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ABSTRACT

Automatic chart understanding is crucial for content comprehension and docu-
ment parsing. Multimodal Large Language Models (MLLMs) have demonstrated
remarkable capabilities in chart understanding through domain-specific alignment
and fine-tuning. However, current MLLMs still struggle to provide faithful data
and reliable analysis only based on charts. To address it, we propose ChartMoE,
which employs the Mixture of Expert (MoE) architecture to replace the tradi-
tional linear projector to bridge the modality gap. Specifically, we train several
linear connectors through distinct alignment tasks, which are utilized as the foun-
dational initialization parameters for different experts. Additionally, we introduce
ChartMoE-Align, a dataset with nearly 1 million chart-table-JSON-code quadru-
ples to conduct three alignment tasks (chart-table/JSON/code). Combined with
the vanilla connector, we initialize different experts diversely and adopt high-
quality knowledge learning to further refine the MoE connector and LLM param-
eters. Extensive experiments demonstrate the effectiveness of the MoE connector
and our initialization strategy, e.g., ChartMoE improves the accuracy of the previ-
ous state-of-the-art from 80.48% to 84.64% on the ChartQA benchmark.

1 INTRODUCTION

Charts serve as a fundamental tool for data visualization, with automated chart interpretation gain-
ing prominence in domains such as text analysis Hoque et al. (2017), scientific research Hsu et al.
(2021), and policy-making Wu et al. (2024). Chart understanding is a complex task that demands
the identification of visual cues, the comprehension of intricate interactions, and the precise infer-
ence of values informed by prior knowledge. Previous work Lee et al. (2023); Liu et al. (2023b;a)
typically pre-trained on domain-specific charts, which are constrained by limited resources and nar-
row task focus. In contrast, Multi-modal Large Language Models (MLLMs) Li et al. (2023); Liu
et al. (2023d); Bai et al. (2023a); Ye et al. (2023b); Chen et al. (2023a); OpenAI (2023) exhibit sub-
stantial potential in image comprehension and instruction following. The community has achieved
advanced progress by creating chart understanding datasets Liu et al. (2023c); Han et al. (2023);
Masry et al. (2024b); Xu et al. (2023) and applying supervised fine-tuning based on well-performed
MLLMs Meng et al. (2024); Yan et al. (2024); Carbune et al. (2024). With the exponential growth
of chart data, automated chart interpretation via MLLMs is emerging as a promising avenue.

Recent studies advocate for chart alignment as a foundational step for LLaVA-like MLLMs Liu
et al. (2023d); Zhang et al. (2023); Xue et al. (2024), which bridge the visual encoder and LLM
through a linear connector. They usually utilize the chart-to-table alignment task to train the linear
connector effectively Meng et al. (2024); Yan et al. (2024); Hu et al. (2024). However, tables only
provide basic information, such as numerical values and titles, which fail to capture the full range of
chart elements. Despite some efforts to align with more informative text Yan et al. (2024), the heavy
alignment tasks may lead to the erosion of the connector’s general capabilities, e.g., instruction fol-
lowing and visual counting, which are derived from the pre-training on large-scale visual-language
data. To mitigate knowledge forgetting, one intuitive approach is to further tune the connector with
its original data, which results in redundant training and computational burden.

In this paper, we try to address these challenges via Mixture of Experts (MoE) architecture Zoph
et al. (2022). MoE enhances model capacity by activating a subset of experts through a routing
network. Since the alignment tasks work on the connector, we replace only the linear projector
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Redraw the chart with python matplotlib 
code output. Pay attention to the line color!

import pandas as pd
import matplotlib.pyplot as plt
plt.style.use("classic")
data = {
'China': [100, 150, 200, 250, 300, 350, 400, 450],
'USA': [50, 75, 100, 125, 150, 175, 200, 225],
'India': [25, 40, 55, 70, 85, 100, 125, 150],
'Japan': [15, 20, 25, 30, 35, 40, 45, 50],
'Germany': [10, 12, 14, 16, 18, 20, 23, 24]
}
years = ['2015', '2016', '2017', '2018', '2019', '2020', 
'2021', '2022']
df = pd.DataFrame(data, index=years)
plt.plot(df['China'], label='China', linewidth=1, marker='o', 
color='#0000FF') # blue
plt.plot(df['USA'], label='USA', linewidth=1, marker='o', 
color='#FF0000') # red
plt.plot(df['India'], label='India', linewidth=1, marker='o', 
color='#008000') # green
plt.plot(df['Japan'], label='Japan', linewidth=1, marker='o', 
color='#808080') # grey
plt.plot(df['Germany'], label='Germany', linewidth=1, 
marker='o', color='#FFFF00')# yellow
for country in df.columns:
    for i, value in enumerate(df[country]):
       plt.text(i, value + 2, f'{value}', ha='center',                    
va='bottom', fontsize=8)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel('Years')
plt.ylabel('Petabytes per month')
plt.title('Mobile data usage by country')
plt.tight_layout(rect=[0, 0, 0.85, 1])
plt.show()
 
 

Redraw the chart with python matplotlib code output. 1) Pay attention to the line 
color! 2) Change the line marker to star!

...

# Draw the chart, set the line width and mark points
plt.plot(df['China'], label='China', linewidth=1, 
marker='*', color='#0000FF') # blue
plt.plot(df['USA'], label='USA', linewidth=1, 
marker='*', color='#FF0000') # red
plt.plot(df['India'], label='India', linewidth=1, 
marker='*', color='#008000') # green
plt.plot(df['Japan'], label='Japan', linewidth=1, 
marker='*', color='#808080') # grey
plt.plot(df['Germany'], label='Germany', linewidth=1, 
marker='*', color='#FFFF00')# yellow
...

Redraw the chart with python matplotlib code output.  1) Pay attention to the 
line color! 2) Circle the maximum value in red!

...

# get max value
max_value = df.max().max()
max_index = df.stack().idxmax()
country_name = max_index[1]
year_index = max_index[0]
# Circle max value in red
plt.scatter(year_index, max_value, s=200, edgecolor='red', 
facecolor='none', linewidth=2)
...


Query Chart

Token-wise Top-1 Expert 
Selection in MoE Connector

Plot the US data as a percentage pie chart in python.

import pandas as pd
import matplotlib.pyplot as plt
data = {
'China': [100, 150, 200, 250, 300, 350, 400, 450],
'USA': [50, 75, 100, 125, 150, 175, 200, 225],
'India': [25, 40, 55, 70, 85, 100, 125, 150],
'Japan': [15, 20, 25, 30, 35, 40, 45, 50],
'Germany': [10, 12, 14, 16, 18, 20, 23, 24]
}
years = ['2015', '2016', '2017', '2018', '2019', '2020', '2021', '2022']
df = pd.DataFrame(data)
usa_data = df['USA']
plt.figure(figsize=(8, 8))
plt.pie(usa_data, labels=years, autopct='%1.1f%%', startangle=140)
plt.title('Percentage Distribution of Mobile Data Usage (USA)')
plt.show()

According to this chart, 
how much mobile data  

does China use in 2020?

It is arond 350 Petabytes 
per month.

Chart QA

Replot Eidting

Highlighting

Transformation

Figure 1: Overview and capabilities of ChartMoE: We introduce a MoE architecture connector and provide
visualizations of the top-1 expert selection (refer to Fig. 6 and Appendix B for details). ChartMoE can extract
highly precise values and provide flexible chart editing through code-based interactions.

layer with MoE while keeping the vision encoder and LLM frozen. Our insight lies in the expert
initialization manner. Random initialization can lead to training instability and convergence at sub-
optimal points (Fig. 4). Recent co-upcycling initialization Komatsuzaki et al. (2023) addresses this
issue by duplicating the vanilla connector parameters across all experts. However, it fails to avoid
the dilemma of expert homogenization, where the experts end up with similar functionalities.

In contrast, we attempt to inject distinct prior knowledge into each expert first to tackle these chal-
lenges. Unlike natural images, charts can be represented in various text formats, e.g., tables, at-
tribute JSON, and rendering code. As shown in Fig. 1& 2, in addition to chart-table, we introduce
chart-JSON alignment to capture detailed elements like color or topological relationships and chart-
code alignment to incorporate rendering details such as numerical values and color hex codes (refer
to Appendix C). We independently conduct various alignment tasks to capture more diverse chart
features and thus obtain three distinct initialization approaches. We also retain the vanilla connector
to effectively preserve the capabilities of the MLLM on general tasks.

Building upon the proposed four initialization manners, we introduce ChartMoE, an SFT-based
MLLM with the MoE connector for chart comprehension and reasoning. Interestingly, we observe
that experts in ChartMoE exhibit distinct visual token preferences, e.g., the vanilla expert favors
background tokens while other experts focus more on tokens with legends or numbers (Fig. 6 and
Appendix B). Considering that the distribution of visual tokens is naturally imbalanced in chart sce-
narios, we remove the expert balanced loss in MoE and obtain further performance gain. Due to the
scarcity of rich text for chart alignment, we design a pipeline (Fig. 3) to generate nearly 1 million
quadruplets chart-table-JSON-code to build the ChartMoE-Align dataset for alignment. We train
ChartMoE in 3 stages. First, we initialize experts via the proposed four manners. Then, we conduct
high-quality knowledge learning using the MMC instruction Liu et al. (2023c) to train the rout-
ing network, expert connectors, and LoRA Hu et al. (2022) modules. Finally, we employ annealing
training on ChartQA Masry et al. (2022) and ChartGemma Masry et al. (2024b). We further integrate
the Program of Thought (PoT) prompting Chen et al. (2023b) to enhance mathematical capabilities.
ChartMoE can be deployed on a single A100-40G GPU and achieves state-of-the-art (SOTA) per-
formance. ChartMoE provides more precise numbers and comprehensive attributes when queried
with charts (Appendix E). In summary, our contributions are:

a) We present ChartMoE for faithful and reasonable chart understanding, with the connector based
on Mixture of Expert architecture, to bridge the chart and LLM branches. All experts are initial-
ized based on various alignment training tasks to avoid expert homogenization.

b) We introduce ChartMoE-Align, a large-scale dataset with nearly 1 million meticulous chart-
table-JSON-code quadruplets for chart alignment pre-training.

c) We propose to train ChartMoE with a three-stage training paradigm, including connector align-
ment pre-training, high-quality knowledge learning, and annealing chart tuning.

d) Extensive quantitative and qualitative studies demonstrate that ChartMoE significantly outper-
forms previous state-of-the-art across several benchmarks by a large margin.
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2 RELATED WORK

Multimodal large language models leverages a connector to bridge the gap between large lan-
guage models Touvron et al. (2023); Radford et al. (2018); Brown et al. (2020); Zhang et al. (2022);
Zheng et al. (2023) and vision encoders Radford et al. (2021); Oquab et al. (2023) to enable en-
riched capabilities of comprehension and instruction following. Approaches such as BLIP2 Li et al.
(2023), Flamingo Alayrac et al. (2022), mPLUG-Owl Ye et al. (2023b), and Qwen-VL Bai et al.
(2023b) utilize QFormers or Resamplers to align modalities on extensive datasets of image-text
pairs. LLaVA Liu et al. (2023d; 2024b) is the pioneering work to extend the instruction tuning
paradigm to visual tasks with text-only GPT-4 OpenAI (2023), achieving tremendous performance
using a simple MLP without compromising visual information to refine the multimodal alignment.
Some works Lin et al. (2023); Tong et al. (2024b;a) explore the combination of various vision
encoders, complementarily enhancing visual representations to bolster the fine-grained visual per-
ception of MLLMs. Despite efforts in structural design, training strategies and data quality remain
crucial in the advancement of MLLMs.

Chart Reasoning refers to chart analysis, summarization, and etc. Existing methods can be cate-
gorized as 1) Two-stage methods use specialized extraction modules to generate intermediary rep-
resentations of chart information, like tables, which are provided as textual prompts for LLMs.
Pix2Struct Lee et al. (2023) aligns markdown data with charts. MatCha Liu et al. (2023b) aligns
various data formats (e.g., tables and code) with charts on several downstream tasks. DePlot Liu
et al. (2023a) fine-tunes Pix2Struct for table extraction and uses LLMs to process queries based on
the extracted data. ChartVLM Xia et al. (2024) employs a discriminator to ascertain the necessity
of intervention by LLMs for a given query. 2) End-to-end methods strive to tackle chart reasoning
challenges with a unified model. ChartLlama Han et al. (2023) incorporates diverse charts and down-
stream tasks based on LLaVA Liu et al. (2023d). ChartPaLI Carbune et al. (2024), ChartAst Meng
et al. (2024), and MMC Liu et al. (2023c) conduct alignment on table-chart pairs. UReader Ye
et al. (2023a) aligns all data with markdown, while mPLUG-Owl2 Ye et al. (2023c) achieves supe-
rior performance with high-resolution inputs. ChartThinker Liu et al. (2024c) and DOMINO Wang
et al. (2023) propose the CoT Wei et al. (2022) for chart reasoning. LaMenDa Zhuowan et al.
(2024) trains MLLMs via step-by-step reasoning QA. ChartReformer Yan et al. (2024) introduces
chart-JSON alignment, while OneChart Chen et al. (2024) aligns charts with Python dictionaries.
MiniGPT-v2 Chen et al. (2023a), Doc-Owl Hu et al. (2024), and TinyChart Zhang et al. (2024)
tackle the reasoning efficiency for high-resolution charts by merging tokens.

3 CHARTMOE

3.1 ARCHITECTURE

The ChartMoE is based on InternlmXC-v2 Dong et al. (2024) due to the concise LLaVA-like archi-
tecture Liu et al. (2023d) and performance on par with GPT-4 on text-image comprehension. The
base model includes a vision encoder and a LLM connected by a two-layer MLP. ChartMoE replaces
the MLP with a MoE architecture as the connector to leverage diverse prior knowledge.

Vision Encoder. We utilize CLIP ViT-Large Radford et al. (2021) as the vision encoder, leveraging
its rich prior knowledge gained from training on millions of image-text pairs. Considering the
impact of chart resolution on performance, we set the input resolution to 490 × 490 to strike a
balance between efficiency and performance. Formally, the visual encoder MV (·) will project the
chart I into N tokens V := {v1, v2, . . . , vN}, where N = 1225 in the ChartMoE.

Mixture-of-Experts Connector. As illustrated in Fig. 2c, the MoE architecture employs a parallel
multi-expert collaboration approach. This architecture comprises L experts ME(·), each designed
with the same linear layer as the baseline. For a visual token vi given by MV , the gating network
MG(·) will calculate the routing weight gj(vi) of each expert ME

j (·) and select top-K to activate.
Finally, the tokens processed by each expert ME

j will be averaged according to the weight gj(vi)
given by MG to get the token v̂i for the LLM branch ML.

Large Language Model. Following the baseline, we employ the InternLM2-7B-ChatSFT variant
as the LLM ML, implemented as a transformer decoder with a causal attention mask. We concate
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Translate the chart into csv format.

Age group, Nov 2010, Dec 2011, Jan 2012
--- , --- , --- , ---
18-29 , 6% , 7% , 18% 
30-49 , 5% , 12% , 24%
50-64 , 9% , 11% , 19%
65 and older , 4% , 8% , 12% CSV

Translate the chart into JSON with all available 
attributions.
{
    "type_agnostic": {
        "x_font_name": "sans-serif",
        "x_font_size": "medium",
        "y_font_name": "monospace",
        "y_font_size": "x-large",
     ...
} JSON

Convert this chart to python style code.
import matplotlib.pyplot as plt
import numpy as np

# vis tool
plt.style.use('default')

# data
x = ['Age group', 'Nov 2010', 'Dec 2011', 'Jan 2012']
y = [[6, 7, 18], [5, 12, 24], [9, 11, 19], [4, 8, 12]]
... Code

(a) Alignment Instructions

Visual TokensText Tokens

ViT 
Encoder

Alignment 
Instructions

Chart

Connector

× N Layer

LLM

(b) Alignment Pretraining

Visual Tokens

E0
E1

E2

LLM

Visual TokensText Tokens

Chart

LoRA
r

Instructions

ViT 
Encoder

Top-k
Gate

E0 E1 E2 E3

Vanilla
Connector

Weighted  Sum

× N Layer

(c) Supervised Finetuning

Visual Tokens

Figure 2: Overview of proposed ChartMoE. (a) Examples of alignment instructions. (b) We conduct three
different alignment tasks in parallel. (c) We initialize MoE connectors in four different manners and train the
gate network, experts, and LoRA during the supervised fine-tuning stage.

the visual tokens V̂ := {v̂1, v̂2, . . . , v̂N} given by MoE connector with the M input text T tokens
T := {t1, t2, . . . , tM} to form the input token sequence for the LLM ML. Formally, give the chart
I and instruction T , the output O of proposed ChartMoE can be formulated as:

{v1, v2, . . . , vN} = MV (I), (1)

v̂i =

L∑
j

gj(vi)ME
j (vi), g(vi) = Top(σ(MG(vi));K), (2)

O = ML({v̂1, v̂2, . . . , v̂N ; t1, t2, . . . , tM}), (3)

where σ indicates softmax and the Top(·;K) will reset the non-Top K routing weight to 0.

Initialization of Expert. Previous approaches initialize expert parameters via 1) Random initializa-
tion, which may lead to convergence difficulties during supervised fine-tuning, and 2) Co-upcycling
initialization Komatsuzaki et al. (2023), i.e., copy baseline connector parameters to each expert,
which may lead to homogenization of experts. ChartMoE proposes initializing experts’ parameters
through distinct alignment tasks. We eliminate the load-balancing loss typically used in standard
MoE architectures to equalize expert activation frequencies, as our initialization approach allows
each expert to specialize in its preferred visual tokens, which inherently exhibit biased distributions.

3.2 ALIGNMENT PRE-TRAINING.

The key insight of ChartMoE is the experts’ initialization parameters from the different alignment
pre-training (Fig. 2a). Specifically, as illustrated in Fig. 2b, we align expert connectors using three
distinct alignment tasks, where only the connector parameters will be updated. We visualize the
visual token preferences of each expert for both chart (Fig. 6& 12) and non-chart (Fig. 11) images.

Alignment with Table. Charts convey key information that can be more precisely expressed in tab-
ular form, and LLMs are particularly adept at processing such structured data. Hence, we introduce
a chart-table alignment task, aiming to translate chart content into tabular format. The connector
is trained to convert chart information into corresponding CSV tables, thereby improving model
performance in numerical data extraction and chart interpretation.

Alignment with JSON. Although tables capture the numerical information from charts, they miss
semantic details such as colors, shapes, and fonts. To fill this gap, we propose a chart-JSON align-
ment task, which represents chart attributes in JSON format. This task requires the connector to
focus not only on the numerical data but also on visual and semantic properties. Accurately extract-
ing chart attributes is essential for tasks like chart redrawing and editing.

Alignment with Code. To fully align with charts, we further introduce a chart-code alignment
task. Since the underlying drawing code fully defines a chart, this approach enables the connector to
convert the chart’s visual tokens into representations in the LLM domain. Notably, we provide the
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CSV Table

Filter out meta CSV data 
from existing datasets 

Generate meta CSV data 
by large language models

Attribution JSON

Random sample from 
predefined attribution sets

Inversion from chart by 
finetuned Deplot model

Chart

Execute render

Get executable code with 
predefined templates and 
json properties

Python Code

Failed

Success

Render
Keep the quadruple

Discard the quadruple

Figure 3: Overview of ChartMoE-Align data generation pipeline. The charts are plotted by Python matplotlib.

drawing code explicitly, including precise numerical values and rendering attributes, e.g., numbers
represented in Python lists and colors in hexadecimal code. Refer to Fig. 13 for more detailed cases.
The code enables the model to perform in-depth summarization, analysis, and editing of charts. This
expert is significantly more sensitive to the trends and key elements in the charts.

ChartMoE-Align generation pipeline. As Fig. 3 illustrates, 1) We filter charts with meta CSV
from existing datasets Masry et al. (2022); Methani et al. (2020) and data generated by LLMs Chen
et al. (2024). 2) We use a fine-tuned Deplot Liu et al. (2023a) to inverse the plotting attributes
following the templates provided by ChartReformer and randomly sample missing attributes from
the predefined set. 3) We create code templates for different types of charts and generate plotting
code based on the meta CSV and extracted JSON attributes. Note that all values and attributes in the
code are explicitly represented. 4) We retain the (table, JSON, code, chart) quadruples
that pass compilation. Tab. 1 shows the data sources & size and refer to Appendix C for details.

3.3 SUPERVISED FINE-TUNING.

We initialize ChartMoE using the structure shown in Fig. 2c after aligning the connectors across 3
distinct tasks separately. We also retain the vanilla connector to maintain the baseline’s excellent
dialogue capabilities, which aligns with the principle of residual optimization He et al. (2016). We
train the MoE connector and LLM during this stage with LoRA Hu et al. (2022), as shown in Fig. 2c.
Considering the training principles proposed in LLaVA-NeXT Liu et al. (2024a), this stage is divided
into high-quality knowledge learning and chart-specific annealing training.

High-Quality Knowledge Learning. We adopt MMC Liu et al. (2023c) to enhance the ChartMoE’s
knowledge. MMC includes a variety of chart types and tasks such as chart-related question answer-
ing, translation, extraction, reasoning, and analysis. Considering data quality, we only utilize the
MMC-Instruction subset, which has been manually verified. Notice that the quality of instruction
data is more important than quantity in this stage.

Chart Specific Annealing Tuning. Following Llama-v3.1 Team et al. (2024b), we perform anneal-
ing tuning before evaluating mainstream benchmarks. We increase the learning rate and conduct
instruction tuning using the training sets of ChartQA and ChartGemma to adjust the query styles
and answer formats of these benchmarks.

Program of Thought (PoT) Inference. We require the model to generate the variables and opera-
tion code rather than producing direct answers. This inference pipeline addresses the mathematical
capabilities by employing Python to handle the logical computations, which is the shortcoming of
all open-sourced models. With better numerical extraction abilities, PoT can significantly enhance
our ChartMoE’s question-answering performance.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

During the alignment stage, we train the connector parameters and keep the visual encoder and LLM
parameters fixed for 1 epoch. The learning rate is set to 5e-5 with a warmup phase covering the first
1% of training steps. In the supervised fine-tuning stage, we continue training the connector while
employing LoRA to update the LLM parameters with the rank of 64. The learning rate is adjusted to
1e-5 for the high-quality knowledge learning period and 5e-5 for the chart-specific annealing tuning
period. The weight decay is 0.1 for all stages. We use the cosine annealing learning rate schedule.
The global batch size is set to 64 for all stages. The training process is conducted on A100-40G
GPU, with the alignment stage taking approximately 240 GPU hours, the knowledge learning stage
taking 138 GPU hours, and the chart-specific annealing tuning stage taking around 76 GPU hours.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 EVALUATION METRICS

Table 1: Datasets used for training ChartMoE.
We conduct alignment pre-training with synthetic
data and supervised tuning with high-quality, real-
world data. Only ChartQA is used in the ablation
due to GPU constraints.

Source Data Type Task Type Samples

Alignment Training

ChartQA synthetic
chart to table 18.3K
chart to JSON 18.3K
chart to code 18.3K

PlotQA synthetic
chart to table 157K
chart to JSON 157K
chart to code 157K

ChartY synthetic
chart to table 763.6K
chart to JSON 763.6K
chart to code 763.6K

Total 2.8M
Usage: Table = 500K JSON = 200K Code = 100K 800K

High-Quality Knowledge Learning

MMC synthetic QA & reasoning 410K& real world & summariztion

Chart Specific Annealing Tuning
ChartQA real world QA 28.3K×2

ChartGemma real world QA & PoT & reasoning 163.2K& summariztion

Total 220.8K

ChartQA Masry et al. (2022) test split consists of
1,250 questions in both human and augmented parts.
The charts are three common chart types and are
sourced from the real world. It features a variety
of human-crafted questions and answers to evaluate
models’ understanding, reasoning, and data extrac-
tion skills. ChartQA adopts relaxed accuracy, which
is highlighted shortcomings by recent studies Chen
et al. (2024); Xu et al. (2023), such as simplistic
string matching and direct float conversion. There-
fore, we improve it by 1) using regular expression
matching to extract number values, 2) optimizing
string matching for short answers, and 3) demon-
strating model performance under various relaxed
margins. We adopt it for all experiment results.

ChartBench Xu et al. (2023) focuses on charts with-
out data point annotations. It includes a broader
range of chart types, with 9 main categories and
42 subcategories, each containing 50 charts. Chart-
Bench focuses on extracting numerical values, pos-
ing a greater challenge as models cannot depend on
OCR for precise answers. It adopts Acc+ for judg-
ments and relaxed accuracy for NQA tasks. The
benchmark proposes to extract number values by LLMs first, which is omitted for the stratifying
instruction-following ability of ChartMoE.

ChartFC Akhtar et al. (2023a) & ChartCheck Akhtar et al. (2023b) adopt accuracy to verify
whether the claim aligns with the input chart, marking a significant advancement in chart recog-
nition and reasoning abilities. This identifies the potential hallucinations in chart-related contexts.
The ChartFC test set has 1,591 questions, and the ChartCheck test set has two splits, containing 937
questions and 981 questions.

4.3 COMPARATIVE MODELS

General MLLMs. We compare PaliGemma Beyer et al. (2024), LLaVA-v1.5 Liu et al. (2023d) with
an MLP connector, Qwen-VL Bai et al. (2023b) with a Qformer Li et al. (2023) connector, DocOwl-
v1.5 Hu et al. (2024) that employs multi-level image resolution and token convolution techniques,
and the current open-source SOTA, InternlmXC-v2 Dong et al. (2024).

Specialist Chart Models. Previous works specifically design models and algorithms for chart ques-
tion answering. We compare Pix2Struct Lee et al. (2023), Matcha Liu et al. (2023b), UniChart Masry
et al. (2023), and Deplot Liu et al. (2023a). Notably, Deplot fails to handle questions in arbitrary
formats, so we extract table information with Deplot and use LLaVA-v1.6 to answer the questions.

Chart MLLMs. Chart-oriented MLLMs are the promising direction for utilizing prior knowledge
of LLMs. ChartLLaMA Han et al. (2023) proposes to generate high-quality instruction data to
improve chart question-answering capabilities. ChartAst Meng et al. (2024) suggests aligning the
connector with chart-table pairs before supervised fine-tuning. ChartVLM Xia et al. (2024) uses
different decoders to handle different questions based on their difficulty. ChartInstruct Masry et al.
(2024a) conducts large-scale chart instruction tuning based on general MLLMs. OneChart Chen
et al. (2024) converts the chart to the table with a dedicated decoder and uses LLMs to answer ques-
tions. ChartGemma Masry et al. (2024b) proposes more instruction data and achieves efficient chart
reasoning based on SigLIP Zhai et al. (2023) and Gemma-2B Team et al. (2024a). TinyChart Zhang
et al. (2024) adopts token merge to reduce visual tokens and enable high-resolution chart input.

4.4 MAIN RESULTS

ChartQA. Tab.2 presents detailed comparisons of ChartMoE on ChartQA. ChartMoE signifi-
cantly improves the baseline (InternlmXC-v2) performance (72.00% vs. 84.64%, +12.64%↑ in
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Table 2: The relaxed accuracy (%) performance on ChartQA. Ada.: Adaptive input resolution. *: Multi-scale
image feature, 448×448 in DocOwl. †: Employing token merging to reduce computational overhead.

Models Para. Resolution Relax Acc. @0.05 Relax Acc. @0.10 Relax Acc. @0.20

Human Aug. Avg. Human Aug. Avg. Human Aug. Avg.

General MLLMs
LLaVA-v1.5 13B @336 25.36 18.56 21.96 28.56 23.52 26.04 32.56 30.72 31.64

Qwen-VL 9.6B @448 40.48 79.76 60.12 43.20 82.56 62.88 47.52 85.76 66.64
DocOwl-v1.5 8B @448* 47.44 91.52 69.48 51.92 92.08 72.00 56.72 93.12 74.92

InternlmXC-v2 8B @490 62.72 81.28 72.00 66.72 84.08 75.40 70.80 86.56 78.68

Specialist Chart Models
Pix2Struct 282M Ada. 30.08 76.88 53.48 31.68 78.40 55.04 37.28 81.12 59.20

Matcha 282M Ada. 37.12 86.64 61.88 39.84 87.36 63.60 43.52 88.56 66.04
UniChart 201M @960 34.64 83.28 58.96 36.48 84.24 60.36 38.88 85.28 62.08

Deplot + LLaVA-v1.6 282M+13B Ada. 53.44 87.68 70.56 56.80 88.48 72.64 60.64 90.08 75.36

Chart MLLMs
ChartVLM 13B Ada. 42.08 82.48 62.28 43.84 82.88 63.36 46.00 83.28 64.64
OneChart 125M+13B @1024 54.48 87.12 70.80 57.60 87.84 72.72 62.00 88.64 75.32

ChartLlama 13B @336 58.40 93.12 75.76 61.20 93.60 77.40 63.52 94.00 78.76
ChartGemma+PoT 3B @448 67.84 85.28 76.56 68.64 85.84 77.24 69.84 86.32 78.08

TinyChart 3B @768† 58.72 94.88 76.80 62.56 95.28 78.92 67.04 96.16 81.60
ChartAst 13B @448 64.88 93.12 79.00 66.24 93.84 80.04 67.44 94.32 80.88

TinyChart+PoT 3B @768† 70.24 90.72 80.48 71.20 91.44 81.32 72.40 92.56 82.48
ChartMoE (Ours) 8B @490 71.36 91.04 81.20 75.12 92.48 83.80 78.16 93.68 85.92

ChartMoE+PoT (Ours) 8B @490 78.32 90.96 84.64 80.16 92.32 86.24 82.08 93.60 87.84

Table 3: The zero-shot performance on ChartBench. No methods are fine-tuned on the trainset for fairness.
We exclude PoT because ChartBench mainly assesses numerical extraction accuracy without math calculation.

Models Regular Type Extra Type ALL
Line Bar Pie Avg. Area Box Radar Scatter Node Comb. Avg.

General MLLMs
LLaVA-v1.5 29.12 21.26 17.28 22.10 21.73 20.94 27.50 23.47 36.80 24.30 24.96 23.38

Qwen-VL 38.00 20.71 38.24 29.46 28.83 24.17 35.00 19.50 18.50 25.50 26.56 28.18
DocOwl-v1.5 49.60 31.69 31.54 35.68 12.27 23.33 22.50 36.13 29.60 38.80 27.38 32.05
Mini-Gemini 34.88 36.12 40.40 36.77 31.20 23.33 30.60 35.20 43.60 27.90 30.61 34.37

InternlmXC-v2 68.16 48.74 56.60 54.50 27.47 25.33 40.10 52.93 50.40 46.20 39.72 48.41

Specialist Chart Models
Pix2Struct 2.56 2.37 1.90 2.33 0.13 0.13 4.60 0.67 0.40 3.20 2.93 2.16

Matcha 6.80 5.05 3.60 5.18 0.27 1.60 6.20 3.46 5.40 4.80 5.81 4.84
UniChart 7.04 5.35 4.30 5.55 3.86 4.80 11.60 5.06 15.80 9.60 8.30 6.78

Deplot+LLaVA-v1.6 31.20 26.46 24.00 27.09 21.34 13.34 24.00 41.34 42.00 31.00 31.57 27.62

Chart MLLMs
ChartVLM 21.92 14.16 10.50 15.16 7.47 7.87 8.00 7.87 5.40 10.50 8.38 11.96
ChartLlama 26.80 18.83 20.80 20.99 14.27 12.00 24.30 27.73 26.20 25.80 21.71 21.31
TinyChart 32.40 25.81 22.50 26.71 10.13 14.80 13.40 28.14 10.80 21.60 22.56 22.51
OneChart 41.28 30.28 29.60 32.65 19.07 13.20 24.60 38.53 34.80 27.90 31.91 29.93

ChartGemma 50.48 38.21 32.10 39.89 28.27 24.13 28.10 48.00 41.80 43.40 42.47 38.46
ChartMoE (Ours) 71.44 51.57 52.80 56.31 38.40 24.13 40.20 62.67 58.00 49.20 55.58 51.67

Acc.@0.05). Compared to previous SOTA (TinyChart+PoT @768 pixel), ChartMoE consistently
surpasses it across all metrics. The PoT effectively enhances the mathematical reasoning capa-
bilities, which is a common shortfall in current MLLMs. ChartMoE integrates better with PoT,
indicating that it accurately extracts fundamental elements from charts. ChartMoE shows more sig-
nificant improvement on Human part, especially after incorporating PoT, where the questions are
more computationally complex and challenging. Notably, our error analysis in the Augmented part
reveals that many errors stem from limitations of the evaluation criteria, i.e., string matching. For
instance, it is marked incorrect if the prediction is It is between 2003 and 2005 and the ground truth
is (2003, 2005). Forcing performance improvement may lead to model overfitting.

ChartBench. Tab. 3 presents detailed comparisons of ChartMoE on ChartBench. None of the
models, including our ChartMoE, undergo supervised fine-tuning on the ChartBench trainset to
ensure fair experimental comparison. Chart-specific models typically underperform due to limited
generalization, which fails to manage the annotated charts effectively (< 10%). Deplot shows a
distinct advantage over these types of models (27.62%) with the assistance of LLaVA-v1.6. The
baseline (InternlmXC-v2) demonstrates strong generalization on ChartBench (48.41%), which may
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benefit from pre-training instructions designed for unannotated charts. Without additional design,
ChartMoE improves the baseline performance comprehensively (48.41% vs. 51.67%), especially on
extra chart types (39.72% vs. 55.58%, +15.86%↑).

ChartFC & ChartCheck. Tab. 4 compares ChartMoE on the synthetic ChartFC and real-world
ChartCheck. ChartMoE consistently outperforms SOTA (e.g., ChartGemma +4.4%↑ on ChartFC)
and significantly improves the performance compared to InternlmXC-v2 (+6.83%↑ and +8.76%↑ on
ChartCheck T1 and T2, respectively). Note that this is implemented without using training data for
supervised fine-tuning, demonstrating ChartMoE’s strong generalization capabilities.

Models ChartFC ChartCheck

T1 T2

PaliGemma 58.26 67.34 68.50
LLaVA-v1.5† 61.28 70.22 70.03

InternlmXC-v2 65.93 72.04 70.44
ChartInstruct-LLama2 69.57 70.11 68.80

ChartInstruct-FlanT5XL 70.27 72.03 73.80
ChartGemma 70.33 71.50 74.31

ChartMoE (Ours) 74.73 78.87 79.20

Table 4: The accuracy performance
on ChartFC and ChartCheck. †: tun-
ing with ChartGemma instructions.
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Figure 4: Training loss of dif-
ferent initialization.
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Figure 5: Top-2 selected expert distri-
bution on ChartBench.

5 FURTHER STUDY

5.1 MODEL ARCHITECTURE ABLATION

We investigate the impact of three factors on our MoE connector: the number of experts, the number
of activated experts, and the expert initialization manner. All the experiments are conducted with
ChartQA training data and evaluated on ChartQA test split with relax accuracy metric.

Effect of the Expert Initialization Manner. The initialization strategy plays a crucial role in de-
termining the performance of the MoE connector. Effective initialization is essential to ensure that
each expert performs its designated function optimally. As illustrated in Tab. 5 row 1-3, we ex-
plore the impact of 3 initialization strategies for the MoE connector. Random initialization serves
as a baseline but struggles with convergence (refer to Fig. 4), resulting in a suboptimal accuracy of
73.20% at Acc.@0.05. Following CuMo Li et al. (2024), we employ the Co-Upcycle strategy by
replicating the table-JSON-code aligned connector for all experts. Given the same starting point, this
approach lacks expert diversity, which limits its effectiveness, resulting in an accuracy of 77.48%
at Acc.@0.05. In contrast, our initialization assigns distinct parameters to each expert. This tai-
lored approach enables each expert to capitalize on its specific strengths, resulting in the highest
performance, achieving 78.76% in Acc.@0.05.

Effect of Number of Experts and Activated Experts. As shown in rows 3-4 of Tab. 5, we com-
pare ChartMoE configurations with 4 and 8 experts, keeping 2 experts activated. The 8 experts
are initialized in pairs using the 4 methods illustrated in Fig. 2c. ChartMoE achieves 78.76% in
Acc.@0.05 with 4 experts, which is slightly higher than the 78.60% achieved with 8 experts, show-
ing a marginal increase of +0.16%. In rows 4-5, we compare the performance of configurations with
2 and 4 activated experts, finding similar results: 78.60% vs. 78.64% in Acc.@0.05. This analysis
suggests that merely increasing the number of experts or the activation of experts does not guarantee
improved performance. The configuration with 4 experts and 2 activated experts effectively balances
complexity and performance, making it a suitable choice for ChartMoE.

5.2 TRAINING STRATEGY ABLATION

We analyze the impact of the training strategy across alignment and supervised fine-tuning stages.
We use InternlmXC-v2 with ChartQA fine-tuning as our baseline, maintaining the same hyperpa-
rameters as the chart-specific annealing tuning stage.

Effect of Alignment Strategy. As shown in rows 1-3 of Tab. 6, translating the chart image
into structural text formats such as table, JSON, and code during the alignment stage signifi-
cantly enhances performance in downstream chart understanding tasks. After applying table-JSON-
code alignment, the model achieves 77.20% in Acc.@0.05, representing a notable improvement
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Table 5: Ablation study on ChartMoE architecture w.r.t.
the total / activated / initialization of connector experts.
All experiments are conducted on ChartQA.

Total
Experts

Activated
Experts

Experts
Initialization

Relax Acc @0.05

Human Aug. Avg.

4 2 Random Init. 59.68 86.72 73.20

4 2 Random Align 62.32 88.88 75.60

4 2 Co-Upcycle Init. 64.96 90.00 77.48

4 2 Diversely Align 67.92 89.60 78.76
8 2 Diversely Align 67.20 90.00 78.60

8 4 Diversely Align 67.68 89.60 78.64

Table 6: Ablation study on the proposed training
strategy and connector architecture on the align-
ment, high-quality knowledge learning, and chart-
specific anneal tuning stages.

ChartMoE Recipe Relax Acc @0.05

Human Aug. Avg.

Baseline: InternlmXC-v2 + ChartQA 63.68 87.68 75.68

+ table-JSON-code Aligned Connector 64.24 90.16 77.20

+ Top2-in-4 ChartMoE Connector 67.92 89.60 78.76

+ MMC High-Quality Knowledge Learning 67.84 90.24 79.04

+ ChartGemma Instructions 71.36 91.04 81.20

Table 7: Ablation study on the expert of
MoE connector. We ignore the gating net-
work and adopt specific expert output.

Connector Relax Acc @0.05

Human Aug. Avg.

Expert 0 (Vanilla) 69.76 89.84 79.80
Expert 1 (Table) 63.60 89.12 76.36
Expert 2 (JSON) 60.64 82.48 71.56
Expert 3 (Code) 66.88 89.36 78.12

Table 8: Ablation study on alignment pre-training tasks. We adopt
different alignment tasks for baseline (linear connector) and fur-
ther conduct supervised fine-tuning on the ChartQA train set.

Alignment w/o ChartQA SFT w/i ChartQA SFT

Human Aug. Avg. Human Aug. Avg.

Vanilla 62.72 81.28 72.00 63.68 87.68 75.68
Table 51.28 71.76 61.52 63.92 89.28 76.60
JSON 44.40 65.12 54.76 64.88 89.84 77.36
Code 50.16 71.20 60.68 64.24 90.16 77.20

 Expert initialized with InternlmXC-v2 Expert initialized with chart to JSONExpert initialized with chart to table Expert initialized with chart to code

Figure 6: Visualizations of top-1 expert selection. Only the boundaries of the merged tokens are plotted.

(+1.52%↑). When combined with our proposed MoE connector, performance further increases to
78.76%, a total gain of +3.08%↑ in Acc.@0.05.

Effect of Supervise Fine-Tuning Strategy. As shown in rows 4-5 of Tab. 6, we divide the super-
vised fine-tuning stage into two phases. By incorporating high-quality knowledge learning using
the MMC dataset, ChartMoE achieves 79.04% Acc.@0.05, reflecting a 3.36% improvement. In
the chart-specific annealing tuning phase, we introduce ChartGemma data to enhance the model’s
reasoning and PoT capabilities, leading the model to peak performance (81.20%, +5.52%↑).

5.3 IN-DEPTH ANALYSIS

Effect of the Each Expert. To explore the role of each expert in ChartMoE, we bypass the gating
network and manually select the output of specific experts. As shown in Tab. 7, E0 performs the
best (79.80%), which is consistent with the distribution in Fig. 5. However, this doesn’t mean other
experts lack relevance, which may offer crucial insights at key moments (Fig. 6).

Effect of Alignment Task. As shown in Tab. 8, we explore various alignment tasks based on the
linear connector. After alignment, the performance on ChartQA declines compared to the baseline.
However, the aligned model exhibits a substantial improvement after supervised fine-tuning on the
ChartQA train split, which is consistent with previous observations Meng et al. (2024); Yan et al.
(2024). Specifically, the JSON and code tasks exhibit remarkable improvement over the table.

Expert Distribution Visualization. As shown in Fig. 5& 6, we visualize the expert distribution
in the MoE connector on the ChartBench test set. We designate the vanilla connector as E0, while
E1-3 corresponds to connectors aligned with tables, JSON, and code. As depicted in Fig. 5, the
trend is consistent across different chart types, with E0 and E3 being the most frequently selected
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Figure 7: The performance on the general VQA tasks (MME Fu et al. (2023)). With supervised fine-tuning
on extensive chart-structured data, the directly tuned IXC-v2 shows a significant performance drop, while
ChartMoE maintains a satisfying performance by keeping the vanilla connector as the expert in MoE.
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Figure 9: The performance with/without bz-loss on
ChartQA. Left: The bz-loss leads to more even ex-
pert selections. Right: A more balanced distribution
does not yield better performance.

connectors. The expert selection shows no extreme bias, as even the least chosen, E1, accounts for
over 10%. We further visualize the expert selection for each image token, revealing the preferences
of each expert. As shown in Fig. 6, E0 is the primary choice for background tokens, explaining its
dominance in Fig. 5. E1 and E2 are more frequently chosen by tokens from titles, axis labels, or
legends, as these elements are commonly found in tables and JSON files. ChartMoE tends to use E3
to focus on the data points and visual elements within the chart, e.g., data points on the line, digital
text, and edges in a node chart. These components are essential for accurately re-drawing the charts.

Performance on General Tasks. While ChartMoE is designed to enhance chart understanding,
it does not compromise other capabilities, e.g., instruction following and object recognition. In
Fig. 7& 8, we show the comparisons of directly fine-tuned InternlmXC-v2 (short for Direct SFT)
with data from Tab. 1 and the baseline (short for IXC-v2) on general benchmarks Fu et al. (2023); Liu
et al. (2023e). The direct SFT model shows diminished general capabilities. In contrast, ChartMoE
preserves it nearly intact by retaining the original connector as one of its experts.

Effect of Balance Loss in MoE. The standard MoE Zoph et al. (2022) employs balanced loss and
router z-loss (short for bz-loss) to prevent certain experts from dominating the model training. In
Fig. 9, we compare the effects of with and without bz-loss. While bz-loss promotes a more equitable
selection of experts, it fails to enhance ChartMoE’s performance further. As shown in Fig. 6, the
expert initialization in ChartMoE results in each expert having its own preference for visual token
selection (refer to Appendix B for detail). Consequently, the bz-loss might hinder the model’s
convergence to the optimal point because the distribution of visual tokens is inherently imbalanced.

6 CONCLUSION

We introduce ChartMoE, a multi-task aligned and instruction-tuned MLLM designed for complex
chart understanding and reasoning. We replace the linear connector with the MoE architecture and
initialize each expert with parameters derived from different alignment tasks. We further present the
ChartMoE-Align dataset, a synthetic collection of nearly 1 million table-json-code-chart quadruples,
to facilitate alignment training across different experts. This approach preserves the strengths of each
alignment task, ensuring efficient training and superior model performance. ChartMoE outperforms
the previous state-of-the-art on several benchmarks by a large margin and excels in real-world ap-
plications such as chart question answering, translation, and editing. Please refer to Appendix A.3
for the reproducibility statement.
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A ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS

A.1 TOP-2 EXPERTS DISTRIBUTION

Our ChartMoE employs MoE connector expert parameters initialized with various alignment tasks. To in-
vestigate the impact of these initialization methods on model performance, we present the comparisons in
Tab. 6& 7& 8 and Fig. 4&5. For a deeper analysis, we explore how different initialization methods affect
expert selection. As shown in Fig. 10, both random initialization and co-upcycle result in a more uniform
distribution of experts. However, this uniformity does not inherently lead to improved performance or inter-
pretability, possibly due to insufficient differentiation among the experts. In contrast, our ChartMoE clearly
prefers specialized roles, as illustrated in Fig. 6& 11& 12.
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Figure 10: The distribution of Top-2 experts after supervised fine-tuning with three expert initialization meth-
ods. We calculate the proportion of the top 2 experts selected by the router on the ChartBench.

A.2 SUMMARY OF HYPERPARAMETER SETTINGS

The training process of our ChartMoE is structured into three distinct phases: Alignment Pre-training, High-
Quality Knowledge Learning, and Chart-Specific Annealing Tuning. Table 9 provides a comprehensive
overview of the hyperparameter configurations employed during each training stage.

Table 9: Training hyperparameters of ChartMoE for all stages.

Configuration Alignment Pre-training High-Quality Knowledge Learning Chart Specific Annealing Tuning

Connector Initialization InternlmXC-v2 Table&JSON&Code Experts + InternlmXC-v2 ChartMoE 2nd-stage

LLM Training Freeze LoRA LoRA

Image Resolution 490 490 490

ViT Sequence Length 1225 1225 1225

Optimizer AdamW AdamW AdamW

Optimizer Hyperparameter β1 = 0.9, β2 = 0.95, ϵ = 1e−8 β1 = 0.9, β2 = 0.95, ϵ = 1e−8 β1 = 0.9, β2 = 0.95, ϵ = 1e−8

Peak Learning Rate 5e−5 1e−5 5e−5

Learning Rate Schedule cosine decay cosine decay cosine decay

Weight Decay 0.1 0.1 0.1

Gradient Clip 1.0 1.0 1.0

Warm-up Ratio 0.01 0.01 0.01

Global Batch Size 64 32 32

Gradient Acc. 8 8 8

Numerical Precision bfloat16 bfloat16 bfloat16

Optimizer Sharding ✓ ✓ ✓

Gradient Sharding ✓ ✓ ✓

Parameter Sharding × × ×
Activation Checkpointing ✓ ✓ ✓

GPU Hours (A100-40G) 240 138 76

A.3 REPRODUCIBILITY STATEMENT

We have included the architecture of ChartMoE in Section 3.1 and the complete training procedure in Section
3.2 and Section 3.3. The training data recipe is listed in Tab. 1 in detail. Hyper-parameter settings are shown
in Appendix A.2. We also introduce the generation pipeline for ChartMoE-Align in Section 3.2, and some
detailed examples in Appendix C. Furthermore, our ChartMoE-Align dataset and checkpoints of ChartMoE
will be released soon on GitHub and Huggingface.
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B ADDITIONAL VSUALIZATIONS OF TOP-1 EXPERT SELECTION

In this section, we randomly sampled images from natural image datasets (LLaVA-CC3M Liu et al. (2023d))
and chart datasets (ChartQA Masry et al. (2022), ChartBench Xu et al. (2023)) to illustrate ChartMoE’s token
selection preferences. As shown in Fig. 11, the vanilla expert focuses more on the background, the table expert
concentrates on details such as the boundary between the background and the subject, the JSON expert focuses
on textures (e.g., maps and objects), and the code expert specializes in curves and trends (e.g., logos and text).
Fig. 12 further demonstrates that while the vanilla expert continues to attend to background tokens, critical
visual elements are handled by the aligned experts, with the code expert being notably more prominent.

CSV Table

Filter out meta CSV data 
from existing datasets 

Generate meta CSV data 
by larege language models

Attribution JSON

Random sample from 
predefined attribution sets

Inversion from chart by 
finetuned Deplot model

Chart

Execute render

Get executable code with 
predefined templates and 
json properties

Python Code

Failed

Success

Render
Keep the quadruple

Discard the quadruple

 Expert initialized with InternlmXC-v2 Expert initialized with chart to table Expert initialized with chart to JSON Expert initialized with chart to code

Figure 11: More visualizations of top-1 expert selection on general images randomly sampled from LLaVA-
CC3M. These examples show the selection preferences of different experts in ChartMoE.
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CSV Table
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from existing datasets 

Generate meta CSV data 
by larege language models
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finetuned Deplot model
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Figure 12: More visualizations of top-1 expert selection on chart images. The vanilla expert primarily handles
background tokens, and the chart visual markers are handled by other experts.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C DETAILS OF CHARTMOE-ALIGN

C.1 OVERVIEW

ChartMoE-Align is a dataset we introduced for different experts aligning pretraining. It consists of nearly 1
million Chart Table JSON Code quadruples and supports three alignment tasks: Chart to Table, Chart to JSON,
and Chart to Code. Unlike other chart datasets, ChartMoE-Align focuses solely on these three fundamental
alignment tasks without considering the diversity of instruction tasks.

C.2 TABLE DATA COLLECTION

We primarily collect table data from three sources: the ChartQA training set Masry et al. (2022), the PlotQA
training set Methani et al. (2020), and ChartY provided by OneChart Chen et al. (2024).

ChartQA includes 18.3K real-world charts and provides accompanying meta tables. While the charts are of
high quality and manually curated, they lack fine-grained attribute annotations and executable plotting code.
As a result, we only retained the tables from ChartQA in CSV format.

PlotQA comprises 157K charts, primarily focusing on three common types: line, bar, and pie charts. These
charts are generated using Python code with limited formatting and style diversity. Consequently, we did not
utilize the charts from PlotQA but retained its 157K tables. These tables originate from sources like World
Bank Open Data, Open Government Data, and the Global Terrorism Database, covering statistics on various
indicators such as fertility rates, rainfall, coal production, and more across years, countries, and districts.

ChartY is a chart dataset containing 2.7M charts in both Chinese and English proposed by OneChart. Notably,
ChartY also includes charts from ChartQA and PlotQA, which we filtered out in ChartMoE-Align. Addition-
ally, ChartY primarily consists of common chart types such as line, bar, and pie charts (or their combinations)
and suffers from significant data imbalance. To address this, we sampled a subset to ensure a roughly equal
number of charts for each type. As the tables in ChartY are mainly generated by GPT-3.5 based on templates,
we ultimately retained 763K samples from this source.

C.3 PAIR DATA CONSTRUCTION

JSON provides a structured format distinct from CSV, designed to retain chart attributes beyond numerical
data, such as title position, font size, element colors, legend styles, and more. We adopt the template provided
by ChartReformer Yan et al. (2024) and further enhance it. We add chart type-agnostic attributes like title
position and gridlines. For chart type-specific attributes, we aim to remain consistent with ChartReformer’s
definitions while accommodating all chart types present in ChartMoE-Align. With this framework, we generate
corresponding JSON files for all tables. To extract chart type-specific attributes, we fine-tune a Deplot Liu et al.
(2023a) model, leveraging the original chart to extract their properties. Missing attributes are filled in using
random sampling to ensure completeness.

Code refers to Python scripts based on matplotlib for rendering the charts. Leveraging the rich attributes defined
in the JSON, the code is designed to faithfully represent every attribute to ensure diversity in the resulting charts.
During generation, we explicitly specify all default parameters, such as the hexadecimal color codes for each
line/bar, default font sizes, text positions, etc. We provide basic code templates for type-agnostic attributes. For
type-specific attributes, rules are used to automatically generate the corresponding code.

Chart is produced by executing the generated code. Given the number of table, JSON, and code pairs, we filter
out any quadruples with execution errors or warnings during the chart generation process, retaining only valid
and error-free samples.

Instruction. Considering the alignment task, we directly employ several templated questions to define the
Chart-to-X tasks (X is the ground truth). Ultimately, each quadruple corresponds to three QA pairs. Note that
ChartMoE-Align only serves for alignment training to initialize different expert projectors, thus emphasizing
the diversity of charts and aligned modalities. To improve model performance and instruction-following, we
still require more diverse instructions for supervised fine-tuning to update the MoE connector and LLM.

C.4 QUALITY CONTROL

We first remove all duplicate entries from the meta table and then eliminate quadruples that cause errors or
warnings during rendering. To further assess the quality of ChartMoE-Align, we randomly sample 200 quadru-
ples and ask GPT-4o and annotation experts (with at least three experts reviewing each quadruple) to evaluate
the clarity and readability of the charts, as well as the alignment between the charts and table/JSON/code,
scoring them as 0 or 1. The results show that nearly all charts are clear, unambiguous, and free from obstruc-
tions (GPT-4o: 96.5%, Experts: 99%). Over 90% of the pairs are matching and suitable for instruction tuning
(GPT-4o: 91%, Experts: 94.5%).
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C.5 EXAMPLE VISUALIZATION

(a) Charts in ChartMoE-Align.

Characteristic,Pharmaceuticals 
and Vaccines,Consumer Healthcare
2020,24038,10033
2019,24711,8995
2018,23163,7658
2017,22436,7750
2016*,20696,7193
2015*,17813,6038
2014*,18597,4322
2013*,20743,4713
2012*,20645,4731
2011,21894,5403
2010,23284,5108
2009,23653,4715
2008,20381,3971
2007,19163,3553
2006,20013,3212
 
 

Characteristic,Male,Female
2019,486,144
2018,492,166
2017,492,173
2016,461,155
2015,432,178
2014,371,152
2013,358,151
2012,391,157
2011,427,179
2010,401,154
2009,448,162
2008,467,147
2007,431,166
2006,445,162
2005,484,180
2004,425,200
2003,394,157
2002,375,207
2001,391,162
2000,397,149
 
 

Characteristic,"Deaths per 1,000 
inhabitants"
Somalia,10.86
Mauritania,7.22
Comoros,7.21
Sudan,7.19
Djibouti,7.1
Tunisia,6.26
Yemen,5.98
Egypt,5.82
Syria,5.37
Libya,5.1
Morocco,5.06
Iraq,4.78
Algeria,4.72
Lebanon,4.36
Jordan,3.86
Saudi Arabia,3.47
West Bank and Gaza,3.46
Kuwait,2.7
Oman,2.44
Bahrain,2.39
United Arab Emirates,1.47
Qatar,1.2
 
 

Characteristic,Domestic,Internat
ional
2020-2040**,1.9%,4.2%
2019-2039**,1.7%,4.5%
2018-2038**,1.9%,4.6%
2017-2037**,0.9%,3.5%
2016-2036**,1.3%,3.8%
2020,1.9%,6.2%
2019,2.8%,-1.3%
2018,7.7%,10%
2017,9.5%,9.7%
2016,2.1%,-1.3%
2015,3.3%,0.8%
2014,2.3%,0.3%
2013,0.7%,-7.5%
2012,2.1%,-3.8%
2011,-6.1%,9.4%
 
 

(b) Tables in ChartMoE-Align.

{
  "type_agnostic": {
    "x_font_name": "sans-serif",
    "x_font_size": "x-large",
    "y_font_name": "monospace",
    "y_font_size": "x-large",
    "x_tick_size": "small",
    "x_tick_rotation": 45,
    "y_tick_size": "small",
    "legend_loc": "lower left",
    "legend_ncols": 3,
    "legend_font_size": "medium",
    "title_font_name": "monospace",
    "title_font_size": "medium",
    "grid_vis": false,
    "grid_axi": "x",
    "grid_which": "minor",
    "grid_line_style": "solid",
    "vis_tool": "default"
  },
  "type_specific": {
    "colormap": "Blues",
    "hatch": "*",
    "align": "center"
  },
  "layout": {
    "title": "",
    "plot_labels": [
    "Pharmaceuticals and Vaccines",
    "Consumer Healthcare"
    ]
  }
}
 

{
  "type_agnostic": {
    "x_font_name": "Serif",
    "x_font_size": "large",
    "y_font_name": "sans-serif",
    "y_font_size": "medium",
    "x_tick_size": "x-small",
    "x_tick_rotation": 0,
    "y_tick_size": "large",
    "legend_loc": "lower center",
    "legend_ncols": 2,
    "legend_font_size": "x-small",
    "title_font_name": "monospace",
    "title_font_size": "medium",
    "grid_vis": true,
    "grid_axi": "y",
    "grid_which": "minor",
    "grid_line_style": "solid",
    "vis_tool": "ggplot"
  },
  "type_specific": {
    "colormap": "turbo",
    "marker": "s",
    "style": "--",
    "linewidth": 1.0,
    "markersize": 10
  },
  "layout": {
    "title": "",
    "plot_labels": [
    "Male",
    "Female"
    ]
  }
}
 

{
  "type_agnostic": {
    "x_font_name": "sans-serif",
    "x_font_size": "large",
    "y_font_name": "Serif",
    "y_font_size": "x-large",
    "x_tick_size": "small",
    "x_tick_rotation": 45,
    "y_tick_size": "small",
    "legend_loc": "upper center",
    "legend_ncols": 3,
    "legend_font_size": "x-small",
    "title_font_name": "Serif",
    "title_font_size": "medium",
    "grid_vis": false,
    "grid_axi": "both",
    "grid_which": "major",
    "grid_line_style": "dashed",
    "vis_tool": "ggplot"
  },
  "type_specific": {
    "colormap": "plasma",
    "hatch": ".",
    "align": "center"
  },
  "layout": {
    "title": "",
    "plot_labels": []
  }
}
 

{
  "type_agnostic": {
    "x_font_name": "sans-serif",
    "x_font_size": "large",
    "y_font_name": "monospace",
    "y_font_size": "medium",
    "x_tick_size": "large",
    "x_tick_rotation": 45,
    "y_tick_size": "medium",
    "legend_loc": "lower left",
    "legend_ncols": 3,
    "legend_font_size": "x-small",
    "title_font_name": "Serif",
    "title_font_size": "x-large",
    "grid_vis": true,
    "grid_axi": "x",
    "grid_which": "major",
    "grid_line_style": "dashed",
    "vis_tool": "default"
  },
  "type_specific": {
    "colormap": "cividis",
    "hatch": "\\",
    "align": "center"
  },
  "layout": {
    "title": "",
    "plot_labels": [
    "Domestic",
    "International"
    ]
  }
}
 

(c) JSONs in ChartMoE-Align. JSON is combined with the table during alignment pre-training.

import matplotlib.pyplot as plt
import numpy as np
 
# vis tool
plt.style.use('default')
 
# data
x = ['2019', '2018', '2017', '2016*', '2015*', '2014*', '2013*', '2012*', '2011', 
'2010', '2009', '2008', '2007', '2006']
y = [[24711, 23163, 22436, 20696, 17813, 18597, 20743, 20645, 21894, 23284, 23653, 
20381, 19163, 20013], [8995, 7658, 7750, 7193, 6038, 4322, 4713, 4731, 5403, 5108, 
4715, 3971, 3553, 3212]]
 
plt.figure(figsize=(10, 6))
 
# a vertical bar chart
plt.bar(x, y[0], label="Pharmaceuticals and Vaccines", color='#b0d2e7', hatch='*', 
align='center')
plt.bar(x, y[1], bottom=np.sum(y[:1], axis=0), label="Consumer Healthcare", 
color='#66abd4', hatch='*', align='center')
 
# set the tick of x/y
plt.xticks(fontsize='small', rotation=45)
plt.yticks(fontsize='small')
 
# set the global legend
plt.legend(loc='lower left', ncol=3, fontsize='medium')
 
# set the grid
plt.grid(visible=False)
 
# Automatically resize the image by tight_layout()
plt.tight_layout()
# save the chart
plt.savefig('output.png')
# Clear the current image state
plt.clf()
 
 

import matplotlib.pyplot as plt
import numpy as np
 
# vis tool
plt.style.use('ggplot')
 
# data
x = [2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 
2016, 2017, 2018]
y = [[394, 425, 484, 445, 431, 467, 448, 401, 427, 391, 358, 371, 432, 461, 492, 
492], [157, 200, 180, 162, 166, 147, 162, 154, 179, 157, 151, 152, 178, 155, 173, 
166]]
 
plt.figure(figsize=(10, 6))
 
# a line chart
plt.plot(x,y[0], label="Male", color='#466be3', marker='s', markersize=10, 
linestyle='--', linewidth=1.0)
plt.plot(x,y[1], label="Female", color='#30123b', marker='s', markersize=10, 
linestyle='--', linewidth=1.0)
 
# set the tick of x/y
plt.xticks(fontsize='x-small', rotation=0)
plt.yticks(fontsize='x-small')
 
# set the global legend
plt.legend(loc='lower center', ncol=2, fontsize='x-small')
 
# set the grid
plt.grid(visible=True, which='minor', linestyle='solid', axis='y')
 
# Automatically resize the image by tight_layout()
plt.tight_layout()
# save the chart
plt.savefig('output.png')
# Clear the current image state
plt.clf()
 

(d) Codes in ChartMoE-Align. All values and attributes are expressed explicitly.

Figure 13: Detailed Examples in ChartMoE-Align. Each quadruple contains the chart, table, JSON and code.
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D FURTHER DISCUSSION

D.1 CONTRIBUTION OF CHARTMOE

Some prior work, such as MoE-LLaVA Lin et al. (2024), DeepSeek-VL Lu et al. (2024), and CuMo Li et al.
(2024), has employed MoE architectures in MLLMs. However, these approaches all apply MoE to LLMs or
ViTs to increase model capacity, introducing a large number of learnable parameters to boost performance. In
contrast, our ChartMoE introduces several distinctive innovations:

1) Motivation: Our goal is not to expand model capacity but to enhance the model’s chart comprehension
through alignment tasks while preserving performance on other general tasks. Hence, we retain the original
connector parameters as one expert initialization manner.

2) Initialization: Unlike previous methods that rely on random or co-upcycle initialization, we leverage multi-
ple alignment tasks for expert (connector) initialization. This approach enables ChartMoE to exhibit remarkable
interpretability (Fig. 6& 11& 12).

3) Complexity: We are the first to apply MoE exclusively to the MLP connector (projector) in LLaVA-like
MLLMs. In ChartMoE (based on InternlmXC-v2), the MoE architecture introduces minimal additional param-
eters (model size 8.364B → 8.427B, + 63M↑ only) and training complexity (Fig. 4). It also shows negligible
impact on inference speed (0.945 → 0.952 seconds per QA on ChartQA test set) and peak memory usage (23.72
GB → 23.86 GB, fp16 on A100-40G GPU).

D.2 CHARTMOE BASED ON OTHER MLLMS

Our ChartMoE is based on InterlmXC-v2, but our proposals (MoE connector, diverse alignment, etc.) are
general approaches. Therefore, we use 10% of the alignment data (Tab. 1) and the ChartQA training data to
train our proposals based on LLaVA-v1.5-7B to further demonstrate their effectiveness. As shown in Tab. 10,
our proposals significantly improve the base model. This is partly because LLaVA is trained with fewer chart
data, leading to a lower baseline, and also indicates that the additional alignment data greatly enhances chart
understanding.

Table 10: Performance comparison on ChartQA with LLaVA-v1.5-7B as base MLLM.

Models Relax Acc @0.05 Relax Acc @0.10 Relax Acc @0.20

Human Aug Avg Human Aug Avg Human Aug Avg

LLaVA-v1.5-7B 7.60 7.36 7.48 7.92 8.08 8.00 9.04 9.52 9.28
LLaVA-v1.5-7B + ChartQA 6.08 23.04 14.56 8.24 32.96 20.60 10.32 42.16 26.24

LLaVA-v1.5-7B + ChartMoE 18.13 32.11 25.12 20.20 42.32 31.36 24.24 52.12 38.18

D.3 PERFORMANCE ON CHARTQA

In Tab. 2, our ChartMoE significantly outperforms SOTA. However, some models perform better than ours
on the Augment part of the ChartQA test set. Given that the Augment part of ChartQA is considerably easier
than the Human part, we conduct a more detailed analysis. We analyze the performance of various models on
numeric (Human: 43%, Augment: 39%) and non-numeric (Human: 57%, Augment: 61%) questions. As shown
in Tab. 11, ChartMoE excels in all subcategories except for non-numeric questions in the Augment part. We
find that ChartMoE’s errors primarily occur in string-matching tasks. For instance, a prediction of It is between
2003 and 2005 is marked incorrect if the ground truth is (2003, 2005). High accuracy in this category may
indicate overfitting instead.

Table 11: Fine-grained performance comparison on ChartQA with error margin 5%.

Method Human Augment Acc
Numeric Non-Numeric Avg Numeric Non-Numeric Avg

TinyChart 58.52% 58.03% 58.24% 92.43% 96.25% 94.32% 76.28%
ChartAst 67.04% 65.35% 66.08% 93.20% 93.07% 93.12% 79.00%

ChartMoE (Ours) 73.89% 75.49% 74.80% 93.20% 90.98% 91.84% 84.64%

D.4 LIMITATIONS

ChartMoEhas two limitations: 1) Dependency on alignment tasks. ChartMoE requires chart-Table/JSON/Code
alignment tasks for initialization. Non-chart multimodal tasks need new alignment designs to initialize MoE
experts. 2) Limited flexibility. Modifying the projector into a multi-expert architecture makes ChartMoE non-
plug-and-play like LoRA. We are required to retrain the router network when new experts are coming.
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E CAPABILITY COMPARISONS ON CHART EDITING AND HIGHLIGHTING

ChartMoE, leveraging carefully designed alignment training, excels in accurately extracting chart values and
attributes, facilitating precise image reconstruction, chart element editing, and highlighting. In this section, we
provide a visual comparison with the SOTA MLLMs, Qwen-2.5 Alibaba (2024), and GPT-4O OpenAI (2024).
While all three models perform the required instructions effectively, ChartMoE demonstrates superior accuracy
in value and attribute extraction.

Metal,Percentage

Glod,30

Platinum,10

Copper,35

Silver,25

Instruction

Redraw the chart with python matplotlib, convert 

it into a bar chart, giving the code to reflect the 

fact that the price of \'Gold\' has been reduced to 

27% and the \'Silver\' has been increased to 28%. 

Please keep the colors and legend according to the 

input chart.

Chart

import matplotlib.pyplot as plt

# Define the labels and values for the bar chart

labels = ['Silver', 'Gold', 'Copper', 'Platinum']

values = [28, 27, 35, 10]

colors = ['#7570b3', '#1b9e77', '#e6ab02', '#666666']

 

# Create a bar chart

bars = plt.bar(labels, values, color=colors)

# Add labels and title to the chart

plt.xlabel('Metal') 

plt.ylabel('Percentage')

plt.title('Metal Prices Comparison in Global Market')

# Add a legend to the chart

plt.legend(bars, ['Silver', 'Gold', 'Copper', 'Platinum'])

 
# Display the chart

plt.show()

ChartMoE

import matplotlib.pyplot as plt

 

# 假定的颜色（请根据您的图表颜色进行修改）
colors = {'Silver': 'purple', 'Gold': 'gold', 'Copper': 'green', 'Platinum': 'gray'}

 
# 更新后的比例
new_values = {'Silver': 28, 'Gold': 27, 'Copper': 35, 'Platinum': 10}

 
# 计算总和以便将值转换为百分比
total_value = sum(new_values.values())

percentages = {metal: (value / total_value * 100) for metal, value in new_values.items()}

 
# 创建条形图
fig, ax = plt.subplots()

 
# 绘制条形图
for metal, percentage in percentages.items():

    ax.barh(metal, percentage, color=colors[metal])

 
# 设置X轴标签
ax.set_xlabel('Percentage (%)')

 
# 设置图表标题
ax.set_title('Metal Prices Comparison in Global Market')

 
# 显示图表
plt.show()

Qwen-2.5

import matplotlib.pyplot as plt

 

# Data

metals = ['Gold', 'Silver', 'Copper', 'Platinum']

prices = [27, 28, 35, 10]

colors = ['mediumseagreen', 'mediumpurple', 'gold', 'gray']

 
# Plot

plt.figure(figsize=(10, 6))

plt.bar(metals, prices, color=colors)

 
# Labels and title

plt.title('Metal Prices Comparison in Global Market')

plt.xlabel('Metals')

plt.ylabel('Price Percentage')

 
# Legend

plt.legend(metals)

 
# Show plot

plt.show()

 

GPT-4O

Table:

Figure 14: Chat demo involves modifying chart types and values. All models successfully convert the chart
type, but only ChartMoE handles the legend correctly. No model makes errors in this task due to the simplicity
of the values and the presence of data point labels.
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import numpy as np

import matplotlib.pyplot as plt

 

# Data from the chart

years = ['2016', '2017', '2018', '2019', '2020', '2021', '2022']

gpas = [3.2, 3.4, 3.6, 4.0, 3.8, 3.9, 4.0]
highest_gpa_year = '2019'

 
# Find the index of the year with the highest GPA

highest_gpa_index = years.index(highest_gpa_year)

 
# Plotting the chart

fig, ax = plt.subplots()

 
ax.bar(years[:-1], gpas[:-1], color='blue')

ax.bar([highest_gpa_year], [gpas[highest_gpa_index]], color='red')

 
plt.xlabel('Year')

plt.ylabel('Student A Average GPA')

plt.title('Student Performance')

 
# Adding the legend

ax.legend(['Student A Average GPA'], loc='upper left')

 
# Show the plot

plt.show()

 
 

import matplotlib.pyplot as plt

 

# data

data = [3.3, 3.5, 3.6, 3.8, 3.7, 3.6, 3.8]
years = ['2016', '2017', '2018', '2019', '2020', '2021', '2022']

labels = ['Student A Average GPA']

colors = ['blue']

 
# plotting the chart

plt.bar(years, data, color=colors)

plt.title('Student Performance')

plt.xlabel('Year')

plt.ylabel('Student A Average GPA')

plt.legend(labels)

 
# get the highest gpa

highest_score_index = data.index(max(data))

plt.bar(years[highest_score_index], data[highest_score_index], color='red')

 
plt.show()

import matplotlib.pyplot as plt

import numpy as np

 

# Data

years = np.array([2016, 2017, 2018, 2019, 2020, 2021, 2022])

gpas = np.array([3.2, 3.5, 3.8, 3.9, 3.7, 3.8, 4.0])
 
# Find the year with the highest GPA

max_index = np.argmax(gpas)

 
# Colors: blue for the bars, red for the highest score

colors = ['blue' if i != max_index else 'red' for i in range(len(years))]

 
# Plot

plt.figure(figsize=(10, 6))

bars = plt.bar(years, gpas, color=colors, label='Student A')

 
# Highlight the year with the highest score

bars[max_index].set_color('red')

 
# Labels and title

plt.xlabel('Year')

plt.ylabel('Grade Point Average GPA')

plt.title('Student Performance')

plt.legend()

 
# Show the plot

plt.tight_layout()

plt.show()

 

Year,GPA

2016,3.3

2017,3.5

2018,3.6

2019,3.8

2020,3.7

2021,3.6

2022,3.8

 

Redraw the chart with python matplotlib, giving 

the code to highlight the column corresponding to 

the year in which the student got the highest score 

(painting it red). Please keep the same colors and 

legend as the input chart.

ChartMoE

Qwen-2.5

GPT-4O

ChartInstruction Table

Figure 15: Chat demo involves modifying chart editing. The bar chart is without labeled data points, and all
methods provide reasonable and executable drawing code. Qwen-2.5 directly identifies the highest element,
while the other two methods make it by code. Note that ChartMoE delivers the most accurate values, thanks to
extensive alignment training and proposed MoE architecture.
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import numpy as np

import matplotlib.pyplot as plt

# 假设数据
years = np.array([2010, 2012, 2014, 2016, 2018, 2020, 2022])

growth_rates = np.array([-1.5, 0.5, -2.5, 1.5, -3.5, 4.5])

# 找出最低增长率的索引
min_growth_rate_idx = np.argmin(growth_rates)

# 重新绘制图表
fig, ax = plt.subplots()

ax.plot(years, growth_rates, marker='o', linestyle='--', \

        color='blue', label='Growth Rate in Percentage')

ax.axhline(y=growth_rates[min_growth_rate_idx], xmin=0.1, \

   xmax=0.9, dashes=[5, 5], color='gray', alpha=0.5, zorder=-1) 

ax.annotate('lowest', xy=(years[min_growth_rate_idx], \

   growth_rates[min_growth_rate_idx]), xytext=(-10, -10), \

   textcoords='offset points', ha='right', va='bottom', \

   bbox=dict(boxstyle='round', fc='white'))

ax.set_xlabel('Years')

ax.set_ylabel('Growth Rate in Percentage')

ax.set_title('Global GDP Growth')

ax.set_xlim(min(years)-1, max(years)+1)

ax.set_ylim(min(growth_rates)*1.1, max(growth_rates)*1.1)

ax.grid(True)

# 设置图例位置
legend = ax.legend(loc='lower right', shadow=True)

legend.get_frame().set_facecolor('white')

plt.show()

 

import matplotlib.pyplot as plt 

import pandas as pd

 

# Data: years and corresponding growth rates

data = {'Years': [2010, 2012, 2014, 2016, 2018, 2020, 2022], 

'Growth Rate in Percentage': [3.5, 4.3, 3.8, 3.1, 3.2, -4, 5.2]}
 
df = pd.DataFrame(data)

 
# Plot the growth rate over the years

plt.plot(df['Years'], df['Growth Rate in Percentage'], \

     label='Growth Rate in Percentage')

 
# Define the year and value for the lowest point

lowest_point = 2020

lowest_value = -4

 
# Add a dotted horizontal line for the lowest point

plt.axhline(lowest_value, color='gray', linestyle='dotted', label='Lowest')

plt.text(lowest_point, lowest_value - 0.5, 'Lowest', color='gray')

 
# Show legend and display the chart

plt.legend()

plt.show()

# Let's use matplotlib to create a similar chart, and incorporate the requested changes.

import matplotlib.pyplot as plt

 

# Data for global GDP growth rate

years = [2010, 2012, 2014, 2016, 2018, 2020, 2022]

# Sample data similar to the graph in the image

growth_rate = [3.2, 4.1, 4.5, 3.7, 3.3, -4.3, 5.5] 
 
# Create the plot

plt.figure(figsize=(14,8))

plt.plot(years, growth_rate, label='Growth Rate in Percentage', color='blue', marker='o')

 
# Highlight the lowest data point

min_growth = min(growth_rate)

min_year = years[growth_rate.index(min_growth)]

 
# Draw a dotted horizontal line at the lowest growth rate

plt.axhline(y=min_growth, color='red', linestyle='dotted', label='lowest')

 
# Add chart title and labels

plt.title('Global GDP Growth', fontsize=14)

plt.xlabel('Years', fontsize=12)

plt.ylabel('Growth Rate in Percentage', fontsize=12)

 
# Add the legend and place it with an anchor

plt.legend(loc='upper right', fontsize=10)

 
# Display the plot

plt.show()

 
 

Year,GDP Growth

2010,3.5

2012,4.3

2014,3.8

2016,2.9

2028,3.2

2020,-4.4

2022,5.2

 

Redraw the chart with python matplotlib, giving 

the code to highlight data point with lowest 

growth rate (draw a horizontal dotted line parallel 

to the x-axi, through the lowest point and add 

\'lowest\' label in the legend anchor). Please keep 

the same colors and legend as the input chart.

ChartMoE

Qwen-2.5

GPT-4O

ChartTableInstruction

Figure 16: Chat demo involves modifying chart editing. The line chart is without labeled data points, and
all methods provide reasonable and executable drawing code. The values extracted by all models differ from
the ground truth, but both ChartMoE and GPT-4O captured the correct data trends. Additionally, ChartMoE
successfully completed all the editing tasks specified in the instructions.
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