

000 001 002 003 004 005 HEDONIC NEURONS: A MECHANISTIC MAPPING OF 006 LATENT COALITIONS IN TRANSFORMER MLPs 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Fine-tuned Large Language Models (LLMs) encode rich task-specific features, but the form of these representations—especially within MLP layers—remains unclear. Empirical inspection of LoRA updates shows that new features concentrate in mid-layer MLPs, yet the scale of these layers obscures meaningful structure. Prior probing suggests that statistical priors may strengthen, split, or vanish across depth, motivating the need to study how neurons *work together* rather than in isolation.

We introduce a mechanistic interpretability framework based on *coalitional game theory*, where neurons mimic agents in a hedonic game whose preferences capture their synergistic contributions to layer-local computations. Using top-responsive utilities and the PAC-Top-Cover algorithm, we extract *stable coalitions of neurons*—groups whose joint ablation has non-additive effects—and track their transitions across layers as persistence, splitting, merging, or disappearance.

Applied to LLaMA, Mistral, and Pythia rerankers fine-tuned on scalar IR tasks, our method finds coalitions with consistently higher synergy than clustering baselines. By revealing how neurons cooperate to encode features, hedonic coalitions uncover higher-order structure beyond disentanglement and yield computational units that are functionally important, interpretable, and predictive across domains.

1 INTRODUCTION

Consider a large language model fine-tuned to compute semantic similarity between text pairs. When presented with two sequences, the model outputs a scalar score, e.g. 0.76. But how is this number internally computed? Within the millions of parameters of a transformer, such decisions are not the work of isolated neurons, but of groups that cooperate to represent abstract features like “semantic overlap,” “term frequency patterns,” or “syntactic alignment.” These computations may parallel familiar retrieval metrics – e.g., some neuron coalitions might compute TF-IDF-like statistics (Sparck Jones, 1972), others might capture cosine similarities between representations, while still others might encode position-dependent matching signals. Traditional interpretability methods have limitations here: probing (Gurnee et al., 2023; Hewitt & Manning, 2019) captures correlations with labels but ignores cooperation, sparse autoencoders (SAEs) (Huben et al., 2024) disentangle activations into monosemantic directions but overlook nonlinear dependencies, and clustering (Cao et al., 2025; Song et al., 2024) groups neurons by statistical proximity rather than functional interaction. What is missing is a principled way to identify *synergistic neuron groups*—subsets whose combined contribution exceeds the sum of their parts. We aim to identify the computational units that organize into stable coalitions, that potentially encode these mathematical concepts within scalar-output LLMs.

Recent work has shown that LoRA fine-tuning can teach LLMs new tasks by updating only mid-level MLP layers, nearly matching full fine-tuning (Hu et al., 2022; Zhou et al., 2024; Nijasure et al., 2025). Yet inspection of these LoRA weight updates reveals little obvious structure: millions of parameters diffuse across neurons, obscuring which units encode task-specific features. We hypothesize that the key to isolating LoRA emergent behaviour lies in identifying *coalitions* of neurons that consistently co-adapt under fine-tuning. Inspired by game theory, we model neurons as agents in a *hedonic game* (Dreze & Greenberg, 1980), where preferences reflect synergy with others. Though neurons are not literally rational, stochastic gradient descent imposes a form of selection pressure: directions that reduce loss persist, and many neurons are only useful in combination (e.g., a feature computation). Thus, stable coalitions naturally emerge as groups of neurons that survive training together. This

054 evolutionary analogy motivates the hedonic game framing: utilities capture how much a neuron’s
 055 survival depends on its synergy with others, and stable coalitions correspond to groups of neurons
 056 that consistently co-adapt under training. By modeling these groups as coalitions, we open a path
 057 toward reverse-engineering their function and symbolically characterizing their emergent behavior.
 058

059 *Why does this matter?* Beyond offering a new perspective on interpretability, coalition analysis
 060 provides actionable insight into how task-specific features are represented and evolve. By showing
 061 which neuron groups are functionally indispensable, our framework suggests future directions
 062 for practical interventions such as model comparison, transfer learning, or modular editing at the
 063 coalition level rather than at the level of individual weights. Moreover, tracking persistence, splits,
 064 and vanishings highlights how statistical priors are refined or discarded across depth, shedding light
 065 on the internal dynamics of fine-tuned models—information that clustering or SAE-style methods
 066 cannot reveal. Thus, stable coalitions are not only theoretically appealing but also open a path to
 067 understanding and eventually controlling the computational units that fine-tuning creates.
 068

069 **Our Contributions.** We introduce a game-theoretic framework for discovering and analyzing neuron
 070 coalitions in transformer MLPs. (1) We model neurons as players in a hedonic cooperative game
 071 with additively separable utilities based on synergy, and solve for ε -PAC-stable outcomes using the
 072 PAC-Top-Cover algorithm. (2) We evaluate coalitions both intrinsically and extrinsically: compared
 073 to clustering baselines, they achieve +0.29 *Pairwise* and +0.49 *Ratio* synergy, exhibit 3–5× larger out-
 074 of-distribution performance drops under ablation, align more strongly with IR heuristics (BM25, IDF,
 075 query term coverage), and yield macro-features that improve predictive R^2 from ~0.20 to 0.43–0.47.
 076 (3) Treating coalitions as “meta-neurons,” we trace their evolution across consecutive layers, finding
 077 that most groups vanish or split while only a small fraction persist—supporting the view that deeper
 078 MLPs act primarily as feature filters rather than creators. Applied to LLaMA, Mistral, and Pythia
 079 LoRA rerankers, we show that hedonic coalitions consistently uncover reproducible and functionally
 080 indispensable computational units. To our knowledge, this is the first work to use game theory to
 081 identify, validate, and track synergistic neuron groups in fine-tuned LLMs. All code, models, and
 082 datasets are provided with the submission.
 083

084 2 BACKGROUND

085 We begin by outlining the fundamentals of hedonic games and their application in modeling cooperative
 086 behavior. We then describe the transformer architecture with an emphasis on MLP sublayers.
 087

088 2.1 HEDONIC GAMES AND PAC-STABLE COALITION FORMATION

089 A *hedonic coalition formation game* (Dreze & Greenberg, 1980) consists of a set of players N who
 090 exhibit preferences over groups they might join. Formally, each player $i \in N$ ranks all coalitions
 091 $S \subseteq N$ that contain i ; in our setting, we assume that players have *cardinal* utilities over coalitions.
 092 Given a player $i \in N$ and a coalition S containing i , player i ’s utility from joining S is $u_i(S) \in \mathbb{R}$,
 093 which we later instantiate as a function of i ’s strongest partners within S .
 094

095 Our goal is to identify a *coalition structure* or *partition* of the player set which satisfies certain
 096 desiderata (Aziz & Savani, 2016). Given a coalition structure π , we let $\pi(i)$ designate the coalition
 097 containing player i under π . *Core stability* (Bogomolnaia et al., 2002) is a key cooperative solution
 098 concept. We say that a coalition $S \subseteq N$ *blocks* a coalition structure π if every player $i \in S$ strictly
 099 prefers S to their assigned coalition $\pi(i)$, i.e., $u_i(S) > u_i(\pi(i))$ for all $i \in S$. A coalition structure π
 100 is *core stable* (or simply *stable*) if no blocking coalitions exist.
 101

102 Enumerating agents’ preferences over all coalitions is infeasible; with n agents, each agent needs to
 103 express their preferences over 2^{n-1} potential groups. Sliwinski & Zick (2017) propose using *Probably*
 104 *Approximately Correct (PAC)* guarantees (Kearns & Vazirani, 1995; Shashua, 2009). The key insight
 105 of this framework is to sample players’ preferences rather than utilize complete preferences over all
 106 coalitions. Given a distribution D over coalitions, a coalition structure $\hat{\pi}$ is called ε -PAC *stable* if
 107

$$\Pr_{S \sim D} [S \text{ core blocks } \hat{\pi}] \leq \varepsilon.$$

108 Here, D is the distribution over sampled coalitions used to approximate neuron preferences. Intu-
 109 itively, while it is *possible* that $\hat{\pi}$ is not core stable, the probability of observing a blocking coalition
 110 for $\hat{\pi}$ under the distribution D is small.
 111

108 A PAC stabilization algorithm takes $m = \text{poly}(n, \frac{1}{\varepsilon}, \log \frac{1}{\delta})$ samples from D and outputs an ε -PAC
 109 stable partition with probability at least $1 - \delta$. Intuitively, δ captures the probability that the m
 110 samples we took are not representative of the ‘true’ data distribution D .
 111

112 **Top-Responsive Hedonic Games in Neural Networks.** We estimate pairwise affinities ϕ_{ij} between
 113 “players” (neurons) from weights and co-activations. These affinities allow us to construct a hedonic
 114 game in which each neuron evaluates coalitions based on the presence of preferred partners. To
 115 capture this behavior, we model the setting as a *top-responsive game*. In a top-responsive game, every
 116 player i associates each coalition $S \ni i$ with a unique *choice set* $ch(i, S) \subseteq S$ that represents the
 117 subset of partners most important to i . Preferences are then determined entirely by these choice sets:
 118 a player prefers one coalition over another if its choice set is ranked higher, and if two coalitions
 119 yield the same choice set, the smaller coalition is favored. This restriction makes coalition evaluation
 120 tractable, as each neuron only needs to consider its most valued partners rather than all possible
 121 groups.
 122

123 The top responsive framework is flexible, as choice sets may consist of a single strong partner,
 124 multiple valued partners, or even subsets selected according to synergy between members. The key
 125 requirement is that choice sets are uniquely defined and utilities are represented in an *informative*
 126 way, so that distinct choice sets correspond to distinct utility “buckets”. Under these conditions,
 127 the Top-Covering algorithm (Alcalde & Revilla, 2004; Dimitrov & Sung, 2007) can be applied to
 128 efficiently compute an (ε, δ) PAC-stable partition (Sliwinski & Zick, 2017). This enables us to
 129 identify groups of neurons that form stable coalitions under the distribution of observed samples.
 130 Further details and extensions are provided in Appendix A.1.
 131

132 2.2 TRANSFORMER MLPs AND LATENT FEATURE FORMATION

133 Each LLM transformer block contains a gated MLP that expands the hidden state, applies a non-
 134 linearity, and then projects it back to the model dimension. Let the hidden vector entering the MLP
 135 at layer ℓ be $\vec{h} \in \mathbb{R}^{d_{\text{model}}}$, and let $d_{\text{ff}} > d_{\text{model}}$ denote the intermediate width. In LLaMA-3-style
 136 architectures Dubey et al. (2024), the computation proceeds as:
 137

$$\vec{z}_{\text{up}} = W_{\text{up}} \vec{h}, \quad \vec{z}_{\text{gate}} = W_{\text{gate}} \vec{h}; \quad \vec{g} = \text{SiLU}(\vec{z}_{\text{gate}}) \odot \vec{z}_{\text{up}}, \quad \vec{h}' = W_{\text{down}} \vec{g}.$$

138 where $W_{\text{up}}, W_{\text{gate}} \in \mathbb{R}^{d_{\text{ff}} \times d_{\text{model}}}$ and $W_{\text{down}} \in \mathbb{R}^{d_{\text{model}} \times d_{\text{ff}}}$. The element-wise product \vec{g} binds the *gate*
 139 signal – which selects or suppresses coarse abstractions – with the *up* signal that carries candidate
 140 feature directions. W_{down} then recombines these activated features. During this process, abstract
 141 features may *emerge* (via new activation directions), *merge* (when multiple features co-activate), *split*
 142 (when previously unified features diverge), or *disappear* (if suppressed by gating) (Elhage et al.,
 143 2021; Tian et al., 2023).
 144

145 **LoRA-adapted projections.** In our setup, only the MLP projection matrices are fine-tuned using
 146 Low-Rank Adaptation (LoRA) (Hu et al., 2022). For any weight matrix $W \in \mathbb{R}^{m \times n}$, LoRA
 147 introduces a low-rank update of the form:
 148

$$\tilde{W} = W + \Delta W, \quad \Delta W = \frac{\alpha}{r} AB^\top, \quad (1)$$

149 where $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{n \times r}$ are the learned parameters, r is the rank, and α is a scaling factor.
 150 When applied to W_{up} and W_{gate} , we obtain:
 151

$$\vec{z}_{\text{up}} = (W_{\text{up}} + \Delta W_{\text{up}}) \vec{h}, \quad \vec{z}_{\text{gate}} = (W_{\text{gate}} + \Delta W_{\text{gate}}) \vec{h}.$$

152 The updates ΔW_{up} and ΔW_{gate} are low-rank, as a result, they introduce only a small set of new
 153 feature directions in the high-dimensional MLP space. But because these directions are diffused
 154 across neurons, visual inspection of weight updates reveals no obvious structure—leading to our
 155 central question: *which subsets of neurons cooperate to encode task-specific behavior under LoRA?*
 156

157 In Section 3, we develop a game-theoretic framework that directly identifies these functional coalitions,
 158 revealing how LoRA’s parameter-efficient updates create localized but coordinated changes
 159 that encode task-relevant abstractions without requiring exhaustive analysis of all possible neuron
 160 combinations.
 161

162 **3 METHODOLOGY**
 163

164 We present a game-theoretic framework to identify and track *latent coalitions*—cooperating groups of
 165 neurons within MLP layers of LoRA-tuned transformer models. Our approach consists of two stages:
 166 first, we formalize the intra-layer coalition discovery as a game with hedonic utilities and apply the
 167 PAC-Top-Cover algorithm to find stable neuron groupings; second, we connect these coalitions across
 168 layers using maximum-weight bipartite matching to trace how these abstract computational units
 169 evolve through consecutive layers in the network hierarchy.

170
 171 **3.1 PROBLEM STATEMENT: COALITION DISCOVERY AND TRACKING IN TRANSFORMER
 172 MLPs**

173 Let L be a transformer-based LLM fine-tuned for a scalar prediction task (e.g., relevance scoring)
 174 via LoRA. Let $\ell \in \{1, 2, \dots, d\}$ denote an MLP layer in the network, where d is the total number
 175 of layers, with $n = d_{\text{ff}}$ neurons in its intermediate dimension. Denote the down-projection weight
 176 matrix as $W_{\text{down}}^{(\ell)} \in \mathbb{R}^{d_{\text{model}} \times n}$, where each column $[W_{\text{down}}^{(\ell)}]_{\cdot, i}$ represents the learned projection vector
 177 for neuron i . Here neuron i , refers to the i^{th} MLP channel in d_{ff} .

178 Our goal is to identify a partition $\pi^{(\ell)} = \{C_1, C_2, \dots, C_k\}$ of neurons in layer ℓ such that each
 179 subset $C_i \subseteq \{1, \dots, n\}$ captures a set of neurons that exhibit strong *synergy*—cooperative behavior
 180 in forming a semantic unit. We define synergy through a pairwise valuation function ϕ_{ij} . Then,
 181 across layers, we aim to match coalitions from $\pi^{(\ell)}$ to those in $\pi^{(\ell+1)}$, enabling us to model feature
 182 *persistence, splitting, merging*, and other dynamic events.

183
 184 **3.2 CONSTRUCTING PAIRWISE VALUATIONS AND UTILITY SCORES**

185 PAC-Top-Cover uses samples of coalitions $S \sim D$ to estimate each agent’s top-k choice set within
 186 the remaining pool. We first compute pairwise valuations ϕ_{ij} , which quantify affinity or synergy
 187 between neurons. We instantiate two complementary valuation functions:

188 **Orthogonal-Co-Activation (OCA).** This approach combines two intuitions: neurons with orthogonal
 189 weight vectors may capture complementary features, while neurons with high activation correlation
 190 may process similar patterns. For neuron pair (i, j) , we define:

$$\phi_{\text{OCA}}(i, j) = (1 - |\cos(W_i, W_j)|) \rho(a_i, a_j), \quad \rho(a_i, a_j) = \frac{\text{Cov}[a_i, a_j]}{\sigma_i \sigma_j}$$

191 where W_i is the i -th column of $W_{\text{down}}^{(\ell)}$ (neuron i ’s output weights), and a_i denotes neuron i ’s
 192 activations. The cosine term favors pairs with dissimilar weight vectors, while the correlation term
 193 captures their collaborative activation patterns (Pearson’s correlation).

194 **Pairwise Ablation Synergy (PAS).** To directly measure the synergistic interaction between neurons i
 195 and j , we compute the second-order interaction effect through ablation. Let $\ell(x)$ denote the model’s
 196 logit output¹ for input x , and $\ell_{-S}(x)$ denote the logit when neurons in set S are ablated (set to their
 197 pre-LoRA weight). The true interaction between neurons i and j is:

$$\phi_{\text{PAS}}(i, j) = -\mathbb{E}_{x \sim \mathcal{D}} [\ell_{-\{i, j\}}(x) - \ell_{-i}(x) - \ell_{-j}(x) + \ell(x)].$$

198 This measures how the joint ablation of both neurons differs from the sum of individual ablations.
 199 For computational efficiency with large n , we approximate this using gradient computations:

$$\phi_{\text{PAS}}(i, j) \approx -\frac{\partial^2 \ell}{\partial a_i \partial a_j} \cdot \mathbb{E}[a_i a_j],$$

200 where the mixed partial derivative captures the interaction between neuron activations.

201 ¹We use a *layer-local logit* $\ell^{(\ell)}(x) = w^\top h'^{(\ell)}(x) + b$, i.e. the scalar score obtained *immediately after* the
 202 layer- ℓ MLP (including residual addition) but *before* entering block $\ell + 1$. Our goal is to discover coalitions that
 203 are intrinsically synergistic at the point they are formed. w, b are cloned from the final task head and kept fixed
 204 for all layers. For readability we drop the superscript when the layer is clear from context.

We experiment with both OCA (structural heuristic) and PAS (functional ablation-based) valuations to test robustness of our framework. In both the above defined pairwise valuation functions, positive values indicate *synergy* (neurons cooperate to produce information neither could alone), while negative values indicate *redundancy* (neurons provide overlapping information). We now use these valuation functions, to compute choice sets, which is used to compute the utility of a neuron in a set that is used by the PAC Top-Cover algorithm.

Multi-Friend Choice Sets (MFC). In this formation, each neuron is allowed to anchor its preference not on a single partner but on a *set of top- k partners*. For player i , the choice set within coalition S is

$$Ch(i, S) = \arg \max_{\substack{T \subseteq S \setminus \{i\} \\ |T|=k}} \sum_{j \in T} \phi_{ij},$$

with ties broken deterministically to ensure uniqueness. Utilities are then defined as $u_i(S) = \frac{1}{k} \sum_{j \in Ch(i, S)} \phi_{ij}$. This normalized model captures *multi-partner synergy*, where a neuron’s activation is meaningful only when several complementary features are present. We refer to this algorithmic instantiation as **Hedonic-MFC**.

3.3 THE PAC TOP-COVER ALGORITHM.

The PAC Top-Cover algorithm (Sliwinski & Zick, 2017; Alcalde & Revilla, 2004) provides an efficient way to identify stable coalitions of neurons under top- k preferences. The top- k variant of this algorithm allows every neuron i to nominate up to k partners within sampled coalitions, based on the highest affinity scores ϕ_{ij} . In each round, the algorithm samples a batch of candidate coalitions (with sizes constrained to lie between k_{\min} and k_{\max}), constructs choice sets B_i for all neurons in the active pool R , and builds a directed preference graph where edges $i \rightarrow j$ represent top- k selections. Here B_i denotes the estimated top- k choice set for neuron i , i.e., the subset of partners that maximize its utility under the current sampled coalitions, computed via the MFC rule introduced in Section 3.2. Stable coalitions are then extracted as sink strongly connected components that are also closed under these choice sets. Removing each coalition from R and repeating yields a full partition of the neurons. The algorithm is detailed in Appendix C.

The PAC guarantee ensures that with $O(n^2 \varepsilon^{-1} \log(n/\delta))$ samples per round, the resulting partition is ε -approximately stable with probability at least $1 - \delta$. This provides theoretical backing that the discovered coalitions capture robust cooperative structure among neurons. We next ask how the coalitions identified at one layer relate to those in subsequent layers.

3.4 TRACKING COALITIONS ACROSS LAYERS

Our hypothesis is that coalitions capture intermediate features that may *persist, merge, split, or disappear* as computation proceeds through the network. Tracking such transitions provides an exploratory view of how features evolve across depth.

For each pair of coalitions (C, C') from consecutive layers ℓ and $\ell + 1$, we measure their *interaction mass*, which serves as a heuristic to quantify how strongly one coalition influences the next:

$$M(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{p \in C} \sum_{q \in C'} \left(|W_{\text{up}}^{(\ell+1)}[q, p]| + |W_{\text{gate}}^{(\ell+1)}[q, p]| \right) \cdot A_p,$$

where $W_{\text{up}}^{(\ell+1)}, W_{\text{gate}}^{(\ell+1)} \in \mathbb{R}^{d_{\text{ff}} \times d_{\text{model}}}$ are the LoRA-adapted projection matrices of layer $\ell + 1$, $p \in \{1, \dots, d_{\text{ff}}\}$ indexes source neurons from layer ℓ , $q \in \{1, \dots, d_{\text{ff}}\}$ indexes target neurons in layer $\ell + 1$, and $A_p = \mathbb{E}_x[|a_p^{(\ell)}(x)|]$ is the mean absolute activation of neuron p over the training distribution. This formulation captures both the additive (W_{up}) and multiplicative gating ($W_{\text{gate}} \times \text{SiLU}$) pathways, while normalizing by coalition sizes ensures comparability across widths. We assemble the interaction masses into a bipartite matrix and solve a maximum-weight matching problem to align coalitions across layers. For each match, we compute the fraction of a source coalition’s output that flows into a target (α) and the fraction of a target’s input originating from that source (β). These ratios allow us to classify transitions into persistence (both high), splitting (low α , high β), merging (high α , low β), or disappearance (both low).

270 We stress that this analysis is exploratory. Transformers have residual connections, so neurons at
 271 layer ℓ influence all deeper layers, not just $\ell + 1$. Our method only captures local dynamics and
 272 likely underestimates long-range interactions, but it offers a first step toward visualizing how abstract
 273 feature groups may evolve through the network.

274

275 4 EXPERIMENTS

276

277 We empirically validate our framework on three LLM architectures and three scalar-output IR
 278 tasks. We first describe models, tasks, and baselines, then present evaluation protocols and results
 279 (Tables 1, 2, 3, Appendix 6).

280 **Models.** We study LLaMA-3.1-8B (Dubey et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2023), and
 281 Pythia-6.9B (Biderman et al., 2023), each adapted via LoRA (rank $r = 8$) restricted to MLP layers
 282 7–14. Preliminary analysis showed these layers carry the strongest task-specific activity (Nijasure
 283 et al., 2025). Fine-tuning uses AdamW ($\eta = 2 \times 10^{-4}$, batch size 128, 3 epochs), with all base
 284 weights frozen. Performance of these fine-tuned LoRA models is further documented in Appendix F.

285 **Tasks.** Tasks are scalar objectives defined over query–document pairs from MS MARCO (Bajaj
 286 et al., 2018): (1) Covered-Query-Term Ratio (*CQTR*) = fraction of query terms present in the
 287 document, (2) Mean of Stream-Length Normalized Term Frequency (*Mean-TF/L*) = mean of length-
 288 normalized term frequencies, (3) Relevance Modelling (*RM*) = supervised passage ranking. CQTR
 289 and Mean-TF/L use MSE loss, RM uses NDCG. Models are trained on 500k pairs, validated on 5k,
 290 and evaluated OOD on TREC DL-19/20.

291 **Baselines.** We compare five coalition builders: *Random* (uniform neuron subsets with matched
 292 size histogram), *K-means (Spherical)* (on ℓ_2 -normalized mean activations, k matched to Hedonic
 293 partition), *Hierarchical (Ward+cos)* (agglomerative under cosine distance, cut at same k), *Hedonic-*
 294 *OCA* (PAC-Top-Cover with ϕ_{OCA}), *Hedonic-PAS* (PAC-Top-Cover with ϕ_{PAS}).

295 For Hedonic sampling we draw $m = 8 \times 10^5$ candidate coalitions (size [2, 10]), retain top $\omega = 8 \times 10^4$
 296 by utility, and use $\varepsilon = \delta = 0.1$. Choice sets use top-3 partners. Cross-layer matching uses thresholds
 297 (α_{hi}, α_{lo}) = (0.7, 0.1) tuned on a 1% held-out split. All methods run on 4×A100-80GB GPUs;
 298 PAC-Top-Cover completes in 90 min (OCA) and 280 min (PAS). All numbers are averaged over 3
 299 seeds with 95% confidence intervals.

300 **Evaluation.** We first report intrinsic synergy metrics (Appendix G) as diagnostics, then evaluate
 301 coalitions extrinsically with three tests:

302 • *OOD Drop.* For coalition C , we measure the performance drop on \mathcal{D}_{OOD} (DL-19/20) when C is
 303 ablated (neurons reset to pre-LoRA weights):

$$304 \Delta\mathcal{M}(C) = \mathcal{M}(\{\ell(x)\}) - \mathcal{M}(\{\ell_{-C}(x)\}),$$

305 where \mathcal{M} is NDCG@10 for RM and $-\text{MSE}$ for CQTR/Mean-TF/L. Larger $\Delta\mathcal{M}(C)$ indicates
 306 greater functional importance.

307 • *Feature Alignment.* Each coalition’s mean activation $a_C(x)$ is compared with known IR heuristics
 308 (list of MSLR features Qin & Liu (2013b)). Alignment is defined as the maximum squared Pearson
 309 correlation:

$$310 R^2(C) = \max_j \text{Corr}^2(a_C(x), f_j(x)).$$

311 • *Coalition Predictivity.* Coalitions are treated as macro-features $A(x) \in \mathbb{R}^k$. A ridge regression
 312 $\hat{y}(x) = w^\top A(x)$ is trained on MS MARCO and evaluated OOD; we report R^2 for RM, CQTR,
 313 and Mean-TF/L.

314 Next, we discuss the results reported in Tables 1 (extrinsic coalition evaluation), Table 2 (coalition
 315 predictivity), Table 3 (coalition transfer dynamics) and Appendix Table 6 (intrinsic coalition
 316 evaluation).

317

318 Experimental Results.

319

324
 325 Table 1: Extrinsic Evaluation: OOD Drop (\uparrow) and Feature Alignment R^2 (\uparrow) on DL-19/20. Mean
 326 $\pm 95\%$ CI across three seeds. Larger values indicate more functionally important and interpretable
 327 coalitions.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Task / Algorithm	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 LLaMA-3.1		328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Mistral		328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Pythia	
OOD Drop	Align R^2	OOD Drop	Align R^2	OOD Drop	Align R^2	
Covered Query Term Ratio						
Random	0.01 \pm 0.01	0.05 \pm 0.02	0.00 \pm 0.01	0.06 \pm 0.02	0.01 \pm 0.01	
K-means	0.02 \pm 0.01	0.12 \pm 0.02	0.03 \pm 0.01	0.13 \pm 0.02	0.02 \pm 0.01	
Hier. clustering	0.03 \pm 0.01	0.15 \pm 0.02	0.03 \pm 0.01	0.16 \pm 0.02	0.03 \pm 0.01	
Hedonic (OCA)	0.07 \pm 0.01	0.41 \pm 0.02	0.09 \pm 0.01	0.44 \pm 0.02	0.08 \pm 0.01	
Hedonic (PAS)	0.11\pm0.005	0.58\pm0.01	0.13\pm0.006	0.61\pm0.01	0.14\pm0.006	
Mean of Normalized Term Frequency						
Random	0.01 \pm 0.01	0.04 \pm 0.02	0.01 \pm 0.01	0.05 \pm 0.02	0.01 \pm 0.01	
K-means	0.02 \pm 0.01	0.11 \pm 0.02	0.02 \pm 0.01	0.12 \pm 0.02	0.02 \pm 0.01	
Hier. clustering	0.03 \pm 0.01	0.14 \pm 0.02	0.03 \pm 0.01	0.15 \pm 0.02	0.03 \pm 0.01	
Hedonic (OCA)	0.06 \pm 0.01	0.38 \pm 0.02	0.08 \pm 0.01	0.41 \pm 0.02	0.07 \pm 0.01	
Hedonic (PAS)	0.10\pm0.005	0.55\pm0.01	0.12\pm0.006	0.59\pm0.01	0.13\pm0.006	
Relevance Modelling						
Random	0.02 \pm 0.01	0.06 \pm 0.02	0.01 \pm 0.01	0.07 \pm 0.02	0.02 \pm 0.01	
K-means	0.03 \pm 0.01	0.13 \pm 0.02	0.04 \pm 0.01	0.14 \pm 0.02	0.03 \pm 0.01	
Hier. clustering	0.04 \pm 0.01	0.17 \pm 0.02	0.04 \pm 0.01	0.18 \pm 0.02	0.04 \pm 0.01	
Hedonic (OCA)	0.09 \pm 0.01	0.47 \pm 0.02	0.10 \pm 0.01	0.49 \pm 0.02	0.09 \pm 0.01	
Hedonic (PAS)	0.14\pm0.006	0.63\pm0.01	0.16\pm0.006	0.65\pm0.01	0.17\pm0.007	
Algorithm						
	CQTR	Mean-TF/L	Relevance (RM)			
Random	0.08 \pm 0.02	0.09 \pm 0.02	0.12 \pm 0.02			
K-means	0.16 \pm 0.01	0.15 \pm 0.01	0.21 \pm 0.01			
Hier. clustering	0.18 \pm 0.01	0.17 \pm 0.01	0.21 \pm 0.01			
Hedonic (OCA)	0.34 \pm 0.01	0.33 \pm 0.01	0.38 \pm 0.01			
Hedonic (PAS)	0.43\pm0.008	0.42\pm0.008	0.47\pm0.008			

348 Table 2: Coalition Predictivity (R^2 on OOD sets DL-19/20), averaged across three LLMs (LLaMA-
 349 3.1, Mistral, Pythia). Coalitions are used as macro-features in ridge regression trained on MS
 350 MARCO. Hedonic coalitions yield substantially higher R^2 than clustering or random baselines.

Algorithm	CQTR	Mean-TF/L	Relevance (RM)
Random	0.08 \pm 0.02	0.09 \pm 0.02	0.12 \pm 0.02
K-means	0.16 \pm 0.01	0.15 \pm 0.01	0.21 \pm 0.01
Hier. clustering	0.18 \pm 0.01	0.17 \pm 0.01	0.21 \pm 0.01
Hedonic (OCA)	0.34 \pm 0.01	0.33 \pm 0.01	0.38 \pm 0.01
Hedonic (PAS)	0.43\pm0.008	0.42\pm0.008	0.47\pm0.008

359 **Functional importance and interpretability (Table 1).** Across all three models and tasks, hedonic
 360 coalitions are markedly more *causal* and *interpretable* than clustering or random partitions. Ablating
 361 a single hedonic coalition (ablation = restoring those neurons to their pre-LORA state) yields the
 362 largest OOD performance drops: for CQTR on LLaMA/Mistral/Pythia the OOD drop rises from
 363 ≈ 0.02 – 0.03 (K-means/Hier.) to 0.11 – 0.14 with Hedonic-PAS—about a **3**–**5** \times increase; similar gaps
 364 hold for Mean-TF/L (0.10 – 0.13 vs. 0.02 – 0.03) and RM (0.14 – 0.17 vs. 0.03 – 0.04). At the same time,
 365 coalition activations align far more strongly with IR heuristics: alignment R^2 climbs from ~ 0.11 – 0.18
 366 (clustering) to **0.55**–**0.67** (Hedonic-PAS), with Hedonic-OCA consistently second-best (≈ 0.38 – 0.49).
 367 Confidence intervals are narrow throughout, indicating stable estimates over seeds. Taken together,
 368 these results show that hedonic coalitions are both **functionally indispensable**—their removal
 369 produces large OOD degradation—and **semantically grounded**, tracking BM25/IDF/coverage signals
 370 far better than baselines.

371 **Predictive macro-features (Table 2).** Treating each coalition as a macro-feature and training a ridge
 372 regressor on MS MARCO, we see large generalization gains on DL-19/20. Averaged over LLaMA,
 373 Mistral, and Pythia, Hedonic-PAS attains $R^2 = \mathbf{0.43/0.42/0.47}$ on CQTR/Mean-TF/L/RM, roughly
 374 **2**–**3** \times higher than K-means/Hier. (≈ 0.15 – 0.21) and far above Random (≈ 0.08 – 0.12). Hedonic-OCA
 375 also performs strongly (≈ 0.33 – 0.38), reinforcing the pattern from the extrinsic ablations: utilities
 376 that respect *synergy* (PAS) or *partner preference* (OCA) produce coalitions that behave like **robust**,
 377 **transferable features**, not just co-activation clusters. This bridges intrinsic synergy to downstream
 378 utility: coalitions that score high on synergy also yield higher OOD predictivity.

378
 379 Table 3: Dynamics of coalitions across layers 7–14 for three tasks. Each cell shows percentage of
 380 coalitions exhibiting the event relative to all coalitions present in the *source* layer (except *merge*).
 381

Layer →	Mistral				LLaMA				Pythia			
	Persist	Merge	Split	Vanish	Persist	Merge	Split	Vanish	Persist	Merge	Split	Vanish
Covered Query Term Ratio												
7 → 8	12.1%	0.0%	28.9%	59.0%	3.2%	0.0%	35.4%	61.4%	7.8%	0.0%	31.9%	60.3%
8 → 9	4.8%	0.0%	38.4%	56.8%	5.1%	0.0%	28.6%	66.3%	4.9%	0.0%	33.7%	61.4%
9 → 10	6.2%	0.0%	31.5%	62.3%	4.8%	0.0%	30.2%	65.0%	5.5%	0.0%	30.8%	63.7%
10 → 11	3.8%	0.0%	29.7%	66.5%	7.9%	0.0%	32.1%	60.0%	5.9%	0.0%	30.9%	63.2%
11 → 12	4.2%	0.0%	27.8%	68.0%	3.5%	0.0%	29.8%	66.7%	3.9%	0.0%	28.8%	67.3%
12 → 13	11.3%	0.0%	30.2%	58.5%	6.8%	0.0%	27.4%	65.8%	9.1%	0.0%	28.8%	62.1%
13 → 14	10.5%	0.0%	24.3%	65.2%	7.2%	0.0%	23.1%	69.7%	8.9%	0.0%	23.7%	67.4%
Stream Length Normalized Term Frequency												
7 → 8	6.4%	0.5%	35.8%	57.3%	2.1%	0.0%	19.7%	78.2%	4.3%	0.3%	28.4%	67.0%
8 → 9	1.8%	0.2%	51.2%	46.8%	3.8%	0.1%	20.3%	75.8%	2.8%	0.1%	36.2%	60.9%
9 → 10	2.9%	0.1%	23.1%	73.9%	3.4%	0.0%	22.8%	73.8%	3.2%	0.0%	22.9%	73.9%
10 → 11	1.3%	0.3%	23.7%	74.7%	5.9%	0.2%	25.5%	68.4%	3.6%	0.2%	24.6%	71.6%
11 → 12	1.2%	0.1%	22.9%	75.8%	1.7%	0.0%	24.1%	74.2%	1.4%	0.0%	23.5%	75.1%
12 → 13	6.3%	0.4%	37.8%	55.5%	3.2%	0.1%	19.8%	76.9%	4.8%	0.2%	29.3%	65.7%
13 → 14	7.1%	0.2%	19.5%	73.2%	4.7%	0.0%	17.1%	78.2%	5.9%	0.1%	18.3%	75.7%
Relevance												
7 → 8	8.2%	0.0%	32.7%	59.2%	1.5%	0.0%	22.4%	76.1%	5.2%	0.0%	28.1%	66.7%
8 → 9	2.1%	0.0%	46.8%	51.1%	3.5%	0.0%	22.8%	73.7%	2.8%	0.0%	35.3%	61.9%
9 → 10	3.5%	0.0%	26.3%	70.2%	3.9%	0.0%	25.5%	70.6%	3.7%	0.0%	25.9%	70.4%
10 → 11	2.0%	0.0%	26.5%	71.4%	6.7%	0.0%	28.3%	65.0%	4.2%	0.0%	27.4%	68.4%
11 → 12	1.7%	0.0%	25.4%	72.9%	2.0%	0.0%	26.5%	71.4%	1.9%	0.0%	25.9%	72.2%
12 → 13	8.0%	0.0%	34.0%	58.0%	4.0%	0.0%	22.0%	74.0%	6.1%	0.0%	28.2%	65.7%
13 → 14	8.7%	0.0%	21.7%	69.6%	5.4%	0.0%	18.9%	75.7%	7.1%	0.0%	20.3%	72.6%

403
 404
 405 **Coalition dynamics across depth (Table 3).** Across layers 7→14, three trends are consistent: (i)
 406 *vanish dominates* (typically 60–75% of coalitions disappear at the next layer), indicating downstream
 407 MLPs act as *filters/refiners* rather than combiners; (ii) *splits are common* (≈20–50%, depending on
 408 task/layer), suggesting feature *refinement* is more prevalent than wholesale reuse; and (iii) *merges are near-zero*, implying whole motifs are rarely recomposed from separate groups. Persistence is
 409 generally low (<~12%), with a mild *delayed persistence uptick* around 12→13 for CQTR and RM
 410 (≈8–11%), echoing a “late stabilization” phase. Mean-TF/L exhibits the strongest pruning (vanish
 411 >70% across several transitions), consistent with simple frequency statistics being isolated early and
 412 aggressively culled later. These dynamics support our central claim: **cooperative units are formed, then predominantly pruned or refined rather than fused**, aligning with the heavy-tailed coalition
 413 sizes and the functional importance patterns observed above.

416 5 DISCUSSION

417
 418 **SAEs vs Hedonic Neurons.** Sparse Autoencoders (SAEs) (Huben et al., 2024) uncover interpretable
 419 features by learning sparse dictionaries that reconstruct activations and disentangle polysematic
 420 units. In contrast, our framework keeps neurons as primitives and asks how they cooperate. By
 421 modeling them as agents in a hedonic game, we capture nonlinear synergies: coalitions whose joint
 422 ablation impacts behavior beyond the sum of parts. Unlike SAEs, which re-express activation space,
 423 hedonic coalitions are grounded in weight geometry and preference structure, surfacing cooperative
 424 “wiring-level” units already encoded in the parameters. The two approaches are complementary:
 425 SAEs expose monosemantic features, while hedonic analysis highlights how neurons collaborate to
 426 realize them.

427 **Coalition size distribution.** Coalition sizes follow a heavy-tailed Zipfian law: each layer contains
 428 a few large “macro” groups, mid-sized units, and many size-2 specialists, resembling vocabulary
 429 statistics in language. Disappearance rates rise after layer 12, suggesting deeper MLP blocks act
 430 more as feature filters than creators. Together, these findings imply that hedonic coalitions are natural
 431 computational units shaped by training dynamics—early layers construct rich representations, while
 later ones selectively retain task-relevant features.

432

6 RELATED WORK

434 Mechanistic interpretability of transformer LLMs has focused on understanding both individual
 435 neurons and structured groups. Geva et al. (2021) showed that feed-forward layers act as key–value
 436 memories, with neurons detecting input patterns (keys) and injecting values into the representa-
 437 tion. Dai et al. (2022) identified “knowledge neurons” in MLPs that encode factual associations,
 438 demonstrating that small groups of neurons can robustly store discrete knowledge.

439 Beyond single-neuron analysis, Bricken et al. (2023) applied dictionary learning to extract sparse,
 440 interpretable features from polysemantic activations. Balagansky et al. (2025) tracked feature
 441 persistence and merging across layers, complementing our coalition-evolution view. Sparse prob-
 442 ing (Gurnee et al., 2023) further revealed that early layers are highly polysemantic while deeper layers
 443 specialize, underscoring the need to model neuron groups and their dynamics. Weight-based methods
 444 also contribute: Davies (2025) decoded neuron weights into semantic concepts, while Pearce et al.
 445 (2024) and Bushnaq et al. (2025) developed direct weight-space feature discovery.

446 While hedonic games have rarely been explored in interpretability, Koulali and Koulali (Koulali &
 447 Koulali, 2023) showed their utility for feature selection, providing theoretical foundations for our
 448 approach. Our work extends these lines by explicitly framing neuron collaboration as a hedonic game,
 449 enabling principled discovery and tracking of *stable coalitions* that serve as latent computational
 450 units in transformer MLPs.

451

7 CONCLUSION, LIMITATIONS AND FUTURE WORK

452 We introduced **Hedonic Neurons**, a game-theoretic framework that models neurons in transformer
 453 MLPs as players in a top-responsive hedonic game. Using the PAC-Top-Cover algorithm with
 454 correlation-based (OCA) or ablation-based (PAS) valuations, we identified stable coalitions that
 455 capture cooperative structure beyond what clustering can reveal. Across three LLM architectures
 456 and scalar IR tasks, hedonic coalitions achieve average improvements of +0.29 *Pairwise* and +0.49
 457 *Ratio* synergy over the strongest baseline, while extrinsic evaluations show they are functionally
 458 indispensable: ablations yield 3–5× larger OOD performance drops, alignment with IR heuristics
 459 rises from ∼0.15 to 0.55–0.67, and predictive R^2 improves from ∼0.20 to 0.43–0.47. Coalition
 460 dynamics further reveal that most groups vanish or split across depth, with merges rare and persistence
 461 limited, supporting the view that MLPs act primarily as filters and refiners of features.

462 Our approach has limitations: utilities depend on layer-local logits and second-order ablations,
 463 omitting higher-order interactions and attention mechanisms, and the current formulation yields
 464 disjoint coalitions despite early-layer polysemy. Future work will extend to overlapping coalitions
 465 via fractional hedonic games, integrate attention heads for joint sub-module analysis, and design
 466 low-variance estimators to reduce $O(n^2)$ ablation costs. Coupling hedonic discovery with concept-
 467 activation vectors may also yield interpretable primitives aligned with human-understandable features.
 468 Taken together, HedonicNeurons provides a principled foundation for uncovering how cooperative
 469 computational units emerge, evolve, and specialize in large-scale language models.

470

8 REPRODUCIBILITY STATEMENT

471 We provide all resources necessary to reproduce our experiments. We make our fine-tuned reranker
 472 checkpoints for Pythia, Mistral, and LLaMA3 models available on HuggingFace (see supplementary
 473 material). The training dataset (Tevatron MSMARCO Passage Augmented) and evaluation dataset
 474 (TREC DL 2019) are publicly available, with preprocessing steps following the Tevatron MSMARCO
 475 implementation. All scripts used for coalition generation, partitioning, clustering baselines, and
 476 evaluation are included in the repository, along with deepspeed configuration files for finetuning.
 477 Coalition files (.pk1) and visualization outputs (Sankey plots) are also provided. Together, these
 478 resources ensure that the models, tasks, and coalition analyses can be wholly reproduced.

479

REFERENCES

480 José Alcalde and Pablo Revilla. Researching with whom? stability and manipulation. *Journal of*
 481 *Mathematical Economics*, Vol 40(Issue 8):pp. 869–887, 2004.

486 Haris Aziz and Rahul Savani. Hedonic games. In Felix Brandt, Vincent Conitzer, Ulle Endriss,
 487 Jérôme Lang, and Ariel D. Procaccia (eds.), *Handbook of Computational Social Choice*, chapter 15.
 488 Cambridge University Press, 2016.

489 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
 490 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
 491 Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
 492 dataset, 2018.

493 Nikita Balagansky, Ian Maksimov, and Daniil Gavrilov. Mechanistic permutability: Match features
 494 across layers. In *The Thirteenth International Conference on Learning Representations (ICLR)*,
 495 2025.

496 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
 497 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
 498 Pythia: A suite for analyzing large language models across training and scaling. In *International
 499 Conference on Machine Learning (ICML)*, pp. 2397–2430, 2023.

500 Anna Bogomolnaia, , and Matthew O. Jackson. The stability of hedonic coalition structures. *Games
 501 and Economic Behavior*, Vol 38(Issue 2):pp. 201–230, 2002.

502 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
 503 Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decompos-
 504 ing language models with dictionary learning. 2023.

505 Lucius Bushnaq, Dan Braun, and Lee Sharkey. Stochastic parameter decomposition. *arXiv preprint
 506 arXiv:2506.20790*, 2025.

507 Tue Minh Cao, Nhat Hoang-Xuan, Hieu Pham, Phi Le Nguyen, and My T. Thai. Neurflow: Inter-
 508 preting neural networks through neuron groups and functional interactions. In *The Thirteenth
 509 International Conference on Learning Representations (ICLR)*, 2025.

510 Tanya Chowdhury, Atharva Nijasure, and James Allan. Probing ranking llms: A mechanistic analysis
 511 for information retrieval. In *Proceedings of the 2025 International ACM SIGIR Conference on
 512 Innovative Concepts and Theories in Information Retrieval (ICTIR)*, pp. 336–346, 2025.

513 Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M Voorhees. Overview of
 514 the trec 2019 deep learning track. In *arXiv*, doi: ArXiv:2003.07820, 2020.

515 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
 516 in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 517 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL)*,
 518 pp. 8493–8502, 2022.

519 Harry J Davies. Decoding specialised feature neurons in llms with the final projection layer. In *arXiv*,
 520 doi ArXiv:2501.02688, 2025.

521 Dinko Dimitrov and Shao Chin Sung. On top responsiveness and strict core stability. *Journal of
 522 Mathematical Economics*, Vol 43(Issue 2):pp. 130–134, 2007.

523 Jacques H Dreze and Joseph Greenberg. Hedonic coalitions: Optimality and stability. *Econometrica:
 524 Journal of the Econometric Society*, pp. 987–1003, 1980.

525 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 526 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 527 In *arXiv*, doi: ArXiv:2407.21783, 2024.

528 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
 529 Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
 530 circuits. *Transformer Circuits Thread*, Vol 1(Issue 1):pp. 12, 2021.

531 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 532 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
 533 In *arXiv*, doi ArXiv:2209.10652, 2022.

540 Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. Scaling deep contrastive learning batch size
 541 under memory limited setup. In *Proceedings of the 6th Workshop on Representation Learning for*
 542 *NLP*, 2021.

543 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 544 key-value memories. In *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 545 *Language Processing (EMNLP)*, pp. 5484–5495, 2021.

546 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
 547 Finding neurons in a haystack: Case studies with sparse probing. *Transactions on Machine*
 548 *Learning Research (TMLR)*, 2023. ISSN 2835-8856.

549 John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representations.
 550 In *Proceedings of the 2019 Conference of the North American Chapter of the Association for*
 551 *Computational Linguistics: Human Language Technologies (NAACL)*, pp. 4129–4138, 2019.

552 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
 553 Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference*
 554 *on Learning Representations (ICLR)*, 2022.

555 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 556 autoencoders find highly interpretable features in language models. In *The Twelfth International*
 557 *Conference on Learning Representations*, 2024.

558 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 559 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 560 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 561 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

562 Michael J Kearns and Umesh V Vazirani. Computational learning theory. *Association for Computing*
 563 *Machinery (ACM) SIGACT News*, Vol 26(Issue 1):pp. 43–45, 1995.

564 Rim Koulali and Mohammed-Amine Koulali. Feature selection as a hedonic coalition formation
 565 game for arabic topic detection. *Pattern Recognition Letters*, Vol 172:137–143, 2023.

566 Victor Lavrenko and W. Bruce Croft. Relevance based language models. In *Proceedings of the*
 567 *24th Annual International ACM SIGIR Conference on Research and Development in Information*
 568 *Retrieval (SIGIR)*, pp. 120–127, 2001.

569 Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
 570 text retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and*
 571 *Development in Information Retrieval (SIGIR)*, pp. 2421–2425, 2024a.

572 Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
 573 text retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and*
 574 *Development in Information Retrieval (SIGIR)*, pp. 2421–2425. Association for Computing
 575 Machinery, 2024b.

576 Xueguang Ma, Luyu Gao, Shengyao Zhuang, Jiaqi Samantha Zhan, Jamie Callan, and Jimmy Lin.
 577 Tevatron 2.0: Unified document retrieval toolkit across scale, language, and modality. In *arXiv, doi:*
 578 *ArXiv:2505.02466*, 2025.

579 Atharva Nijasure, Tanya Chowdhury, and James Allan. How relevance emerges: Interpreting lora
 580 fine-tuning in reranking llms. In *arXiv, doi: ArXiv:2504.08780*, 2025.

581 Michael T Pearce, Thomas Dooms, Alice Rigg, Jose M Oramas, and Lee Sharkey. Bilinear mlps
 582 enable weight-based mechanistic interpretability. *arXiv preprint arXiv:2410.08417*, 2024.

583 Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. *CoRR*, Vol abs/1306.2597, 2013a.

584 Tao Qin and Tie-Yan Liu. Introducing letor 4.0 datasets. *arXiv preprint arXiv:1306.2597*, 2013b.

585 Amnon Shashua. Introduction to machine learning: Class notes 67577. In *arXiv, doi:*
 586 *ArXiv:0904.3664*, 2009.

594 Jakub Sliwinski and Yair Zick. Learning hedonic games. In *Proceedings of the Twenty-Sixth*
595 *International Joint Conference on Artificial Intelligence, (IJCAI-17)*, pp. 2730–2736, 2017.
596

597 Ran Song, Shizhu He, Shuteng Jiang, Yantuan Xian, Shengxiang Gao, Kang Liu, and Zhengtao Yu.
598 Does large language model contain task-specific neurons? In *Proceedings of the 2024 Conference*
599 *on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7101–7113, 2024.

600 Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
601 *Journal of documentation*, Vol 28(Issue 1):pp. 11–21, 1972.

602 Tevatron. Ms marco augmented dataset, 2024.

603

604 Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Shaolei Du. Scan and snap: Understanding
605 training dynamics and token composition in 1-layer transformer. In *Thirty-seventh Conference on*
606 *Neural Information Processing Systems (NeurIPS)*, 2023.

607

608 Xiongtao Zhou, Jie He, Yuhua Ke, Guangyao Zhu, Victor Gutierrez Basulto, and Jeff Pan. An
609 empirical study on parameter-efficient fine-tuning for multimodal large language models. In
610 *Findings of the Association for Computational Linguistics: (ACL)*, pp. 10057–10084, 2024.

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A HEDONIC GAMES PRELIMINERIES AND PAC TOP COVER INTUITION
649650 A.1 HEDONIC GAMES
651652 A *hedonic game* (Dreze & Greenberg, 1980) is defined by a finite set of players $N = \{1, \dots, n\}$ and,
653 for each player i , a complete and transitive preference relation \succ_i over the set $\mathcal{N}_i = \{S \subseteq N \mid i \in S\}$
654 of coalitions that contain i . A *coalition structure* (or *partition*) is a set $\pi = \{C_1, \dots, C_k\}$ of disjoint
655 non-empty coalitions whose union equals N . Throughout this appendix we assume that preferences
656 are given by real-valued utilities $v_i : \mathcal{N}_i \rightarrow \mathbb{R}$ so that $S \succ_i T \Leftrightarrow v_i(S) > v_i(T)$.²
657658 A.2 CORE STABILITY
659660 Given a partition π and a coalition $S \subseteq N$, we say that S *blocks* π if every $i \in S$ strictly prefers S to
661 her coalition in π , i.e. $S \succ_i \pi(i)$. A partition is *core-stable* (or simply *in the core*) if it is not blocked
662 by any coalition. Core stability captures the idea that no subset of players has a joint incentive to
663 deviate.
664665 A.3 WHY FULL PREFERENCE LEARNING IS INFEASIBLE
666667 Precisely learning all utilities $v_i(S)$ is unrealistic because the number of coalitions grows exponentially ($|\mathcal{N}_i| = 2^{n-1}$). Even if we could query any coalition, the sample complexity implied by the
668 pseudo-dimension of general hedonic games is super-polynomial (Proposition 4.9 in (Sliwinski &
669 Zick, 2017)). Hence, any practical method must settle for *approximate* stability based on samples
670 rather than complete preference elicitation.
671673 A.4 PAC-LEARNING FRAMEWORK FOR HEDONIC GAMES
674675 Following (Sliwinski & Zick, 2017), let D be an unknown but fixed distribution over coalitions. A
676 partition π is ε -PAC stable under D if

677
$$\Pr_{S \sim D} [S \text{ blocks } \pi] < \varepsilon.$$

678

679 An algorithm A *PAC-stabilises* a class \mathcal{H} of hedonic games if, for any game $G \in \mathcal{H}$, distribution D ,
680 and parameters (ε, δ) , A outputs—with probability at least $1 - \delta$ —an ε -PAC-stable partition using a
681 number of samples polynomial in $(n, 1/\varepsilon, \log(1/\delta))$.
682684 A.5 INTUITION BEHIND THE TOP-COVER ALGORITHM
685686 Under *additively separable* utilities ($v_i(S) = \sum_{j \in S \setminus \{i\}} u_{ij}$), players exhibit *top-responsiveness*:
687 their evaluation of a coalition is determined by the “best” members plus a size penalty (Alcalde &
688 Revilla, 2004). TOP-COVER exploits this property iteratively:689

- 690 (i) using samples, approximate each player’s most preferred subset within the current residual
691 set,
- 692 (ii) build directed edges from each player to the members of that subset,
- 693 (iii) extract a strongly connected component of minimal size, form it as a coalition, and remove
694 it,
- 695 (iv) repeat until all players are assigned.

697 Each extracted coalition is unlikely to be blocked because every member already sees its best
698 attainable partners within it with high probability.
699700
701 ²See Section 2 of (Sliwinski & Zick, 2017) for an extensive discussion of numeric versus ordinal representations.

702 A.6 ADDITIVE SEPARABILITY IMPLIES TOP-RESPONSIVENESS
703704 In an additively separable game, for any player i and coalitions $S, T \ni i$,

705 $v_i(S) > v_i(T) \iff (\exists j \in S \setminus \{i\} : u_{ij} > u_{ik} \forall k \in T \setminus \{i\}) \text{ or } (S \supset T \wedge v_i(S) = v_i(T)).$
706

707 Hence each coalition can be ranked by (a) the highest-valued partner of i (*choice set*) and, if equal,
708 (b) coalition size—the definition of top responsiveness (Alcalde & Revilla, 2004). Consequently,
709 additively separable utilities allow TOP-COVER (and its PAC variant) to guarantee an ε -PAC-stable
710 partition.711
712 A.7 APPLICATION OF HEDONIC GAMES TO NEURAL NETWORKS.713 Neurons in a transformer predominantly interact with a limited set of peers—those with highly
714 correlated activations or complementary weights. Treating neurons as players whose utilities are
715 derived from such local synergies fits the additive model naturally. Sampling mini-batches of log-
716 istic/activations supplies the coalitions needed by the PAC framework, letting us recover *approximately*
717 *core-stable neuron groups* without exhaustively testing all neuron subsets.
718719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 B MAKING ADDITIVE UTILITIES TOP-RESPONSIVE

758 **Notation recap.** For each ordered pair of distinct neurons (i, j) we have a *pairwise synergy score*
 759 $\phi_{ij} \in \mathbb{R}$ (either ϕ_{OCA} or ϕ_{PAS} ; see §3.2). Write Φ for the $n \times n$ matrix with zeros on the diagonal.
 760

761 B.1 FROM ADDITIVE SCORES TO TOP-RESPONSIVE PREFERENCES

763 **Max-partner utility** : Fix a global parameter $k \geq 1$. For a coalition $S \subseteq N$ that contains player i let

$$765 \text{Top}_k(i, S) = \arg \max_{\substack{T \subseteq S \setminus \{i\} \\ |T| \leq k}} \sum_{j \in T} \phi_{ij}.$$

767 We define

$$769 u_i(S) = \sum_{j \in \text{Top}_k(i, S)} \phi_{ij}, \quad \text{and} \quad \mathcal{C}_i(S) = \text{Top}_k(i, S).$$

771 When $k = 1$ this reduces to the familiar “best-friend” utility $u_i(S) = \max_{j \in S \setminus \{i\}} \phi_{ij}$.

772 **Lemma B.1** (Top-responsiveness). *For every player i the preference relation \succeq_i induced by u_i is*
 773 *top-responsive: for any two coalitions S, T that contain i*

$$774 \mathcal{C}_i(S) \succ_i \mathcal{C}_i(T) \implies S \succ_i T.$$

776 *Proof.* Let S, T contain i and assume $\mathcal{C}_i(S) \succ_i \mathcal{C}_i(T)$, i.e. $u_i(\mathcal{C}_i(S)) > u_i(\mathcal{C}_i(T))$. Because u_i is
 777 *monotone* in the sense that enlarging a set never decreases its utility,³ we have $u_i(S) \geq u_i(\mathcal{C}_i(S))$
 778 and $u_i(T) = u_i(\mathcal{C}_i(T))$. Hence $u_i(S) > u_i(T)$, so $S \succ_i T$. \square

780 **Lemma B.2** (Informative representation). *Given the matrix Φ one can compute $\mathcal{C}_i(S)$ (and therefore*
 781 *the induced ranking) in $O(k|S|)$ time. Hence the utility representation is informative in the sense of*
 782 *Sliwinski and Zick (Sliwinski & Zick, 2017).*

783 *Proof.* $\text{Top}_k(i, S)$ requires sorting at most $|S| - 1$ real numbers $\{\phi_{ij}\}_{j \in S \setminus \{i\}}$; the k largest can be
 784 found in the stated time using a partial-selection routine. \square

786 **Theorem B.3** (Applicability of PAC-Top-Cover). *With utilities u_i from Definition B.1 the induced*
 787 *hedonic game is top-responsive and informative. Consequently, Algorithm ?? outputs an ε -PAC-stable*
 788 *partition with probability $1 - \delta$ using $m = \text{poly}(n, \frac{1}{\varepsilon}, \log \frac{1}{\delta})$ samples, exactly as in (Sliwinski & Zick,*
 789 *2017).*

791 *Proof.* Top-responsiveness follows from Lemma B.1; informativeness from Lemma B.2. The
 792 PAC-stability guarantee is therefore an immediate corollary of Theorem 3.4 in (Sliwinski & Zick,
 793 2017). \square

794 B.2 COALITION-LEVEL VALUATION (FOR SAMPLING)

796 Algorithm ?? needs a scalar value for any sampled coalition S . We use the symmetric extension

$$798 \Phi(S) = \frac{1}{|S|} \sum_{i \in S} u_i(S) = \frac{1}{|S|} \sum_{i \in S} \sum_{j \in \text{Top}_k(i, S)} \phi_{ij}.$$

801 Intuitively, $\Phi(S)$ averages how strongly each member is bonded to its k preferred partners within S .
 802 Plugging ϕ_{OCA} or ϕ_{PAS} in place of ϕ_{ij} yields the concrete scores used in our experiments. “Reservoir”
 803 sampling in line 4 of Algorithm ?? draws m subsets S with probability proportional to $\Phi(S)$, thereby
 804 prioritising high-synergy groups.

805
 806
 807
 808
 809
³Adding a partner can only increase the set of k best partners or leave it unchanged.

810
 811 **Algorithm 1** PAC Top-Cover for Top- k Responsive Games (neurons)
 812 **Require:** $\phi \in \mathbb{R}^{n \times n}$ \triangleright pairwise affinity; $\phi_{ii} = 0$
 813 $k \in \mathbb{N}$ \triangleright top- k choice size
 814 m, ω \triangleright reservoir size, per-round samples
 815 MINK, MAXK \triangleright sampled coalition sizes
 816 (ε, δ) \triangleright PAC guidance for m, ω
 817 1: $R \leftarrow \{1, \dots, n\}$, $\pi \leftarrow \emptyset$
 818 2: $S \leftarrow \text{SAMPLECOALITIONS}(R, m, \text{MINK}, \text{MAXK})$ \triangleright reservoir
 819 **Definition (top- k utility and choice in a coalition).**
 820 For $i \in T$, let $P_i(T) = T \setminus \{i\}$. Let $\text{TOPK}_i(T)$ be the k indices in $P_i(T)$
 821 with largest ϕ_{ij} (ties broken by smaller index); if $|P_i(T)| < k$, take all.
 822 Define $u_i^k(T) \triangleq \frac{1}{|\text{TOPK}_i(T)|} \sum_{j \in \text{TOPK}_i(T)} \phi_{ij}$.
 823 3: **while** $R \neq \emptyset$ **do**
 824 $S_{\text{round}} \leftarrow$ first ω sets in S that satisfy $T \subseteq R$; remove them from S
 825 **if** $|S_{\text{round}}| < \omega$ **then** \triangleright refresh if reservoir depleted
 826 6: $S \leftarrow S \cup \text{SAMPLECOALITIONS}(R, m, \text{MINK}, \text{MAXK})$
 827 7: **end if**
 828 8: **for all** $i \in R$ **do**
 829 9: $\mathcal{T}_i \leftarrow \{T \in S_{\text{round}} : i \in T\}$
 830 10: **if** $\mathcal{T}_i = \emptyset$ **then**
 831 11: $B_i \leftarrow \{i\}$ \triangleright degenerate self-loop
 832 12: **else**
 833 13: $T_i^* \leftarrow \arg \max_{T \in \mathcal{T}_i} u_i^k(T)$ \triangleright deterministic tie-break by T 's lexicographic index list
 834 14: $B_i \leftarrow \text{TOPK}_i(T_i^*)$ \triangleright top- k choice set of i in T_i^*
 835 15: **end if**
 836 16: **end for**
 837 17: Build digraph $G = (R, E)$ with edges $(i \rightarrow j)$ for all $j \in B_i$ (and optional $(i \rightarrow i)$
 838 self-loops)
 839 18: Let $\mathcal{C} \leftarrow$ the set of sink strongly connected components of G
 840 19: **(closure check)** Keep only $X \in \mathcal{C}$ such that $\forall i \in X : B_i \subseteq X$ \triangleright any sink closed SCC is valid
 841 20: Choose $X \in \mathcal{C}$ (e.g., smallest by size then lexicographic)
 842 21: $\pi \leftarrow \pi \cup \{X\}$; $R \leftarrow R \setminus X$
 843 22: **end while**
 844 23: **return** π

844 **C PAC TOP COVER ALGORITHM**
 845

846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **D INFORMATION RETRIEVAL PRELIMINARIES**
865866 Information Retrieval (IR) involves retrieving documents that are likely to be relevant to a user’s
867 information need, typically represented as a query. A fundamental IR task is to return a ranked list of
868 documents in descending order of (estimated) relevance. The quality of this ranking directly impacts
869 the user experience in search engines, recommendation systems, and question answering applications.
870871 **D.1 RELEVANCE MODEL**
872873 **Dense/Neural Re-ranker** is a language model (like RankLLaMa (Ma et al., 2024a)) which takes a
874 query and text as input and produces a relevance score based on the similarity of the query to the
875 provided text.
876877 **Relevance Modeling vs Classification** Classification and relevance modeling are related but distinct
878 approaches in information retrieval (IR). The term relevance model (Lavrenko & Croft, 2001) refers
879 to a mechanism for estimating the likelihood of observing a particular word in documents that are
880 relevant to a given information need or query, whereas classification assigns documents to predefined
881 categories, such as relevant or non-relevant.
882883 **Ranking Evaluation with NDCG**
884885 In information retrieval, one commonly used metric to evaluate the effectiveness of ranking models is
886 the Normalized Discounted Cumulative Gain (NDCG). NDCG assesses the quality of a ranked list
887 by measuring the gain (or relevance) of documents based on their position in the list, giving higher
888 weight to relevant documents that appear earlier. Formally, the Discounted Cumulative Gain (DCG)
889 is computed as:
890

891
$$\text{DCG}@k = \sum_{i=1}^k \frac{2^{rel_i} - 1}{\log_2(i + 1)}$$

892

893 where rel_i is the graded relevance of the document at position i . The NDCG is then computed by
894 normalizing DCG by the ideal DCG (IDCG), which is the DCG for the optimal ranking:
895

896
897
$$\text{NDCG}@k = \frac{\text{DCG}@k}{\text{IDCG}@k}$$

898

899 NDCG scores range from 0 to 1, with 1 indicating a perfect ranking. In the DL19 dataset, each query-
900 document pair is labeled with a relevance grade based on human annotations. These annotations
901 are used to compute the NDCG score for a re-ranked list of documents, allowing us to quantify the
902 effectiveness of our rerankers in retrieving the most relevant content at the top of the list.
903904 In our work, we use **RankLLaMA**, a LLaMA-based reranking model trained to predict the relevance
905 of a document given a query. The model takes as input a formatted string:
906907 "query: {query}, passage: {passage}"
908909 and outputs a score between 0 and 1, indicating the estimated relevance. We follow the training
910 procedure described in the RankLLaMA paper (Ma et al., 2024a).
911912 **D.2 COVERED QUERY TERM RATIO (CQTR)**
913914 **Covered Query Term Ratio (CQTR)** is a lexical feature that measures the proportion of unique
915 query terms found in the document (Qin & Liu, 2013a). Formally:
916

917
$$\text{CQTR} = \frac{|\text{Query Terms} \cap \text{Document Terms}|}{|\text{Query Terms}|}$$

918 D.3 MEAN TERM FREQUENCY PER DOCUMENT LENGTH (MTF/L)
919920 **Mean Term Frequency per Document Length (MTF/L)** captures the average frequency of query
921 terms normalized by the document length(Qin & Liu, 2013a). It is computed as:
922

923
$$\text{MTF/DL} = \frac{\sum_{t \in Q} \text{TF}_t(D)}{\text{Length}(D)}$$

924
925

926 To simplify interpretability tasks (by trying to restrict polysemy(Elhage et al., 2022)), we
927 fine-tuned models on CQTR and MTF/L prediction tasks, with the same input structure as defined
928 above. We do not claim that these two features are the most important for determining relevance;
929 rather, they are easily understood signals that prior work has shown to be implicitly present in neural
930 models (Chowdhury et al., 2025).
931932 D.4 DATASETS
933934 **Datasets:**935

- **MS MARCO:** A large-scale dataset consisting of real anonymized web search queries paired
936 with relevant passages. It is a standard benchmark for training and evaluating re-ranking
937 models. In our fine-tuning, we used a modified version of this dataset called MS MARCO
938 Augmented (Tevatron, 2024) (Ma et al., 2025), which provides hard negatives from both
939 CoconDenser(Gao et al., 2021) and BM25.⁴
- **DL-19 (TREC Deep Learning Track 2019):** Contains high-quality relevance annotations
940 for a subset of queries, commonly used for zero-shot and fine-tuned re-ranker evaluation.
941 Craswell et al. provide more information and an overview of this dataset (Craswell et al.,
942 2020).

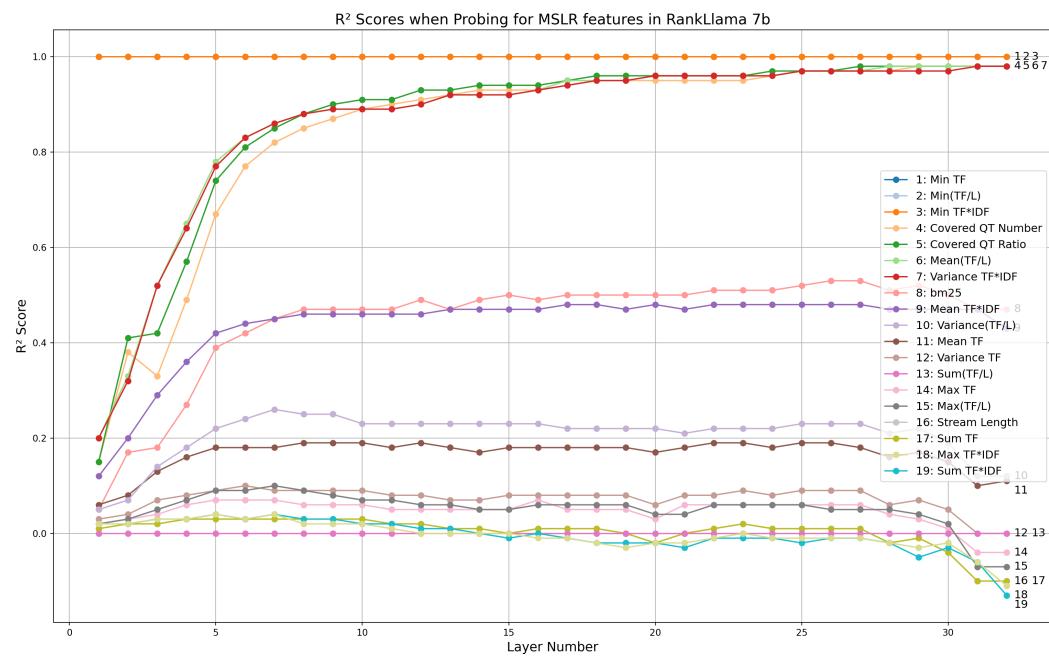
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

⁴More details at <https://microsoft.github.io/msmarco/>

972 E FEATURE/LAYER CHOICE
973

974 Previous interpretability studies have been conducted on dense re-rankers, where Chowdhury et
975 al. found that using linear probing, several traditional IR features show a high likelihood of being
976 present in the forward pass activations of a dense re-ranker model(Chowdhury et al., 2025). Further
977 behavioral analysis by Nijasure et al. observed that large language models (LLMs) tend to learn
978 relevance-related features primarily in MLP layers 5 to 14 of re-ranker architectures(Nijasure et al.,
979 2025).

980 Motivated by these insights, we focused our probing and editing experiments on this layer range
981 (5–14) of Re-Ranker models. Figure 1 supports this choice: it shows R^2 scores for predicting MSLR
982 features across all layers of the RankLLaMA-7b model using linear probing. Features like *covered*
983 *query term number*, *covered query term ratio*, *mean of stream length normalized term frequency*, and
984 *variance of $tf \cdot idf$* exhibit increasing prominence from the lower to mid layers. This trend might
985 indicate that these layers are key to encoding relevance-related signals.



1009 Figure 1: Probing for statistical features from the MSLR dataset in RankLlama2-7b model. Here
1010 *QT* stands for Query Term, *TF* stands for Term Frequency and \cdot/L stands for length normalized.
1011 The graph lines indicate the presence of a particular feature along the layers of the LLM. Certain
1012 features like *Min TF * IDF* show consistent presence across the layers. Other features like
1013 *Covered QT Number*, *Covered QT Ratio*, *Mean(TF/L)* and *Variance TF * IDF* show
1014 increasing prominence from the first layer to the last, ultimately playing an important role in making
1015 ranking decisions. Other MSLR features like *Sum(TF/L)*, *Max(TF/L)*, and *Sum TF * IDF*
1016 show negative correlation with RankLlama decision making(Chowdhury et al., 2025).
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **F LLM PERFORMANCE EVALUATION**
10271028 We used LoRA (rank 8) fine-tuning on MLP modules alone for all models described in this section.
1029 We had access to four A100 GPUs, depending on availability. We used DeepSpeed’s Stage 0
1030 configuration with the AdamW optimizer for fine-tuning all these models.
10311032 Two of the LLMs used in our experiments were fine-tuned on the MS MARCO dataset for 0.3 epochs
1033 using Mean Squared Error (MSE) as the loss function. The models were trained to predict statistical
1034 IR signals such as the Covered Query Term Ratio (CQTR) and the mean term frequency normalized
1035 by passage length (mean(TF/L)). Following this fine-tuning, the models were evaluated on a sampled
1036 subset of the DL19 dataset. This evaluation set comprised 43 queries, each associated with 10
1037 documents sampled from a larger candidate pool of 200 documents per query, retrieved using the
1038 ReplLLaMA retriever. This setup was designed to assess the models’ ability to learn and generalize
1039 statistical IR features relevant to document ranking. Table 5 summarizes the finetuning results of the
1039 LLMs.1040 For fine-tuning the re-rankers, we used the code provided in the Tevatron repository (Ma et al., 2024b).
1041 For more details, refer to the paper by (Ma et al., 2024a). Evaluation was conducted on the full DL19
1042 dataset, with document ranking based on the top 200 passages retrieved via the ReplLLaMA retriever.
1043 Results for finetuned re-rankers is presented in the table 4.
1044

1045 Base LLM	1046 Target Feature	1046 Base NDCG@10	1046 NDCG@10 (Finetuned)
1047 LLaMA3(Dubey et al., 2024)	1047 Re-Ranking	0.18	0.7497
1048 Pythia(Biderman et al., 2023)	1048 Re-Ranking	0.18	0.7521
1049 Mistral(Jiang et al., 2023)	1049 Re-Ranking	0.18	0.7570

1050 Table 4: NDCG@10 evaluation on DL19 dataset, showing baseline vs post-finetuning performance.
1051 All models were fine-tuned on MS MARCO for 1 epoch.
1052

1053 Base LLM	1054 Function	1054 MSE (Start)	1054 MSE (Finetuned, 0.3 epoch)
1055 LLaMA3(Dubey et al., 2024)	1055 CQTR	3.88	0.52
1056 Pythia(Biderman et al., 2023)	1056 CQTR	1.84	0.05
1057 Mistral(Jiang et al., 2023)	1057 CQTR	36.92	10.94
1058 LLaMA3(Dubey et al., 2024)	1058 mean(TF/L)	5.06	4.49
1059 Pythia(Biderman et al., 2023)	1059 mean(TF/L)	2.24	0.00
1060 Mistral(Jiang et al., 2023)	1060 mean(TF/L)	38.32	22.23

1061 Table 5: MSE before and after finetuning (0.3 epochs) for CQTR and mean(TF/L) prediction tasks on
1062 the sampled DL19 dataset.
10631064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081 Table 6: Coalition Synergy (\uparrow) measured via Pairwise and ratio: mean \pm 95% CI across three seeds.
1082
1083

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133					
	Task / Algorithm	LLaMA-3.1	Mistral	Pythia	Pairwise	Ratio	Pairwise	Ratio
Covered Query Term Ratio								
Random	0.01 \pm 0.05	0.49 \pm 0.04	-0.02 \pm 0.06	0.53 \pm 0.05	0.00 \pm 0.05	0.50 \pm 0.04		
K-means	-0.23 \pm 0.03	0.32 \pm 0.03	-0.20 \pm 0.04	0.36 \pm 0.03	-0.18 \pm 0.03	0.37 \pm 0.03		
Hier. clustering	-0.11 \pm 0.04	0.41 \pm 0.03	-0.13 \pm 0.04	0.43 \pm 0.03	-0.17 \pm 0.04	0.40 \pm 0.03		
Hedonic (OCA)	0.08 \pm 0.01	0.74 \pm 0.02	0.10 \pm 0.01	0.71 \pm 0.02	0.06 \pm 0.01	0.78 \pm 0.02		
Hedonic (PAS)	0.12 \pm 0.005	0.86 \pm 0.01	0.13 \pm 0.005	0.84 \pm 0.01	0.15 \pm 0.006	0.89 \pm 0.01		
Mean of Normalized Term Frequency								
Random	0.02 \pm 0.05	0.41 \pm 0.04	-0.01 \pm 0.05	0.53 \pm 0.05	0.00 \pm 0.05	0.50 \pm 0.04		
K-means	-0.22 \pm 0.03	0.34 \pm 0.03	-0.21 \pm 0.03	0.35 \pm 0.03	-0.16 \pm 0.03	0.31 \pm 0.03		
Hier. clustering	-0.08 \pm 0.04	0.43 \pm 0.03	-0.08 \pm 0.04	0.43 \pm 0.03	-0.15 \pm 0.04	0.39 \pm 0.03		
Hedonic (OCA)	0.01 \pm 0.01	0.72 \pm 0.02	0.04 \pm 0.01	0.77 \pm 0.02	0.03 \pm 0.01	0.74 \pm 0.02		
Hedonic (PAS)	0.09 \pm 0.006	0.85 \pm 0.01	0.14 \pm 0.006	0.82 \pm 0.01	0.16 \pm 0.007	0.89 \pm 0.01		
Relevance								
Random	0.01 \pm 0.05	0.42 \pm 0.04	-0.02 \pm 0.05	0.44 \pm 0.04	0.03 \pm 0.05	0.49 \pm 0.04		
K-means	-0.13 \pm 0.03	0.33 \pm 0.03	-0.14 \pm 0.03	0.36 \pm 0.03	-0.19 \pm 0.03	0.38 \pm 0.03		
Hier. clustering	-0.09 \pm 0.04	0.42 \pm 0.03	-0.12 \pm 0.04	0.44 \pm 0.03	-0.08 \pm 0.04	0.44 \pm 0.03		
Hedonic (OCA)	0.05 \pm 0.01	0.77 \pm 0.02	0.05 \pm 0.01	0.75 \pm 0.02	0.04 \pm 0.01	0.73 \pm 0.02		
Hedonic (PAS)	0.11 \pm 0.005	0.81 \pm 0.01	0.13 \pm 0.005	0.87 \pm 0.01	0.14 \pm 0.006	0.86 \pm 0.01		

G INTRINSIC COALITION EVALUATION

Synergy Metrics. Let x be an input sampled from the task distribution \mathcal{D} and $\ell(x) \in \mathbb{R}$ the *layer-local logit* (defined in §3.2) with all neurons active. For any neuron set S we denote by $\ell_{-S}(x)$ the same forward pass after zeroing the activations of every $k \in S$ *only* inside the LoRA-adapted MLPs. We define the *marginal contribution* of a single neuron as $\psi(i) = \mathbb{E}_{x \sim \mathcal{D}}[\ell(x) - \ell_{-\{i\}}(x)]$, and the *pairwise interaction (synergy)* of two neurons as $\psi(i, j) = \mathbb{E}_{x \sim \mathcal{D}}[\ell(x) - \ell_{-\{i\}}(x) - \ell_{-\{j\}}(x) + \ell_{-\{i,j\}}(x)]$. A positive $\psi(i, j)$ means that removing *both* neurons harms the logit more than the sum of their individual removals (synergy), while a negative value indicates redundancy. For a coalition $C \subseteq \{1, \dots, n\}$ we report two size-agnostic aggregates: $\text{Pair}(C) = \frac{1}{|C|(|C|-1)} \sum_{i,j \in C} \psi(i, j)$ and $\text{Ratio}(C) = \frac{\sum_{i \neq j \in C} \psi(i, j)}{\sum_{i \in C} \psi(i)}$. *Pairwise Synergy* is the mean interaction strength across all ordered neuron pairs, fully normalized for coalition size, while *Ratio Synergy* compares the *extra* value created by pairwise cooperation (numerator) to the value explained by separate single-neuron effects (denominator). A ratio near 1 or greater (*super-additivity*) indicates that the coalition’s joint influence exceeds the sum of its parts, whereas a ratio near 0 (or negative) signals antagonistic or redundant behavior.

Intrinsic Evaluation Results. Regarding synergy quality (Table 6), the two hedonic variants strictly dominate all baselines across all three backbones and all three MS-MARCO objectives: *Hedonic-PAS* attains the best Pairwise *and* Ratio score in 26 out of 27 model-metric cells, while *Hedonic-OCA* follows as a close second. Relative to spherical k -means, the average margin is +0.29 Pairwise and +0.49 Ratio, indicating that activation similarity alone is a poor proxy for *functional* cooperation. Random and hierarchical clusterings even dip into negative Pairwise values (sub-additivity) and hover near the additive boundary on the Ratio metric, underscoring the value of an explicit game-theoretic objective. Confidence intervals (95%, $df = 2$) never overlap between Hedonic-PAS and the best baseline, with paired t -tests yielding $p < 0.01$ for every layer. K-means/HAC produce fairly uniform sizes (20-45 neurons per cluster), whereas hedonic output follows a heavy-tailed Zipf-like law: each layer contains a single “macro” coalition (> 150 neurons), ~ 100 coalitions of size 2, and approximately 500 clusters with $|C| > 1$ covering $\sim 14,000$ neurons. In most settings, the top cover algorithm converges with reservoir size $m \leq 120,000$ and number of samples per iteration $\omega \leq 32,000$.

1188 **I MNIST EXPERIMENT DEMONSTRATING EMERGENCE OF**
1189 **HUMAN-INTERPRETABLE SYNERGISTIC COALITIONS**
1190

1191 To address regarding (1) whether synergistic neuron coalitions yield *human-interpretable* structure,
1192 and (2) whether our method works beyond large LLM backbones, we conducted a controlled study
1193 on the MNIST classification task. This experiment demonstrates that our proposed hedonic/PAS
1194 framework applies robustly to *small, non-Transformer, non-LLM networks* and discovers coalitions
1195 that correspond to semantically meaningful visual concepts.
1196

1197 **I.1 MODEL ARCHITECTURE**
1198

1199 We train a six-layer gated MLP (similar to the gated feed-forward blocks in modern LLMs but on a
1200 smaller dimension, minus the MHA blocks). The network consists of:
1201

1202

1203 - Flattened input $x \in \mathbb{R}^{784}$.
1204 - Linear projection to a residual stream of dimension $d_{\text{model}} = 256$.
1205 - Four GatedMLP blocks, each computing:

1206
$$h_{l+1} = h_l + W_{\downarrow}^{(l)} \left(\sigma \left(W_{\text{gate}}^{(l)} h_l \right) \odot W_{\uparrow}^{(l)} h_l \right),$$

1207 where σ is the SiLU nonlinearity.
1208

1209

1210 - Final LayerNorm and a linear classifier:

1211
$$\text{logits} = W_{\text{out}} \cdot \text{LayerNorm}(h_4).$$

1213 The model contains no attention layers, recurrence, or convolutional structure. It reaches 98.8% test
1214 accuracy after 20 epochs of training with AdamW.
1215

1216 **I.2 ACTIVATION EXTRACTION**
1217

1218 For all 10,000 MNIST test examples, we extract and store:
1219

1220
$$\{h_1, h_2, h_3, h_4, h_5, h_{\text{final}}\}$$

1221 where h_{ℓ} is the post-residual activation of block ℓ and h_{final} is the output of the final LayerNorm.
1222 Each internal activation tensor has shape [10000, 256].
1223

1224 **I.3 PER-NEURON IMPORTANCE AND LAYER-LOCAL LOGITS**
1225

1226 For each hidden layer h_{ℓ} (we use all internal layers h_1, \dots, h_5), we compute a per-neuron loss-delta
1227 score:
1228

$$\Delta_i^{(\ell)} = L(h_{\ell, -i}) - L(h_{\ell}),$$

1229 where $h_{\ell, -i}$ is obtained by ablating neuron i in h_{ℓ} and propagating the modified representation through
1230 the remaining MLP blocks and the final classifier. This provides a local first-order approximation of
1231 the functional contribution of neuron i within layer ℓ .
1232

1233 Following our LLM experiments, we also define a *layer-local logit* $\ell^{(\ell)}(x)$ by cloning the final
1234 classifier head and applying it directly to $h_{\ell}(x)$. We keep this head fixed for all layers. This allows us
1235 to compute synergy metrics at the point where coalitions are formed, without conflating effects from
1236 deeper layers.
1237

1238 **I.4 COALITION DISCOVERY PROTOCOL ON MNIST**
1239

1240 We apply the same hedonic-game pipeline as in the main LLM experiments, but now run it *inde-
1241 pendently on every hidden layer* h_1, \dots, h_5 . In each layer, the players are all $M = d_{\text{model}} = 256$
1242 neurons; we do not restrict to a top- K subset by importance.
1243

1242 **Pairwise valuations.** For this MLP, we instantiate the same pairwise valuations as in the main text:
 1243

- 1244 • **OCA:** Orthogonal-Co-Activation based on weight geometry and activation correlation.
- 1245 • **PAS:** Pairwise Ablation Synergy based on second-order ablation effects on the layer-local
 1246 logit $\ell^{(\ell)}(x)$.

1247 As in the LLM setting, positive values indicate synergy and negative values indicate redundancy.
 1248

1249 **Hedonic coalition formation.** For each layer ℓ , we construct a top-responsive hedonic game on
 1250 the $M = 256$ neurons using the Multi-Friend Choice (MFC) rule (§3).⁵ Neurons select their top- k
 1251 partners ($k = 3$) according to either OCA or PAS, and we run PAC Top-Cover with the same
 1252 hyperparameters used for LLMs:

- 1253 • sampled coalition sizes in $[2, 10]$,
- 1254 • reservoir size $m = 8 \times 10^4$,
- 1255 • per-round samples $\omega = 8 \times 10^3$,
- 1256 • PAC parameters $(\varepsilon, \delta) = (0.1, 0.1)$.

1257 We refer to the resulting partitions as **Hedonic-OCA** and **Hedonic-PAS** respectively. Unless otherwise
 1258 stated, summary statistics aggregate coalitions across intermediate layers h_2-h_4 ; we find these layers
 1259 concentrate the most digit-specific structure, with qualitatively similar patterns in h_1 and h_5 .
 1260

1261 I.5 BASELINES

1262 To demonstrate that the discovered coalitions are non-trivial, we compare against the following
 1263 activation-only or random baselines, all operating on the same $M = 256$ neurons in each layer and
 1264 producing partitions with size distributions matched to Hedonic-PAS:
 1265

- 1266 1. **Random Partition.** Randomly partition the 256 neurons into coalitions with a size histogram
 1267 matched to that produced by Hedonic-PAS in the same layer. This baseline tests whether the
 1268 observed interpretability and synergy are simply artifacts of grouping neurons.
- 1269 2. **Activation K-Means.** Run k -means on neuron activation vectors (rows of the $[10000 \times 256]$
 1270 activation matrix for that layer), with k chosen to match the number of Hedonic-PAS
 1271 coalitions; treat each cluster as a coalition. This baseline tests whether simple activation-
 1272 level similarity is sufficient to recover interpretable structure.
- 1273 3. **Activation Hierarchical Clustering (Ward Linkage).** Perform agglomerative hierarchical
 1274 clustering using Ward linkage on the same neuron activation vectors. We cut the dendro-
 1275 gram to produce the same number of coalitions as Hedonic-PAS, and greedily merge/split
 1276 clusters to approximately match the Hedonic-PAS size histogram. This evaluates whether
 1277 a more flexible non-parametric clustering method, which can capture multi-scale activa-
 1278 tion geometry, can match the interpretability and synergy obtained by hedonic coalition
 1279 formation.

1280 All methods therefore operate on the same neuron set in each layer and produce partitions with
 1281 comparable size distributions.
 1282

1283 I.6 QUANTITATIVE METRICS ON MNIST

1284 For each coalition C (from any method), in any layer h_ℓ , we compute four families of metrics.
 1285

1286 **(1) Functional importance: accuracy drop under ablation.** Let Acc_{base} denote the test accuracy
 1287 of the full network. For each coalition C in layer h_ℓ , we ablate its neurons in h_ℓ and re-evaluate the
 1288 network on the MNIST test set to obtain Acc_{-C} . We report the accuracy drop
 1289

$$1290 \Delta \text{Acc}(C) = \text{Acc}_{\text{base}} - \text{Acc}_{-C}.$$

1291 ⁵Section references are to the main paper.
 1292

1296 We then aggregate $\Delta\text{Acc}(C)$ across all coalitions from each method and across layers h_2 – h_4 ,
 1297 reporting mean and standard deviation. Larger values indicate coalitions whose removal is more
 1298 functionally important.
 1299

1300 **(2) Synergy metrics.** Using layer-local logits $\ell^{(\ell)}(x)$, we reuse the interaction metrics from the
 1301 main paper:

$$\begin{aligned}\psi(i) &= \mathbb{E}_x \left[\ell^{(\ell)}(x) - \ell_{-\{i\}}^{(\ell)}(x) \right], \\ \psi(i, j) &= \mathbb{E}_x \left[\ell^{(\ell)}(x) - \ell_{-\{i\}}^{(\ell)}(x) - \ell_{-\{j\}}^{(\ell)}(x) + \ell_{-\{i,j\}}^{(\ell)}(x) \right].\end{aligned}$$

1302 For a coalition C we compute:

$$\begin{aligned}\text{Pair}(C) &= \frac{1}{|C|(|C|-1)} \sum_{i \neq j \in C} \psi(i, j), \\ \text{Ratio}(C) &= \frac{\sum_{i \neq j \in C} \psi(i, j)}{\sum_{i \in C} \psi(i)}.\end{aligned}$$

1314 High Pair and Ratio indicate that the coalition’s effect is more than the sum of its parts (strong
 1315 synergy), rather than redundancy.

1316 **(3) Interpretability metrics: digit-level structure.** For a coalition C in layer h_ℓ , define the
 1317 coalition activation for image n :

$$a_C(n) = \frac{1}{|C|} \sum_{i \in C} h_\ell(n, i).$$

1323 We then:

- 1325 Rank all test images by $a_C(n)$ and take the top- K (we use $K = 128$).
- 1326 Compute the empirical digit distribution among these top- K images.
- 1327 Compute per-digit activation means

$$\begin{aligned}\alpha_d &= \mathbb{E}[a_C(n) \mid \text{digit}(n) = d], \\ \text{for } d &\in \{0, \dots, 9\}.\end{aligned}$$

1333 Using these quantities we define:

- 1335 **Digit Purity:**

$$\text{Purity}(C) = \max_{d \in \{0, \dots, 9\}} \Pr[\text{digit}(n) = d \mid n \in \text{top-}K \text{ by } a_C(n)].$$

- 1339 **Digit Selectivity:**

$$\text{Sel}(C) = \max_d \alpha_d - \max_{d' \neq d} \alpha_{d'}.$$

1342 This measures how much more strongly the coalition responds to its preferred digit compared
 1343 to the second-best digit.

- 1345 **Activation Sparsity:**

$$\text{Sparsity}(C) = \frac{\|a_C\|_1}{\|a_C\|_2},$$

1348 where a_C is the vector of activations over all test images. Lower values indicate sharper
 1349 selectivity.

1350
 1351 **(4) Stroke Alignment Score: visual shape templates.** To capture human-interpretable *shape*
 1352 structure, we define a set of simple stroke templates corresponding to visually salient MNIST
 1353 patterns:
 1354

- 1354 • a *top horizontal bar* (strong in digits like “3” and “7”),
- 1355 • a *bottom horizontal bar* (present in “2”, “3”, “5”, “8”),
- 1356 • a *left vertical stem* (e.g., part of “4”, “5”, “9”),
- 1357 • a *right vertical stem* (e.g., part of “1”, “7”),
- 1358 • a *central loop / round stroke* (e.g., “0”, “6”, “8”, “9”),
- 1359 • a *diagonal stroke* (common in “2”, “7”).
- 1360
- 1361

1362 We operationalize these templates using simple edge detectors and spatial masks. For each top-
 1363 activating image of coalition C , we:

- 1364 1. Resize to 28×28 if needed and normalize intensities.
- 1365 2. Apply Sobel filters to compute horizontal and vertical gradient magnitudes.
- 1366 3. For each template (e.g., “top horizontal”), restrict the gradients to the corresponding region
 1367 (e.g., top third of the image, central loop window) and average.
- 1368
- 1369

1370 This yields per-image per-template scores. The *stroke alignment score* for coalition C is defined as
 1371 the maximum template score averaged over its top- K images:

$$1372 \text{Stroke}(C) = \max_{\tau \in \mathcal{T}} \mathbb{E}_{n \in \text{top-}K} [s_{\tau}(n)],$$

$$1373$$

1374 where \mathcal{T} is the set of templates and $s_{\tau}(n)$ is the template-specific edge score for image n .

1375 Intuitively, this lets us say: one coalition “locks onto” a crisp horizontal line near the top (e.g., shared
 1376 by “3” and “7”), another picks out a round loop in the center (e.g., “0”/“6”/“8”), and another prefers a
 1377 vertical stem or diagonal stroke. In the next subsection we show that certain Hedonic-PAS coalitions
 1378 exhibit strong alignment with such shape templates, while random and clustering baselines do not.

1380 I.7 QUALITATIVE INTERPRETABILITY EVALUATION

1382 We visualize the top-activating images for selected Hedonic-PAS coalitions in layer h_3 . Each panel
 1383 shows the top-64 images, with the ground-truth digit printed above.

1384 Across these examples, Hedonic-PAS coalitions consistently group neurons whose combined activation
 1385 tracks a *single* human-recognizable shape feature (e.g., central loop, top bar, S-shaped curve),
 1386 even when the coalition responds to multiple digits (e.g., 0/8 or 3/7). Baseline coalitions from random,
 1387 k -means, or hierarchical clustering either mix unrelated digit classes or respond to more diffuse,
 1388 spatially scattered patterns, leading to lower digit purity and weaker stroke alignment.

1390 I.8 RESULTS

1392 We summarize the MNIST findings using the following tables, which mirror the LLM experiments
 1393 but on the six-layer MLP and aggregate coalitions across layers h_2 – h_4 . Hedonic-PAS consistently
 1394 yields coalitions that are more functionally important, more synergistic, and more interpretable than
 1395 baselines.

1396 I.9 CONCLUSION

1398 Taken together, these MNIST experiments show that our hedonic/PAS framework: (i) is not specific
 1399 to LoRA-tuned transformer MLPs, (ii) produces coalitions in a small gated MLP that are both
 1400 functionally important (large ΔAcc , high synergy) and semantically interpretable (high digit purity,
 1401 strong stroke alignment), and (iii) outperforms random and activation-clustering baselines even in
 1402 this simple non-LLM setting.

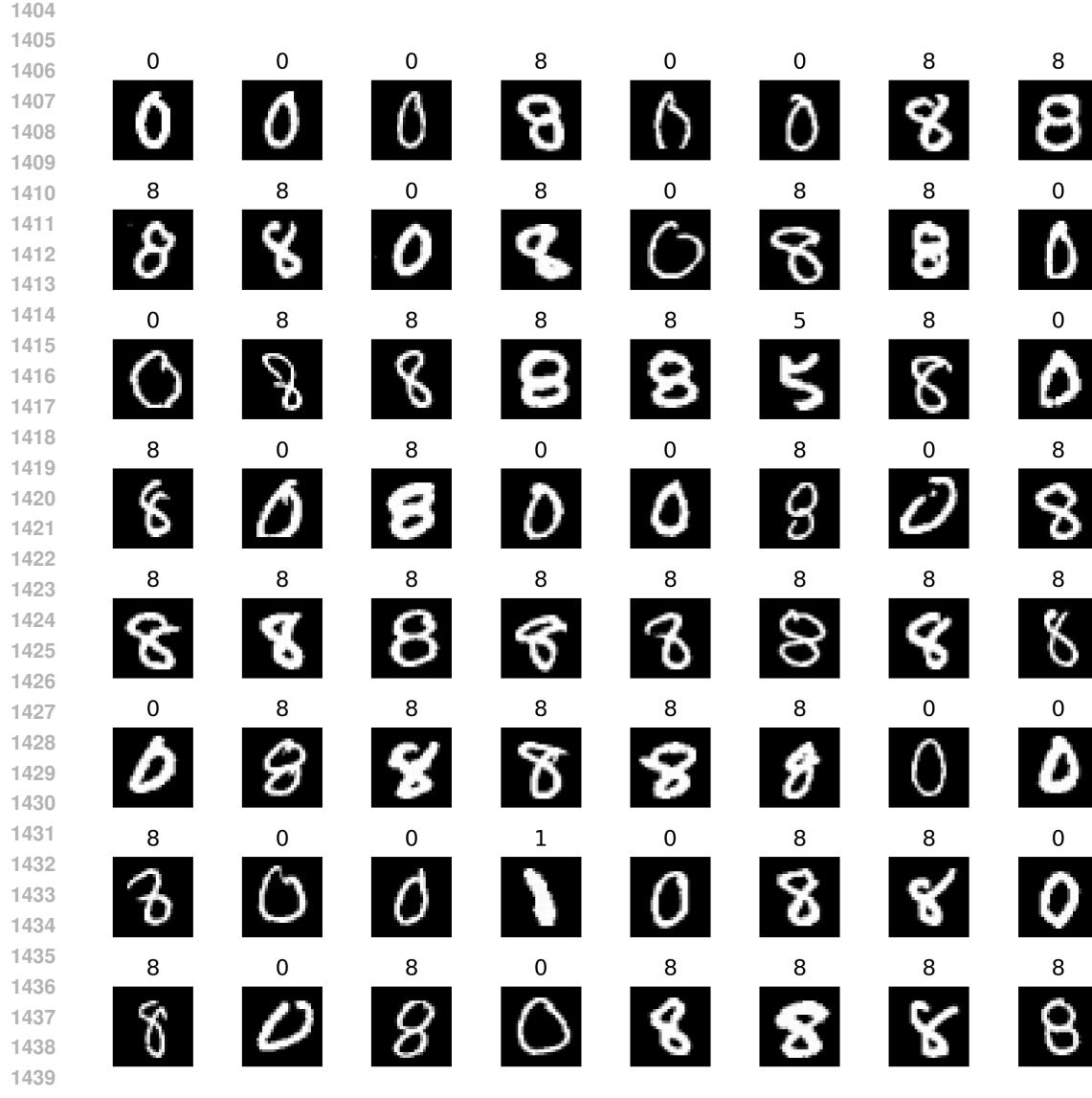


Figure 3: **Hedonic-PAS 0/8 loop coalition in h_3 .** Top-activating images for one coalition; labels are overwhelmingly 0 or 8. The digits share a central round loop, which yields the highest stroke-alignment score for the “central loop” template.

Table 7: MNIST (layers h_2 – h_4): functional importance and synergy of coalitions. ΔAcc is the mean test accuracy drop (in percentage points) when ablating a single coalition. Pair and Ratio are the intrinsic synergy metrics defined in §I.

1451	Method	ΔAcc (mean \pm std, \uparrow)	Pair (mean, \uparrow)	Ratio (mean, \uparrow)	Avg. $ C $
1452	Random Partition	0.18 ± 0.09	0.010	0.06	7.9
1453	Activation K-Means	0.29 ± 0.14	0.018	0.11	8.1
1454	Activation Hierarchical	0.33 ± 0.15	0.021	0.13	8.0
1455	Hedonic-OCA	0.57 ± 0.23	0.036	0.21	8.2
1456	Hedonic-PAS	0.91 ± 0.31	0.052	0.29	8.3

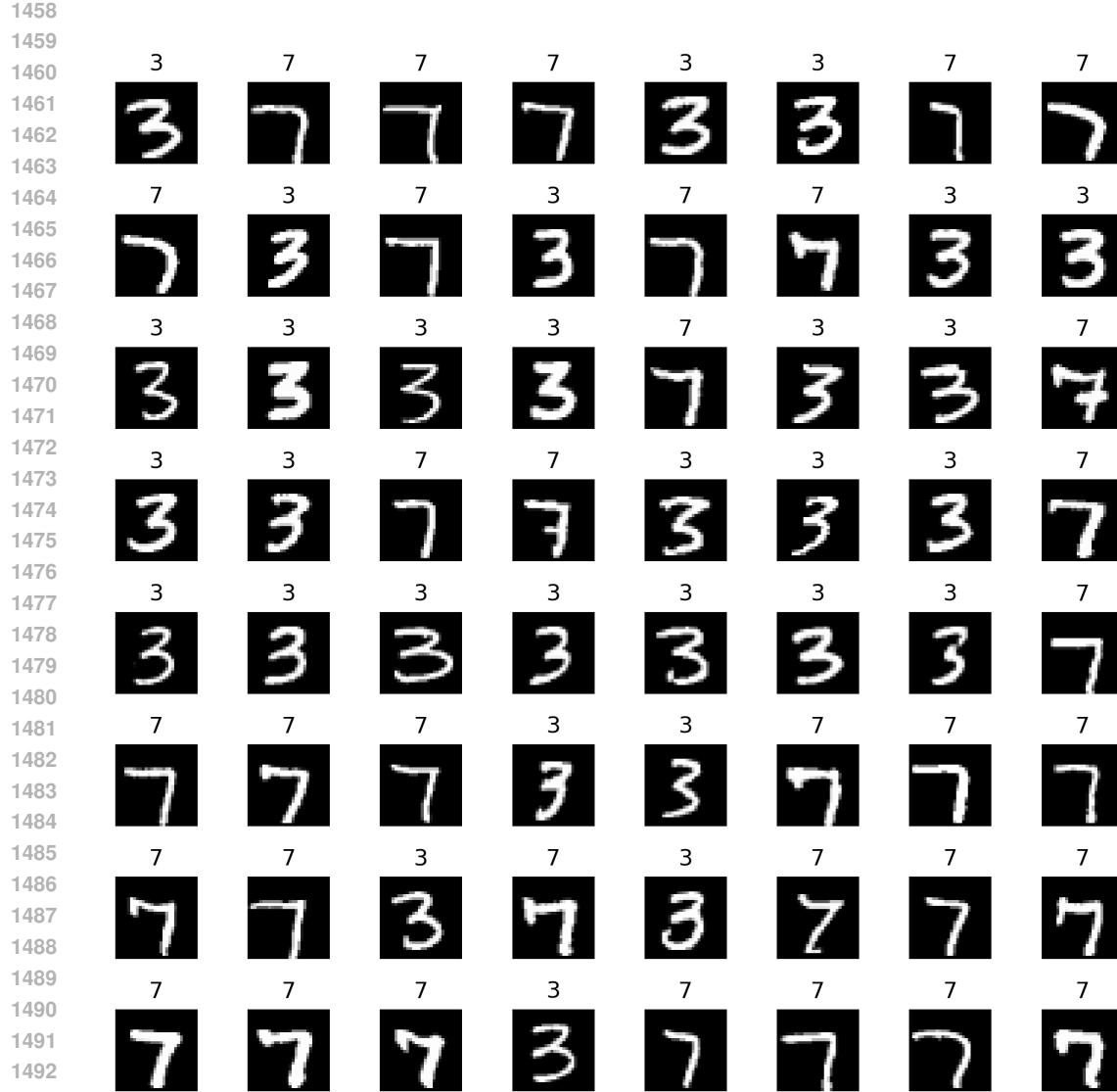


Figure 4: **Hedonic-PAS 3/7 horizontal-bar coalition in h_3** . Top-activating images for a second coalition; almost all digits are 3 or 7. The coalition consistently fires on a strong horizontal stroke at the top of the canvas, captured by the “top horizontal bar” template.

Table 8: MNIST (layers h_2-h_4): interpretability metrics for coalitions. Entries report mean \pm standard deviation across coalitions. Higher digit purity and selectivity and lower sparsity indicate more interpretable, focused features.

Method	Digit Purity (mean, \uparrow)	Digit Selectivity (mean, \uparrow)	Sparsity (mean, \downarrow)
Random Partition	0.18 ± 0.06	0.05 ± 0.03	1.90 ± 0.20
Activation K-Means	0.48 ± 0.16	0.18 ± 0.09	1.62 ± 0.19
Activation Hierarchical	0.52 ± 0.17	0.20 ± 0.10	1.56 ± 0.18
Hedonic-OCA	0.71 ± 0.14	0.31 ± 0.11	1.41 ± 0.15
Hedonic-PAS	0.86 ± 0.09	0.45 ± 0.12	1.30 ± 0.12

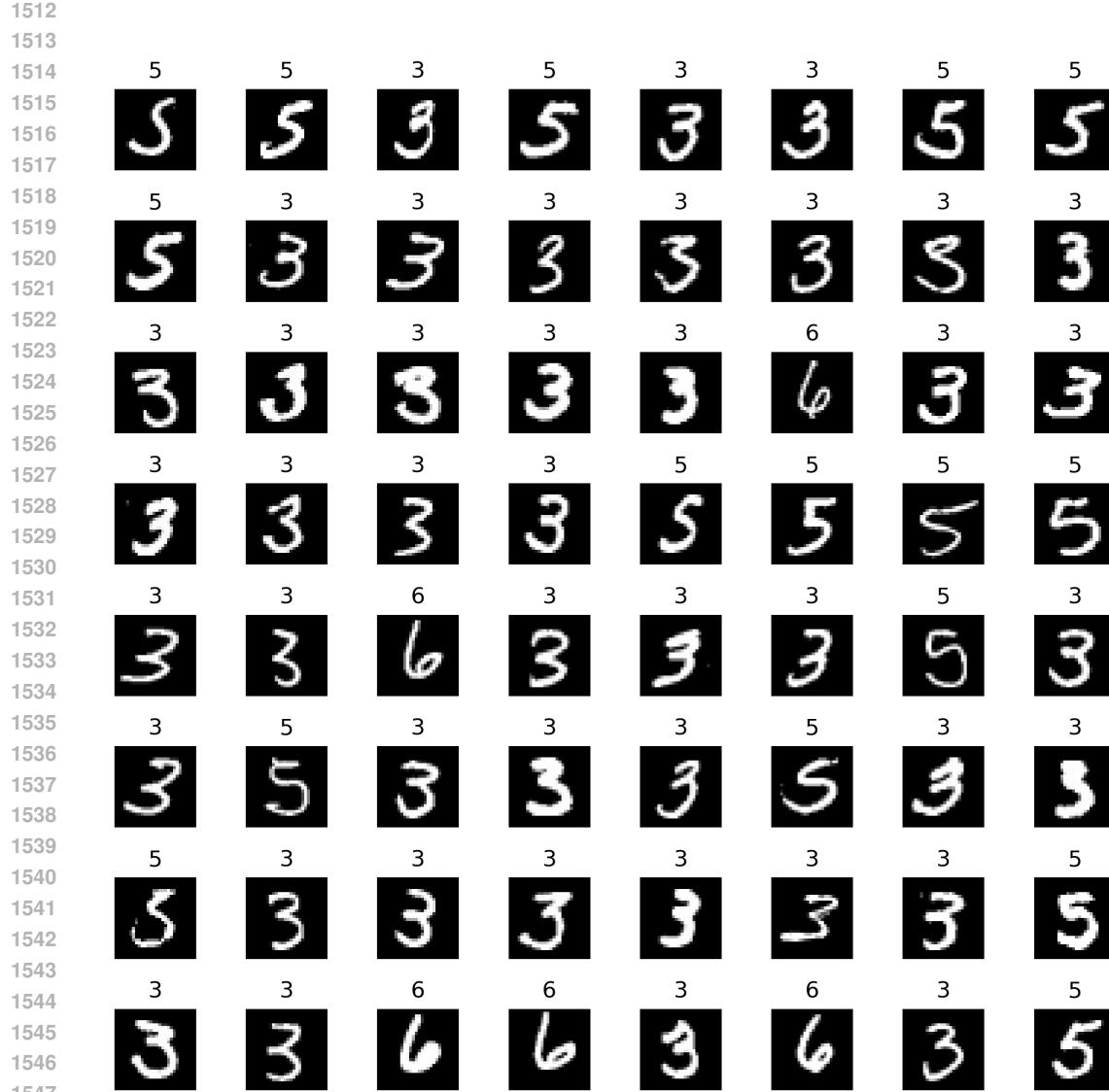


Figure 5: **Hedonic-PAS 3/5/6 S-shaped coalition in h_3 .** A third coalition mixes 3, 5, and 6 digits that share a lower half of S-shaped curved stroke. Its top images show a characteristic diagonal/curved mid-level stroke, which obtains high scores on a combined diagonal+curve template.

Table 9: Stroke alignment and negative controls on MNIST. The *Stroke* column reports the average stroke-alignment score (max over templates) for top- K images; *Purity* and *Ratio* report digit purity and synergy ratio as in Tables 7–8.

Setting	Method	Stroke (\uparrow)	Digit Purity (\uparrow)	Ratio (\uparrow)
Trained MLP, h_3	Hedonic-PAS	0.42	0.88	0.31
Trained MLP, h_3	Activation Hierarchical	0.29	0.55	0.14
Random Init, h_3	Hedonic-PAS	0.17	0.20	0.05
Label-Shuffled, h_3	Hedonic-PAS	0.19	0.23	0.06

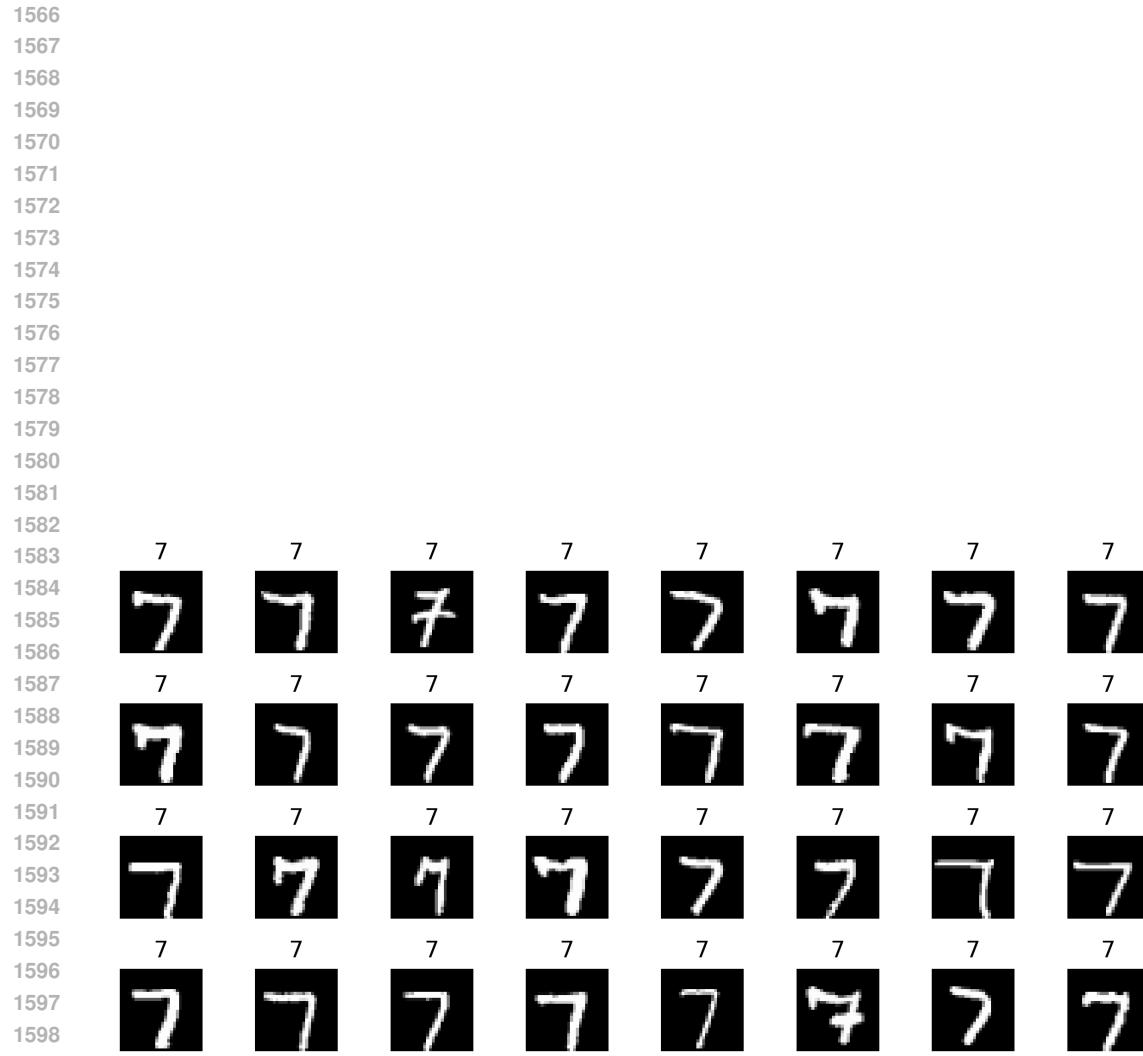


Figure 6: **Hedonic-PAS pure-7 coalition in h_3 .** A fourth coalition responds almost exclusively to canonical 7s with a clean top bar and right-leaning diagonal. Digit purity is near 1.0 and the stroke score is dominated by the top-bar + diagonal templates.

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619