
VELMA: Verbalization Embodiment of LLM Agents
for Vision and Language Navigation in Street View

Raphael Schumann1, Wanrong Zhu2, Weixi Feng2, Tsu-Jui Fu2,
Stefan Riezler1,3, William Yang Wang2

1 Computational Linguistics, Heidelberg University, Germany
3 IWR, Heidelberg University, Germany
2 University of California, Santa Barbara

{rschuman, riezler}@cl.uni-heidelberg.de
{wanrongzhu, weixifeng, tsu-juifu, william}@ucsb.edu

Abstract

Incremental decision making in real-world environments is one of the most chal-
lenging tasks in embodied artificial intelligence. One particularly demanding
scenario is Vision and Language Navigation (VLN) which requires visual and natu-
ral language understanding as well as spatial and temporal reasoning capabilities.
The embodied agent needs to ground its understanding of navigation instructions in
observations of a real-world environment like Street View. Despite the impressive
results of LLMs in other research areas, it is an ongoing problem of how to best
connect them with an interactive visual environment. In this work, we propose
VELMA1, an embodied LLM agent that uses a verbalization of the trajectory and
of visual environment observations as contextual prompt for the next action. Visual
information is verbalized by a pipeline that extracts landmarks from the human
written navigation instructions and uses CLIP to determine their visibility in the
current panorama view. We show that VELMA is able to successfully follow
navigation instructions in Street View with only two in-context examples. We
further finetune the LLM agent on a few thousand examples and achieve 25%-30%
relative improvement in task completion over the previous state-of-the-art for two
datasets.

1 Introduction

Large language models (LLMs), which have shown impressive reasoning capabilities in traditional
natural language processing tasks, are increasingly used as the reasoning engine of embodied agents
for, e.g., household robots [25], video games [30] and indoor navigation [35]. These tasks are mostly
based on simulations that either feature computer-generated images with a fixed set of displayable
objects and textures, or are limited in scale and trajectory length. In this paper, we present a
verbalization embodiment of an LLM agent (VELMA) for urban vision and language navigation
in Street View. The unique challenge of this task is the combination of a large-scale environment
derived from an actual road network, real-world panorama images with dense street scenes, and long
navigation trajectories. The agent needs to ground its understanding of the navigation instructions
in the observable environment and reason about the next action to reach the target location. The
navigation instructions are written by humans and include open-ended landmark references and
directional indications intended to guide the agent along the desired path. In order to leverage
the reasoning capabilities of LLMs, we use embodiment by verbalization, a workflow where the
task, including the agent’s trajectory and visual observations of the environment, is verbalized, thus

1Project page: https://velma.schumann.pub

Foundation Models for Decision Making Workshop at NeurIPS 2023.

https://velma.schumann.pub

"Orientate yourself such that a blue bench is on your right, go to the end of the block and make
a right. Follow the park on your left and make a right at the next intersection. Pass the black
fire hydrant on your right and stop when you get to the gray door on the brown building."

There is a blue bench on your left.
1. turn_around
There is a blue bench on your right.
2. forward
3. forward
4. forward
There is a 3-way intersection.
5. right
6. forward
There is a park on your left.
7. forward
There is a park on your left.
8. forward
There is a 4-way intersection.
9. <next word prediction>

Navigate to the described target location!

Action Space: forward, left, right, turn_around, stop

Navigation Instructions:

Action Sequence:

Figure 1: Prompt sequence used to utilize LLMs for VLN in Street View. Verbalized observations of
the visual environment are in green and appended to the prompt at each step. Agent actions (blue)
are acquired by LLM next word prediction. Highlighting of text for visual presentation only. Full
navigation trajectories are, on average, 40 steps long.

embodying the LLM via natural language. Figure 1 shows the verbalization at the ninth step of
the current trajectory for a given navigation instance. At each step, the LLM is prompted with the
current text sequence in order to predict the next action. Then the predicted action is executed in the
environment, and the new observations are verbalized and appended to the prompt. This is repeated
until the agent eventually predicts to stop.

The main contributions of our work are as follows: (i) We introduce VELMA, to our knowledge, the
first LLM-based agent for urban VLN. (ii) We report few-shot results for the urban VLN task and
achieve new state-of-the-art performance by finetuning our agent on the training set. (iii) We address
and resolve limitations of the commonly used Touchdown environment [4], making it amenable for
few-shot agents.

2 Related Work

Outdoor VLN Agent models for the outdoor/urban VLN task [4] commonly follow a sequence-
to-sequence architecture where encoded text and image representations are fused for each decoder
step [32, 15, 23, 26]. Other proposed agents employ pretrained vision and language transformers
that are finetuned on task-specific data [38, 2]. Zhong et al. [34] represent the visual environment
by symbols using semantic segmentation and extreme downsampling of panorama images, but their
agent does not improve over previous success rates. Other work uses CLIP to score the presence of
extracted landmarks at each panorama node in a graph and uses this information to plan a route for
given navigation instructions [24]. Their non-urban environment has a graph with 300 nodes, and the
navigation path is planned a priori with full access to all panorama images and landmark scores. In
contrast, our agent is embodied and has to plan ad-hoc with access to directly observed information
only.

Indoor VLN Indoor agents [8, 31, 27, 9, 37, 17, 10, 5, 14] are used for navigation datasets like
R2R [1] and RxR [13] or ObjectNav [19, 36]. Recently, Zhou et al. [35] introduced an LLM-based
agent for R2R that incorporates image information by transcribing its entire content with an image-to-
text model. This is feasible because the navigation trajectories are only six steps on average compared
to 40 steps in the urban VLN task considered in our work. Another notable indoor VLN agent uses
CLIP to directly predict the next action by scoring the compatibility of the current sub-instruction
with available waypoint images [7].

2

1

2

3

4 5

7

6

352°

20°

288° 95°
50°

345°

Figure 2: The Touchdown environment in-
troduced by Chen et al. [4] can require ac-
tion sequences that are semantically incon-
sistent with the correct navigation instruc-
tions. In the depicted subgraph, the action
sequence to move from node 1 to node 5 is
to move FORWARD four times. The seman-
tically correct sequence of actions would
include a right turn in between. We fix the
ambiguity by modifying the environment
and selecting the desired direction at inter-
sections in relation to all outgoing streets.

3 Urban VLN Environment

We use the Touchdown environment introduced by Chen et al. [4]. The environment is based on
Google’s Street View and features 29,641 full-circle panorama images connected by a navigation
graph. It covers the dense urban street network spanning lower Manhattan. The navigation graph
is a directed graph G = ⟨V,E⟩ where each edge ⟨v, v′⟩ ∈ E is associated with α⟨v,v′⟩ which is the
heading direction from node v to node v′ ranging from 0◦ to 360◦. The agent state s = (v, α) is
composed of its current position v ∈ V and its heading direction α. The agent can move by executing
an action a ∈ {FORWARD, LEFT, RIGHT, STOP}. The state transition function st+1 = ϕ(at, st) defines
the behavior of the agent executing an action. In Chen et al. [4], the agent’s heading αt at position v
is restricted to align with the heading of an outgoing edge α⟨v,v′⟩. In case of the RIGHT action, the
new state st+1 is (v, α⟨v,v⃗⟩) where v⃗ is the neighboring node closest to the right of the agent’s current
heading. In other words, the agent is rotated in place to the right until it snaps to the direction of an
outgoing edge. Likewise, for the LEFT action. In the case of the FORWARD action, the agent moves
along the edge ⟨v, v′⟩ according to its current heading direction αt = α⟨v,v′⟩. The environment is
then forced to automatically rotate the agent’s heading towards an outgoing edge: αt+1 = α⟨v′,v∗⟩
where v∗ is the neighbor node in the direction closest to the previous heading αt.

3.1 Alignment Inconsistencies in Touchdown

As described in Schumann and Riezler [23], the automatic rotation mentioned above can lead to
generalization problems, e.g., when moving towards the flat side of a T-intersection. For example, if
the agent is automatically rotated towards the right facing street and subsequently executes the RIGHT
action, it rotates towards the direction it came from instead of clearing the intersection in the intended
direction. The same problem also occurs at intersections with more than three directions. Figure 2
gives an illustrative example that shows the navigation graph at a 4-way intersection. Because the envi-
ronment is derived from a real-world street layout, the nodes in the graph are not perfectly arranged as
in an artificial grid world. In order to make a right turn at the intersection and to follow the route from
v1 to v5, one expects to use the action sequence [FORWARD, FORWARD, RIGHT, FORWARD, FORWARD].
However, when the agent reaches v3, it is automatically rotated towards the closest outgoing edge,
in this case, ⟨v3, v4⟩. This is because the rotation 20◦→50◦ towards v4 is shorter than the rotation
20◦→345◦ towards v7. As such, the required sequence of actions to go from v1 to v5 in Chen
et al. [4]’s environment is [FORWARD, FORWARD, FORWARD, FORWARD]. This is unpredictable and is
not correctly aligned with "turn right at the intersection" instructions.2 To alleviate this problem,
Schumann and Riezler [23] explicitly feed the change of heading at each timestep as additional input
to their model. This enables the agent to anticipate the unexpected rotation and to adapt to it. Because
adding heading delta values to the text-based interface makes it convoluted and unnecessarily difficult
for few-shot learning, we propose a more intuitive way to solve this ambiguity at intersections. We
modify the state transition function ϕ such that the agent is not automatically rotated when moving
FORWARD. This means the agent’s heading αt is not automatically aligned with an outgoing edge.
Instead, the direction is selected in relation to all outgoing edges. The agent at node v3 in Figure 2
has the nodes v6, v7 and v4 in front. The forward direction is selected as the middle one of the
three edges, the right direction as the right-most edge, and the left direction as the left-most edge.

2In the Appendix we show more examples for 3-way, 4-way and 5-way intersections.

3

This means that executing the RIGHT action at position v3 will now rotate the agent towards node v4

and allows to use the semantically correct sequence of actions for the depicted route. The proposed
modification solves the issue of inconsistent action sequences at intersections and allows to use agents
that are not specifically trained in this environment.

3.2 Turning Around

We additionally introduce the TURN_AROUND action which lets the agent reverse its direction: st+1 =
(v, αt − 180◦). In the unmodified environment, this is achieved using the LEFT or RIGHT action on
regular street segments. The new action is better aligned with natural language verbalizations of
direction reversal and promotes intuitive communication with the environment.

4 Navigation Task

The objective of the navigation task is to find the goal location by following the given navigation
instructions. A navigation instance is defined by the initial state s1, target node v̂T , gold path
(v̂1, v̂2..., v̂T) and navigation instructions text n = (w1, w2, ..., wN). The agent starts at s1 and
predicts the next action a1 based on the navigation instructions and current observations. These
are the panorama image and number of outgoing edges at the current position. The environment
processes the action and puts the agent into a new state: s2 = ϕ(a1, s1). This is repeated until the
agent predicts STOP at the presumed goal location. If the agent stops within one neighboring node of
the target node, the navigation objective is considered accomplished.

4.1 Challenges Egocentric Spatial Reasoning
1. ... turn so the orange construction barrier is on your left ...
2. ... a red truck in front of you ...
3. ... a playground on the far right corner ahead ...

Allocentric Spatial Reasoning
4. ... green metal pole with pink flowers on top ...
5. ... building with columns around the windows ...
6. ... stop in between Chase and Dunkin’ Donuts ...

Temporal Reasoning
7. ... go straight until you see Chipotle and then ...
8. ... once you passed the underpass ...
9. ... stop when the park on your right ends ...

Other
10. ... proceed straight through three more intersections ...
11. ... you should see TD Bank on your left ...
12. ... if you see Dory Oyster Bar, you have gone too far ...

Table 1: Reasoning skills the embodied LLM agent
must possess in order to successfully complete the
navigation task. Each with three example snippets
from the navigation instructions.

One main challenge to successfully follow the
navigation instructions is to reliably detect land-
marks in the panorama images along the route.
The landmarks mentioned in the instructions
are open-ended and can refer to any object or
structure found in street scenes, including veg-
etation, building features, vehicle types, street
signs, construction utilities, company logos and
store names. The agent also needs to posses
different types of reasoning, most importantly
spatial reasoning to follow general directions,
locate landmarks and evaluate stopping condi-
tions. In addition, the agent needs to understand
the temporal aspect of the task and reason about
the sequence of previous observations and ac-
tions. See Table 1 for example snippets from the
navigation instructions.

4.2 Datasets

There are two datasets that provide navigation instructions for the environment described in Section 3:
Touchdown [4] and Map2seq [22]. Each dataset includes around 10k navigation instances, and
we utilize them in the more challenging unseen scenario introduced by Schumann and Riezler [23].
This means that generalization is crucial because the training routes are located in an area that is
geographically separated from the area of development and test routes. The main difference between
the two datasets is that Touchdown instructions were written by annotators who followed the route
in Street View, while Map2seq instructions were written by annotators that saw a map of the route.
The Map2seq navigation instructions were later validated to also be correct in Street View. Another
difference is that the initial state in Map2seq orientates the agent towards the correct direction which
leads to overall better task completion rates than for Touchdown instances.

4

& Heading

Panorama

Environment

Structured Output

{ "landmarks": { "Starbucks": "right" } }

Landmark Scorer

"picture of a mail truck"

"picture of Starbucks"

1.29 -1.12 -2.27 4.152.85

-0.76 -2.20 1.87 1.982.15

Standardized CLIP Scores (Threshold: 3.5)

Landmark Extractor

Write a list of visible landmarks in
the navigation instructions:

- Starbucks
- a mail truck

There is a Starbucks on your right.

There is a N-way intersection

Verbalizer
Template Based

Prompt Sequence

Navigate to the described target location!
Action Space: forward, left, right, turn_around, stop
Navigation Instructions:
"Go straight down the road and turn right at the next
intersection. Go straight until there is a Starbucks on
your right and turn left at the following intersection.
Continue down the block and stop when a mail truck is
on your left."
Action Sequence:
1. forward
2. forward
There is a 4-way intersection.
4. right
5. forward
6. forward
7. forward
There is a Starbucks on your right.
8. <next word prediction>
...

Observation

Landmarks

Number of Edges

Visible Landmarks

Action

left slightly left ahead slightly right right

Figure 3: Overview of the proposed agent VELMA navigating in the Street View environment. The
prompt sequence includes the task description, navigation instructions, and verbalized navigation
trajectory up to the current timestep. The next action is decided by next word prediction utilizing an
LLM and subsequently executed in the environment. This puts the agent into a new state, and the
landmark scorer determines if an extracted landmark is visible in the current panorama view. The
verbalizer takes this landmark information along with the information about a potential intersection
and produces the current observations text. This text is then appended to the prompt sequence and
again used to predict the next action. This process is repeated until the agent stops and the alleged
target location.

5 LLM Agent

In this section, we propose the urban VLN agent that uses an LLM to reason about the next action.
To this end, we verbalize the navigation task, especially the environment observations. The workflow
includes the extraction of landmarks that are mentioned in the instructions and determining their
visibility in the current panorama image. The verbalizer then integrates the visible landmarks and
street intersections into an observation text phrase ot at each step. The complete text prompt at
timestep t is composed as follows:

xt = [da, n, db, o1, 1, a1, o2, 2, a2, ..., ot, t], (1)

where [] denotes string concatenation, da and db are part of the task description and n is the navigation
instructions text. Punctuation and formatting are omitted in the notation for brevity. Figure 3 shows a
prompt sequence at t = 8 on the left. This formulation of the navigation task enables the agent to
predict the next action by next word prediction:

at = argmax
w∈A

PLLM (w|xt), (2)

where A are the literals of the five defined actions and PLLM is a black-box language model with no
vision capabilities.

5.1 Landmark Extractor

Each navigation instructions text n mentions multiple landmarks for visual guidance. In order to
determine if a mentioned landmark is visible in the current panorama view, we first have to extract
them from the instructions text. For this, we create a single prompt that includes five in-context
examples of navigation instructions paired with a list of landmarks. It is used by the LLM to generate
the list of landmarks (l1, l2, ..., lL) mentioned in the given navigation instructions. The landmark
extractor is depicted in the top middle of Figure 3 and is applied once, before the navigation starts.

5.2 Landmark Scorer

At each step, the agent observes a panorama view pαv , defined by its current position v and heading
direction α. The view is an 800x460 sized image cut from the panorama with 60◦ field-of-view. In
order to determine if a landmark li is visible in the view, we employ a CLIP model [18] to embed the
image and the caption: "picture of [li]". The similarity score of the two embeddings determines the

5

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Unstandardized CLIP Score

P
an

or
am

a
V

ie
w

s

τ = 3.0

τ = 4.0

τ = 5.0

4.93 5.29 5.65

τ = 3.0

τ = 4.0

Landmark: Bank of America

2 3 4 5

Unstandardized CLIP Score

P
an

or
am

a
V

ie
w

s

τ = 3.0

τ = 4.0

τ = 5.0

4.42 4.89 5.35

τ = 3.0

τ = 4.0

Landmark: yellow truck

Figure 4: Distribution of CLIP scores between a landmark and panorama images in the training
area. The CLIP score represents the semantic similarity of the panorama image and the text caption
"picture of [landmark]". The distribution is used to standardize the score of the landmark and a novel
panorama. The threshold τ is defined on the standardized score and used to determine the visibility
of the landmark in the novel panorama image.

visibility of the landmark. Because the scores can be biased towards certain types of landmarks, we
standardize them using all views p∗train of the ~20k panorama images in the training area. Recall
that we operate in the unseen scenario where the training area and evaluation area are geographically
separated. The standardized score of a landmark is:

z(l, pαv) =
CLIP(l, pαv)− µ(Cl)

σ(Cl)

where Cl = {CLIP(l, pα
′

v′) | pα
′

v′ ∈ p∗train}.
(3)

If the standardized score is larger than the threshold τ , the landmark is classified as visible in the
current view. There are no ground truth labels indicating whether landmarks are visible in certain
panoramas, thus the classification is completely unsupervised. The threshold is the only tunable
parameter in the landmark scorer. Figure 4 shows the distribution of unstandardized CLIP scores
and views at different threshold values for two example landmarks. While the views at τ = 4.0 both
show the correct landmark, the view at τ = 3.0 for "Bank of America" shows an HSBC branch,
and for "yellow truck" it shows a white truck. This suggests that the optimal threshold lies between
the two values. As depicted on the right in Figure 3, the agent also evaluates views to the left and
right of the current heading. Each panorama view direction (pα−90◦

v , pα−45◦

v , pαv , p
α+45◦

v , pα+90◦

v) is
associated with a string literal m valued left, slightly left, ahead, slightly right or right, respectively.
A visible landmark li and the corresponding direction literal mi are passed to the verbalizer. A full
navigation trajectory includes around 200 image views (40 steps and 5 view directions per step) and
each landmark is typically visible in only one or two views.

5.3 Verbalizer

The verbalizer is a template-based component that produces environment observations in text form.
There are two types of environment observations. First, there are street intersections that are detected
based on the number of outgoing edges N(v) at the current node v in the navigation graph. If
there are three or more outgoing edges at step t, the verbalizer encodes this information into the
observation string oet : "There is a [N(v)]-way intersection". Extracting this information directly from
the navigation graph is akin to the junction type embedding used by the ORAR model [23] and is
motivated by direction arrows displayed in the Street View GUI that human navigators used during
data collection. The other type of observations are landmarks visible in the panorama view. The
landmark name li and direction literal mi are used to verbalize the observation olt: "There is [li] on
your [mi]". The complete observation is ot = [oet , o

l
t], where the respective string is empty if no

intersection or landmark is detected. The observation is appended to the prompt in Equation 1 and
used by the agent to decide the next action.

6

~

6 Experiments

We conducted experiments3 to evaluate the navigation performance of the proposed LLM agent
in finetuning and in-context learning settings. We ran the landmark extractor once for all in-
stances using GPT-3 [3] and used the same extracted landmarks in all experiments. Manual
inspection shows that GPT-3 reliably extracts all landmarks without obvious errors. We used
CLIP-ViT-bigG-14-laion2B-39B-b160k [21] as the CLIP model in the landmark scorer. We set
the threshold τ = 3.5 for all experiments. The threshold was selected by inspecting the distribution
of CLIP scores (as in Figure 4) for a handful of landmarks. On purpose, we did not systematically
tune it in order to not violate the premise of few-shot learning.

6.1 Metrics and Baseline

We use three metrics to measure navigation performance. The task completion (TC) rate is a binary
metric that measures whether the agent successfully stopped within one neighboring node of the
target location. Shortest-path distance (SPD) calculates the shortest path length between the stopping
location and goal location [4]. Key point accuracy (KPA) measures the ratio of correct decisions
at key points. Key points include the initial step, intersections along the gold route, and the target
location.

For baselines, we use the current state-of-the-art agent model for urban VLN called ORAR [23]. The
model employs a seq-to-seq architecture where the encoder LSTM reads the navigation instructions
text, and the multi-layer decoder LSTM receives image feature vectors of the current panorama view
as additional input at each action decoding step. The ORAR model is a very strong baseline beating
more sophisticated models like the VLN Transformer [38]. Because the environment modifications
introduced in Section 3 spare the agents from learning specific irregularities, we additionally retrain
ORAR in the improved environment for a fair comparison.

6.2 Few-Shot Learning Results

1 3 7 13 30 65 175 ?

30

40

50

K
P

A

Touchdown

1 3 7 13 30 65 175 ?

Number of Model Parameters in Billion

30

40

50

60

70

K
P

A

Map2seq

FORWARD-Baseline

OPT

LLaMA-2

LLaMA

GPT-4

GPT-3

Figure 5: Key point accuracy (KPA) for 2-shot in-
context learning of large language models with in-
creasing parameter count. The FORWARD-Baseline
predicts only walking forward and is better than
random actions.

The proposed text-only interface allows us to
use large language models as reasoners without
updating their weights or fusing image represen-
tations. The prompt consists of a short task de-
scription and two in-context examples (2-shot).
The examples are full text sequences for ran-
domly selected navigation instances in the train-
ing set. The two plots in Figure 5 show that per-
formance scales with parameter count and varies
across model families. The FORWARD-baseline
reveals that OPT [33] can barely compete with
a baseline that yields nonsensical predictions,
even at a model size of 65 billion parameters.
LLaMa [28] and especially LLaMa-2 [29] show
promising navigation skills reaching 48.3 and
57.7 key point accuracy (KPA) on Touchdown
and Map2seq, respectively. However, this KPA
score only translates to task completion (TC)
rates of 2.1 and 3.2, revealing that the model is
not able to consistently predict correct actions
throughout the whole navigation trajectory. The
only few-shot LLMs that achieve substantial TC
rates are GPT-3 and GPT-4 [16]. As listed in
Table 2, VELMA-GPT-4 achieves the best results for the 2-shot setting. It reaches 44% and 77%
of the TC rate reported for the previous state-of-the-art model ORAR♠ [23] which is a seq-to-seq
model that has direct access to image features and was trained on the full training set. In contrast,
the GPT models act as a blind agent that solely relies on observation descriptions produced by the
verbalizer. This is remarkable because LLMs are not explicitly trained to experience embodiment

3Code is provided in the supplementary material and will be released upon acceptance.

7

Development Set Test Set
Touchdown Map2seq Touchdown Map2seq

Model SPD↓ KPA↑ TC↑ SPD↓ KPA↑ TC↑ SPD↓ KPA↑ TC↑ SPD↓ KPA↑ TC↑

Seq-to-Seq RNN, full training set
ORAR 20.0 ±0.7 - 15.4 ±2.2 11.9 ±0.4 - 27.6 ±1.8 20.8 ±0.6 - 14.9 ±1.2 13.0 ±0.3 - 30.3 ±1.8

ORAR♠ 16.5 ±0.1 64.0 ±0.2 22.6 ±0.6 10.3 ±0.4 74.4 ±0.8 29.9 ±1.7 17.4 ±0.2 62.3 ±0.1 19.1 ±1.0 10.9 ±0.1 74.7 ±0.2 32.5 ±1.4

2-Shot In-Context Learning
VELMA-GPT-3 22.2 49.1 6.8 19.1 58.1 9.2 - - - - - -
VELMA-GPT-4 21.8 56.1 10.0 12.8 70.1 23.1 - - - - - -

LLM Finetuning, full training set
VELMA-FT 18.6 ±0.3 61.3 ±0.6 22.6 ±0.4 9.8 ±0.5 76.8 ±0.8 38.2 ±0.5 19.4 ±0.1 60.0 ±0.4 21.0 ±0.2 10.3 ±0.4 76.4 ±0.6 37.8 ±0.9

VELMA-RBL 16.1 ±0.1 63.5 ±0.1 25.7 ±0.4 8.4 ±0.7 78.9 ±0.8 42.8 ±0.6 16.6 ±0.2 61.9 ±0.2 24.1 ±0.7 8.8 ±0.2 77.9 ±0.2 42.1 ±1.1

Table 2: Results for the urban VLN task on Touchdown and Map2seq. ORAR is the previous best
model and follows a seq-to-seq architecture that processes text and image features. ORAR♠ and
following models make use of the improved environment introduced in Section 3. The proposed
environment and workflow allow to perform the urban VLN task as text-only next word prediction.
VELMA-GPT-3 and VELMA-GPT-4 models are prompted with two in-context examples. Due to cost
and data leakage concerns, we evaluate the GPT models on the development sets only. VELMA-FT
is based on LLaMa-7b that is finetuned on all ~ 6k training text sequences. VELMA-RBL training
is described in Section 6.3.1. All results are for the unseen scenario where evaluation routes are
geographically separated from training routes. Experiments are repeated three times with different
random seeds (mean/std reported). Bold values are the nominal best results and underlined are best
few-shot results.

in a visual environment. This is emergent behavior unearthed by verbalizing the VLN task. We
also observe that the GPT models use the TURN_AROUND action in appropriate ways, even when the
in-context examples do not demonstrate the usage of it. This emphasizes the effectiveness of intuitive
communication with the environment.

6.3 Finetuning Results

To further explore the capabilities of the proposed LLM agent, we finetune LLaMa-7b on all training
instances of the respective dataset, denoted by VELMA-FT in Table 2. Each training instance is the
full text sequence after following the gold path. The visibility of landmarks is determined by the
landmark scorer during training because gold annotations are not available. There are 6,770 training
instances for Touchdown and 5,737 for Map2seq. We finetune for 20 epochs using LoRA [11] to
adapt attention query and value projections. The best model is selected by task completion on the
development set. The resulting agent outperforms the previous state-of-the-art model ORAR♠ by
10% and 16% relative TC rate. Comparing ORAR♠ which fuses image features at the vector level to
VELMA-FT which finetunes on verbalizations of observations, shows that the text-based environment
observations are less prone to overfitting.

6.3.1 Response-Based Learning

A navigation task is successfully completed if the agent stops at either the goal location or an adjacent
neighboring node. Training the agent with teacher-forcing to exactly follow the gold route penalizes
the agent for stopping one step short or one step past the target node, despite accomplishing the
navigation objective. Furthermore, the agent can not learn to recover from incorrect decisions during
inference. We thus train the agent to directly optimize the TC metric while also feeding it its own
actions during training, called VELMA-RBL in Table 2. The procedure for VELMA-RBL is inspired
by response-based learning [6] and imitation learning [20] and is outlined in Algorithm 1. The loss for
an instance at training step j is either computed by teacher forcing the gold action sequence â, or by
student forcing, determined by a mixing parameter λ. In the latter case, the agent freely moves around,
executing the actions decoded using its current model weights θj . If the agent successfully stops
within one neighboring node of the target location, the predicted action sequence aj is considered
correct and used as the reference to train the agent. If the agent stops at the wrong location, an oracle
path is computed to provide the optimal counterfactual action at each step in the trajectory. In our
case, the oracle’s optimal next action is computed as the shortest path to the goal location. We set

8

~

Algorithm 1 RBL Optimization of Task Completion

Require: mixing ratio λ, training step j, model weights θj , gold action sequence â, prompt x1

if random(0, 1) < λ then
aθj = StudentForcing(θj , x1)
aj = argmaxaθj
if TaskCompletion(aj) = 1 then

lossj = LCE(aθj ,aj)
else

a∗j = Oraclestepwise(aj)
lossj = LCE(aθj ,a

∗
j)

end if
else

aθj = TeacherForcing(θj , x1, â)
lossj = LCE(aθj , â)

end if

λ = 0.5 to collect training losses in a batch evenly from both training strategies. Manually inspecting
trajectories produced by the trained agent, we found improvements of following instructions that
have stopping criteria like "Stop a few steps before Y." or "Stop at X. If you see Y you have gone too
far.". In both cases, the agent learned to walk past the uncertain stopping location and to invoke the
TURN_AROUND action in order to walk back once landmark Y appeared. Overall the task completion
rate increases significantly using this training procedure with 15% and 11% relative improvements for
Touchdown and Map2seq respectively. Overall, our contributions in this work amount to an absolute
increase of task completion by 9.2 and 11.8 over the previously reported state-of-the-art.

6.4 Image Ablation Touchdown Map2seq
Image Model SPD↓ TC↑ SPD↓ TC↑
no image 27.4 ±0.5 14.7 ±0.5 9.7 ±0.2 35.2 ±0.9

CLIP 21.3 ±0.5 19.5 ±0.6 9.8 ±0.3 37.2 ±0.5

OpenCLIP 18.6 ±0.3 22.6 ±0.4 9.8 ±0.5 38.2 ±0.5

Table 3: Vision ablation on the development set. We
finetune a separate LLaMa-7b model for each ab-
lation. CLIP refers to clip-vit-large-patch14
[18]. The OpenCLIP image model refers to
CLIP-ViT-bigG-14-laion2B-39B-b160k [21].

In this section, we ablate the image model
used by the landmark scorer. We finetune a
LLaMa-7b model according to Section 6.3
and use CLIP [18], OpenCLIP [21] or no
image model in the landmark scorer. The
latter case means that no landmark obser-
vation is passed to the prompt sequence.
The results in Table 3 show that OpenCLIP
is better suited for detecting landmarks in
our navigation task than the original CLIP
model. This is in line with better ImageNet results reported by the OpenCLIP authors and sug-
gests that the agent can directly benefit from further improvements of CLIP models. Appending no
landmarks to the prompt sequence further degrades performance, especially on Touchdown.

7 Conclusion

We introduced VELMA, an agent for urban vision and language navigation, which utilizes a large
language model to infer its next action. The LLM is continuously queried with a text prompt that
verbalizes the task description, navigation instructions, visual observations, and past trajectory of the
agent. In order to include observed landmarks in the prompt, we propose an unsupervised pipeline
that extracts landmarks from the instructions and determines their visibility in the current panorama
view based on thresholded CLIP scores. We evaluate the embodied LLM agent in a modified version
of the commonly used Touchdown environment based on Street View. One proposed modification is
fixing a problem at intersections that led to incorrect alignments of action sequences, and another
modification adds the TURN_AROUND action which provides a more intuitive way to communicate with
the environment. The proposed agent achieves strong few-shot in-context learning results of 10 and
23 task completion rates for Touchdown and Map2seq, respectively, and yields new state-of-the-art
results of 24 and 42 task completion rates when finetuned on the full training set.

9

References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,

Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3674–3683, 2018.

[2] Jason Armitage, Leonardo Impett, and Rico Sennrich. A priority map for vision-and-language
navigation with trajectory plans and feature-location cues. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 1094–1103, 2023.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[4] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
California, 2019.

[5] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
transformer for vision-and-language navigation. Advances in neural information processing
systems, 34:5834–5847, 2021.

[6] James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving semantic parsing from
the world’s response. In Proceedings of the Fourteenth Conference on Computational Natural
Language Learning, pages 18–27, Uppsala, Sweden, July 2010. Association for Computational
Linguistics. URL https://aclanthology.org/W10-2903.

[7] Vishnu Sashank Dorbala, Gunnar Sigurdsson, Robinson Piramuthu, Jesse
Thomason, and Gaurav S. Sukhatme. Clip-nav: Using clip for zero-shot
vision-and-language navigation. In CoRL 2022 Workshop on Language and
Robot Learning, 2022. URL https://www.amazon.science/publications/
clip-nav-using-clip-for-zero-shot-vision-and-language-navigation.

[8] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe
Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-
follower models for vision-and-language navigation. In Neural Information Processing Systems
(NeurIPS), 2018.

[9] Tsu-Jui Fu, Xin Eric Wang, Matthew F Peterson, Scott T Grafton, Miguel P Eckstein, and
William Yang Wang. Counterfactual vision-and-language navigation via adversarial path
sampler. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part VI 16, pages 71–86. Springer, 2020.

[10] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A
recurrent vision-and-language bert for navigation. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, pages 1643–1653, 2021.

[11] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=nZeVKeeFYf9.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations (ICLR), San Diego, California,
2015.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/W10-2903
https://www.amazon.science/publications/clip-nav-using-clip-for-zero-shot-vision-and-language-navigation
https://www.amazon.science/publications/clip-nav-using-clip-for-zero-shot-vision-and-language-navigation
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

[13] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-
room: Multilingual vision-and-language navigation with dense spatiotemporal grounding. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 4392–4412, 2020.

[14] Jialu Li, Hao Tan, and Mohit Bansal. Envedit: Environment editing for vision-and-language
navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15407–15417, 2022.

[15] Harsh Mehta, Yoav Artzi, Jason Baldridge, Eugene Ie, and Piotr Mirowski. Retouchdown:
Releasing touchdown on StreetLearn as a public resource for language grounding tasks in street
view. In Proceedings of the Third International Workshop on Spatial Language Understanding
(SpLU), Online, 2020.

[16] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[17] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and
Anton van den Hengel. Reverie: Remote embodied visual referring expression in real indoor
environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9982–9991, 2020.

[18] Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

[19] Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexan-
der Clegg, John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X
Chang, Manolis Savva, Yili Zhao, and Dhruv Batra. Habitat-matterport 3d dataset (HM3d):
1000 large-scale 3d environments for embodied AI. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. URL
https://openreview.net/forum?id=-v4OuqNs5P.

[20] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 2011.

[21] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kacz-
marczyk, and Jenia Jitsev. LAION-5b: An open large-scale dataset for training next gen-
eration image-text models. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?
id=M3Y74vmsMcY.

[22] Raphael Schumann and Stefan Riezler. Generating landmark navigation instructions from
maps as a graph-to-text problem. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 489–502, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.41. URL
https://aclanthology.org/2021.acl-long.41.

[23] Raphael Schumann and Stefan Riezler. Analyzing generalization of vision and language
navigation to unseen outdoor areas. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 7519–7532, Dublin, Ireland,
May 2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.acl-long.518.

[24] Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. Lm-nav: Robotic navigation with
large pre-trained models of language, vision, and action, 2022.

11

https://openreview.net/forum?id=-v4OuqNs5P
https://openreview.net/forum?id=M3Y74vmsMcY
https://openreview.net/forum?id=M3Y74vmsMcY
https://aclanthology.org/2021.acl-long.41
https://aclanthology.org/2022.acl-long.518
https://aclanthology.org/2022.acl-long.518

[25] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mot-
taghi, Luke Zettlemoyer, and Dieter Fox. ALFRED: A Benchmark for Interpreting Grounded
Instructions for Everyday Tasks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. URL https://arxiv.org/abs/1912.01734.

[26] Yanjun Sun, Yue Qiu, Yoshimitsu Aoki, and Hirokatsu Kataoka. Outdoor vision-and-language
navigation needs object-level alignment. Sensors, 23(13), 2023. ISSN 1424-8220. doi:
10.3390/s23136028. URL https://www.mdpi.com/1424-8220/23/13/6028.

[27] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to navigate unseen environments: Back
translation with environmental dropout. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 2610–2621, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1268. URL
https://aclanthology.org/N19-1268.

[28] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[29] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[30] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv: Arxiv-2305.16291, 2023.

[31] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised
imitation learning for vision-language navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[32] Jiannan Xiang, Xin Wang, and William Yang Wang. Learning to stop: A simple yet effective
approach to urban vision-language navigation. In Findings of the Association for Computational
Linguistics (ACL Findings), Online, 2020.

[33] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[34] Victor Zhong, Austin W. Hanjie, Sida Wang, Karthik Narasimhan, and Luke Zettlemoyer.
Silg: The multi-domain symbolic interactive language grounding benchmark. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 21505–21519. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
b3e3e393c77e35a4a3f3cbd1e429b5dc-Paper.pdf.

[35] Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language
navigation with large language models, 2023.

12

https://arxiv.org/abs/1912.01734
https://www.mdpi.com/1424-8220/23/13/6028
https://aclanthology.org/N19-1268
https://proceedings.neurips.cc/paper_files/paper/2021/file/b3e3e393c77e35a4a3f3cbd1e429b5dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b3e3e393c77e35a4a3f3cbd1e429b5dc-Paper.pdf

[36] Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen, Hongxia Jin, Lise Getoor, and Xin Eric
Wang. Esc: Exploration with soft commonsense constraints for zero-shot object navigation.
arXiv preprint arXiv:2301.13166, 2023.

[37] Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng, Vihan Jain, Eugene Ie, and Fei Sha.
Babywalk: Going farther in vision-and-language navigation by taking baby steps. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
2539–2556, 2020.

[38] Wanrong Zhu, Xin Wang, Tsu-Jui Fu, An Yan, Pradyumna Narayana, Kazoo Sone, Sugato
Basu, and William Yang Wang. Multimodal text style transfer for outdoor vision-and-language
navigation. In Proceedings of the 16th Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume, pages 1207–1221, Online, April 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.103. URL
https://aclanthology.org/2021.eacl-main.103.

13

https://aclanthology.org/2021.eacl-main.103

A Finetuning Details

In the finetuning experiments, we use the official LLaMA-7b weights and finetune a LoRA adapter
for q_proj and v_proj. LoRA hyperparameter are set to r = 8, alpha = 16, dropout = 0.05 and
no bias. We use Adam [12] as the optimizer with a learning rate of 0.0003, warmup ratio of 0.1
and linear decay. The batch size is 16 and we train for 20 epochs. We use greedy decoding for all
experiments.

B Modified Environment

In Section 3.1 we propose modifications to the environment introduced by Chen et al. [4]. In Table 4
we give an overview of action sequences required to clear 3-way, 4-way and 5-way intersections in
different directions in the original environment implementation and our modified environment. It
is clear that the action sequences required in our improved environment are more intuitive and are
necessary to enable few-short agents to interact with it.

C Landmark Extraction

The landmarks mentioned in the navigation instructions are extracted before the run starts. We do
this by a separate prompt that we feed to GPT-3. The prompt for Map2seq instructions is shown in
Figure 8 and the one for Touchdown in Figure 9. It provides five instructions texts paired with a list of
extracted landmarks as in-context examples. The lists of example landmarks were compiled by hand
and the same prompt is used for each instance. There are no gold annotations for extracted landmarks
and as such no quantitative evaluation is possible. In Figure 10 we show landmarks extracted by
GPT-3 using this prompt.

D Landmark Scorer

We show the CLIP score distribution and panorama views at certain thresholds for additional land-
marks in Figure 6. Some navigation instructions refer to the flow up traffic when orientating the agent
in the beginning of Touchdown instances, e.g. "Orientate yourself with against the flow of traffic...".
To support this kind instructions, we score the phrases "the front view of a vehicle" and "the rear
view of a vehicle" once, before the start. Whichever phrase scores higher with the initial perspective,
determines if the agent is facing against the traffic or with the flow of traffic respectively. This traffic
flow prediction is then provided as an environment observation string before the first step of the agent.

E Full Prompt Sequence

In Figure 7 we show a full prompt sequence for a given navigation instance. The agent predicted STOP
at timestep 14 and thus finished the trajectory. In the depicted case the agent followed the correct
route and successfully completed the navigation objective. For visualization purposes the trajectory
is shortened. On average the routes in Touchdown and Map2seq require 40 steps to be completed.
This also means the agents has to evaluate 200 panorama views for each navigation instance.

14

3 4 5 6

Unstandardized CLIP Score

P
an

or
am

a
V

ie
w

s

τ = 3.0

τ = 4.0

τ = 5.0

4.89 5.30 5.70

τ = 3.0

τ = 4.0

Landmark: blue awnings

2 3 4 5

Unstandardized CLIP Score

P
an

or
am

a
V

ie
w

s

τ = 3.0

τ = 4.0

τ = 5.0

4.61 5.07 5.53

τ = 3.0

τ = 4.0

Landmark: green scaffolding

2.5 3.0 3.5 4.0 4.5 5.0 5.5

Unstandardized CLIP Score

P
an

or
am

a
V

ie
w

s

τ = 3.0

τ = 4.0

τ = 5.0

4.61 4.95 5.28

τ = 3.0

τ = 4.0

Landmark: Starbucks

Figure 6: Distribution of CLIP scores between a landmark and panorama images in the training
area. The CLIP score represents the semantic similarity of the panorama image and the text caption
"picture of [landmark]". The distribution is used to standardize the score of the landmark and a novel
panorama. The threshold τ is defined on the standardized score and used to determine the visibility
of the landmark in the novel panorama image.

"Orientate yourself such that a blue bench is on your right, go
to the end of the block and make a right. Follow the park on your
left and make a right at the next intersection. Pass the black fire
hydrant on your right and stop when you get to the gray door
on the brown building."

There is a blue bench on your left.
1. turn_around
There is a blue bench on your right.
2. forward
3. forward
4. forward
There is a 3-way intersection.
5. right
6. forward
There is a park on your left.
7. forward
There is a park on your left.
8. forward
There is a park on your left.
9. forward
There is a 4-way intersection.
10. right
11. forward
There is a black fire hydrant slightly right.
12. forward
There is a black fire hydrant on your right.
13. forward
There is a gray door on the brown building on your left.
14. stop

Navigate to the described target location!

Action Space: forward, left, right, turn_around, stop

Navigation Instructions:

Action Sequence:

Figure 7: Finished prompt sequence used to utilize LLMs for VLN in Street View. Verbalized
observations of the visual environment are in green and appended to the prompt at each step. Agent
actions (blue) are acquired by LLM next word prediction. Highlighting of text and shortening of
route for visual presentation only. Full navigation trajectories are on average 40 steps long.

15

Intersection Path Environment by Chen et al. Our Environment

1

2

3 54

2→3→4 [FORWARD, LEFT, FORWARD] [FORWARD, LEFT, FORWARD]
2→3→5 [FORWARD, FORWARD] [FORWARD, RIGHT, FORWARD]

1

2

3

6

5

4

2→3→4 [FORWARD, LEFT, LEFT, FORWARD] [FORWARD, LEFT, FORWARD]
2→3→5 [FORWARD, LEFT, FORWARD] [FORWARD, FORWARD]
2→3→6 [FORWARD, FORWARD] [FORWARD, RIGHT, FORWARD]

1

2

5

4 3

6

7

2→3→4 [FORWARD, LEFT, LEFT, FORWARD] [FORWARD, LEFT, LEFT, FORWARD]
2→3→5 [FORWARD, LEFT, FORWARD] [FORWARD, LEFT, FORWARD]
2→3→6 [FORWARD, FORWARD] [FORWARD, RIGHT, FORWARD]
2→3→7 [FORWARD, RIGHT, FORWARD] [FORWARD, RIGHT, RIGHT, FORWARD]

Table 4: Comparison of the Touchdown environment implemented by Chen et al. [4] and the improved
implementation proposed by us. The action sequence required to clear an intersection in different
directions in our improved environment is semantically aligned with the expected outcome.

16

Head to the end of the block and make a right. Pass a Subway entrance on the right and go through the
light. At the next light with Staples on the corner, make a right. Stop in front of the library that is a few
buildings down on the right.
Landmarks:
1. a subway entrance
2. Staples
3. a library

Go straight through the light ahead of you, then turn right at the next one. After your turn, you
will see Starbucks on the left. At the light after that, turn left. Pass the church on the left and then stop
after Hot Kitchen. You should be able to see a bike rental on the right.
Landmarks:
1. Starbucks
2. a church
3. Hot Kitchen
4. a bike rental

Head to the intersection and turn left. Continue to the end of the block and turn right. Go
straight and past the intersection. Stop 1/3 of the way down the block with the large building on your right.
Landmarks:
None

Walk to the light with Just Sweet and turn right. Go through a light with an AMC and a couple
more blocks until you see a tiny park or plaza on the far left corner. Turn left passing that park and then
make a left turn almost immediately after. Stop after a couple of steps, where a road from the right joins
the main road.
Landmarks:
1. Just Sweet
2. AMC
3. a park
4. a plaza

Go straight through the next 3 lights past the bus stops and at the 4th light shortly after the 3rd
take a left. Stop just past the bus stop and Neta diner.
Landmarks:
1. bus stop
2. Neta diner

{navigation instructions}
Landmarks:
<>

Figure 8: Prompt to extract landmarks from navigation instruction in Map2seq.

17

You will start of at an intersection. To begin, make sure you are going in the direction of the blue and
white van with orange cones around it. Pass that van. Go straight through the first intersection you get to.
You will come to a light at an intersection where there is a building with a green awning. Take a right. Go
straight until you are in the middle of the intersection. In front of you, there is a building with a red sign
above the entrance.
Landmarks:
1. a blue and white van
2. orange cones
3. a green awning
4. a red sign above the entrance

Turn to the right until you’re looking down the street. There should be a red SUV on the right
side of the frame now. Begin moving forward until you reach an intersection. Take a left here. Keep
moving forward until reaching a three-way intersection. Take another left here. Move forward three times.
Turn to the right until you see a red and white street sign next to a series of green boards.
Landmarks:
1. a red SUV
2. a red and white street sign
3. a series of green boards

Head in the direction of traffic and continue going straight. You will have the opportunity to
turn right, but DON’T. Keep going straight. When you reach the intersection, turn left. Keep going straight.
You will reach an intersection, but keep going straight. Just before you reach the next intersection, you will
see a bus stop on the right in front of a credit union.
Landmarks:
1. a bus stop
2. credit union

If you look around there should be a beige building on your right and a green awning. You
want to head in the same direction as the the red building with a staircase and a green awning if you check
your surrounding. Make a left turn at the intersection when you arrive. Follow the road until you reach
another intersection. At this intersection make a left turn. You should be in an alley. If you go up a few
steps there should be a bicycle leaning on a tree. There should be a white car next to the bike. Up ahead at
least one step is a silver car and a light green car.
Landmarks:
1. beige building
2. green awning
3. a red building with a staircase and a green awning
4. a bicycle leaning on a tree
5. a white car next to the bike
6. a silver car
7. a light green car

Turn so your facing the intersection. You will take one step and be in the intersection. Turn
Left, you will see some construction barriers on your left. Go one block and at the very next intersection
go left again. Go about half a block or so and you will see another orange barricade on your left. There
will be some tarps covering construction stuff and scaffolding. At the beginning of the barricade, there is
an orange safety light.
Landmarks:
1. construction barriers
2. orange barricade
3. tarps covering construction stuff and scaffolding
4. orange safety light

{navigation instructions}
Landmarks:
<>

Figure 9: Prompt to extract landmarks from navigation instruction in Touchdown.

18

Map2seq:

Navigation Instructions (ID: 6197):

Head through the first intersection and at the next light make a right. Go past the next light and the
Butcher Daughter will be on the far left corner. At the next light make a left and stop in front of
Kings Avenue Tattooing.

Extracted Landmarks: "The Butcher Daughter", "Kings Avenue Tattooing"

Navigation Instructions (ID: 6205):

Head past the market and the cathedral and make a right at the light. At the next light with the
Delicatessen on the corner make a left. Stop in front of the fire hall.

Extracted Landmarks: "a market", "a cathedral", "a Delicatessen", "a fire hall"

Navigation Instructions (ID: 6211):

Go to the end of the block and turn left. Pass More Parlour on the right and turn right at the lights.
Go past the park on the left to the lights and turn left and take two steps. Stop at Straus Square on the
right before the bike rental.

Extracted Landmarks: "More Parlour, "a park", "Straus Square", "a bike rental"

Touchdown:
Navigation Instructions (ID: 546):

You’re going to go down the narrow street, not the big/main street here. Turn yourself so
you’ve got that big mural of a guy with nunchucks at your back, and you’re facing down the
narrow street where you’ll go in the same direction the parked cars are facing. Go down that
street, and pass through the first intersection with the stop sign. At the second intersection, turn
right. Go until you’re nearly in the next intersection (right before you’d be standing on the crosswalk).

Extracted Landmarks: "mural of a guy with nunchucks", "parked cars", "stop sign",
"crosswalk"

Navigation Instructions (ID: 580):

You’re basically starting in an intersection. Move to the center of the intersection, and turn yourself
so the restaurant with the bright yellow awnings and sidewalk barriers is on your right side (you’ll
pass it on your right as you walk down the street). Go down that street, with the yellow restaurant on
your right, and go to the next intersection. Turn right. Look at the buildings on your right. A short
way down the block you’ll come to a bar with a wood bench out front. There is also a red velvet rope
near the bench.

Extracted Landmarks: "restaurant with bright yellow awnings and sidewalk barriers",
"bar with a wood bench", "red velvet rope"

Navigation Instructions (ID: 584):

Turn yourself around left so that you are going with the flow of traffic, there should be a green door
on your right. Go forward and make a right turn at the first intersection. There will be a black
awning on your right. Continue forward. When you come to the next intersection, make another
right turn. As you get near the next intersection, you will see large red brick buildings on your right.
You will see a pallet of green sandbags sitting along the sidewalk.

Extracted Landmarks: "green door black awning", "large red brick buildings", "pallet of
green sandbags"

Figure 10: Landmarks extracted by GPT-3 using the 5-shot prompt for Map2seq and Touchdown.

19

	Introduction
	Related Work
	Urban VLN Environment
	Alignment Inconsistencies in Touchdown
	Turning Around

	Navigation Task
	Challenges
	Datasets

	LLM Agent
	Landmark Extractor
	Landmark Scorer
	Verbalizer

	Experiments
	Metrics and Baseline
	Few-Shot Learning Results
	Finetuning Results
	Response-Based Learning

	Image Ablation

	Conclusion
	Finetuning Details
	Modified Environment
	Landmark Extraction
	Landmark Scorer
	Full Prompt Sequence

