tr
1
2 (Â⊤(W − Im)ÂÂ⊤(W − Im)Â)Â)−1∥2

· Tr 1
2 (ÂÂ⊤(W − Im)ÂÂ⊤(W − Im))

≤ 2∥(Â⊤Â)−1∥2 ·
√
∥ÂÂ⊤∥2 · |Tr

1
2 ((W − Im)ÂÂ⊤(W − Im))|

≤ 2∥(Â⊤Â)−1∥2 ·
√
∥ÂÂ⊤∥2 · |Tr

1
2 (ÂÂ⊤(W − Im)2)|

≤ 2∥(Â⊤Â)−1∥2 · ∥ÂÂ⊤∥2 · |Tr
1
2 ((W − Im)2)|

= 2∥W − Im∥F ,
≤ 2c, (17)

17
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where the fourth and fifth inequalities hold by the Von Neumann trace inequality (Lemma A.6).
Thus, by the Hanson-Wright inequality (Lemma A.8) we have that for every s ≥ 0,

P(|v⊤Θ(t)−1Â⊤(W − Im)Âv − E[v⊤Θ(t)−1Â⊤(W − Im)Âv]| ≥ s)

≤ 2 exp

(
−1

8
min

(
s2

∥Θ(t)−1Â⊤(W − Im)Â∥2F
,

s

∥Θ(t)−1Â⊤(W − Im)Â∥2

))

≤ 2 exp

(
−1

8

s

∥Θ(t)−1Â⊤(W − Im)Â∥F

)
. (18)

Plugging (17) into (18), we get that,

P(|v⊤Θ(t)−1Â⊤(W − Im)Âv − E[v⊤Θ(t)−1Â⊤(W − Im)Âv]| ≥ sc) ≤ 2e−
1
8 s ∀s ≥ 0.

Proof: [of Theorem 2.1]

Bounding the runtime:

Cost of maintaining and using a linear solver: By Lemma B.2, we have that at every iteration of the
outer “for” loop in Algorithm 1,

d∑
i=1

(
Ŝ(z)2[i]− Ŝ(θ)2[i]

Ŝ(θ)2[i]

)2

= ∥Ŝ(θ)−2Ŝ(z)2 − Im∥2F ≤ O(1), (19)

with probability at least 1− γ.

Rewriting the l.h.s. of (19), we also have that with probability at least 1− γ,
d∑

i=1

(
(tŜ(z)2[i]Ŝ(θ)−2[i] + (1− t))− 1

)2
≤

d∑
i=1

(
Ŝ(z)2[i]Ŝ(θ)−2[i]− 1

)2
≤ O(1), (20)

for any t ∈ [0, 1].

To implement Algorithm 1, we use efficient inverse maintenance to maintain linear solvers for
Φ(θ) = A⊤Ŝ(θ)−2A and Â⊤Ψ(Ŝ(θ)−2Ŝ(z)2, t)Â = Â⊤(tŜ(θ)−2Ŝ(z)2 + (1 − t)Im+d)Â for
T rounds, where T is the number of Dikin walk steps. Plugging Inequality (19) (for the Φ(θ) lin-
ear system solver) and Inequality (20) (for the Â⊤Ψ(Ŝ(θ)−2Ŝ(z)2, t)Â linear system solver) into
Lemma A.1, we get that maintaining these linear system solvers for T steps (Lines 2, 26, 2, and 12
in Algorithm 1), and applying each linear solver at mostN times at each step (Lines 6 and 14), takes
O(TN (nnz(A) + d2) + dω) arithmetic operations.

Since T ≥ dω−2, we have that the number of arithmetic operations is O(TN (nnz(A) + d2)).

Cost of other steps: The remaining steps require less that O(TN (nnz(A) + d2)) steps to compute:

• Each time they are run, Lines 5 and 13 can be accomplished in O(nnz(A)) arithmetic
operations by standard matrix-vector multiplication. Sampling a d-dimensional Gaussian
vector (Lines 4 and 10) can be done in O(d) ≤ O(nnz(A)) arithmetic operations and
sampling from the uniform distribution 11 takes O(1) arithmetic operations. Lines 5- 11
are called at most TN times, and thus require O(TNnnz(A)) arithmetic operations.

• Every time it is run, Line 25 requires computing f(θ) and f(z), which can be done in 2
calls to the oracle for the value of f . It also requires computing ∥z−θ∥2Φ(θ) and ∥θ−z∥2Φ(z).
As

∥z − θ∥2Φ(θ) = (z − θ)⊤Φ(θ)(z − θ) = (z − θ)⊤α−1Â⊤Ŝ(θ)2Â(z − θ),
this can be done in O(nnz(A)) arithmetic operations using standard matrix-vector multi-
plication. For the same reason, computing ∥θ − z∥2Φ(z) also takes O(nnz(A)) arithmetic
operations. Line 25 is called at most T times, and thus contributes O(T (nnz(A) + Tf ))
arithmetic operations to the runtime.

18
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• Each time they are run, Lines 18 and 21 require computing a Taylor series with at most
O(N 2) terms, with each term requiring O(N ) multiplications. Lines 18 and 21 are called
at most T times and thus require O(TN 3) arithmetic operations.

• Line 2, which computes log det(Â⊤Â), can be accomplished in O(mdω−1) arithmetic
operations using dense matrix multiplication. Since this step is only run once and
O(mdω−1) ≤ O(TN (nnz(A) + d2)) arithmetic operations, it does not change the overall
runtime by more than a constant factor.

Runtime for all steps: Thus, the runtime of Algorithm 1 is O(TN (Tf +nnz(A)+d2)) = O((md+

dL2R2) × log2.01(md+L2R2+log(w)
δ ) log(wδ )) × (Tf + nnz(A) + d2) arithmetic operations in the

setting where f is L-Lipschitz.

In the setting where f is β-smooth, the number of arithmetic operations is O(TN (Tf + nnz(A) +

d2)) = O((md+ dL2R2)× log2.01(md+βR2+log(w)
δ ) log(wδ ))× (Tf + nnz(A) + d2).

Bounding the total variation distance: Plugging Lemma B.2 into Lemma B.3, we get that for
every j ∈ {1, . . . ,N},

P
(
|Yj − E[Yj ]| ≤

1

100

)
≤ 1− γ. (21)

By Proposition A.7 we have that,

E[Yj ] = E[v⊤(tÂ⊤Ŝ(θ)−2Ŝ(z)Â+ (1− t)Â⊤Â)−1(Â⊤Ŝ(θ)−2Ŝ(z)Â− Â⊤Â)v]

+ log det(Â⊤Â)

=

∫ 1

0

tr
(
τÂ⊤Ŝ(θ)−2Ŝ(z)Â+ (1− τ)Â⊤Â)−1(Â⊤Ŝ(θ)−2Ŝ(z)Â− Â⊤Â

)
dτ

+ log det(Â⊤Â)
Prop. A.7

= log det(Â⊤Ŝ(θ)−2Ŝ(z)Â)

= log det(Φ(z))− log det(Φ(θ)), (22)

where the second equality holds since Algorithm 1 samples the random vector v ∼ N(0, Id) from
the standard Gaussian distribution and the random variable t ∼ unif([0, 1]) from the uniform distri-
bution on [0, 1].

Moreover, by Lemma A.3 we have that

P
(
E[Yj ] ≥

9

10

)
Eq. (22)
= P

(
log det(Φ(z))− log det(Φ(θ)) ≥ 9

10

)
Lemma A.3
≥ 1− 1

100
γ.

Next, we show that
P(0 ≤ X ≤ 1) ≥ 1− 2Nγ. (23)

and that ∣∣∣∣∣∣E[X]−
det(Φ(z))
det(Φ(θ))

det(Φ(θ))
det(Φ(z)) +

det(Φ(z))
det(Φ(θ))

∣∣∣∣∣∣ ≤ γ. (24)

We first show (23) and (24) when 1
4 ≤ Y1 ≤ 2 log(γ). In this case we have by (21) that with

probability at least 1− γ,

log det(Φ(z))− log det(Φ(θ) = E[Y1] ∈
[
1

4
− 1

100
, 2 log

1

γ

)
. (25)

To show (23), we first note that, by (21) we have that,

P
(
1

5
≤ Yj ≤ 3 log

(
1

γ

)
, ∀j ≤ ℓ ≤ N

)
≥ 1−Nγ. (26)
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Thus, with probability at least 1−Nγ,

X = 1 +
1

2

2N−1∑
k=1

(−1)k
N∑
ℓ=0

1

ℓ!

ℓ∏
j=1

(−2kYj)

≤ 1 +
1

2

2N−1∑
k=1

(−1)k
N∑
ℓ=0

1

ℓ!

ℓ∏
j=1

(−2k sup
1≤j≤N

Yj)

≤ 1 +
1

2

2N−1∑
k=1

(−1)k exp(−2k sup
1≤j≤N

Yj)

≤ 1 +
1

2

2N−1∑
k=1

(−1)k exp(−2k sup
1≤j≤N

Yj)

≤ 1

1 + exp(− sup1≤j≤N Yj)

≤ 1, (27)

where the fourth inequality holds since

1 +
1

2

2N−1∑
k=1

(−1)k exp(−2kt) ≤ 1 +
1

2

∞∑
k=1

(−1)k exp(−2kt) ∀t > 0,

and since the infinite series 1 + 1
2

∑∞
k=1(−1)k exp(−2kt) = 1

2 tanh(
1
2 t) + 1 = 1

1+e−t has interval
of convergence t ∈ (0,∞].

Next, we show that with probability at least 1−Nγ,

X = 1 +
1

2

2N−1∑
k=1

(−1)k
N∑
ℓ=0

1

ℓ!

ℓ∏
j=1

(−2kYj)

≥ 1 +
1

2

2N−1∑
k=1

(−1)k
N∑
ℓ=0

1

ℓ!

ℓ∏
j=1

(−2k inf
1≤j≤N

Yj)

≥ 1 +
1

2

2N−1∑
k=1

(−1)k exp(−2k inf
1≤j≤N

Yj)

= 1− exp(−4N inf
j≤ℓ≤N

Yj) +
1

2

2N∑
k=1

(−1)k exp(−2k inf
1≤j≤N

Yj)

≥ 1

1 + exp(− inf1≤j≤N Yj)

≥ 1

2
− exp(−4N inf

1≤j≤N
Yj)

> 0, (28)

where the last inequality holds since inf1≤j≤N Yj ≥ 1
8 with probability at least 1−Nγ by (26).

Thus, (27) and (28) together imply (23).
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To show (24), we first note that, since Y1, Y2, . . . , YN are i.i.d. random variables, with probability
at least 1−Nγ,

E[X] = 1 +
1

2

2N−1∑
k=1

N∑
ℓ=0

(−1)k 1
ℓ!

ℓ∏
j=1

(−2kE[Yj ])

= 1 +
1

2

2N−1∑
k=1

(−1)k
N∑
ℓ=0

1

ℓ!

ℓ∏
j=1

(−2k(log det(Φ(z))− log det(Φ(θ)))

= 1 +
1

2

2N−1∑
k=1

(−1)k
N∑
ℓ=0

1

ℓ!
(−2k(log det(Φ(z))− log det(Φ(θ)))ℓ

=
1

1 + exp(− log det(Φ(z))− log det(Φ(θ)))

− 1

2

2N−1∑
k=1

(−1)k
∞∑

ℓ=N+1

1

ℓ!
(−2k(log det(Φ(z))− log det(Φ(θ)))ℓ

− 1

2

∞∑
k=2N

(−1)k
∞∑
ℓ=0

1

ℓ!
(−2k(log det(Φ(z))− log det(Φ(θ)))ℓ,

=
1

1 + exp(− log det(Φ(z))− log det(Φ(θ)))

− 1

2

2N−1∑
k=1

(−1)k
∞∑

ℓ=N+1

1

ℓ!
(−2k(log det(Φ(z))− log det(Φ(θ)))ℓ

− 1

2

∞∑
k=2N

(−1)k exp(−2k(log det(Φ(z))− log det(Φ(θ))),

where the fourth equality holds since the infinite series 1 + 1
2

∑∞
k=1(−1)k exp(−2kt) = 1

1+e−t has

interval of convergence t ∈ (0,∞], and log det(Φ(z)) − log det(Φ(θ) ∈
[
1
4 − 1

100 , 2 log(
1
γ )
)

by
(25).

Thus, ∣∣∣∣∣∣E[X]−
det(Φ(z))
det(Φ(θ))

det(Φ(θ))
det(Φ(z)) +

det(Φ(z))
det(Φ(θ))

∣∣∣∣∣∣
=

∣∣∣∣E[X]− 1

1 + exp(− log det(Φ(z))− log det(Φ(θ)))

∣∣∣∣
=

∣∣∣∣12
∞∑
k=1

(−1)k
∞∑

ℓ=N+1

1

ℓ!
(−2k(log det(Φ(z))− log det(Φ(θ)))ℓ

+
1

2

∞∑
k=2N

(−1)k exp(−2k(log det(Φ(z))− log det(Φ(θ))),

∣∣∣∣
≤ γ,

since N ≥ 10 log( 1γ ) and log det(Φ(z))− log det(Φ(θ) ∈
[
1
4 − 1

100 , 2 log(
1
γ )
)

. This proves (24).

Thus, we have shown (24) and (23) in the setting when 1
4 ≤ Y1 ≤ 2 log(γ).

The proof of (24) and (23) when Y1 > 1
4 is identical, except that we use the Taylor series expansion

for 1
1+e−t = 1

2 tanh(
1
2 t) + 1 about 0, 1

1+e−t =
∑∞

ℓ=0 cℓt
ℓ which has interval of convergence

t ∈ (−1, 1), in place of the infinite series 1+ 1
2

∑∞
k=1(−1)k exp(−2kt) = 1

2 tanh(
1
2 t)+1 = 1

1+e−t

which has interval of convergence t ∈ (0,∞].
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The proof for (24) and (23) in the case when Y1 > 2 log( 1γ ) is trivial, as in this case the algorithm
sets X = 1 and |1− 1

1+e−t | ≤ γ for t > 2 log(γ).

Thus, (24) and (23) together imply that∣∣∣∣∣∣E[min(max(X, 0), 1)]−
det(Φ(z))
det(Φ(θ))

det(Φ(θ))
det(Φ(z)) +

det(Φ(z))
det(Φ(θ))

∣∣∣∣∣∣ ≤ 3Nγ. (29)

Let qi = E[ 12 min(max(X, 0), 1)]×min
(

e−f(z)

e−f(θ) × e∥z−θ∥2
Φ(θ)−∥θ−z∥2

Φ(z) , 1
)

denote the probability
that the proposed step z is accepted at any iteration i of Algorithm 1. Then for every i ∈ {1, . . . , T},
we have by (29) that∣∣∣∣∣∣qi − 1

2

det(Φ(z))
det(Φ(θ))

det(Φ(θ))
det(Φ(z)) +

det(Φ(z))
det(Φ(θ))

×min

(
e−f(z)

e−f(θ)
× e∥z−θ∥2

Φ(θ)−∥θ−z∥2
Φ(z) , 1

)∣∣∣∣∣∣ ≤ 3Nγ (30)

Let X0,X1, . . . be the Markov chain where at the beginning of each iteration i + 1 of Algorithm
1, Xi = θ. Moreover, let Y0,Y1, . . . be the Markov chain defined in Algorithm 2. We define
a probabilistic coupling between these two Markov chains. First, define a coupling between the
random vector ξ ≡ ξi sampled at every iteration i + 1 of Algorithm 1 and the random vector ζi
sampled at every iteration i of Algorithm 2, such that ξi = ζi for all i ≥ 0. Then, by (30), there
exists a coupling between the Markov chains X0,X1, . . . and Y0,Y1, . . . such that with probability
at least 1− 3TNγ,

Xi = Yi ∀i ∈ {0, 1, . . . , T}. (31)

Thus, letting µ denote the distribution of the output XT of Algorithm 1, and letting νT denote the
distribution of YT , we have by (31) that

∥µ− νT ∥TV ≤ 3TNγ ≤ 1

2
δ. (32)

Moreover, by Lemma A.5, we have that the distribution νT of YT satisfies

∥νT − π∥TV ≤
1

2
δ. (33)

Thus, we have that the distribution µ of the output of Algorithm 1 satisfies

∥µ− π∥TV ≤ ∥µ− νT ∥TV + ∥νT − π∥TV ≤ δ.

C ADDITIONAL COMPARISONS OF APPROACHES TO DETERMINANT
COMPUTATION

In this section we explain the key differences between our randomized estimator for the determinant
term, and the estimator of Laddha et al. (2020), and why these differences are necessary.

Approach of Laddha et al. (2020): In Laddha et al. (2020), the determinant ratio is first estimated
by plugging in independent random estimates for the log-determinant with mean log detH(θ) −
log detH(z) into the Taylor expansion for the exponential function et. This gives an estimate V with
mean E[V ] = det(H(θ))

det(H(z)) (their Lemma 4.3). Roughly speaking, the authors then suggest plugging

this estimate V (and another estimate V̂ with mean detH(z)
det(H(θ)) ) into a smooth function g(t, s), to com-

pute an estimate for their Metropolis acceptance rule p(z→θ)
p(z→θ)+p(θ→z) = g(det(H(θ))

det(H(z)) ,
det(H(z))
det(H(θ)) ).

Each time their Markov chain proposes an update θ → z, it is accepted with probability g(V, V̂ ).

However, the randomized estimator g(V, V̂ ) is not an unbiased estimator for the Metropolis rule
g(det(H(θ))

det(H(z)) ,
det(H(z))
det(H(θ)) ), even though E[V ] = det(H(θ))

det(H(z)) and E[V̂ ] = det(H(z))
det(H(θ)) . This is because, in
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general, E[g(V, V̂ )] ̸= g(E[V ],E[V̂ ]) since g(V, V̂ ) is not a linear function in V or V̂ . If one utilizes
this randomized estimator in the accecptance rule of the Dikin walk Markov chain, it can cause the
Markov chain to generate samples from a distribution not equal to the (uniform) target distribution.
This problem does not seem to be easily fixable, and requires a different approach.

Our approach to estimating the determinantal term: To obtain an unbiased estimator for the
determinantal term, our algorithm bypasses the use of the Taylor expansion for the exponential
function et used in Laddha et al. (2020), and instead uses two different infinite series expan-
sions for the sigmoid function (a Taylor series expansion sigmoid(t) =

∑∞
i=0 cit

i centered at 0
with region of convergence (π, π), and a series expansion ”at +∞” with region of convergence
(0,+∞) which is polynomial in e−t) to compute an unbiased estimate with mean equal to a
(different) Metropolis acceptance rule. The Metropolis rule in our algorithm is proportional to
sigmoid

(
1
2 log det(Φ(z))− 1

2 log det(Φ(θ))
)
. To generate a randomized estimator for this accep-

tance rule, we compute independent samples Y1, . . . , Yn with mean log det(Φ(θ))− log det(Φ(z)),
and plug these samples into one of the two series expansions, e.g.

∑N
i=0 ciY1 · . . . · Yi, for some

small number of terms N . To select which series expansion to use, our algorithm chooses a series
expansion whose region of convergence contains a ball of radius 1

8 centered at Y1.

Since Y1, . . . , YN are independent, roughly speaking, the mean of our estimator is proportional to

E

[
N∑
i=0

ciY1 · . . . · Yi
]
=

N∑
i=0

ciE[Y1] · . . . · E[Yi] =
N∑
i=0

ci(log det(Φ(θ))− log det(Φ(z)))i,

(or to a simmilar quantity if the other series expansion is selected). We show that, w.h.p., the choice
of series expansion selected by our algorithm converges exponentially fast in N when Y1, . . . , YN
are plugged into this expansion. This implies that, if we choose roughly N = log 1

γ , our esti-
mator is a (nearly) unbiased estimator with mean within any desired error γ > 0 of the correct
value sigmoid

(
1
2 log det(Φ(z))− 1

2 log det(Φ(θ))
)
. We then show that this error γ is sufficient to

guarantee that our Markov chain samples within total variation error O(δ) from the correct target
distribution, if one chooses γ = O(poly(δ, 1/d, 1/L)).
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