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Abstract
The K-means algorithm is one of the most widely
studied clustering algorithms in machine learn-
ing. While extensive research has focused on
its ability to achieve a globally optimal solution,
there still lacks a rigorous analysis of its local op-
timality guarantees. In this paper, we first present
conditions under which the K-means algorithm
converges to a locally optimal solution. Based on
this, we propose simple modifications to the K-
means algorithm which ensure local optimality in
both the continuous and discrete sense, with the
same computational complexity as the original
K-means algorithm. As the dissimilarity mea-
sure, we consider a general Bregman divergence,
which is an extension of the squared Euclidean
distance often used in the K-means algorithm.
Numerical experiments confirm that the K-means
algorithm does not always find a locally optimal
solution in practice, while our proposed methods
provide improved locally optimal solutions with
reduced clustering loss. Our code is available at
https://github.com/lmingyi/LO-K-means.

1. Introduction
K-means clustering is one of the most widely recog-
nized methods for partitioning datasets into homogeneous
groups. The K-means clustering problem, formulated as
a nonconvex optimization problem in (P1), is NP-hard
(Aloise et al., 2009). The K-means algorithm, also known
as Lloyd’s algorithm, was first proposed by Lloyd (1982) as
a quantization method for pulse-code modulation and has
since been widely applied and extensively studied across
various domains, including image recognition, text mining,
deep learning model weight quantization, healthcare, mar-
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keting, and education (Csurka et al., 2004; Steinbach et al.,
2000; Han et al., 2016; Kim et al., 2024; Liu & Shih, 2005;
Bharara et al., 2018; Moubayed et al., 2020).

It is well known that the solution generated by the K-means
algorithm is highly sensitive to the algorithm’s initializa-
tion. To mitigate this issue, various strategies have been in-
troduced. These include methods for improving the initial
cluster centers, such as K-means++ (Arthur & Vassilvitskii,
2006), and approaches that involve running the algorithm
multiple times with different initializations (Jain, 2010).
Nevertheless, it still seems to be largely accepted from at
least the 1980s that the K-means algorithm converges to
a locally optimal solution: the scikit-learn documentation
states that “in practice, the K-means algorithm is very fast...
but it falls in local minima” (scikit-learn developers, 2025),
while Grunau & Rozhoň (2022) confirm that “Lloyd’s
algorithm converges only to a local optimum”. Similarly,
Balcan et al. (2018) describe that “Lloyd’s method is used
to converge to a local minimum”. For the local optimality
guarantee, (Selim & Ismail, 1984) is often cited, which at-
tempted to prove that the K-means algorithm converges to a
locally optimal solution, but their proof only demonstrated
that the K-means algorithm converges within a finite num-
ber of iterations, and indeed, we show by counterexample
that the K-means algorithm does not always converge to a
locally optimal solution in Section 3.1.

This prevalent assumption about local optimality has also
shaped research on improving the K-means algorithm.
Variants such as K-means--, which is robust to outliers,
and K-means clustering using Bregman divergences, are
also claimed to converge to a locally optimal solution
(Chawla & Gionis, 2013, Theorem 4.1, Banerjee et al.,
2005, Proposition 3). In these studies, the convergence to
a locally optimal solution is justified by the fact that the
loss function monotonically decreases after each iteration.
However, there still appears to be a gap between these
proofs and a guarantee of local optimality. Based on this,
the following question naturally arises:

Can we modify the K-means algorithm to guarantee local
optimality while maintaining the same order of

computational complexity?

The answer is “yes” for the K-means algorithm using
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the squared Euclidean distance, as well as the more general
setting of weighted K-means using Bregman divergences,
which we focus on in this work.

Besides (Selim & Ismail, 1984), another paper related to
our work is (Peng & Xia, 2005), which considers the
K-means problem with squared Euclidean distance, and
gives necessary and sufficient conditions for locally opti-
mal solutions. An algorithm which converges to a D-local
optimal solution is presented (see Definition 2.3), as well
as a method to find a global optimal solution. Recognizing
the dominance of the K-means algorithm for solving the
K-means problem, our focus was not to create a completely
new algorithm, but to develop simple modifications to
the K-means algorithm which can be easily added into
already established codebases. With this goal in mind,
our necessary and sufficient conditions for local optimality,
given in Section 4, were developed for verification of
solutions generated by the K-means algorithm, while also
being applicable for general Bregman divergences.

Our contribution

• The K-means algorithm has long been assumed to
converge to a locally optimal solution, even if it does
not reach a globally optimal solution. To the best
of our knowledge, this is the first study to point out
this misconception. We provide a counterexample in
Section 3.1 showing that the K-means algorithm does
not always converge to a locally optimal solution.

• We propose practical modifications to the K-means
algorithm that introduce minimal computational and
implementation overhead. It is proven that these mod-
ifications guarantee that the K-means algorithm con-
verges to either a locally optimal solution of its contin-
uous relaxation (called C-local, see Definition 2.4) or
to a discrete locally optimal solution (D-local), with-
out increasing the per-iteration time complexity nor
space complexity of the original K-means algorithm.

• By performing extensive experiments using both syn-
thetic and real-world datasets using different Breg-
man divergences, we find that our modified K-means
algorithms (LO-K-means) result in improved solu-
tions with decreased clustering loss. In particular,
one of our proposed variants, Min-D-LO, seems to
strike the correct balance between improved accuracy
and computation time, by being able to significantly
decrease the clustering loss, while also being much
faster than other tested D-local algorithms, including
the algorithm proposed in (Peng & Xia, 2005, Section
3.2.1).

Notation For an N ∈ N, let [N ] := {1, 2, . . . , N}. Let R,
R+, and R++ denote the set of real numbers, nonnegative

real numbers, and positive real numbers, respectively. The
effective domain of a function f : Rd → R ∪ {+∞} is
defined as dom(f) := {x ∈ Rd | f(x) < +∞}. For a set
X ⊂ Rd, let co(X) denote its convex hull. In a Euclidean
metric space (X, d), let B(a, ϵ) := {x ∈ X | d(a, x) < ϵ}
represent an open ball of radius ϵ > 0 centered at a ∈ X .
To describe the rate of convergence, we employ Landau
notation. For functions f and g : R+ → R+, the notation
f(x) = O(g(x)) is used as x → ∞ to indicate that there
exists a constant M > 0 such that |f(x)| < M |g(x)| for
sufficiently large x.

2. Preliminaries
2.1. Problem Formulation

In this work, we consider a generalized K-means clustering
problem, the weighted K-means problem using Bregman
divergences, where we are given a set of N unique points
in Rd, X = {xi}Ni=1, with corresponding positive weights
W = {wi}Ni=1 ⊂ R++, and a number of clusters K ∈ N to
partition the N points of X .

We use P ∈ RK×N to denote the assignment of points
to clusters, where pi,j ∈ {0, 1}, and pi,j = 1 indicates
that point j is assigned to cluster i. The centers of the
clusters are represented by C ∈ Rd×K , where each column
corresponds to a center ci ∈ Rd for i = 1, 2, . . . ,K .
Furthermore, the sum of the weights of points belonging
to each cluster k is expressed as sk(P ) =

∑N
n=1 pk,nwn.

We denote the dissimilarity measure as D(x, c), which
we assume is a Bregman divergence (see Section 2.2, e.g.
D(x, c) = ∥x− c∥22 for the squared Euclidean distance).

The weighted K-means problem is formulated as follows.

(P1) min
P,C

f(P, C) =

K∑
k=1

N∑
n=1

pk,nwnD(xn, ck)

s.t. P ∈ S1, ck ∈ R ∀k ∈ [K],

where the feasible region S1 of P is given asP ∈ RK×N

∣∣∣∣∣∣∣∣
K∑

k=1

pk,n = 1 ∀n ∈ [N ],

pk,n ∈ {0, 1} ∀k ∈ [K], n ∈ [N ]


(1)

and the feasible region R ⊆ Rd of all ck is dependent on
the choice of D (when D(x, c) = ∥x− c∥22, R = Rd). The
first constraint in (1) ensures that each point is assigned to
one cluster. Throughout this paper, we refer to f(P,C) as
the clustering loss.

If the number of points in the dataset, N , is less than or
equal to the number of clusters K, the global optimal value
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of (P1) is trivially equal to 0. Therefore, this work focuses
on situations where N > K. The assumed uniqueness of
all x ∈ X is also without a loss of generality, given that if
there exists xi, xj ∈ X such that xi = xj , the point xj can
be removed from X , with wi updated to equal wi + wj .

We also consider the following problem, where the domain
S2 of P is a continuous relaxation of S1 in (P1):

(P2) min
P,C

f(P, C) =

K∑
k=1

N∑
n=1

pk,nwnD(xn, ck)

s.t. P ∈ S2, ck ∈ R ∀k ∈ [K],

where

S2 :=

P ∈ RK×N

∣∣∣∣∣∣∣∣
K∑

k=1

pk,n = 1 ∀n ∈ [N ],

pk,n ≥ 0 ∀k ∈ [K], n ∈ [N ]

 .

It is noted that S1 is the set of all extreme points of S2.

For a given P ∈ S2, we define

F (P ) := min
C∈RK

f(P,C), (2)

C∗(P ) := arg min
C∈RK

f(P,C).

In general C∗(P ) is not a singleton. We denote an element
of C∗(P ) as C∗

P , i.e., C∗
P ∈ C∗(P ), and denote its k-th

column (cluster center) as (c∗P )k.

We can rewrite the optimization problem (P1) as simply
min
P∈S1

F (P ), and similarly for (P2). It is known (Selim &

Ismail, 1984, Lemma 1) that F (P ) is concave, which is
easily derived from the linearity of the clustering loss with
respect to P , irrespective of the choice of D.

In addition, we define A(C) as the set of optimal extreme
points that minimize the clustering loss when C is fixed,

A(C) := arg min
P∈S1

f(P,C). (3)

2.2. Bregman Divergences

In this work we focus on dissimilarity measures D belong-
ing to the class of Bregman divergences, which generalize
the squared Euclidean distance.

Definition 2.1 (Bregman (1967)). Let ϕ : dom(ϕ)→ R be
a strictly convex function defined on a convex set dom(ϕ)
such that ϕ is differentiable on int dom(ϕ). The Bregman
divergence Dϕ : dom(ϕ)× int dom(ϕ)→ R+ is defined as

Dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨x− y,∇ϕ(y)⟩.

See Appendix A for common choices of Bregman di-
vergence, their corresponding ϕ, and dom(ϕ), which are

frequently used in clustering. For more examples see
(Banerjee et al., 2005, Table 1), (Bauschke et al., 2016,
Example 1), and (Ackermann, 2009, Figure 2.2). These ex-
amples underscore the versatility of Bregman divergences
in accommodating various data characteristics and applica-
tion domains. In Definition 2.1, the Bregman divergence
was written as Dϕ, highlighting the underlying function ϕ
it is generated from. For the sake of simplicity, we will
continue to denote dissimilarity measures as D, with its
underlying function ϕ being assumed.

The next proposition follows directly from (Banerjee et al.,
2005, Proposition 1).

Proposition 2.2. For X ⊂ int dom(ϕ), assume that for a
P ∈ S2, sk(P ) > 0 for a cluster k ∈ [K]. The unique
optimal center for cluster k, (c∗P )k, for all C∗

P ∈ C∗(P )
equals

(c∗P )k =

∑N
n=1 pk,nwnxn∑N
n=1 pk,nwn

. (4)

The proposition assumes that X ⊂ int dom(ϕ) to ensure
that (c∗P )k ∈ int dom(ϕ), such as when clusters only con-
tain a single point. We also note that C∗(P ) is a singleton
unless there exists an empty cluster k (i.e., sk(P ) = 0), for
which any value of (c∗P )k ∈ R is optimal.

From Definition 2.1, it must hold that R ⊆ int dom(ϕ).
Following Proposition 2.2, we will also assume that X ⊂
int dom(ϕ). We note that this has no effect for Bregman
divergences where dom(ϕ) is an open set, such as for
squared Euclidean distance, squared Mahalanobis distance,
and the Itakura-Saito divergence (see Appendix A). We
can then further restrict R = co(X) without any loss in
solution quality given (4).

2.3. Local Optimality Conditions

Before defining local optimality, for P ∈ S1, let T (P )
denote the set of adjacent points of P . The number of
elements in T (P ) is finite; more specifically, for each P ∈
S1, |T (P )| = N(K − 1). This can be seen by considering
all S1-feasible single-step reassignments. Since each of the
N assigned points can be moved to one of the remaining
K − 1 clusters, there are N(K − 1) adjacent points.

We now introduce two definitions of local optimality for
discrete and continuous optimization problems (Newby &
Ali, 2015, Definitions 2 and 3) for problems (P1) and (P2),
respectively, with respect to the function F .

Definition 2.3 (D-local: Discrete locally optimal solution).
In (P1), (P ∗, C∗

P∗) is called D-local if the cluster assign-
ment P ∗ satisfies

F (P ∗) ≤ F (P ) ∀P ∈ T (P ∗). (5)
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Definition 2.4 (C-local: Continuous locally optimal solu-
tion). In (P2), (P ∗, C∗

P∗) is called C-local if there exists an
ϵ > 0 such that

F (P ∗) ≤ F (P ) ∀P ∈ S2 ∩B(P ∗, ϵ). (6)

We observe that D-local is a stronger notion of local
optimality.

Proposition 2.5 (Benson, 1995, p.82 without proof). If P ∗

is D-local, then it is C-local.

Since we could not find a proof of the above proposition,
we have included it in Appendix B, with the proofs of the
remaining claims of this section, including the following
extension of (Peng & Xia, 2005, Corollary 2.1).

Proposition 2.6. For D-local and C-local solutions, no
empty clusters exist.

Our definitions of locally optimal solutions with respect to
F are motivated by the fact that given any P ∈ S2, the
optimal center (c∗P )k for a non-empty cluster k is given in
closed form (4), making it natural to view (P1) and (P2)
as optimization problems with respect to only the decision
variables P . We can also consider locally optimal solutions
of (P2) with respect to both P and C using the following
definition.

Definition 2.7 (CJ-local: Continuously and Jointly locally
optimal solution). In (P2), (P ∗, C∗) is called CJ-local if
there exists an ϵ > 0 such that

f(P ∗, C∗) ≤ f(P,C) ∀P ∈ S2 ∩B(P ∗, ϵ) and

∀ C ∈ RK ∩B(C∗, ϵ).

In general, C-local is a stronger definition of local optimal-
ity than CJ-local.

Proposition 2.8. If (P ∗, C∗
P∗) is C-local, then it is CJ-

local.

If a K-means algorithm (Section 3) converges, it will be to
what is known as a partial optimal solution.

Definition 2.9 (Partial optimal solution, Wendell &
Hurter Jr, 1976, Equation (3)). In (P2), we define
(P ∗, C∗

P∗) as a partial optimal solution if it satisfies the
following condition.

f(P ∗, C∗
P∗) ≤ f(P,C∗

P∗) ∀P ∈ S2. (7)

3. K-means Algorithm
The K-means algorithm is a fast and practical heuristic
algorithm which operates as follows (Lloyd, 1982).

Step 1 Select K initial centers arbitrarily from X .

Step 2 For each n ∈ [N ], assign xn to a cluster
k ∈ [K] that minimizes D(xn, ck): k ∈
argmink′∈[K] D(xn, ck′).

Step 3 For each non-empty k ∈ [K], update the cluster
center ck following (4).

Step 4 Repeat Step 2 and Step 3 until the cluster assign-
ments P no longer change.

A perhaps overlooked detail in Step 2 is that
argmink′∈[K] D(xn, ck) is in general not a singleton.
Following (NumPy Developers, 2025, Notes), in this work
the minimum index is always selected (see Algorithm 1,
Line 5), with our analysis easily extending to any other
deterministic selection rule.

3.1. Convergence to a Locally Optimal Solution
Counterexample

As a counterexample to the K-means algorithm always
converging to a locally optimal solution, we consider a
1-dimensional problem where all of the weights are equal
to 1. We note that the optimal solution for the K-means
problem can be solved in polynomial time and space using
dynamic programming when the dimension of the data
equals 1 (Wang & Song, 2011; Grønlund et al., 2017;
Dupin & Nielsen, 2023).

Consider the situation where the number of points N = 5,
the number of clusters K = 2, the dissimilarity measure
D(x, y) = ∥x− y∥22, and the given dataset and initial
centers are as follows.

x1 = −4, x2 = −2, x3 = 0, x4 = 1.5, x5 = 2.5,

c1 = x3 = 0, c2 = x5 = 2.5.

Following Step 1-Step 4, the cluster assignments and
centers converge to

P ∗ =

[
1 1 1 0 0
0 0 0 1 1

]
, c∗1 = −2, c∗2 = 2,

where all of the steps can be found in Appendix C.
However, in the continuously relaxed problem (P2), p1,3
can be moved towards p2,3, resulting in

P̂ =

[
1 1 1− α 0 0
0 0 α 1 1

]
,

ĉ1 =
−6

3− α
, and ĉ2 =

4

2 + α
(0 < α ≤ 1).

The clustering loss can be written out as

f(P̂ , Ĉ) =
4(5α− 6)

α− 3
+

8.5α2 + 18α+ 2

(α+ 2)2
,
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and differentiating f(P̂ , Ĉ) with respect to α,

d

dα
f(P̂ , Ĉ) =

−20α(α+ 12)

(α− 3)2(α+ 2)2
< 0, (0 < α ≤ 1).

Since this is negative for all 0 < α ≤ 1, and f(P̂ , Ĉ) is
continuous with respect to α, f(P̂ , Ĉ) is strictly decreasing
for all 0 < α ≤ 1. Further, since P̂ and Ĉ are both con-
tinuous with respect to α, for any ϵ > 0 in Definition 2.7,
choosing α = min(αP , αC) for αP , αC > 0 such that
P̂ (αP ) ∈ S2∩B(P, ϵ) and Ĉ(αC) ∈ RK ∩B(C, ϵ) shows
that (P,C) is not a CJ-local solution. From Propositions
2.8 and 2.5, it follows that (P,C) is also not C-local, nor
D-local (see Appendix C for the full details).

3.2. Previous Research on Local Optimality

Until now, the only rigorous attempt at trying to prove that
the K-means algorithm converges to a CJ-local solution
seems to be in (Selim & Ismail, 1984). However, a critical
error exists in their Lemma 7. The issue arises because
the local optimality condition described in Lemma 7 only
holds in general when F is convex, e.g. (Bazaraa et al.,
2006, Theorem 3.4.3). However, as already mentioned,
it was proven in their work that F is a concave function.
Consequently, even in the widely studied case where the
dissimilarity measure is the squared Euclidean distance,
it is possible to construct counterexamples, such as the
one discussed above, where the K-means algorithm fails
to converge to a locally optimal solution.

4. Locally-Optimal K-means Algorithm
In this section, we discuss the necessary and sufficient
conditions for locally optimal solutions, and propose a
modified K-means algorithm that converges to a locally
optimal solution according to Definitions 2.3 & 2.4. The
proofs of the claims in this section are all in Appendix D.

4.1. Necessary and Sufficient Conditions for Locally
Optimal Solutions

The following technical lemma describes the effect on the
clustering loss F when a point is moved from one cluster
to another.
Lemma 4.1. When the cluster that point g ∈ [N ] is
assigned to changes from a ∈ [K] to b ∈ [K] by an amount
α (0 ≤ α ≤ 1), the change in F equals

∆α(g, a, b) := αwg

(
D(xg, (c

∗
P )b)−D(xg, (c

∗
P )a)

)
−
(
(sa(P )− αwg)D((c∗P new)a, (c

∗
P )a)

+(sb(P ) + αwg)D((c∗P new)b, (c
∗
P )b)

)
,

(8)

where P and P new represent the cluster assignments before
and after the change, respectively.

Function 1 Guarantees Convergence to C-local
1: function C-LO(X,W,P,C,D)
2: for n = 1, 2, . . . , N do
3: if | argmink′∈[K] D(xn, ck′)| > 1 then
4: k1 ← min(argmink′∈[K] D(xn, ck′))
5: k2 ← max(argmink′∈[K] D(xn, ck′))
6: pk1,n ← 0, pk2,n ← 1
7: Recalculate ck1

, ck2

8: Return

Function 2 Guarantees Convergence to D-local
1: function D-LO(X,W,P,C,D)
2: for n = 1, 2, . . . , N do
3: k1 ← min(argmink′∈[K] D(xn, ck′))
4: for k2 = 1, 2, . . . , k1 − 1, k1 + 1, . . . ,K do
5: if ∆1(n, k1, k2) < 0 then
6: pk2,n ← 1
7: Recalculate ck2

8: if sk1
(P ) = wn then

9: pk1,n ← 0
10: else
11: pk1,n ← 0
12: Recalculate ck1

13: Return

Theorem 4.2. Suppose (P,C∗
P ) is a partial optimal solu-

tion and all clusters are non-empty. If A(C∗
P ) in (3) is a

singleton, then (P,C∗
P ) is a C-local solution.

Theorem 4.3. Suppose all cluster centers are distinct for
a solution (P,C∗

P ). If (P,C∗
P ) is a C-local solution,

then A(C∗
P ) is a singleton. If A(C∗

P ) is not a singleton,
then A(C∗

P ) ∩ T (P ) is not empty, and transitioning the
cluster assignment from P to any element P ′ ∈ A(C∗

P ) ∩
T (P ) guarantees a strict decrease in the clustering loss,
F (P ′) < F (P ).

Theorem 4.2 states that if the K-means algorithm converges
and all of its clusters are non-empty, then if A(C∗

P ) is
unique, (P,C∗

P ) is a C-local solution. Furthermore, if the
K-means algorithm were to converge to a solution such
that A(C∗

P ) is not a singleton and all of its cluster centers
are distinct, Theorem 4.3 shows that choosing any adjacent
point in A(C∗

P ) results in a strictly lower clustering loss.

In contrast to the preceding theorems characterizing C-
local solutions, the necessary and sufficient conditions
for D-local solutions in our analysis are simply using
Definition 2.3, which can be verified directly over a given
solution’s finite adjacent points.
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Algorithm 1 Locally-Optimal K-means Algorithm (LO-K-
means)
Input: X = {xn}n∈[N ] ⊂ int dom(ϕ) ⊆ Rd, W =
{wn}n∈[N ] ⊂ R++, number of clusters K ∈ N

1: Sample without replacement {ck}k∈[K] ⊂ {xn}n∈[N ]

(Step 1)
2: Initialize pk,n ← 0 for all k ∈ [K], n ∈ [N ]
3: while P continues to change do
4: pk,n ← 0 for all k ∈ [K], n ∈ [N ]
5: pk,n ← 1 for all n ∈ [N ],

k = min(argmink′∈[K] D(xn, ck′)) (Step 2)
6: if an empty cluster a ∈ [K] exists then
7: Move a point g ∈ [N ] from a cluster b ∈ [K] to

a, such that sb(P ) > wg and xg ̸= cb.
8: ck ←

∑N
n=1 pk,nwnxn∑N
n=1 pk,nwn

for all k ∈ [K] (Step 3)
9: if P has not changed then (New Step)

10: Case 1: Function 1 - C-LO (X,W,P,C,D)
▷ guarantees C-local

11: Case 2: Function 2 - D-LO (X,W,P,C,D)
▷ guarantees D-local

Output: P : cluster assignment, C: cluster centers

4.2. Modification to the K-means Algorithm

Now we propose a modified, Locally-Optimal K-means
algorithm (LO-K-means) in Algorithm 1. Motivated by the
above results, either Function 1 or 2 is invoked when the
K-means algorithm converges. In Case 1, if |A(C∗

P )| >
1, Function 1 strictly decreases the clustering loss and
prevents the algorithm from converging to a non-C-local
solution using Theorem 4.3.

Similarly, in Case 2, Function 2 prevents Algorithm 1 from
converging to a solution which is not D-local. We first note
that for any cluster assignment P , any P ′ ∈ T (P ) can be
generated as follows. For a pa,g = 1, and an a ̸= b, set{

p′a,g = 0, p′b,g = 1,

p′k,n = pk,n ∀(k, n) /∈ {(a, g), (b, g)}.

In addition, the resulting change in the clustering loss,
∆1(g, a, b), can be computed using Lemma 4.1. Function 2
therefore searches for a point in T (P ) which strictly de-
creases the clustering loss, while preventing the algorithm
from converging to a non-D-local solution.

Theorem 4.4. Algorithm 1 converges to a C-local or D-
local solution in a finite number of iterations when Case 1
or Case 2 is chosen, respectively.

4.3. Method Variants and Comparisons

Both Functions 1 and 2 exit after finding the first adjacent
point which guarantees a decrease in the clustering loss.
Our convergence analysis (Theorem 4.4) holds when any

(n, k2) is chosen which would result in a decrease in the
clustering loss. This is perhaps most interesting for Func-
tion 2, as the exact decrease ∆1(n, k1, k2) is computed.
In our experiments in Section 5, we also test a different
variant of Function 2, Min-D-LO, which finds an (n, k2)
pair which minimizes ∆1, moving the cluster assignment
to an adjacent vertex that minimizes the clustering loss.
A detailed implementation of Min-D-LO can be found as
Function 3 in Appendix E.1.

The difference between our methods and the K-means
algorithm occurs only after the K-means algorithm has
converged. If the K-means algorithm has converged to
a C or D-local solution, this can now be easily verified
by a single call to Function 1 or 2. If the K-means
algorithm does not converge to a locally optimal solution,
our methods will perform additional iterations which are
all guaranteed to strictly decrease the clustering loss. In
particular, for any fixed iteration budget, our methods
will always perform as well or better than the K-means
algorithm (see Figure 3).

Given that our method is a simple modification of the
K-means algorithm, it is highly compatible and comple-
mentary with the vast number of methods that either use
the K-means algorithm as a subroutine or improve it in their
own way. This includes, for example, works trying to find
the optimal choice for K (Pelleg & Moore, 2000; Hamerly
& Elkan, 2003), methods on how to initialize the K cluster
means (Kanungo et al., 2004; Arthur & Vassilvitskii, 2006),
as well as techniques to accelerate the K-means algorithm,
such as Elkan’s algorithm (Elkan, 2003).

4.4. Computational Complexity Analysis

For the K-means algorithm using squared Euclidean dis-
tance, the per-iteration time complexity is O(NKd). The
computation of D is dependent on the specific Bregman
divergence. Let O(Γϕ(d)) denote the time complexity of
computing D based on its underlying function ϕ. Con-
sidering the examples given in Appendix A, it can be
shown that Γϕ(d) = d for the squared Euclidean distance,
KL divergence, and Itakura-Saito divergence, while for
the squared Mahalanobis distance, Γϕ(d) = d2. In our
analysis we will assume that d = O(Γϕ(d)). For general
Bregman divergences, the per-iteration time complexity of
the K-means algorithm becomes O(NKΓϕ(d)).

The following theorem considers the time complexity of
the new steps introduced in Algorithm 1, and verifies that
Algorithm 1 maintains a per-iteration time complexity of
O(NKΓϕ(d)) (empirical analysis of computation time can
be found in Section 5). This is achieved by using the
following implementation details to precompute sk(P ) =∑N

n=1 pk,nwn for k ∈ [K], which is used to recalculate ck1

and ck2
in Functions 1 and 2.
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In Algorithm 1 at Line 4, sk(P ) is initialized as sk(P )← 0
for all k ∈ [K], and at Line 5, for all n ∈ N and
k = min(argmink′∈[K] D(xn, ck′)), sk(P ) is updated as
sk(P )← sk(P ) + pk,nwn.

Theorem 4.5. The per-iteration time complexity of Al-
gorithm 1 equals O(NKΓϕ(d)) when calling C-LO or
(Min-)D-LO.

The space complexity of the K-means algorithm is O((N+
K)d) when using the squared Euclidean distance. Algo-
rithm 1 continues to use the cluster assignment matrix P =
O(NK) introduced in Section 2. Following, for example,
the implementation in scikit-learn, P can be replaced by an
array of labels of size N where Pn ∈ [K] indicates which
cluster point n is assigned to, e.g. Line 6 in Function 1
would become Pn = k2. Using a more efficient method
of representing cluster assignments, and noting that the
precomputed array s(P ) = O(K), Algorithm 1 can be
implemented with O((N +K)d) space complexity. Using
a general Bregman divergence also does not increase the
space complexity when excluding its parameters, which
seems to only concern the squared Mahalanobis distance,
with its matrix A ∈ Rd×d, with all other examples
of Bregman divergences within the references given in
Section 2.2 requiring at most a single scalar parameter.

5. Experiments
We conducted experiments using both synthetic and real-
world datasets to validate the performance of the LO-K-
means algorithm (Algorithm 1). The experiments primarily
used the squared Euclidean distance as the dissimilarity
measure D, while experiments with other Bregman diver-
gences (KL divergence & Itakura-Saito divergence), are
presented in Appendix F.3.

5.1. Algorithms

We compared the following algorithms.

• K-means: LO-K-means algorithm (Algorithm 1)
without the new step (Lines 9–11) (see Algorithm 2
in Appendix E.1).

• C-LO: Case 1 of the LO-K-means algorithm calling
Function 1.

• D-LO: Case 2 of the LO-K-means algorithm calling
Function 2.

• Min-D-LO: Case 2 of the LO-K-means algorithm call-
ing a different variant of Function 2 (see Function 3 in
Appendix E.1).

For the initialization of cluster centers in the above algo-
rithms, we use two methods: uniform random sampling
of K points without replacement and the K-means++

method (Arthur & Vassilvitskii, 2006), as implemented
in scikit-learn. When using K-means++ as the initializa-
tion method, we call the above algorithms K-means++,
C-LO++, D-LO++, and Min-D-LO++, respectively, while
for algorithms with the uniform random sampling, we use
the above algorithm names. A comparison with the D-local
algorithm proposed by Peng & Xia (2005) is presented in
Appendix F.4.

For both the synthetic and real-world datasets, controlled
experiments were conducted when comparing algorithms,
guaranteeing that the dataset and initial cluster centers
remained identical across all algorithms in each trial.

5.2. Synthetic Datasets

The synthetic datasets were generated as follows. We
uniformly sampled N data points from the space [1, 10]d,
restricted to integer values. If the same point is selected
multiple times, the number of selections is assigned as its
weight.

The experimental results comparing K-means with C-LO,
and K-means++ with C-LO++ are shown in Figures 1 and 2
(see the additional experiments in Appendix F.1). Each
figure presents the results when varying the number of data
points N and the number of clusters K, with 1,000 runs
conducted for each experiment.

As shown in Figure 1, in many cases, particularly in
low-dimensional settings, K-means does not converge to
a C-local solution, regardless of the initialization. Addi-
tionally, when the number of clusters K is large relative
to the number of data points N , or when data points are
densely distributed in the space, K-means often fails to
converge to a C-local solution. In contrast, the C-LO
algorithm consistently achieves a C-local solution with
lower clustering loss.

Figure 2 illustrates the improvement ratio of the clustering
loss, given by (F (P )− F (PLO))/F (P ), where PLO is the
output of C-LO and P is the output of K-means. It can be
observed that the improvement tends to be more significant
in lower-dimensional settings.

5.3. Real-World Datasets

5.3.1. METRIC

We also did experiments using real-world datasets (see
the details of each dataset used in Appendix E.2). Given
the randomness in the initial cluster center selection, each
algorithm was executed 20 times. The performance metrics
used for comparison include the average, variance, and
minimum values of the clustering loss, as well as the aver-
age computation time and the average number of iterations
of the algorithm. The evaluation was conducted for cluster
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Figure 1. The proportion of cases where the clustering loss is improved over K-means by using C-LO across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. These plots indicate the proportion of instances where
K-means did not converge to a C-local solution. Each N,K cell represents the results from 1,000 runs of both algorithms. Darker colors
indicate a higher frequency of clustering loss improvement.

Figure 2. The average improvement ratio of the clustering loss when C-LO improves over K-means across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. Each N,K cell represents the results from 1,000 runs of both
algorithms. Darker colors indicate a higher percentage of clustering loss improvement.

sizes of K = 5, 10, 25, and 50.

5.3.2. RESULTS

In real-world datasets, where features are real numbers, it
is rare for A(C) in (3) to consist of multiple elements.
Consequently, C-LO did not yield improvements in the
clustering loss (details in Tables 2–11 in Appendices F.2–
F.4). These results suggest that although the K-means
algorithm was not explicitly designed to guarantee this
property, it seems to be able to converge to a C-local so-
lution in most real-world datasets. However, it is observed
that the time to verify that the K-means algorithm has
converged to a C-local solution using C-LO is negligible,
with no measured increase in computation time using C-LO
compared to K-means in the vast majority of experiments.

On the other hand, as shown in Table 1, D-LO and Min-D-
LO consistently achieve a lower clustering loss compared
to K-means. We also observe that in general, achieving a
D-local optimal solution requires more computation time.
Although the per-iteration time complexity remains un-
changed for all algorithms, D-LO and Min-D-LO require
more iterations to converge. In order to mitigate this
problem, we first observe that D-LO and Min-D-LO are

highly compatible with initializing cluster centers using
K-means++, reducing their number of iterations in the
majority of instances similarly to K-means.

The slower convergence time of D-LO compared to K-
means is also what motivated the initial search for other
variants of Function 2, which resulted in Min-D-LO. As
both D-LO and Min-D-LO converge to D-local optimal so-
lutions, we observe that their accuracy is similar, while the
number of iterations Min-D-LO requires is never greater
than, and at times much smaller than required of D-LO,
resulting in a significantly reduced runtime.

A common way to balance accuracy and computation time
is to enforce an iteration limit. We note that in all of
our experiments, we ran the algorithms until convergence,
which may have resulted in excessive time spent for only
marginally better solutions. Figure 3 illustrates the cluster-
ing loss after each iteration of D-LO and Min-D-LO, in-
cluding their common K-means iterations before Function
2 or 3 was first called. We observe that limiting the number
of iterations to 200–300 leads to substantial improvements
in computational efficiency, with a speedup of up to 5× for
D-LO and 2× for Min-D-LO, while still always ensuring
an accuracy improvement of over 15% for D-LO and over
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Table 1. Mean, variance, and minimum of the clustering loss, along with the average computation time and average number of iterations
over 20 runs for each initialization method and number of clusters, for K-means, D-LO, and Min-D-LO, with D chosen as the squared
Euclidean distance, for three real-world datasets.

Dataset Iris (N = 150, d = 4) Wine Quality (N = 6,497, d = 11) News20 - 1 (N = 2,000, d = 1,089)
K Algorithm Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter

5

K-means 57.54± 9.78 46.54 < 0.001 9 2,393,869± 67 2,393,751 0.005 40 984,655± 55,781 864,073 0.31 31
D-LO 57.32± 9.83 46.54 < 0.001 13 2,393,759± 12 2,393,742 0.006 49 808,391± 0 808,391 1.94 168

Min-D-LO 57.32± 9.83 46.54 < 0.001 13 2,393,759± 12 2,393,742 0.006 49 808,032± 1,566 801,207 0.97 81
K-means++ 50.58± 4.74 46.54 < 0.001 8 2,499,611± 211,445 2,393,754 0.005 40 870,899± 80,013 808,450 0.20 18

D-LO++ 50.30± 4.70 46.54 < 0.001 13 2,393,753± 11 2,393,742 0.008 63 806,236± 3,292 801,207 0.82 74
Min-D-LO++ 50.30± 4.70 46.54 < 0.001 13 2,393,753± 11 2,393,746 0.008 62 806,595± 3,111 801,207 0.53 48

10

K-means 31.55± 5.42 26.78 < 0.001 8 1,378,087± 6,569 1,367,222 0.01 51 919,058± 73,594 734,571 0.71 35
D-LO 30.53± 5.00 26.18 < 0.001 20 1,377,711± 6,571 1,367,222 0.02 74 637,004± 4,319 625,281 19.52 870

Min-D-LO 30.55± 4.99 26.18 < 0.001 19 1,377,711± 6,571 1,367,222 0.02 74 642,980± 7,605 637,400 6.65 317
K-means++ 29.57± 2.97 26.01 < 0.001 7 1,381,737± 9,516 1,365,020 0.01 52 697,527± 32,211 643,583 0.48 23

D-LO++ 28.92± 3.00 25.94 < 0.001 17 1,380,941± 9,674 1,364,944 0.02 87 634,216± 5,596 625,467 6.18 288
Min-D-LO++ 28.93± 3.00 25.94 < 0.001 17 1,380,941± 9,674 1,364,944 0.02 84 634,293± 6,477 625,468 2.55 125

25

K-means 15.98± 1.64 13.67 < 0.001 7 681,397± 24,123 659,902 0.04 86 790,822± 88,437 650,038 1.65 34
D-LO 14.59± 1.68 11.89 < 0.001 36 665,882± 7,059 654,126 0.12 235 481,983± 5,198 475,651 155.39 3,016

Min-D-LO 14.49± 1.76 12.02 < 0.001 30 666,641± 7,082 654,126 0.10 202 485,809± 6,874 473,159 40.17 787
K-means++ 13.73± 0.68 12.70 < 0.001 6 654,219± 15,173 631,244 0.03 52 529,028± 32,301 487,823 1.25 26

D-LO++ 12.58± 0.45 11.83 < 0.001 31 649,046± 14,736 630,546 0.06 121 475,299± 3,831 468,201 35.96 705
Min-D-LO++ 12.61± 0.43 12.07 < 0.001 27 649,001± 14,774 631,157 0.05 107 474,431± 4,508 467,745 15.77 316

50

K-means 8.65± 1.27 7.05 < 0.001 5 434,056± 14,094 402,580 0.11 63 731,980± 91,535 552,717 2.72 28
D-LO 7.13± 1.50 5.66 0.002 48 424,122± 20,475 381,856 0.28 259 400,826± 2,920 395,833 314.36 3,133

Min-D-LO 7.09± 1.35 5.62 0.002 39 424,435± 20,610 382,197 0.29 229 402,716± 2,469 398,453 103.30 1,040
K-means++ 6.40± 0.34 5.52 < 0.001 5 376,544± 8,469 367,108 0.05 45 439,029± 10,015 418,754 3.02 31

D-LO++ 5.36± 0.24 5.04 0.002 37 372,716± 5,701 365,447 0.21 188 392,016± 1,513 388,746 157.97 1,228
Min-D-LO++ 5.40± 0.23 5.04 0.002 30 373,075± 5,877 364,596 0.18 164 392,146± 2,080 388,990 60.41 533

Figure 3. The clustering loss progression for four runs of D-LO, Min-D-LO, and their common K-means iterations on the News20
dataset with (N = 2, 000, d = 1, 089) with K = 10. The clustering losses are normalized such that the clustering loss achieved by the
K-means algorithm upon convergence is set to 100%.

25% for Min-D-LO compared to K-means. We also note
that this analysis is in line with the default iteration limit of
300 for the K-means algorithm used in scikit-learn.

Our final experiments compared our methods with the
D-local algorithm proposed in (Peng & Xia, 2005, Sec-
tion 3.2.1) (D-LO-P&X) in Appendix F.4. We observe
that all D-local algorithms achieved similar values for
the clustering loss which were significantly lower than
the clustering loss of K-means, while D-LO-P&X was
significantly slower than all of the tested methods, with
Min-D-LO being in general much faster than the other
tested D-local algorithms.

6. Conclusion
This work focused on the local optimality properties of the
K-means algorithm. Even though it seems to be widely un-
derstood that the K-means algorithm converges to a locally

optimal solution, we showed by simple counterexample
that this is in fact not true. Motivated by this finding,
we analyzed two definitions of local optimality, discrete
(D-local) and continuous (C-local), suited for the K-means
problem and its continuous relaxation. Considering a
generalized weighted K-means problem using Bregman
divergences, and guided by our theoretical analysis, a
modified K-means algorithm was developed, LO-K-means,
consisting of simple improvements to the K-means al-
gorithm, guaranteeing it to converge to either a C-local
or D-local solution. It was shown that LO-K-means is
an efficient algorithm, matching the K-means algorithm’s
computational complexity. Improved empirical perfor-
mance in terms of solution quality was also observed,
in particular for our Min-D-LO algorithm variant, which
consistently found solutions with a lower clustering loss
on both synthetic and real-world datasets compared to the
K-means algorithm, while also being fast relative to other
D-local algorithms.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Examples of Bregman Divergences
We list common choices of Bregman divergence and their corresponding ϕ, frequently used in clustering. For more
examples see (Banerjee et al., 2005, Table 1), (Bauschke et al., 2016, Example 1), and (Ackermann, 2009, Figure 2.2).

• ϕ(x) = ∥x∥22 with dom(ϕ) = Rd. This represents the squared Euclidean distance, a fundamental and commonly
applied dissimilarity measure ideal for spherical clustering applications (Steinbach et al., 2000; Berthold & Höppner,
2016; Capó et al., 2017).

• ϕ(x) = x⊤Ax with dom(ϕ) = Rd. This function corresponds to the squared Mahalanobis distance, which extends
the squared Euclidean distance by incorporating variable correlations. It is widely used in big data and data mining
domains (Brown et al., 2022; Martino et al., 2019).

• ϕ(x) =
∑d

i=1 xi log xi with dom(ϕ) = Rd
+, where 0 log 0 = 0 by convention. This is the Kullback-Leibler

(KL) divergence (Kullback & Leibler, 1951), frequently applied in information theory and probabilistic clustering,
particularly for image and text data (Wang et al., 2022; Dhillon et al., 2003).

• ϕ(x) = −
∑d

i=1 log xi with dom(ϕ) = Rd
++. Known as the Itakura-Saito divergence (Itakura & Saito, 1968),

this measure is especially valued in signal processing and audio analysis for its scale-invariant properties. It finds
applications in areas such as speech coding (Linde et al., 1980; Battenberg et al., 2012).

These examples underscore the versatility of Bregman divergences in accommodating various data characteristics and
application domains.

B. Proofs Concerning Some Local Optimality Relations
Proof of Proposition 2.5. There are ET := N(K − 1) extreme points in T (P ∗) as discussed in Section 2.3, denoted as
Pi (1 ≤ i ≤ ET ). Let di := Pi − P ∗ for all Pi ∈ T (P ∗), which is a feasible direction in S2. Since P ∗ is D-local,
according to (5), F (P ∗) ≤ F (Pi) holds.

Since F (P ) is a concave function, by Jensen’s inequality, for any z1, . . . , zET
∈ S2,

a1F (z1) + · · ·+ aET
F (zET

) ≤ F (a1z1 + · · ·+ aET
zET

) (a1 + · · ·+ aET
= 1, a1, . . . , aET

≥ 0). (9)

From the fact that F (P ∗) ≤ F (Pi) and F is concave, for any 0 ≤ β ≤ 1, it holds that

F (P ∗) ≤ (1− β)F (P ∗) + βF (P ∗ + di) ≤ F ((1− β)P ∗ + β(P ∗ + di)) = F (P ∗ + βdi).

Now, we show that F (P ∗) ≤ F (P ) for all P ∈ S2 ∩ B(P ∗, ϵ). Any P can be expressed as P = P ∗ +
∑ET

i=1 βidi with
some βi ≥ 0.

Letting γ =
∑ET

i=1 βi (where γ ≤ 1 holds for sufficiently small ϵ), substituting zi = P ∗ + γdi and ai =
βi

γ into (9), we
obtain

F (P ∗) ≤ β1

γ
F (P ∗ + γd1) + · · ·+

βET

γ
F (P ∗ + γdET

) ≤ F (P ),

which satisfies (6), proving that P ∗ is C-local.

Thus, P ∗ being D-local is a sufficient condition for it to also be C-local. ■

The following proposition is a general result which will be used to prove Proposition 2.6 as well as Lemma D.4.

Proposition B.1. Assume a cluster assignment P , with an empty cluster a, and cluster centers C are given, where (P,C)
is feasible in (P1). There exists a cluster b containing at least two points, with one of the points, xg ̸= cb. If the cluster
assignment of xg is shifted from cluster b to a by a factor of 0 < α ≤ 1, and denoting the new cluster assignment as P new,
it holds that F (P new) < f(P,C).

13
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Proof. Since there are at least K + 1 unique points to be assigned to K clusters, there exists a cluster b containing at least
two distinct points xg and xh, such that xg ̸= cb. After shifting xg from cluster b to a by a factor of 0 < α ≤ 1, the optimal
center of cluster a becomes (c∗P new)a = xg . Writing out f(P,C) and F (P new),

f(P,C) =
∑

k/∈{a,b}

N∑
n=1

pk,nwnD(xn, ck) +
∑

k∈{a,b}

N∑
n=1

pk,nwnD(xn, ck)

=
∑

k/∈{a,b}

N∑
n=1

pnew
k,nwnD(xn, ck) +

N∑
n=1

pb,nwnD(xn, cb)

=
∑

k/∈{a,b}

N∑
n=1

pnew
k,nwnD(xn, ck) +

∑
n ̸=g

pnew
b,nwnD(xn, cb) + ((1− α) + α)wgD(xg, cb)

=
∑

k/∈{a,b}

N∑
n=1

pnew
k,nwnD(xn, ck) +

N∑
n=1

pnew
b,nwnD(xn, cb) + αwgD(xg, cb)

=
∑
k ̸=a

N∑
n=1

pnew
k,nwnD(xn, ck) + αwgD(xg, cb), and

F (P new) =

K∑
k=1

N∑
n=1

pnew
k,nwnD(xn, (c

∗
P new)k) =

∑
k ̸=a

N∑
n=1

pnew
k,nwnD(xn, (c

∗
P new)k).

The change in the clustering loss is then equal to

F (P new)− f(P,C) =
∑
k ̸=a

N∑
n=1

pnew
k,nwn(D(xn, (c

∗
P new)k)−D(xn, ck))− αwgD(xg, cb).

Since C∗
P new minimizes the clustering loss for the cluster assignment P new,

∑
k ̸=a

N∑
n=1

pnew
k,nwn(D(xn, (c

∗
P new)k)−D(xn, ck)) ≤ 0.

Moreover, since xg ̸= cb, it follows that D(xg, cb) > 0 from Lemma D.1. Thus, F (P new)− f(P,C) < 0 for any α > 0.

■

Proof of Proposition 2.6. Considering (P,C) in Proposition B.1, with C = C∗
P , the clustering loss can be strictly

decreased for any α > 0, indicating that P is not C-local. If we set α = 1, it further shows that P is not D-local
either. ■

Proof of Proposition 2.8. By (6), there exists an ϵ > 0 such that

F (P ∗) = f(P ∗, C∗
P∗) ≤ F (P ), ∀P ∈ S2 ∩B(P ∗, ϵ).

From (2), we know that F (P ) ≤ f(P,C) for all C ∈ RK . Therefore, it follows that

f(P ∗, C∗
P∗) ≤ f(P,C), ∀P ∈ S2 ∩B(P ∗, ϵ) and ∀C ∈ RK .

■
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C. Detailed Counterexample of the K-means Algorithm Converging to a Locally Optimal
Solution

Consider the situation where the number of points N = 5, the number of clusters K = 2, the dissimilarity measure
D(x, y) = ∥x− y∥22, and the given dataset and initial centers are as follows.

x1 = −4, x2 = −2, x3 = 0, x4 = 1.5, x5 = 2.5,

c1 = x3 = 0, c2 = x5 = 2.5.

Iteration 1 By calculating the dissimilarity measures dk,n = D(xn, ck) for all n ∈ [N ] and k ∈ [K],

d1,1 = 16, d1,2 = 4, d1,3 = 0, d1,4 = 2.25, d1,5 = 6.25,

d2,1 = 42.25, d2,2 = 20.25, d2,3 = 6.25, d2,4 = 1, d2,5 = 0.

Based on {dk,n}, points are assigned to the nearest center,

P =

[
1 1 1 0 0
0 0 0 1 1

]
.

Based on P , the clusters are recomputed as
c1 = −2, c2 = 2.

Iteration 2 Repeating the same steps again,

d1,1 = 4, d1,2 = 0, d1,3 = 4, d1,4 = 12.25, d1,5 = 20.25,

d2,1 = 36, d2,2 = 16, d2,3 = 4, d2,4 = 0.25, d2,5 = 0.25.

Based on {dk,n}, points are assigned to the nearest center,

P =

[
1 1 1 0 0
0 0 0 1 1

]
.

Based on P , the clusters are recomputed as
c1 = −2, c2 = 2,

and the K-means algorithm has converged. However, in the continuously relaxed problem (P2), p1,3 can be moved towards
p2,3, resulting in

P̂ =

[
1 1 1− α 0 0
0 0 α 1 1

]
,

ĉ1 =
−6

3− α
, and ĉ2 =

4

2 + α
(0 < α ≤ 1).

The clustering loss can be written out as

f(P̂ , Ĉ) =

(
−4− −6

3− α

)2

+

(
−2− −6

3− α

)2

+ (1− α)

(
−6

3− α

)2

+ α

(
4

2 + α

)2

+

(
1.5− 4

2 + α

)2

+

(
2.5− 4

2 + α

)2

=
4(5α− 6)

α− 3
+

8.5α2 + 18α+ 2

(α+ 2)2
.

Differentiating f(P̂ , Ĉ) with respect to α,

d

dα
f(P̂ , Ĉ) =

−20α(α+ 12)

(α− 3)2(α+ 2)2
< 0 (0 < α ≤ 1).

Since this is negative for all 0 < α ≤ 1, and f(P̂ , Ĉ) is continuous with respect to α, f(P̂ , Ĉ) is strictly decreasing for
all 0 < α ≤ 1. Further, since P̂ and Ĉ are both continuous with respect to α, for any ϵ > 0 in Definition 2.7, choosing
α = min(αP , αC) for αP , αC > 0 such that P̂ (αP ) ∈ S2 ∩B(P, ϵ) and Ĉ(αC) ∈ RK ∩B(C, ϵ) shows that (P,C) is not
a CJ-local solution. From Propositions 2.8 and 2.5, it follows that (P,C) is also not C-local, nor D-local.
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D. Proofs in Section 4
D.1. Supporting Lemmas

In our analysis the following lemmas will be required to prove our main results.

Lemma D.1 (Bregman, 1967, Page 200). For all (x, c) ∈ dom(ϕ)× int dom(ϕ)D(x, c) ≥ 0, and D(x, c) = 0 if and only
if x = c.

Lemma D.2. For any two non-empty cluster assignments for a cluster k ∈ [K], {pk,n} and {p′k,n}, it holds that

(c∗P ′)k = (c∗P )k +

∑N
n=1(p

′
k,n − pk,n)wn(xn − (c∗P )k)∑N

n=1 p
′
k,nwn

.

Proof. From Proposition 2.2,

(c∗P )k =

∑N
n=1 pk,nwnxn∑N
n=1 pk,nwn

and

(c∗P ′)k =

∑N
n=1 p

′
k,nwnxn∑N

n=1 p
′
k,nwn

=

∑N
n=1 pk,nwnxn +

∑N
n=1(p

′
k,n − pk,n)wnxn∑N

n=1 p
′
k,nwn

=

∑N
n=1 pk,nwn∑N
n=1 p

′
k,nwn

(c∗P )k +

∑N
n=1(p

′
k,n − pk,n)wnxn∑N
n=1 p

′
k,nwn

=

(
1 +

∑N
n=1(pk,n − p′k,n)wn∑N

n=1 p
′
k,nwn

)
(c∗P )k +

∑N
n=1(p

′
k,n − pk,n)wnxn∑N
n=1 p

′
k,nwn

= (c∗P )k +

∑N
n=1(p

′
k,n − pk,n)wn(xn − (c∗P )k)∑N

n=1 p
′
k,nwn

.

■

D.2. Proof of Lemma 4.1

Proof of Lemma 4.1. The new cluster assignment P new
k,n is defined as

pnew
k,n =


pk,n − α if (k, n) = (a, g),

pk,n + α if (k, n) = (b, g),

pk,n otherwise.
(0 ≤ α ≤ 1) (10)

In this case, the contributions from points belonging to clusters other than a and b remain unchanged. Let the changes in
the function values within clusters a and b be denoted by ∆a and ∆b, respectively. Beginning with cluster a,

∆a =

N∑
n=1

pnew
a,nwnD(xn, (c

∗
P new)a)−

N∑
n=1

pa,nwnD(xn, (c
∗
P )a).

From (10), we know that pa,g = pnew
a,g + α. Substituting this, we have

∆a =

N∑
n=1

pnew
a,nwnD(xn, (c

∗
P new)a)−

N∑
n=1

pnew
a,nwnD(xn, (c

∗
P )a)− αwgD(xg, (c

∗
P )a).
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From Definition 2.1, we expand the terms as

∆a =

N∑
n=1

pnew
a,nwn

(
ϕ(xn)− ϕ(c∗P new)a)− ⟨xn − (c∗P new)a,∇ϕ((c∗P new)a)⟩

)
−

N∑
n=1

pnew
a,nwn

(
ϕ(xn)− ϕ((c∗P )a)− ⟨xn − (c∗P )a,∇ϕ((c∗P )a)⟩

)
− αwgD(xg, (c

∗
P )a)

=

N∑
n=1

pnew
a,nwn

(
ϕ((c∗P )a)− ϕ((c∗P new)a)− ⟨xn − (c∗P new)a,∇ϕ((c∗P new)a)⟩

+ ⟨xn − (c∗P )a,∇ϕ((c∗P )a)⟩
)
− αwgD(xg, (c

∗
P )a).

From (4), we know that
∑N

n=1 p
new
a,nwnxn =

∑N
n=1 p

new
a,nwn(c

∗
P new)a. Applying this property two times,

∆a =

N∑
n=1

pnew
a,nwn

(
ϕ((c∗P )a)− ϕ((c∗P new)a) + ⟨(c∗P new)a − (c∗P )a,∇ϕ((c∗P )a)⟩

)
− αwgD(xg, (c

∗
P )a).

Finally, substituting sa(P )− αwg =
∑N

n=1 p
new
a,nwn, where sa(P ) =

∑N
n=1 pa,nwn, we obtain

∆a = (sa(P )− αwg)(−D((c∗P new)a, (c
∗
P )a))− αwgD(xg, (c

∗
P )a).

Similarly, for ∆b, we have

∆b =

N∑
n=1

pnew
b,nwnD(xn, (c

∗
P new)b)−

N∑
n=1

pb,nwnD(xn, (c
∗
P )b)

=

N∑
n=1

pnew
b,nwnD(xn, (c

∗
P new)b)−

N∑
n=1

pnew
b,nwnD(xn, (c

∗
P )b) + αwgD(xg, (c

∗
P )b)

= (sb(P ) + αwg)(−D((c∗P new)b, (c
∗
P )b)) + αwgD(xg, (c

∗
P )b).

Therefore, the change in the clustering loss equals

F (P new)− F (P ) = ∆a +∆b

= (sa(P )− αwg)(−D((c∗P new)a, (c
∗
P )a))− αwgD(xg, (c

∗
P )a)

+ (sb(P ) + αwg)(−D((c∗P new)b, (c
∗
P )b)) + αwgD(xg, (c

∗
P )b)

= αwg(D(xg, (c
∗
P )b)−D(xg, (c

∗
P )a))

− ((sa(P )− αwg)D((c∗P new)a, (c
∗
P )a) + (sb(P ) + αwg)D((c∗P new)b, (c

∗
P )b)) .

■

D.3. Proofs of Theorem 4.2 & Theorem 4.3

The following Proposition D.3 is used in the proof of Theorem 4.2.

Proposition D.3 (Wendell & Hurter Jr, 1976, Corollary 2). For problem (P2), suppose (P ∗, C∗
P∗) is a partial optimal

solution. If A(C∗
P∗) is a singleton, then (P ∗, C∗

P∗) is a CJ-local solution.

Proof. We verify that the conditions of (Wendell & Hurter Jr, 1976, Corollary 2) are satisfied for problem (P2). In (Wendell
& Hurter Jr, 1976, Section 2), the optimization problem

inf h(u) + ⟨g(u), v⟩
s.t. u ∈ G, v ∈ H

17
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is studied (Wendell & Hurter Jr, 1976, Equation 4), where it is assumed that G ⊂ Rm is an arbitrary subset and H ⊂ Rn

takes the form of the standard polytope,

H :=

{
v ∈ Rn

∣∣∣∣∣ Av = b,

vi ≥ 0 ∀i ∈ [n]

}
.

Relating their problem to (P2), we can set u = vec(C) and v = vec(P ), where vec denotes the transformation of a matrix
into a vector. In addition, let j : [K] × [N ] → [KN ] maps indices of P to vec(P ). It follows that we can set h(u) = 0,
vj(k,n) = pk,n, gj(k,n)(u) = wnD(xn, ck), G = vec(RK), and H = S2 with the appropriate choice of A and b.

Besides what is stated in this proposition, (Wendell & Hurter Jr, 1976, Corollary 2) requires that S2 is compact, which
holds, and that g(u) is continuous over G, which translates to wnD(xn, ck) being continuous with respect to ck ∈ R.
Given that ϕ in Definition 2.1 is convex and differentiable on int dom(ϕ), it holds that it is continuously differentiable on
int dom(ϕ) (Rockafellar, 1970, Corollary 25.5.1), hence wnD(xn, ck) is continuous with respect to ck ∈ R (and more
broadly, f is continuous with respect to C over RK). This shows that (P2) satisfies the conditions of (Wendell & Hurter Jr,
1976, Corollary 2) for this proposition to be true. ■

Proof of Theorem 4.2. From the assumptions that (P ∗, C∗
P∗) is a partial optimal solution and that A(C∗

P ) is a singleton,
(P ∗, C∗

P∗) is CJ-local (Proposition D.3). Given that in addition all clusters are assumed to be non-empty, it will now be
proven that (P,C∗

P ) is C-local.

From equation (4), C∗
P is unique and continuous at P . Since (P ∗, C∗

P∗) is CJ-local, there exists an ϵ1 > 0 such that

f(P ∗, C∗
P∗) ≤ f(P ′, C ′) ∀P ′ ∈ S2 ∩B(P ∗, ϵ1) and ∀C ′ ∈ RK ∩B(C∗

P∗ , ϵ1).

Since C∗
P is continuous at P ∗, for any ϵ1 > 0 there exists an ϵ2 > 0 such that for all P ∈ S2 ∩ B(P ∗, ϵ2), it holds that

C∗
P ∈ B(C∗

P∗ , ϵ1). Therefore, there exists an ϵ = min(ϵ1, ϵ2) > 0 such that

F (P ∗) = f(P ∗, C∗
P∗) ≤ f(P,C∗

P ) = F (P ) ∀P ∈ S2 ∩B(P ∗, ϵ),

satisfying the condition of C-local optimality. ■

Proof of Theorem 4.3. When A(C∗
P ) consists of multiple elements, there exists a point xg , assigned to a cluster a, and

a different cluster b such that D(xg, (c
∗
P )a) = D(xg, (c

∗
P )b), with xg ̸= (c∗P )a and xg ̸= (c∗P )b, since all cluster centers

are distinct by assumption. By moving xg from cluster a to cluster b by an amount α (0 < α ≤ 1), the difference in the
clustering loss equals

F (P new)− F (P )

= αwg(D(xg, (c
∗
P )b)−D(xg, (c

∗
P )a))

− ((sa(P )− αwg)D((c∗P new)a, (c
∗
P )a) + (sb(P ) + αwg)D((c∗P new)b, (c

∗
P )b))

from Lemma 4.1. Since xg ̸= (c∗P )a, Proposition 2.2 implies that sa(P ) − αwg > 0. From Lemma D.2, (c∗P new)a and
(c∗P new)b can be written as

(c∗P new)a = (c∗P )a −
αwg(xg − (c∗P )a)

sa(P )− αwg
and (c∗P new)b = (c∗P )b +

αwg(xg − (c∗P )b)

sb(P ) + αwg
.

Therefore, (c∗P new)a ̸= (c∗P )a and (c∗P new)b ̸= (c∗P )b holds, which leads to D((c∗P new)a, (c
∗
P )a) > 0 and D((c∗P new)b, (c

∗
P )b) >

0 from Lemma D.1. Thus,

(sa(P )− αwg)D((c∗P new)a, (c
∗
P )a) + (sb(P ) + αwg)D((c∗P new)b, (c

∗
P )b) > 0.

From this, we have
F (P new)− F (P ) < 0, (11)

which implies that F (P ) is not a C-local solution. Taking the contrapositive, if F (P ) is a C-local solution, A(C∗
P ) must

consist of just a single element. In addition, choosing α = 1 results in the cluster assignment P new being an element of
A(C∗

P ) ∩ T (P ), thus, from (11), transitioning to any cluster assignment in A(C∗
P ) ∩ T (P ) guarantees a decrease in the

clustering loss. ■

18



Modified K-means Algorithm with Local Optimality Guarantees

D.4. Proof of Theorem 4.4 & Theorem 4.5

After proving the following lemma which is necessary for Theorem 4.4, we will prove Theorem 4.4 and Theorem 4.5.

Lemma D.4. The LO-K-means algorithm (Algorithm 1) enters the branch in Line 9 within a finite number of iterations,
and at that point, (P,C) is a partial optimal solution satisfying (7) with distinct cluster centers.

Proof. We first prove that the algorithm enters the branch in Line 9 in a finite number of steps.

Case 1: If P is updated in Line 7, from Proposition B.1 with α = 1, the clustering loss strictly decreases after the cluster
centers are updated on Line 8.

When P is not updated in Line 7, let the cluster assignment and the cluster centers after the i-th iteration (i ≥ 1) be denoted
as P (i) and C(i), respectively.

Case 2: If P (i+1) = P (i), the algorithm enters the branch in Line 9, so assume that P (i+1) ̸= P (i).

Case 3: If C(i+1) = C(i), then P (i+2) = P (i+1), and the algorithm enters the branch in Line 9, given that the selection of
P is a deterministic function of C.

Case 4: If P (i+1) ̸= P (i) and C(i+1) ̸= C(i), given that C(i+1) is the unique minimizer of f(P (i+1), ·) from
Proposition 2.2, it holds that F (P (i+1)) < F (P (i)). Given that the feasible solutions in S1 are finite, with a total of
KN possible assignments, and that the algorithm cannot return to a previous value of P , due to F strictly monotonically
decreasing, the algorithm can only be in this state for a finite number of iterations before ultimately satisfying Cases 2 or
3 and entering the branch in Line 9. The same holds for Case 1, with the algorithm entering the branch in Line 9 after a
finite number of iterations.

The algorithm enters the branch in Line 9 for Cases 2 or 3, which we now verify is with a partial optimal solution following
Definition 2.9. For Case 2, given that P (i+1) = P (i), it follows that C(i+1) = C∗

P (i+1) = C(i), and from Line 5 of
Algorithm 1, f(P (i+1), C(i)) ≤ f(P,C(i)) ∀P ∈ S2, showing that inequality (7) holds. For Case 3, the same argument
can be made given that P (i+2) = P (i+1).

We finally prove that, when entering the branch in Line 9, the cluster centers are distinct. Assume that the branch in Line 9
is entered at iteration i, such that P (i) = P (i−1) and C(i) = C(i−1). Suppose that C(i−1) contains identical centers c(i−1)

a

and c
(i−1)
b (a < b). In Step 2 the cluster assignment P (i) for each n is determined as min

(
argmink′∈[K] D(xn, ck′)

)
,

resulting in cluster b becoming empty. This implies that Case 1 will occur, contradicting that the algorithm entered the
branch in Line 9 at iteration i. ■

Proof of Theorem 4.4. By Lemma D.4, the branch at Line 9 is guaranteed to be entered within a finite number of iterations,
and at that point, (P,C) is a partial optimal solution with distinct cluster centers. Further, by Line 7 all clusters are
non-empty.

For Case 1, if Function 1 updates the cluster assignment to a new value P ′, it follows that A(C) was not a singleton and from
Theorem 4.3 the clustering loss strictly decreases, F (P ′) < F (P ). Since S1 is finite and cluster assignments cannot return
to previous values of P , the algorithm can only enter the branch in Line 9 and Function 1 can only improve the solution a
finite number of times, hence the algorithm must converge after a finite number of iterations. At convergence, the cluster
assignment is not updated in Function 1. Thus, from Theorem 4.3, A(C) is unique, and by Theorem 4.2, Algorithm 1 has
converged to a C-local solution. Furthermore, this also implies that the solution is CJ-local by Proposition 2.8.

For Case 2, when Function 2 updates the cluster assignment, the clustering loss strictly decreases, ensuring convergence
after a finite number of iterations following the same reasoning given for Case 1. In Function 2, the clustering loss of
cluster assignment P is compared with all of the values of its adjacent elements. As a result, Algorithm 1 converges to a
D-local solution. This solution is also C-local and CJ-local by Propositions 2.5 and 2.8. ■

Proof of Theorem 4.5.

Algorithm 1 Line 7: For a given empty cluster a, finding a valid point requires searching over the N points, and for each
point g and its cluster b, checking if sb(P ) > wg and for any i ∈ [d], if xg[i] ̸= cb[i]. A valid point g is then transferred
from its cluster b to a, with updates sa(P ) = sa(P ) + wg and sb(P ) = sb(P )− wg .
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A valid point will be found after checking at most K points, resulting in a time complexity of O(Kd) for each empty
cluster since a point can belong to at most K − 1 clusters given that there exists at least 1 empty cluster. After checking
K points, at least two of the observed points must be assigned to the same cluster b. The cluster b must then contain at
least 2 points, hence sb(P ) > wg for all points g assigned to cluster b. Given that all points in X are unique, xg = cb can
only hold for at most one of the observed points belonging to cluster b, hence after checking K points, at least one must be
valid.

Given that there could be up to K − 1 empty clusters, the total time complexity is O(K2d) = O(NKd) = O(NKΓϕ(d))
given that N > K by assumption.

Recalculating ck1
and ck2

in Functions 1 and 2: In both functions, the cluster assignments are only changed by
one entry. Following Lemma D.2, the new optimal center for cluster k ∈ {k1, k2} can be computed as cnew

k =

ck +
(pnew

k,n−pk,n)wn(xn−ck)

sk(P )+(pnew
k,n−pk,n)wn

, i.e. cnew
k1

= ck1
− wn(xn−ck1

)

sk1
(P )−wn

and cnew
k2

= ck2
+

wn(xn−ck2
)

sk2
(P )+wn

. Given that sk(P ) has been

precomputed in Algorithm 1 at Line 5, the time complexity of updating ck is O(d).

When studying the time complexity of Functions 1 and 2 we consider the case where for n ∈ [N ]
min(argmink′∈[K] D(xn, ck′)) and max(argmaxk′∈[K] D(xn, ck′)) (assumed to also be computed in Algorithm 1 at
Line 5 for Case 1) are stored in memory, or when argmink′∈[K] D(xn, ck′) for n ∈ N needs to be recomputed.

Given that Algorithm 1 will only enter Functions 1 or 2 if P has not changed values, this implies that on Line 8 the
centers will not have been changed, making the use of stored values of argmink′∈[K] D(xn, ck′) in Functions 1 and 2
valid. In addition, storing these values only requires O(N) of memory, which does not increase the space complexity of
Algorithm 1.

Time Complexity of Function 1: Assuming for n ∈ [N ] the values of min(argmink′∈[K] D(xn, ck′)) and
max(argmaxk′∈[K] D(xn, ck′)) have been stored in memory, at Line 3, checking if min(argmink′∈[K] D(xn, ck′)) =
max(argmink′∈[K] D(xn, ck′)) for n ∈ [N ] is O(N). Since Line 7 can be computed in O(d), the overall time complexity
is O(N+d). If the values of argmink′∈[K] D(xn, ck′) must be recomputed, at Line 3, for each n ∈ [N ], we must compute
the function D K times, resulting in a total time complexity of O(NKΓϕ(d)).

Time Complexity of Functions 2 and 3: For Function 2, assuming for n ∈ [N ] the value of
min(argmink′∈[K] D(xn, ck′)) has been stored in memory, the time complexity of Line 3 equals O(N). Otherwise,
computing min(argmink′∈[K] D(xn, ck′)) for all n ∈ [N ] is O(NKΓϕ(d)). Line 5 must be computed O(NK) times.
Examining (8), the time complexity of computing ∆1(n, k1, k2) is O(d+ Γϕ(d)) = O(Γϕ(d)) due to computing the new
centers and D, hence the total time complexity of Line 5, and Function 2 in total, is O(NKΓϕ(d)). For Function 3, the
same arguments can be applied to conclude that its time complexity is also O(NKΓϕ(d)).

■

E. Experimental Details
E.1. Details of the K-means Algorithm and Min-D-LO

In the experiments, we used the following implementation of the K-means algorithm in Algorithm 2, which is the LO-K-
means algorithm excluding the new step. Its solution is guaranteed to have no empty clusters, with all cluster centers being
distinct, as proven in Lemma D.4.

Function 3 gives a detailed implementation of Min-D-LO as described in Section 4.3. In particular, this function can
be called instead of Function 2 in Algorithm 1, where instead of exiting after finding the first adjacent point which
guarantees a clustering loss improvement, Min-D-LO finds the adjacent point which minimizes the clustering loss, while
still guaranteeing convergence to a D-local solution.
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Algorithm 2 K-means Algorithm
Input: X = {xn}n∈[N ] ⊂ int dom(ϕ) ⊆ Rd, W = {wn}n∈[N ] ⊂ R++, number of clusters K ∈ N

1: Sample without replacement {ck}k∈[K] ⊂ {xn}n∈[N ] (Step 1)
2: Initialize pk,n ← 0 for all k ∈ [K], n ∈ [N ]
3: while P continues to change do
4: pk,n ← 0 for all k ∈ [K], n ∈ [N ]
5: pk,n ← 1 for all n ∈ [N ], k = min(argmink′∈[K] D(xn, ck′)) (Step 2)
6: if an empty cluster a ∈ [K] exists then
7: Move a point g ∈ [N ] from a cluster b ∈ [K] to a, such that sb(P ) > wg and xg ̸= cb.
8: ck ←

∑N
n=1 pk,nwnxn∑N
n=1 pk,nwn

for all k ∈ [K] (Step 3)

Output: P : cluster assignment, C: cluster centers

Function 3 Variant of Function 2 Minimizing ∆1

1: function MIN-D-LO(X,W,P,C,D)
2: ∆min = 0
3: (nm, km1 , km2 ) = (0, 0, 0)
4: for n = 1, 2, . . . , N do
5: k1 ← min(argmink′∈[K] D(xn, ck′))
6: for k2 = 1, 2, . . . , k1 − 1, k1 + 1, . . . ,K do
7: if ∆1(n, k1, k2) < ∆min then
8: ∆min = ∆1(n, k1, k2)
9: (nm, km1 , km2 ) = (n, k1, k2)

10: if ∆min < 0 then
11: pkm

2 ,nm ← 1
12: Recalculate ckm

2

13: if skm
1
(P ) = wnm then

14: pkm
1 ,nm ← 0

15: else
16: pkm

1 ,nm ← 0
17: Recalculate ckm

1

E.2. Details of the Real-World Datasets

We conduct our experiments on the following five datasets.

• Iris (Fisher, 1936): This dataset consists of 150 instances and 4 features, where each instance represents a plant.

• Wine Quality (Cortez et al., 2009): A dataset with 6,497 instances and 11 features, where each instance corresponds
to a wine sample with quality ratings.

• Yeast (Nakai & Kanehisa, 1991; 1992): This dataset contains 1,484 instances and 8 features, where each instance
represents a protein sample with attributes related to its cellular localization.

• Predict Students’Dropout and Academic Success (Martins et al., 2021): This dataset consists of 4,424 instances
and 36 features related to students’ academic performance and dropout risk.

• News20 (scikit-learn developers, 2017): This dataset contains 11,314 instances and 131,017 features, representing
word frequencies in news articles. Since both the number of instances and features are large, experiments were
conducted in the following two cases.

1. Using the first 2,000 instances, focusing on the 1,089 features with word frequencies between 2% and 80%.
2. Using the first 200 instances and 131,017 features.
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F. Additional Experiments
This section presents experimental results not covered in Section 5.

F.1. Synthetic Datasets

Recall that synthetic datasets were generated by uniformly sampling N data points from the space [1, 10]d, restricted to
integer values. If the same point is selected multiple times, the number of times it is sampled is assigned as its weight.

Figures 4 and 5 present the percentage increase in the number of iterations and the number of times the new step (Lines 9–
11) was invoked, respectively, when there is an improvement in the clustering loss using C-LO instead of K-means. As
seen from Figure 5, the new step (Lines 9–11) only needs to be called once in most cases.

Figure 4. The average rate of increase in the number of iterations when C-LO improves over K-means across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. Each N,K cell represents the results from 1,000 runs of both
algorithms. The ratio is given by (ILO − I)/I , where ILO is the number of iterations using C-LO and I is the number of iterations using
K-means. Darker colors indicate a higher percentage increase in iterations.

Figure 5. The average number of times the new step was invoked when C-LO improved over K-means across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. Each N,K cell represents the results from 1,000 runs of all
algorithms. Darker colors indicate a higher frequency of new step invocations.

Figures 6–9 show the experimental results for D-LO. These results indicate that D-LO improves the clustering loss in many
cases, regardless of the dimensionality. When the number of clusters K is greater than 5, the clustering loss decreases in
most cases. The percentage decrease in the clustering loss and the increase in iterations tend to be higher when the number
of clusters K is large relative to the number of data points N (Figures 7 and 8). Additionally, the number of times the new
step is invoked increases when both N and K are large (Figure 9).

22



Modified K-means Algorithm with Local Optimality Guarantees

Figure 6. The proportion of cases where the clustering loss is improved over K-means by using D-LO across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. Each N,K cell represents the results from 1,000 runs of both
algorithms. Darker colors indicate a higher frequency of clustering loss improvement.

Figure 7. The average improvement rate of the clustering loss when D-LO improves over K-means across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. Each N,K cell represents the results from 1,000 runs of both
algorithms. The ratio is given by (F (P ) − F (PLO))/F (P ), where PLO is the output of D-LO and P is the output of K-means. Darker
colors indicate a higher percentage of clustering loss improvement.

Figure 8. The average rate of increase in the number of iterations when D-LO improves over K-means across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. Each N,K cell represents the results from 1,000 runs of both
algorithms. The ratio is given by (ILO − I)/I , where ILO is the number of iterations using D-LO and I is the number of iterations using
K-means. Darker colors indicate a higher percentage increase in iterations.
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Figure 9. The average number of times the new step was invoked when D-LO improves over K-means across two different initialization
methods and dimensions, with D equal to the squared Euclidean distance. Each N,K cell represents the results from 1,000 runs of all
algorithms. Darker colors indicate a higher frequency of new step invocations.

F.2. Real-World Datasets

In this subsection, we present the results for real-world datasets that were not covered in Section 5.3.

As shown in the following tables, the clustering loss of C-LO is identical to that of K-means in all cases. These findings
suggest that although the K-means algorithm was not explicitly designed to guarantee this property, it still converges to a
C-local solution in most real-world datasets. However, by comparing the computation time of K-means with C-LO, it is
observed that the time to verify that the K-means algorithm has converged to a C-local solution using C-LO is negligible.

Across all datasets, D-LO and Min-D-LO consistently outperform K-means in terms of both the mean and the minimum
of the clustering loss, regardless of the initialization method. Notably, stronger improvements were observed in high-
dimensional datasets such as in Tables 10 and 11.

Table 2. Iris dataset (N = 150, d = 4): Mean, variance, and minimum of the clustering loss, along with the average computation time
and average number of iterations over 20 runs for each initialization method and number of clusters, for K-means, C-LO, D-LO, and
Min-D-LO with D chosen as the squared Euclidean distance.

Initialization Random K-means++
K Algorithm Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter

5

K-means 57.54± 9.78 46.54 < 0.001 9 50.58± 4.74 46.54 < 0.001 8
C-LO 57.54± 9.78 46.54 < 0.001 9 50.58± 4.74 46.54 < 0.001 8
D-LO 57.32± 9.83 46.54 < 0.001 13 50.30± 4.70 46.54 < 0.001 13

Min-D-LO 57.32± 9.83 46.54 < 0.001 13 50.30± 4.70 46.54 < 0.001 13

10

K-means 31.55± 5.42 26.78 < 0.001 8 29.57± 2.97 26.01 < 0.001 7
C-LO 31.55± 5.42 26.78 < 0.001 8 29.57± 2.97 26.01 < 0.001 7
D-LO 30.53± 5.00 26.18 < 0.001 20 28.92± 3.00 25.94 < 0.001 17

Min-D-LO 30.55± 4.99 26.18 < 0.001 19 28.93± 3.00 25.94 < 0.001 17

25

K-means 15.98± 1.64 13.67 < 0.001 7 13.73± 0.68 12.70 < 0.001 6
C-LO 15.98± 1.64 13.67 < 0.001 7 13.73± 0.68 12.70 < 0.001 6
D-LO 14.59± 1.68 11.89 < 0.001 36 12.58± 0.45 11.83 < 0.001 31

Min-D-LO 14.49± 1.76 12.02 < 0.001 30 12.61± 0.43 12.07 < 0.001 27

50

K-means 8.65± 1.27 7.05 < 0.001 5 6.40± 0.34 5.52 < 0.001 5
C-LO 8.65± 1.27 7.05 < 0.001 5 6.40± 0.34 5.52 < 0.001 5
D-LO 7.13± 1.50 5.66 0.002 48 5.36± 0.24 5.04 0.002 37

Min-D-LO 7.09± 1.35 5.62 0.002 39 5.40± 0.23 5.04 0.002 30
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Table 3. Wine Quality dataset (N = 6,497, d = 11): Mean, variance, and minimum of the clustering loss, along with the average
computation time and average number of iterations over 20 runs for each initialization method and number of clusters, for K-means,
C-LO, D-LO, and Min-D-LO with D chosen as the squared Euclidean distance.

Initialization Random K-means++
K Algorithm Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter

5

K-means 2,393,869± 67 2,393,751 0.005 40 2,499,611± 211,445 2,393,754 0.005 40
C-LO 2,393,869± 67 2,393,751 0.006 40 2,499,611± 211,445 2,393,754 0.005 40
D-LO 2,393,759± 12 2,393,742 0.006 49 2,393,753± 11 2,393,742 0.008 63

Min-D-LO 2,393,759± 12 2,393,742 0.006 49 2,393,753± 11 2,393,746 0.008 62

10

K-means 1,378,087± 6,569 1,367,222 0.01 51 1,381,737± 9,516 1,365,020 0.01 52
C-LO 1,378,087± 6,569 1,367,222 0.01 51 1,381,737± 9,516 1,365,020 0.01 52
D-LO 1,377,711± 6,571 1,367,222 0.02 74 1,380,941± 9,674 1,364,944 0.02 87

Min-D-LO 1,377,711± 6,571 1,367,222 0.02 74 1,380,941± 9,674 1,364,944 0.02 84

25

K-means 681,397± 24,123 659,902 0.04 86 654,219± 15,173 631,244 0.03 52
C-LO 681,397± 24,123 659,902 0.04 86 654,219± 15,173 631,244 0.02 52
D-LO 665,882± 7,059 654,126 0.12 235 649,046± 14,736 630,546 0.06 121

Min-D-LO 666,641± 7,082 654,126 0.10 202 649,001± 14,774 631,157 0.05 107

50

K-means 434,056± 14,094 402,580 0.11 63 376,544± 8,469 367,108 0.05 45
C-LO 434,056± 14,094 402,580 0.08 63 376,544± 8,469 367,108 0.06 45
D-LO 424,122± 20,475 381,856 0.28 259 372,716± 5,701 365,447 0.21 188

Min-D-LO 424,435± 20,610 382,197 0.29 229 373,075± 5,877 364,596 0.18 164

Table 4. Yeast dataset (N = 1,484, d = 8): Mean, variance, and minimum of the clustering loss, along with the average computation
time and average number of iterations over 20 runs for each initialization method and number of clusters, for K-means, C-LO, D-LO,
and Min-D-LO with D chosen as the squared Euclidean distance.

Initialization Random K-means++
K Algorithm Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter

5

K-means 64.1811± 0.5625 63.3292 < 0.001 27 64.7247± 1.8557 63.3292 < 0.001 19
C-LO 64.1811± 0.5625 63.3292 < 0.001 27 64.7247± 1.8557 63.3292 < 0.001 19
D-LO 64.0656± 0.2458 63.3292 < 0.001 31 64.7215± 1.8564 63.3292 < 0.001 21

Min-D-LO 64.0655± 0.2457 63.3292 < 0.001 31 64.7214± 1.8564 63.3292 < 0.001 21

10

K-means 49.7885± 2.9719 45.9045 0.001 28 47.4975± 2.7205 45.3131 0.001 28
C-LO 49.7885± 2.9719 45.9045 0.001 28 47.4975± 2.7205 45.3131 0.001 28
D-LO 48.9709± 3.0474 45.7640 0.003 68 47.4400± 2.6732 45.3040 0.003 56

Min-D-LO 48.9734± 3.0456 45.7640 0.003 61 47.4409± 2.6750 45.3040 0.003 52

25

K-means 31.9759± 1.0614 30.2560 0.003 31 31.4602± 0.9611 30.3055 0.003 29
C-LO 31.9759± 1.0614 30.2560 0.003 31 31.4602± 0.9611 30.3055 0.003 9
D-LO 31.3294± 1.0120 30.1804 0.02 164 31.1418± 0.9025 30.0612 0.02 157

Min-D-LO 31.3285± 1.0552 30.1802 0.02 131 31.1563± 0.8695 30.1331 0.02 126

50

K-means 23.4076± 0.2833 22.7046 0.005 26 22.9436± 0.2097 22.5824 0.005 24
C-LO 23.4076± 0.2833 22.7046 0.006 26 22.9436± 0.2097 22.5824 0.006 24
D-LO 22.8217± 0.2970 22.2496 0.07 286 22.4312± 0.1982 22.0767 0.06 257

Min-D-LO 22.7697± 0.2797 22.2465 0.06 221 22.4631± 0.1899 22.1379 0.05 182
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Table 5. Predict Students’ Dropout and Academic Success dataset (N = 4,424, d = 36): Mean, variance, and minimum of the clustering
loss, along with the average computation time and average number of iterations over 20 runs for each initialization method and number
of clusters, for K-means, C-LO, D-LO, and Min-D-LO with D chosen as the squared Euclidean distance.

Initialization Random K-means++
K Algorithm Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter

5

K-means 153,167,019± 110,756,304 38,258,341 0.002 7 44,852,897± 13,571,603 38,258,341 0.001 4
C-LO 153,167,019± 110,756,304 38,258,341 0.002 7 44,852,897± 13,571,603 38,258,341 0.001 4
D-LO 153,166,788± 110,756,446 38,258,341 0.003 8 44,852,897± 13,571,603 38,258,341 0.001 4

Min-D-LO 153,166,788± 110,756,446 38,258,341 0.003 8 44,852,897± 13,571,603 38,258,341 0.001 4

10

K-means 18,215,696± 3,940,334 13,417,982 0.008 13 14,799,899± 1,951,762 11,998,592 0.005 9
C-LO 18,215,696± 3,940,334 13,417,982 0.008 13 14,799,899± 1,951,762 11,998,592 0.005 9
D-LO 18,149,464± 3,957,643 13,417,982 0.01 16 14,770,849± 1,956,191 11,998,592 0.007 12

Min-D-LO 18,149,464± 3,957,643 13,417,982 0.01 16 14,770,794± 1,956,074 11,998,592 0.007 12

25

K-means 7,892,024± 1,036,157 7,037,040 0.03 21 7,129,832± 331,980 6,652,215 0.03 20
C-LO 7,892,024± 1,036,157 7,037,040 0.03 21 7,129,832± 331,980 6,652,215 0.03 20
D-LO 7,852,829± 1,032,327 7,036,545 0.08 57 7,054,448± 272,093 6,648,003 0.06 40

Min-D-LO 7,854,002± 1,031,819 7,036,990 0.08 55 7,055,679± 274,184 6,648,003 0.06 38

50

K-means 5,476,986± 298,309 5,053,050 0.07 26 5,020,874± 148,015 4,796,299 0.07 25
C-LO 5,476,986± 298,309 5,053,050 0.07 26 5,020,874± 148,015 4,796,299 0.07 25
D-LO 5,418,530± 299,341 5,045,559 0.32 113 4,982,183± 132,509 4,787,903 0.28 99

Min-D-LO 5,419,034± 294,567 4,957,810 0.31 106 4,983,925± 135,801 4,788,567 0.25 86

F.3. Experiments with Other Dissimilarity Measures (KL Divergence & Itakura-Saito Divergence)

We also conducted experiments using dissimilarity measures D other than the squared Euclidean distance.

Tables 6–9 present the experimental results for the Iris and Yeast datasets. In these experiments, KL divergence was used
for the results in Tables 6 and 7, while Itakura-Saito divergence was used for those in Tables 8 and 9.

The KL divergence has dom(ϕ) = Rd
+, while the Itakura-Saito divergence has dom(ϕ) = Rd

++. Therefore, we
preprocessed the datasets accordingly, noting that neither the Iris nor Yeast dataset contains negative values. When using
these divergences, dimensions that do not belong to int dom(ϕ) = Rd

++ were excluded from consideration. As a result, the
dimensionality of the Yeast dataset was reduced from 8 to 4.

As shown in Tables 6–9, D-LO and Min-D-LO consistently reduced the clustering loss regardless of the dissimilarity
measure used.

Table 6. Iris dataset (N = 150, d = 4): Mean, variance, and minimum of the clustering loss, along with the average computation time
and average number of iterations over 20 runs for each number of clusters, for K-means, C-LO, D-LO, and Min-D-LO with D chosen
as the KL divergence.

K Algorithm Mean ± Variance Minimum Time(s) Num Iter

5

K-means 10.3353± 4.3956 7.3918 < 0.001 7
C-LO 10.3353± 4.3956 7.3918 < 0.001 7
D-LO 10.2722± 4.4126 7.3918 0.002 13

Min-D-LO 10.2722± 4.4126 7.3918 0.002 13

10

K-means 5.0824± 0.4933 4.5094 0.002 9
C-LO 5.0824± 0.4933 4.5094 0.002 9
D-LO 4.9544± 0.5108 4.3596 0.006 22

Min-D-LO 4.9588± 0.5056 4.3561 0.007 20

25

K-means 2.6667± 0.2369 2.3077 0.003 7
C-LO 2.6667± 0.2369 2.3077 0.003 7
D-LO 2.3793± 0.1636 2.1739 0.03 44

Min-D-LO 2.3917± 0.1726 2.1579 0.04 36

50

K-means 1.4186± 0.1209 1.2542 0.005 5
C-LO 1.4186± 0.1209 1.2542 0.005 5
D-LO 1.1139± 0.1230 0.9836 0.09 63

Min-D-LO 1.1260± 0.1274 1.0009 0.12 51
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Table 7. Yeast dataset (N = 1,484, d = 4): Mean, variance, and minimum of the clustering loss, along with the average computation
time and average number of iterations over 20 runs for each number of clusters, for K-means, C-LO, D-LO, and Min-D-LO with D
chosen as the KL divergence.

K Algorithm Mean ± Variance Minimum Time(s) Num Iter

5

K-means 24.7930± 0.1004 24.7061 0.02 27
C-LO 24.7930± 0.1004 24.7061 0.02 27
D-LO 24.7698± 0.0698 24.7061 0.05 46

Min-D-LO 24.7704± 0.0695 24.7058 0.05 43

10

K-means 17.1498± 0.2249 16.3044 0.05 33
C-LO 17.1498± 0.2249 16.3044 0.05 33
D-LO 17.1263± 0.2197 16.2683 0.11 57

Min-D-LO 17.1273± 0.2207 16.2683 0.12 54

25

K-means 9.6594± 0.6781 9.0472 0.12 31
C-LO 9.6594± 0.6781 9.0472 0.12 31
D-LO 9.2017± 0.3940 8.9245 0.61 121

Min-D-LO 9.3429± 0.5815 8.9205 0.65 99

50

K-means 5.8949± 0.2300 5.5487 0.24 32
C-LO 5.8949± 0.2300 5.5487 0.24 32
D-LO 5.6315± 0.2318 5.2839 2.34 213

Min-D-LO 5.6817± 0.2305 5.3299 2.45 163

Table 8. Iris dataset (N = 150, d = 4): Mean, variance, and minimum of the clustering loss, along with the average computation time
and average number of iterations over 20 runs for each number of clusters, for K-means, C-LO, D-LO, and Min-D-LO with D chosen
as the Itakura-Saito divergence.

K Algorithm Mean ± Variance Minimum Time(s) Num Iter

5

K-means 5.5113± 1.3082 3.4763 < 0.001 7
C-LO 5.5113± 1.3082 3.4763 < 0.001 7
D-LO 5.4170± 1.3316 3.4763 0.001 10

Min-D-LO 5.4170± 1.3317 3.4763 0.001 10

10

K-means 2.2542± 0.5641 1.7175 0.001 9
C-LO 2.2542± 0.5641 1.7175 0.001 9
D-LO 2.2213± 0.5613 1.7175 0.004 15

Min-D-LO 2.2222± 0.5623 1.7175 0.004 15

25

K-means 1.0272± 0.1306 0.7975 0.003 8
C-LO 1.0272± 0.1306 0.7975 0.003 8
D-LO 0.9031± 0.0637 0.7828 0.03 37

Min-D-LO 0.8997± 0.0686 0.7828 0.03 31

50

K-means 0.5015± 0.0544 0.3934 0.005 6
C-LO 0.5015± 0.0544 0.3934 0.005 6
D-LO 0.4067± 0.0352 0.3341 0.06 51

Min-D-LO 0.4063± 0.0344 0.3356 0.08 45

27



Modified K-means Algorithm with Local Optimality Guarantees

Table 9. Yeast dataset (N = 1,484, d = 4): Mean, variance, and minimum of the clustering loss, along with the average computation
time and average number of iterations over 20 runs for each number of clusters, for K-means, C-LO, D-LO, and Min-D-LO with D
chosen as the Itakura-Saito divergence.

K Algorithm Mean ± Variance Minimum Time(s) Num Iter

5

K-means 52.6593± 0.3565 52.2224 0.02 28
C-LO 52.6593± 0.3565 52.2224 0.02 28
D-LO 52.5749± 0.3242 52.2220 0.04 43

Min-D-LO 52.5749± 0.3242 52.2220 0.04 42

10

K-means 35.5623± 0.5344 34.6253 0.04 31
C-LO 35.5623± 0.5344 34.6253 0.04 31
D-LO 35.4464± 0.4127 34.6202 0.10 65

Min-D-LO 35.4539± 0.4179 34.6196 0.11 59

25

K-means 20.2199± 1.0484 19.1600 0.09 30
C-LO 20.2199± 1.0484 19.1600 0.09 30
D-LO 19.6271± 0.9731 18.7461 0.48 111

Min-D-LO 19.5247± 0.8298 18.7344 0.57 106

50

K-means 12.4824± 0.4306 11.6719 0.18 29
C-LO 12.4824± 0.4306 11.6719 0.18 29
D-LO 12.0247± 0.3544 11.2726 1.58 175

Min-D-LO 12.0712± 0.4092 11.3139 1.74 145

F.4. Comparison with the D-local Algorithm Proposed by Peng & Xia (2005)

To compare the computation time of D-LO and Min-D-LO with the D-local algorithm proposed in (Peng & Xia, 2005,
Section 3.2.1), we evaluated their algorithm, hereafter referred to as D-LO-P&X, on the most computationally challenging
datasets, news20 1 & 2.

As shown in Tables 10 and 11, we observe that D-LO, Min-D-LO, and D-LO-P&X consistently achieved similar levels of
clustering loss, given that they all converge to D-local solutions, while D-LO-P&X is significantly slower than all other
methods (in red). This is because D-LO-P&X is not based on the K-means algorithm, but instead on directly examining
whether moving to an adjacent extreme point decreases the clustering loss.
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Table 10. News20 dataset 1 (N = 2,000, d = 1,089): Mean, variance, and minimum of the clustering loss, along with the average
computation time and average number of iterations over 20 runs for each initialization method and number of clusters, for K-means,
C-LO, D-LO, Min-D-LO, and D-LO-P&X with D chosen as the squared Euclidean distance.

Initialization Random K-means++
K Algorithm Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter

5

K-means 984,655± 55,781 864,073 0.31 31 870,899± 80,013 808,450 0.20 18
C-LO 984,655± 55,781 864,073 0.33 31 870,899± 80,013 808,450 0.18 18
D-LO 808,391± 0 808,391 1.94 168 806,236± 3,292 801,207 0.82 74

Min-D-LO 808,032± 1,566 801,207 0.97 81 806,595± 3,111 801,207 0.53 48
D-LO-P&X 808,391± 0 808,391 26.92 2,669 807,673± 2,155 801,207 9.22 859

10

K-means 919,058± 73,594 734,571 0.71 35 697,527± 32,211 643,583 0.48 23
C-LO 919,058± 73,594 734,571 0.70 35 697,527± 32,211 643,583 0.46 23
D-LO 637,004± 4,319 625,281 19.52 870 634,216± 5,596 625,467 6.18 288

Min-D-LO 642,980± 7,605 637,400 6.65 317 634,293± 6,477 625,468 2.55 125
D-LO-P&X 636,937± 6,825 625,281 145.20 7,310 632,331± 5,715 623,701 40.77 2,084

25

K-means 790,822± 88,437 650,038 1.65 34 529,028± 32,301 487,823 1.25 26
C-LO 790,822± 88,437 650,038 1.67 34 529,028± 32,301 487,823 1.32 26
D-LO 481,983± 5,198 475,651 155.39 3,016 475,299± 3,831 468,201 35.96 705

Min-D-LO 485,809± 6,874 473,159 40.17 787 474,431± 4,508 467,745 15.77 316
D-LO-P&X 480,415± 6,816 468,503 631.20 12,799 475,962± 4,071 469,631 225.36 4,682

50

K-means 731,980± 91,535 552,717 2.72 28 439,029± 10,015 418,754 3.02 31
C-LO 731,980± 91,535 552,717 2.72 28 439,029± 10,015 418,754 2.96 31
D-LO 400,826± 2,920 395,833 314.36 3,133 392,016± 1,513 388,746 157.97 1,228

Min-D-LO 402,716± 2,469 398,453 103.30 1,040 392,146± 2,080 388,990 60.41 533
D-LO-P&X 400,027± 3,553 393,731 1,214.16 12,563 393,227± 2,203 390,815 596.58 6,220

Table 11. News20 dataset 2 (N = 200, d = 130,107): Mean, variance, and minimum of the clustering loss, along with the average
computation time and average number of iterations over 20 runs for each initialization method and number of clusters, for K-means,
C-LO, D-LO, Min-D-LO, and D-LO-P&X with D chosen as the squared Euclidean distance.

Initialization Random K-means++
K Algorithm Mean ± Variance Minimum Time(s) Num Iter Mean ± Variance Minimum Time(s) Num Iter

5

K-means 108,473± 16,501 97,481 1.80 13 104,391± 17,022 97,522 0.87 6
C-LO 108,473± 16,501 97,481 1.77 13 104,391± 17,022 97,522 0.86 6
D-LO 97,473± 3 97,472 3.20 21 97,944± 2,046 97,472 2.67 17

Min-D-LO 97,944± 2,046 97,472 3.46 21 99,134± 3,323 97,472 1.91 12
D-LO-P&X 97,947± 2,045 97,472 90.99 622 97,947± 2,045 97,472 11.04 79

10

K-means 91,420± 1,988 85,537 3.09 11 82,519± 3,638 76,319 2.07 7
C-LO 91,420± 1,988 85,537 2.97 11 82,519± 3,638 76,319 2.08 7
D-LO 77,046± 1,540 74,083 44.97 144 75,730± 1,500 74,044 25.54 77

Min-D-LO 76,064± 915 74,653 23.71 80 75,359± 1,082 74,044 14.46 45
D-LO-P&X 76,025± 1,456 74,064 206.48 763 76,472± 1,564 73,840 51.92 181

25

K-means 80,707± 3,564 73,203 5.43 9 61,430± 3,570 54,931 4.34 7
C-LO 80,707± 3,564 73,203 5.37 9 61,430± 3,570 54,931 4.35 7
D-LO 50,773± 642 49,960 317.12 464 50,220± 443 49,503 144.74 210

Min-D-LO 51,224± 787 50,,235 104.04 153 50,591± 362 49,820 61.32 88
D-LO-P&X 51,018± 756 50,117 762.70 1,190 50,394± 349 49,575 228.14 353

50

K-means 66,502± 4,580 58,491 9.66 8 41,926± 3,762 35,524 7.35 6
C-LO 66,502± 4,580 58,491 9.71 8 41,926± 3,762 35,524 7.29 6
D-LO 32,108± 134 31,923 1,014.97 769 31,945± 102 31,819 470.17 356

Min-D-LO 32,391± 193 32,032 298.15 227 32,205± 182 31,897 154.54 118
D-LO-P&X 32,197± 138 31,995 1,684.39 1,322 32,006± 97 31,827 661.54 518
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