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ABSTRACT

Fine-tuned Large Language Models (LLMs) encode rich task-specific features, but
the form of these representations—especially within MLP layers—remains unclear.
Empirical inspection of LoRA updates shows that new features concentrate in
mid-layer MLPs, yet the scale of these layers obscures meaningful structure. Prior
probing suggests that statistical priors may strengthen, split, or vanish across depth,
motivating the need to study how neurons work together rather than in isolation.
We introduce a mechanistic interpretability framework based on coalitional game
theory, where neurons mimic agents in a hedonic game whose preferences capture
their synergistic contributions to layer-local computations. Using top-responsive
utilities and the PAC-Top-Cover algorithm, we extract stable coalitions of neu-
rons—groups whose joint ablation has non-additive effects—and track their transi-
tions across layers as persistence, splitting, merging, or disappearance.
Applied to LLaMA, Mistral, and Pythia rerankers fine-tuned on scalar IR tasks, our
method finds coalitions with consistently higher synergy than clustering baselines.
By revealing how neurons cooperate to encode features, hedonic coalitions uncover
higher-order structure beyond disentanglement and yield computational units that
are functionally important, interpretable, and predictive across domains.

1 INTRODUCTION

Consider a large language model fine-tuned to compute semantic similarity between text pairs.
When presented with two sequences, the model outputs a scalar score, e.g. 0.76. But how is this
number internally computed? Within the millions of parameters of a transformer, such decisions
are not the work of isolated neurons, but of groups that cooperate to represent abstract features
like “semantic overlap,” “term frequency patterns,” or “syntactic alignment.” These computations
may parallel familiar retrieval metrics – e.g., some neuron coalitions might compute TF-IDF-like
statistics (Sparck Jones, 1972), others might capture cosine similarities between representations, while
still others might encode position-dependent matching signals. Traditional interpretability methods
have limitations here: probing (Gurnee et al., 2023; Hewitt & Manning, 2019) captures correlations
with labels but ignores cooperation, sparse autoencoders (SAEs) (Huben et al., 2024) disentangle
activations into monosemantic directions but overlook nonlinear dependencies, and clustering (Cao
et al., 2025; Song et al., 2024) groups neurons by statistical proximity rather than functional interaction.
What is missing is a principled way to identify synergistic neuron groups—subsets whose combined
contribution exceeds the sum of their parts. We aim to identify the computational units that organize
into stable coalitions, that potentially encode these mathematical concepts within scalar-output LLMs.

Recent work has shown that LoRA fine-tuning can teach LLMs new tasks by updating only mid-level
MLP layers, nearly matching full fine-tuning (Hu et al., 2022; Zhou et al., 2024; Nijasure et al., 2025).
Yet inspection of these LoRA weight updates reveals little obvious structure: millions of parameters
diffuse across neurons, obscuring which units encode task-specific features. We hypothesize that the
key to isolating LoRA emergent behaviour lies in identifying coalitions of neurons that consistently
co-adapt under fine-tuning. Inspired by game theory, we model neurons as agents in a hedonic
game (Dreze & Greenberg, 1980), where preferences reflect synergy with others. Though neurons are
not literally rational, stochastic gradient descent imposes a form of selection pressure: directions that
reduce loss persist, and many neurons are only useful in combination (e.g., a feature computation).
Thus, stable coalitions naturally emerge as groups of neurons that survive training together. This
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evolutionary analogy motivates the hedonic game framing: utilities capture how much a neuron’s
survival depends on its synergy with others, and stable coalitions correspond to groups of neurons
that consistently co-adapt under training. By modeling these groups as coalitions, we open a path
toward reverse-engineering their function and symbolically characterizing their emergent behavior.

Why does this matter? Beyond offering a new perspective on interpretability, coalition analysis
provides actionable insight into how task-specific features are represented and evolve. By showing
which neuron groups are functionally indispensable, our framework suggests future directions
for practical interventions such as model comparison, transfer learning, or modular editing at the
coalition level rather than at the level of individual weights. Moreover, tracking persistence, splits,
and vanishings highlights how statistical priors are refined or discarded across depth, shedding light
on the internal dynamics of fine-tuned models—information that clustering or SAE-style methods
cannot reveal. Thus, stable coalitions are not only theoretically appealing but also open a path to
understanding and eventually controlling the computational units that fine-tuning creates.

Our Contributions. We introduce a game-theoretic framework for discovering and analyzing neuron
coalitions in transformer MLPs. (1) We model neurons as players in a hedonic cooperative game
with additively separable utilities based on synergy, and solve for ε-PAC-stable outcomes using the
PAC-Top-Cover algorithm. (2) We evaluate coalitions both intrinsically and extrinsically: compared
to clustering baselines, they achieve +0.29 Pairwise and +0.49 Ratio synergy, exhibit 3–5× larger out-
of-distribution performance drops under ablation, align more strongly with IR heuristics (BM25, IDF,
query term coverage), and yield macro-features that improve predictive R2 from ∼0.20 to 0.43–0.47.
(3) Treating coalitions as “meta-neurons,” we trace their evolution across consecutive layers, finding
that most groups vanish or split while only a small fraction persist—supporting the view that deeper
MLPs act primarily as feature filters rather than creators. Applied to LLaMA, Mistral, and Pythia
LoRA rerankers, we show that hedonic coalitions consistently uncover reproducible and functionally
indispensable computational units. To our knowledge, this is the first work to use game theory to
identify, validate, and track synergistic neuron groups in fine-tuned LLMs. All code, models, and
datasets are provided with the submission.

2 BACKGROUND

We begin by outlining the fundamentals of hedonic games and their application in modeling coopera-
tive behavior. We then describe the transformer architecture with an emphasis on MLP sublayers.

2.1 HEDONIC GAMES AND PAC-STABLE COALITION FORMATION

A hedonic coalition formation game (Dreze & Greenberg, 1980) consists of a set of players N who
exhibit preferences over groups they might join. Formally, each player i ∈ N ranks all coalitions
S ⊆ N that contain i; in our setting, we assume that players have cardinal utilities over coalitions.
Given a player i ∈ N and a coalition S containing i, player i’s utility from joining S is ui(S) ∈ R,
which we later instantiate as a function of i’s strongest partners within S.

Our goal is to identify a coalition structure or partition of the player set which satisfies certain
desiderata (Aziz & Savani, 2016). Given a coalition structure π, we let π(i) designate the coalition
containing player i under π. Core stability (Bogomolnaia et al., 2002) is a key cooperative solution
concept. We say that a coalition S ⊆ N blocks a coalition structure π if every player i ∈ S strictly
prefers S to their assigned coalition π(i), i.e., ui(S) > ui(π(i)) for all i ∈ S. A coalition structure π
is core stable (or simply stable) if no blocking coalitions exist.

Enumerating agents’ preferences over all coalitions is infeasible; with n agents, each agent needs to
express their preferences over 2n−1 potential groups. Sliwinski & Zick (2017) propose using Probably
Approximately Correct (PAC) guarantees (Kearns & Vazirani, 1995; Shashua, 2009). The key insight
of this framework is to sample players’ preferences rather than utilize complete preferences over all
coalitions. Given a distribution D over coalitions, a coalition structure π̂ is called ε-PAC stable if

Pr
S∼D

[
S core blocks π̂

]
≤ ε.

Here, D is the distribution over sampled coalitions used to approximate neuron preferences. Intu-
itively, while it is possible that π̂ is not core stable, the probability of observing a blocking coalition
for π̂ under the distribution D is small.
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A PAC stabilization algorithm takes m = poly(n, 1ε , log
1
δ ) samples from D and outputs an ε-PAC

stable partition with probability at least 1 − δ. Intuitively, δ captures the probability that the m
samples we took are not representative of the ‘true’ data distribution D.

Top-Responsive Hedonic Games in Neural Networks. We estimate pairwise affinities ϕij between
“players” (neurons) from weights and co-activations. These affinities allow us to construct a hedonic
game in which each neuron evaluates coalitions based on the presence of preferred partners. To
capture this behavior, we model the setting as a top-responsive game. In a top-responsive game, every
player i associates each coalition S ∋ i with a unique choice set ch(i, S) ⊆ S that represents the
subset of partners most important to i. Preferences are then determined entirely by these choice sets:
a player prefers one coalition over another if its choice set is ranked higher, and if two coalitions
yield the same choice set, the smaller coalition is favored. This restriction makes coalition evaluation
tractable, as each neuron only needs to consider its most valued partners rather than all possible
groups.

The top responsive framework is flexible, as choice sets may consist of a single strong partner,
multiple valued partners, or even subsets selected according to synergy between members. The key
requirement is that choice sets are uniquely defined and utilities are represented in an informative
way, so that distinct choice sets correspond to distinct utility “buckets”. Under these conditions,
the Top-Covering algorithm (Alcalde & Revilla, 2004; Dimitrov & Sung, 2007) can be applied to
efficiently compute an (ε, δ) PAC-stable partition (Sliwinski & Zick, 2017). This enables us to
identify groups of neurons that form stable coalitions under the distribution of observed samples.
Further details and extensions are provided in Appendix A.1.

2.2 TRANSFORMER MLPS AND LATENT FEATURE FORMATION

Each LLM transformer block contains a gated MLP that expands the hidden state, applies a non-
linearity, and then projects it back to the model dimension. Let the hidden vector entering the MLP
at layer ℓ be h⃗ ∈ Rdmodel , and let dff > dmodel denote the intermediate width. In LLaMA-3-style
architectures Dubey et al. (2024), the computation proceeds as:

z⃗up =Wuph⃗, z⃗gate =Wgateh⃗; g⃗ = SiLU(z⃗gate)⊙ z⃗up, h⃗′ =Wdowng⃗.

where Wup,Wgate ∈ Rdff×dmodel and Wdown ∈ Rdmodel×dff . The element-wise product g⃗ binds the gate
signal – which selects or suppresses coarse abstractions – with the up signal that carries candidate
feature directions. Wdown then recombines these activated features. During this process, abstract
features may emerge (via new activation directions), merge (when multiple features co-activate), split
(when previously unified features diverge), or disappear (if suppressed by gating) (Elhage et al.,
2021; Tian et al., 2023).

LoRA-adapted projections. In our setup, only the MLP projection matrices are fine-tuned using
Low-Rank Adaptation (LoRA) (Hu et al., 2022). For any weight matrix W ∈ Rm×n, LoRA
introduces a low-rank update of the form:

W̃ =W +∆W, ∆W =
α

r
AB⊤, (1)

where A ∈ Rm×r and B ∈ Rn×r are the learned parameters, r is the rank, and α is a scaling factor.
When applied to Wup and Wgate, we obtain:

z⃗up = (Wup +∆Wup)⃗h, z⃗gate = (Wgate +∆Wgate)⃗h.

The updates ∆Wup and ∆Wgate are low-rank, as a result, they introduce only a small set of new
feature directions in the high-dimensional MLP space. But because these directions are diffused
across neurons, visual inspection of weight updates reveals no obvious structure—leading to our
central question: which subsets of neurons cooperate to encode task-specific behavior under LoRA?

In Section 3, we develop a game-theoretic framework that directly identifies these functional coali-
tions, revealing how LoRA’s parameter-efficient updates create localized but coordinated changes
that encode task-relevant abstractions without requiring exhaustive analysis of all possible neuron
combinations.
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3 METHODOLOGY

We present a game-theoretic framework to identify and track latent coalitions—cooperating groups of
neurons within MLP layers of LoRA-tuned transformer models. Our approach consists of two stages:
first, we formalize the intra-layer coalition discovery as a game with hedonic utilities and apply the
PAC-Top-Cover algorithm to find stable neuron groupings; second, we connect these coalitions across
layers using maximum-weight bipartite matching to trace how these abstract computational units
evolve through consecutive layers in the network hierarchy.

3.1 PROBLEM STATEMENT: COALITION DISCOVERY AND TRACKING IN TRANSFORMER
MLPS

Let L be a transformer-based LLM fine-tuned for a scalar prediction task (e.g., relevance scoring)
via LoRA. Let ℓ ∈ {1, 2, . . . , d} denote an MLP layer in the network, where d is the total number
of layers, with n = dff neurons in its intermediate dimension. Denote the down-projection weight
matrix as W (ℓ)

down ∈ Rdmodel×n, where each column [W
(ℓ)
down]·,i represents the learned projection vector

for neuron i. Here neuron i, refers to the ith MLP channel in dff.

Our goal is to identify a partition π(ℓ) = {C1, C2, . . . , Ck} of neurons in layer ℓ such that each
subset Ci ⊆ {1, . . . , n} captures a set of neurons that exhibit strong synergy—cooperative behavior
in forming a semantic unit. We define synergy through a pairwise valuation function ϕij . Then,
across layers, we aim to match coalitions from π(ℓ) to those in π(ℓ+1), enabling us to model feature
persistence, splitting, merging, and other dynamic events.

3.2 CONSTRUCTING PAIRWISE VALUATIONS AND UTILITY SCORES

PAC-Top-Cover uses samples of coalitions S ∼ D to estimate each agent’s top-k choice set within
the remaining pool. We first compute pairwise valuations ϕij , which quantify affinity or synergy
between neurons. We instantiate two complementary valuation functions:

Orthogonal-Co-Activation (OCA). This approach combines two intuitions: neurons with orthogonal
weight vectors may capture complementary features, while neurons with high activation correlation
may process similar patterns. For neuron pair (i, j), we define:

ϕOCA(i, j) =
(
1− |cos(Wi,Wj)|

)
ρ(ai, aj), ρ(ai, aj) =

Cov[ai, aj ]

σiσj

where Wi is the i-th column of W (ℓ)
down (neuron i’s output weights), and ai denotes neuron i’s

activations. The cosine term favors pairs with dissimilar weight vectors, while the correlation term
captures their collaborative activation patterns (Pearson’s correlation).

Pairwise Ablation Synergy (PAS). To directly measure the synergistic interaction between neurons i
and j, we compute the second-order interaction effect through ablation. Let ℓ(x) denote the model’s
logit output1 for input x, and ℓ−S(x) denote the logit when neurons in set S are ablated (set to their
pre-LoRA weight). The true interaction between neurons i and j is:

ϕPAS(i, j) = −Ex∼D
[
ℓ−{i,j}(x)− ℓ−i(x)− ℓ−j(x) + ℓ(x)

]
.

This measures how the joint ablation of both neurons differs from the sum of individual ablations.
For computational efficiency with large n, we approximate this using gradient computations:

ϕPAS(i, j) ≈ −
∂2ℓ

∂ai∂aj
· E[aiaj ],

where the mixed partial derivative captures the interaction between neuron activations.

1We use a layer-local logit ℓ(ℓ)(x) = w⊤h′(ℓ)(x) + b, i.e. the scalar score obtained immediately after the
layer-ℓ MLP (including residual addition) but before entering block ℓ+ 1. Our goal is to discover coalitions that
are intrinsically synergistic at the point they are formed. w, b are cloned from the final task head and kept fixed
for all layers. For readability we drop the superscript when the layer is clear from context.
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We experiment with both OCA (structural heuristic) and PAS (functional ablation-based) valuations
to test robustness of our framework. In both the above defined pairwise valuation functions, positive
values indicate synergy (neurons cooperate to produce information neither could alone), while
negative values indicate redundancy (neurons provide overlapping information). We now use these
valuation functions, to compute choice sets, which is used to compute the utility of a neuron in a set
that is used by the PAC Top-Cover algorithm.

Multi-Friend Choice Sets (MFC). In this formation, each neuron is allowed to anchor its preference
not on a single partner but on a set of top-k partners. For player i, the choice set within coalition S is

Ch(i, S) = arg max
T⊆S\{i}
|T |=k

∑
j∈T

ϕij ,

with ties broken deterministically to ensure uniqueness. Utilities are then defined as ui(S) =
1
k

∑
j∈Ch(i,S) ϕij . This normalized model captures multi-partner synergy, where a neuron’s activa-

tion is meaningful only when several complementary features are present. We refer to this algorithmic
instantiation as Hedonic-MFC.

3.3 THE PAC TOP-COVER ALGORITHM.

The PAC Top-Cover algorithm (Sliwinski & Zick, 2017; Alcalde & Revilla, 2004) provides an
efficient way to identify stable coalitions of neurons under top-k preferences. The top-k variant of
this algorithm allows every neuron i to nominate up to k partners within sampled coalitions, based on
the highest affinity scores ϕij . In each round, the algorithm samples a batch of candidate coalitions
(with sizes constrained to lie between kmin and kmax), constructs choice sets Bi for all neurons in the
active pool R, and builds a directed preference graph where edges i→ j represent top-k selections.
Here Bi denotes the estimated top-k choice set for neuron i, i.e., the subset of partners that maximize
its utility under the current sampled coalitions, computed via the MFC rule introduced in Section 3.2.
Stable coalitions are then extracted as sink strongly connected components that are also closed under
these choice sets. Removing each coalition from R and repeating yields a full partition of the neurons.
The algorithm is detailed in Appendix C.

The PAC guarantee ensures that with O(n2ε−1 log(n/δ)) samples per round, the resulting partition
is ε-approximately stable with probability at least 1− δ. This provides theoretical backing that the
discovered coalitions capture robust cooperative structure among neurons. We next ask how the
coalitions identified at one layer relate to those in subsequent layers.

3.4 TRACKING COALITIONS ACROSS LAYERS

Our hypothesis is that coalitions capture intermediate features that may persist, merge, split, or
disappear as computation proceeds through the network. Tracking such transitions provides an
exploratory view of how features evolve across depth.

For each pair of coalitions (C,C ′) from consecutive layers ℓ and ℓ+ 1, we measure their interaction
mass, which serves as a heuristic to quantify how strongly one coalition influences the next:

M(C,C ′) =
1

|C| · |C ′|
∑
p∈C

∑
q∈C′

(
|W (ℓ+1)

up [q, p]|+ |W (ℓ+1)
gate [q, p]|

)
·Ap,

where W (ℓ+1)
up ,W

(ℓ+1)
gate ∈ Rdff×dmodel are the LoRA-adapted projection matrices of layer ℓ+ 1, p ∈

{1, . . . , dff} indexes source neurons from layer ℓ, q ∈ {1, . . . , dff} indexes target neurons in layer ℓ+1,
and Ap = Ex[|a(ℓ)p (x)|] is the mean absolute activation of neuron p over the training distribution.
This formulation captures both the additive (Wup) and multiplicative gating (Wgate×SiLU) pathways,
while normalizing by coalition sizes ensures comparability across widths. We assemble the interaction
masses into a bipartite matrix and solve a maximum-weight matching problem to align coalitions
across layers. For each match, we compute the fraction of a source coalition’s output that flows into a
target (α) and the fraction of a target’s input originating from that source (β). These ratios allow us to
classify transitions into persistence (both high), splitting (low α, high β), merging (high α, low β), or
disappearance (both low).
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We stress that this analysis is exploratory. Transformers have residual connections, so neurons at
layer ℓ influence all deeper layers, not just ℓ + 1. Our method only captures local dynamics and
likely underestimates long-range interactions, but it offers a first step toward visualizing how abstract
feature groups may evolve through the network.

4 EXPERIMENTS

We empirically validate our framework on three LLM architectures and three scalar-output IR
tasks. We first describe models, tasks, and baselines, then present evaluation protocols and results
(Tables 1, 2, 3, Appendix 6).

Models. We study LLaMA-3.1-8B (Dubey et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2023), and
Pythia-6.9B (Biderman et al., 2023), each adapted via LoRA (rank r = 8) restricted to MLP layers
7–14. Preliminary analysis showed these layers carry the strongest task-specific activity (Nijasure
et al., 2025). Fine-tuning uses AdamW (η = 2×10−4, batch size 128, 3 epochs), with all base
weights frozen. Performance of these fine-tuned LoRA models is further documented in Appendix F.

Tasks. Tasks are scalar objectives defined over query–document pairs from MS MARCO (Bajaj
et al., 2018): (1) Covered-Query-Term Ratio (CQTR) = fraction of query terms present in the
document, (2) Mean of Stream-Length Normalized Term Frequency (Mean-TF/L) = mean of length-
normalized term frequencies, (3) Relevance Modelling (RM) = supervised passage ranking. CQTR
and Mean-TF/L use MSE loss, RM uses NDCG. Models are trained on 500k pairs, validated on 5k,
and evaluated OOD on TREC DL-19/20.

Baselines. We compare five coalition builders: Random (uniform neuron subsets with matched
size histogram), K-means (Spherical) (on ℓ2-normalized mean activations, k matched to Hedonic
partition), Hierarchical (Ward+cos) (agglomerative under cosine distance, cut at same k), Hedonic-
OCA (PAC-Top-Cover with ϕOCA), Hedonic-PAS (PAC-Top-Cover with ϕPAS).

For Hedonic sampling we draw m = 8×105 candidate coalitions (size [2, 10]), retain top ω = 8×104
by utility, and use ε = δ = 0.1. Choice sets use top-3 partners. Cross-layer matching uses thresholds
(αhi, αlo) = (0.7, 0.1) tuned on a 1% held-out split. All methods run on 4×A100-80GB GPUs;
PAC-Top-Cover completes in 90 min (OCA) and 280 min (PAS). All numbers are averaged over 3
seeds with 95% confidence intervals.

Evaluation. We first report intrinsic synergy metrics (Appendix G) as diagnostics, then evaluate
coalitions extrinsically with three tests:

• OOD Drop. For coalition C, we measure the performance drop on DOOD (DL-19/20) when C is
ablated (neurons reset to pre-LoRA weights):

∆M(C) =M({ℓ(x)})−M({ℓ−C(x)}),
whereM is NDCG@10 for RM and −MSE for CQTR/Mean-TF/L. Larger ∆M(C) indicates
greater functional importance.

• Feature Alignment. Each coalition’s mean activation aC(x) is compared with known IR heuristics
(list of MSLR features Qin & Liu (2013b)). Alignment is defined as the maximum squared Pearson
correlation:

R2(C) = max
j

Corr2(aC(x), fj(x)).

• Coalition Predictivity. Coalitions are treated as macro-features A(x) ∈ Rk. A ridge regression
ŷ(x) = w⊤A(x) is trained on MS MARCO and evaluated OOD; we report R2 for RM, CQTR,
and Mean-TF/L.

Next, we discuss the results reported in Tables 1 (extrinsic coalition evaluation), Table 2(coali-
tion predictivity), Table 3 (coalition transfer dynamics) and Appendix Table 6 (intrinsic coalition
evaluation).

Experimental Results.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Extrinsic Evaluation: OOD Drop (↑) and Feature Alignment R2 (↑) on DL-19/20. Mean
±95% CI across three seeds. Larger values indicate more functionally important and interpretable
coalitions.

Task / Algorithm LLaMA-3.1 Mistral Pythia

OOD Drop Align R2 OOD Drop Align R2 OOD Drop Align R2

Covered Query Term Ratio
Random 0.01±0.01 0.05±0.02 0.00±0.01 0.06±0.02 0.01±0.01 0.05±0.02
K-means 0.02±0.01 0.12±0.02 0.03±0.01 0.13±0.02 0.02±0.01 0.11±0.02
Hier. clustering 0.03±0.01 0.15±0.02 0.03±0.01 0.16±0.02 0.03±0.01 0.14±0.02
Hedonic (OCA) 0.07±0.01 0.41±0.02 0.09±0.01 0.44±0.02 0.08±0.01 0.45±0.02
Hedonic (PAS) 0.11±0.005 0.58±0.01 0.13±0.006 0.61±0.01 0.14±0.006 0.63±0.01

Mean of Normalized Term Frequency
Random 0.01±0.01 0.04±0.02 0.01±0.01 0.05±0.02 0.01±0.01 0.05±0.02
K-means 0.02±0.01 0.11±0.02 0.02±0.01 0.12±0.02 0.02±0.01 0.10±0.02
Hier. clustering 0.03±0.01 0.14±0.02 0.03±0.01 0.15±0.02 0.03±0.01 0.13±0.02
Hedonic (OCA) 0.06±0.01 0.38±0.02 0.08±0.01 0.41±0.02 0.07±0.01 0.40±0.02
Hedonic (PAS) 0.10±0.005 0.55±0.01 0.12±0.006 0.59±0.01 0.13±0.006 0.60±0.01

Relevance Modelling
Random 0.02±0.01 0.06±0.02 0.01±0.01 0.07±0.02 0.02±0.01 0.06±0.02
K-means 0.03±0.01 0.13±0.02 0.04±0.01 0.14±0.02 0.03±0.01 0.13±0.02
Hier. clustering 0.04±0.01 0.17±0.02 0.04±0.01 0.18±0.02 0.04±0.01 0.16±0.02
Hedonic (OCA) 0.09±0.01 0.47±0.02 0.10±0.01 0.49±0.02 0.09±0.01 0.48±0.02
Hedonic (PAS) 0.14±0.006 0.63±0.01 0.16±0.006 0.65±0.01 0.17±0.007 0.67±0.01

Table 2: Coalition Predictivity (R2 on OOD sets DL-19/20), averaged across three LLMs (LLaMA-
3.1, Mistral, Pythia). Coalitions are used as macro-features in ridge regression trained on MS
MARCO. Hedonic coalitions yield substantially higher R2 than clustering or random baselines.

Algorithm CQTR Mean-TF/L Relevance (RM)

Random 0.08±0.02 0.09±0.02 0.12±0.02
K-means 0.16±0.01 0.15±0.01 0.21±0.01
Hier. clustering 0.18±0.01 0.17±0.01 0.21±0.01
Hedonic (OCA) 0.34±0.01 0.33±0.01 0.38±0.01
Hedonic (PAS) 0.43±0.008 0.42±0.008 0.47±0.008

Functional importance and interpretability (Table 1). Across all three models and tasks, hedonic
coalitions are markedly more causal and interpretable than clustering or random partitions. Ablating
a single hedonic coalition (ablation = restoring those neurons to their pre-LoRA state) yields the
largest OOD performance drops: for CQTR on LLaMA/Mistral/Pythia the OOD drop rises from
≈0.02–0.03 (K-means/Hier.) to 0.11–0.14 with Hedonic-PAS—about a 3–5× increase; similar gaps
hold for Mean-TF/L (0.10–0.13 vs. 0.02–0.03) and RM (0.14–0.17 vs. 0.03–0.04). At the same time,
coalition activations align far more strongly with IR heuristics: alignmentR2 climbs from∼0.11–0.18
(clustering) to 0.55–0.67 (Hedonic-PAS), with Hedonic-OCA consistently second-best (≈0.38–0.49).
Confidence intervals are narrow throughout, indicating stable estimates over seeds. Taken together,
these results show that hedonic coalitions are both functionally indispensable—their removal
produces large OOD degradation—and semantically grounded, tracking BM25/IDF/coverage signals
far better than baselines.

Predictive macro-features (Table 2). Treating each coalition as a macro-feature and training a ridge
regressor on MS MARCO, we see large generalization gains on DL-19/20. Averaged over LLaMA,
Mistral, and Pythia, Hedonic-PAS attains R2 = 0.43/0.42/0.47 on CQTR/Mean-TF/L/RM, roughly
2–3× higher than K-means/Hier. (≈0.15–0.21) and far above Random (≈0.08–0.12). Hedonic-OCA
also performs strongly (≈0.33–0.38), reinforcing the pattern from the extrinsic ablations: utilities
that respect synergy (PAS) or partner preference (OCA) produce coalitions that behave like robust,
transferable features, not just co-activation clusters. This bridges intrinsic synergy to downstream
utility: coalitions that score high on synergy also yield higher OOD predictivity.
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Table 3: Dynamics of coalitions across layers 7–14 for three tasks. Each cell shows percentage of
coalitions exhibiting the event relative to all coalitions present in the source layer (except merge).

Mistral LLaMA Pythia

Layer→ Persist Merge Split Vanish Persist Merge Split Vanish Persist Merge Split Vanish

Covered Query Term Ratio
7→ 8 12.1% 0.0% 28.9% 59.0% 3.2% 0.0% 35.4% 61.4% 7.8% 0.0% 31.9% 60.3%
8→ 9 4.8% 0.0% 38.4% 56.8% 5.1% 0.0% 28.6% 66.3% 4.9% 0.0% 33.7% 61.4%
9→ 10 6.2% 0.0% 31.5% 62.3% 4.8% 0.0% 30.2% 65.0% 5.5% 0.0% 30.8% 63.7%
10→ 11 3.8% 0.0% 29.7% 66.5% 7.9% 0.0% 32.1% 60.0% 5.9% 0.0% 30.9% 63.2%
11→ 12 4.2% 0.0% 27.8% 68.0% 3.5% 0.0% 29.8% 66.7% 3.9% 0.0% 28.8% 67.3%
12→ 13 11.3% 0.0% 30.2% 58.5% 6.8% 0.0% 27.4% 65.8% 9.1% 0.0% 28.8% 62.1%
13→ 14 10.5% 0.0% 24.3% 65.2% 7.2% 0.0% 23.1% 69.7% 8.9% 0.0% 23.7% 67.4%

Stream Length Normalized Term Frequency
7→ 8 6.4% 0.5% 35.8% 57.3% 2.1% 0.0% 19.7% 78.2% 4.3% 0.3% 28.4% 67.0%
8→ 9 1.8% 0.2% 51.2% 46.8% 3.8% 0.1% 20.3% 75.8% 2.8% 0.1% 36.2% 60.9%
9→ 10 2.9% 0.1% 23.1% 73.9% 3.4% 0.0% 22.8% 73.8% 3.2% 0.0% 22.9% 73.9%
10→ 11 1.3% 0.3% 23.7% 74.7% 5.9% 0.2% 25.5% 68.4% 3.6% 0.2% 24.6% 71.6%
11→ 12 1.2% 0.1% 22.9% 75.8% 1.7% 0.0% 24.1% 74.2% 1.4% 0.0% 23.5% 75.1%
12→ 13 6.3% 0.4% 37.8% 55.5% 3.2% 0.1% 19.8% 76.9% 4.8% 0.2% 29.3% 65.7%
13→ 14 7.1% 0.2% 19.5% 73.2% 4.7% 0.0% 17.1% 78.2% 5.9% 0.1% 18.3% 75.7%

Relevance
7→ 8 8.2% 0.0% 32.7% 59.2% 1.5% 0.0% 22.4% 76.1% 5.2% 0.0% 28.1% 66.7%
8→ 9 2.1% 0.0% 46.8% 51.1% 3.5% 0.0% 22.8% 73.7% 2.8% 0.0% 35.3% 61.9%
9→ 10 3.5% 0.0% 26.3% 70.2% 3.9% 0.0% 25.5% 70.6% 3.7% 0.0% 25.9% 70.4%
10→ 11 2.0% 0.0% 26.5% 71.4% 6.7% 0.0% 28.3% 65.0% 4.2% 0.0% 27.4% 68.4%
11→ 12 1.7% 0.0% 25.4% 72.9% 2.0% 0.0% 26.5% 71.4% 1.9% 0.0% 25.9% 72.2%
12→ 13 8.0% 0.0% 34.0% 58.0% 4.0% 0.0% 22.0% 74.0% 6.1% 0.0% 28.2% 65.7%
13→ 14 8.7% 0.0% 21.7% 69.6% 5.4% 0.0% 18.9% 75.7% 7.1% 0.0% 20.3% 72.6%

Coalition dynamics across depth (Table 3). Across layers 7→14, three trends are consistent: (i)
vanish dominates (typically 60–75% of coalitions disappear at the next layer), indicating downstream
MLPs act as filters/refiners rather than combiners; (ii) splits are common (≈20–50%, depending on
task/layer), suggesting feature refinement is more prevalent than wholesale reuse; and (iii) merges
are near-zero, implying whole motifs are rarely recomposed from separate groups. Persistence is
generally low (<∼12%), with a mild delayed persistence uptick around 12→13 for CQTR and RM
(≈8–11%), echoing a “late stabilization” phase. Mean-TF/L exhibits the strongest pruning (vanish
>70% across several transitions), consistent with simple frequency statistics being isolated early and
aggressively culled later. These dynamics support our central claim: cooperative units are formed,
then predominantly pruned or refined rather than fused, aligning with the heavy-tailed coalition
sizes and the functional importance patterns observed above.

5 DISCUSSION

SAEs vs Hedonic Neurons. Sparse Autoencoders (SAEs) (Huben et al., 2024) uncover interpretable
features by learning sparse dictionaries that reconstruct activations and disentangle polysemantic
units. In contrast, our framework keeps neurons as primitives and asks how they cooperate. By
modeling them as agents in a hedonic game, we capture nonlinear synergies: coalitions whose joint
ablation impacts behavior beyond the sum of parts. Unlike SAEs, which re-express activation space,
hedonic coalitions are grounded in weight geometry and preference structure, surfacing cooperative
“wiring-level” units already encoded in the parameters. The two approaches are complementary:
SAEs expose monosemantic features, while hedonic analysis highlights how neurons collaborate to
realize them.

Coalition size distribution. Coalition sizes follow a heavy-tailed Zipfian law: each layer contains
a few large “macro” groups, mid-sized units, and many size-2 specialists, resembling vocabulary
statistics in language. Disappearance rates rise after layer 12, suggesting deeper MLP blocks act
more as feature filters than creators. Together, these findings imply that hedonic coalitions are natural
computational units shaped by training dynamics—early layers construct rich representations, while
later ones selectively retain task-relevant features.
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6 RELATED WORK

Mechanistic interpretability of transformer LLMs has focused on understanding both individual
neurons and structured groups. Geva et al. (2021) showed that feed-forward layers act as key–value
memories, with neurons detecting input patterns (keys) and injecting values into the representa-
tion. Dai et al. (2022) identified “knowledge neurons” in MLPs that encode factual associations,
demonstrating that small groups of neurons can robustly store discrete knowledge.

Beyond single-neuron analysis, Bricken et al. (2023) applied dictionary learning to extract sparse,
interpretable features from polysemantic activations. Balagansky et al. (2025) tracked feature
persistence and merging across layers, complementing our coalition-evolution view. Sparse prob-
ing (Gurnee et al., 2023) further revealed that early layers are highly polysemantic while deeper layers
specialize, underscoring the need to model neuron groups and their dynamics. Weight-based methods
also contribute: Davies (2025) decoded neuron weights into semantic concepts, while Pearce et al.
(2024) and Bushnaq et al. (2025) developed direct weight-space feature discovery.

While hedonic games have rarely been explored in interpretability, Koulali and Koulali (Koulali &
Koulali, 2023) showed their utility for feature selection, providing theoretical foundations for our
approach. Our work extends these lines by explicitly framing neuron collaboration as a hedonic game,
enabling principled discovery and tracking of stable coalitions that serve as latent computational
units in transformer MLPs.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK

We introduced Hedonic Neurons, a game-theoretic framework that models neurons in transformer
MLPs as players in a top-responsive hedonic game. Using the PAC-Top-Cover algorithm with
correlation-based (OCA) or ablation-based (PAS) valuations, we identified stable coalitions that
capture cooperative structure beyond what clustering can reveal. Across three LLM architectures
and scalar IR tasks, hedonic coalitions achieve average improvements of +0.29 Pairwise and +0.49
Ratio synergy over the strongest baseline, while extrinsic evaluations show they are functionally
indispensable: ablations yield 3–5× larger OOD performance drops, alignment with IR heuristics
rises from ∼0.15 to 0.55–0.67, and predictive R2 improves from ∼0.20 to 0.43–0.47. Coalition
dynamics further reveal that most groups vanish or split across depth, with merges rare and persistence
limited, supporting the view that MLPs act primarily as filters and refiners of features.

Our approach has limitations: utilities depend on layer-local logits and second-order ablations,
omitting higher-order interactions and attention mechanisms, and the current formulation yields
disjoint coalitions despite early-layer polysemy. Future work will extend to overlapping coalitions
via fractional hedonic games, integrate attention heads for joint sub-module analysis, and design
low-variance estimators to reduce O(n2) ablation costs. Coupling hedonic discovery with concept-
activation vectors may also yield interpretable primitives aligned with human-understandable features.
Taken together, HedonicNeurons provides a principled foundation for uncovering how cooperative
computational units emerge, evolve, and specialize in large-scale language models.

8 REPRODUCIBILITY STATEMENT

We provide all resources necessary to reproduce our experiments. We make our fine-tuned reranker
checkpoints for Pythia, Mistral, and LLaMA3 models available on HuggingFace (see supplementary
material). The training dataset (Tevatron MSMARCO Passage Augmented) and evaluation dataset
(TREC DL 2019) are publicly available, with preprocessing steps following the Tevatron MSMARCO
implementation. All scripts used for coalition generation, partitioning, clustering baselines, and
evaluation are included in the repository, along with deepspeed configuration files for finetuning.
Coalition files (.pkl) and visualization outputs (Sankey plots) are also provided. Together, these
resources ensure that the models, tasks, and coalition analyses can be wholly reproduced.
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A HEDONIC GAMES PRELIMINERIES AND PAC TOP COVER INTUITION

A.1 HEDONIC GAMES

A hedonic game (Dreze & Greenberg, 1980) is defined by a finite set of players N = {1, . . . , n} and,
for each player i, a complete and transitive preference relation≻i over the setNi = {S ⊆ N | i ∈ S}
of coalitions that contain i. A coalition structure (or partition) is a set π = {C1, . . . , Ck} of disjoint
non-empty coalitions whose union equals N . Throughout this appendix we assume that preferences
are given by real-valued utilities vi : Ni → R so that S ≻i T ⇔ vi(S) > vi(T ).2

A.2 CORE STABILITY

Given a partition π and a coalition S ⊆ N , we say that S blocks π if every i ∈ S strictly prefers S to
her coalition in π, i.e. S ≻i π(i). A partition is core-stable (or simply in the core) if it is not blocked
by any coalition. Core stability captures the idea that no subset of players has a joint incentive to
deviate.

A.3 WHY FULL PREFERENCE LEARNING IS INFEASIBLE

Precisely learning all utilities vi(S) is unrealistic because the number of coalitions grows exponen-
tially (|Ni| = 2n−1). Even if we could query any coalition, the sample complexity implied by the
pseudo-dimension of general hedonic games is super-polynomial (Proposition 4.9 in (Sliwinski &
Zick, 2017)). Hence, any practical method must settle for approximate stability based on samples
rather than complete preference elicitation.

A.4 PAC-LEARNING FRAMEWORK FOR HEDONIC GAMES

Following (Sliwinski & Zick, 2017), let D be an unknown but fixed distribution over coalitions. A
partition π is ε-PAC stable under D if

Pr
S∼D

[
S blocks π

]
< ε.

An algorithm A PAC-stabilises a classH of hedonic games if, for any game G ∈ H, distribution D,
and parameters (ε, δ), A outputs—with probability at least 1− δ—an ε-PAC-stable partition using a
number of samples polynomial in (n, 1/ε, log(1/δ)).

A.5 INTUITION BEHIND THE TOP-COVER ALGORITHM

Under additively separable utilities (vi(S) =
∑
j∈S\{i} uij), players exhibit top-responsiveness:

their evaluation of a coalition is determined by the “best” members plus a size penalty (Alcalde &
Revilla, 2004). TOP-COVER exploits this property iteratively:

(i) using samples, approximate each player’s most preferred subset within the current residual
set,

(ii) build directed edges from each player to the members of that subset,

(iii) extract a strongly connected component of minimal size, form it as a coalition, and remove
it,

(iv) repeat until all players are assigned.

Each extracted coalition is unlikely to be blocked because every member already sees its best
attainable partners within it with high probability.

2See Section 2 of (Sliwinski & Zick, 2017) for an extensive discussion of numeric versus ordinal representa-
tions.
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A.6 ADDITIVE SEPARABILITY IMPLIES TOP-RESPONSIVENESS

In an additively separable game, for any player i and coalitions S, T ∋ i,

vi(S) > vi(T ) ⇐⇒
(
∃j ∈ S \ {i} : uij > uik ∀k ∈ T \ {i}

)
or

(
S ⊃ T ∧ vi(S) = vi(T )

)
.

Hence each coalition can be ranked by (a) the highest-valued partner of i (choice set) and, if equal,
(b) coalition size—the definition of top responsiveness (Alcalde & Revilla, 2004). Consequently,
additively separable utilities allow TOP-COVER (and its PAC variant) to guarantee an ε-PAC-stable
partition.

A.7 APPLICATION OF HEDONIC GAMES TO NEURAL NETWORKS.

Neurons in a transformer predominantly interact with a limited set of peers—those with highly
correlated activations or complementary weights. Treating neurons as players whose utilities are
derived from such local synergies fits the additive model naturally. Sampling mini-batches of log-
its/activations supplies the coalitions needed by the PAC framework, letting us recover approximately
core-stable neuron groups without exhaustively testing all neuron subsets.
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B MAKING ADDITIVE UTILITIES TOP-RESPONSIVE

Notation recap. For each ordered pair of distinct neurons (i, j) we have a pairwise synergy score
ϕij ∈ R (either ϕOCA or ϕPAS; see §3.2). Write Φ for the n× n matrix with zeros on the diagonal.

B.1 FROM ADDITIVE SCORES TO TOP-RESPONSIVE PREFERENCES

Max-partner utility : Fix a global parameter k≥1. For a coalition S⊆N that contains player i let

Topk(i, S) = argmax
T⊆S\{i}
|T |≤k

∑
j∈T

ϕij .

We define
ui(S) =

∑
j∈Topk(i,S)

ϕij , and Ci(S) = Topk(i, S).

When k = 1 this reduces to the familiar “best-friend” utility ui(S) = maxj∈S\{i} ϕij .

Lemma B.1 (Top-responsiveness). For every player i the preference relation ⪰i induced by ui is
top-responsive: for any two coalitions S, T that contain i

Ci(S) ≻i Ci(T ) =⇒ S ≻i T.

Proof. Let S, T contain i and assume Ci(S) ≻i Ci(T ), i.e. ui(Ci(S)) > ui(Ci(T )). Because ui is
monotone in the sense that enlarging a set never decreases its utility,3 we have ui(S) ≥ ui(Ci(S))
and ui(T ) = ui(Ci(T )). Hence ui(S) > ui(T ), so S ≻i T .

Lemma B.2 (Informative representation). Given the matrix Φ one can compute Ci(S) (and therefore
the induced ranking) in O(k |S|) time. Hence the utility representation is informative in the sense of
Sliwinski and Zick(Sliwinski & Zick, 2017).

Proof. Topk(i, S) requires sorting at most |S| − 1 real numbers {ϕij}j∈S\{i}; the k largest can be
found in the stated time using a partial-selection routine.

Theorem B.3 (Applicability of PAC-Top-Cover). With utilities ui from Definition B.1 the induced
hedonic game is top-responsive and informative. Consequently, Algorithm ?? outputs an ε-PAC-stable
partition with probability 1− δ using m = poly

(
n, 1ε , log

1
δ

)
samples, exactly as in (Sliwinski & Zick,

2017).

Proof. Top-responsiveness follows from Lemma B.1; informativeness from Lemma B.2. The
PAC-stability guarantee is therefore an immediate corollary of Theorem 3.4 in (Sliwinski & Zick,
2017).

B.2 COALITION-LEVEL VALUATION (FOR SAMPLING)

Algorithm ?? needs a scalar value for any sampled coalition S. We use the symmetric extension

Φ(S) =
1

|S|
∑
i∈S

ui(S) =
1

|S|
∑
i∈S

∑
j∈Topk(i,S)

ϕij .

Intuitively, Φ(S) averages how strongly each member is bonded to its k preferred partners within S.
Plugging ϕOCA or ϕPAS in place of ϕij yields the concrete scores used in our experiments. “Reservoir”
sampling in line 4 of Algorithm ?? draws m subsets S with probability proportional to Φ(S), thereby
prioritising high-synergy groups.

3Adding a partner can only increase the set of k best partners or leave it unchanged.
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Algorithm 1 PAC Top-Cover for Top-k Responsive Games (neurons)
Require: ϕ ∈ Rn×n ▷ pairwise affinity; ϕii = 0

k ∈ N ▷ top-k choice size
m, ω ▷ reservoir size, per-round samples
MINK, MAXK ▷ sampled coalition sizes
(ε, δ) ▷ PAC guidance for m,ω

1: R← {1, . . . , n}, π ← ∅
2: S ← SAMPLECOALITIONS(R,m,MINK,MAXK) ▷ reservoir

Definition (top-k utility and choice in a coalition).
For i ∈ T , let Pi(T ) = T \ {i}. Let TOPKi(T ) be the k indices in Pi(T )
with largest ϕij (ties broken by smaller index); if |Pi(T )| < k, take all.
Define uki (T ) ≜

1
|TOPKi(T )|

∑
j∈TOPKi(T ) ϕij .

3: while R ̸= ∅ do
4: Sround ← first ω sets in S that satisfy T ⊆ R; remove them from S
5: if |Sround| < ω then ▷ refresh if reservoir depleted
6: S ← S ∪ SAMPLECOALITIONS(R,m,MINK,MAXK)
7: end if
8: for all i ∈ R do
9: Ti ← {T ∈ Sround : i ∈ T}

10: if Ti = ∅ then
11: Bi ← {i} ▷ degenerate self-loop
12: else
13: T ⋆i ← argmaxT∈Ti

uki (T ) ▷ deterministic tie-break by T ’s lexicographic index list
14: Bi ← TOPKi(T

⋆
i ) ▷ top-k choice set of i in T ⋆i

15: end if
16: end for
17: Build digraph G = (R,E) with edges (i → j) for all j ∈ Bi (and optional (i → i)

self-loops)
18: Let C ← the set of sink strongly connected components of G
19: (closure check) Keep only X ∈ C such that ∀i ∈ X : Bi ⊆ X
20: Choose X ∈ C (e.g., smallest by size then lexicographic) ▷ any sink closed SCC is valid
21: π ← π ∪ {X}; R← R \X
22: end while
23: return π

C PAC TOP COVER ALGORITHM
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D INFORMATION RETRIEVAL PRELIMINARIES

Information Retrieval (IR) involves retrieving documents that are likely to be relevant to a user’s
information need, typically represented as a query. A fundamental IR task is to return a ranked list of
documents in descending order of (estimated) relevance. The quality of this ranking directly impacts
the user experience in search engines, recommendation systems, and question answering applications.

D.1 RELEVANCE MODEL

Dense/Neural Re-ranker is a language model (like RankLLaMa (Ma et al., 2024a)) which takes a
query and text as input and produces a relevance score based on the similarity of the query to the
provided text.

Relevance Modeling vs Classification Classification and relevance modeling are related but distinct
approaches in information retrieval (IR). The term relevance model (Lavrenko & Croft, 2001) refers
to a mechanism for estimating the likelihood of observing a particular word in documents that are
relevant to a given information need or query, whereas classification assigns documents to predefined
categories, such as relevant or non-relevant.

Ranking Evaluation with NDCG

In information retrieval, one commonly used metric to evaluate the effectiveness of ranking models is
the Normalized Discounted Cumulative Gain (NDCG). NDCG assesses the quality of a ranked list
by measuring the gain (or relevance) of documents based on their position in the list, giving higher
weight to relevant documents that appear earlier. Formally, the Discounted Cumulative Gain (DCG)
is computed as:

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)

where reli is the graded relevance of the document at position i. The NDCG is then computed by
normalizing DCG by the ideal DCG (IDCG), which is the DCG for the optimal ranking:

NDCG@k =
DCG@k

IDCG@k

NDCG scores range from 0 to 1, with 1 indicating a perfect ranking. In the DL19 dataset, each query-
document pair is labeled with a relevance grade based on human annotations. These annotations
are used to compute the NDCG score for a re-ranked list of documents, allowing us to quantify the
effectiveness of our rerankers in retrieving the most relevant content at the top of the list.

In our work, we use RankLLaMA, a LLaMA-based reranking model trained to predict the relevance
of a document given a query. The model takes as input a formatted string:

"query: {query}, passage: {passage}"

and outputs a score between 0 and 1, indicating the estimated relevance. We follow the training
procedure described in the RankLLaMA paper (Ma et al., 2024a).

D.2 COVERED QUERY TERM RATIO (CQTR)

Covered Query Term Ratio (CQTR) is a lexical feature that measures the proportion of unique
query terms found in the document(Qin & Liu, 2013a). Formally:

CQTR =
|Query Terms ∩ Document Terms|

|Query Terms|
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D.3 MEAN TERM FREQUENCY PER DOCUMENT LENGTH (MTF/L)

Mean Term Frequency per Document Length (MTF/L) captures the average frequency of query
terms normalized by the document length(Qin & Liu, 2013a). It is computed as:

MTF/DL =

∑
t∈Q TFt(D)

Length(D)

To simplify interpretability tasks (by trying to restrict polysemanticity(Elhage et al., 2022)), we
fine-tuned models on CQTR and MTF/L prediction tasks, with the same input structure as defined
above. We do not claim that these two features are the most important for determining relevance;
rather, they are easily understood signals that prior work has shown to be implicitly present in neural
models (Chowdhury et al., 2025).

D.4 DATASETS

Datasets:

• MS MARCO: A large-scale dataset consisting of real anonymized web search queries paired
with relevant passages. It is a standard benchmark for training and evaluating re-ranking
models. In our fine-tuning, we used a modified version of this dataset called MS MARCO
Augmented (Tevatron, 2024) (Ma et al., 2025), which provides hard negatives from both
CoconDenser(Gao et al., 2021) and BM25. 4

• DL-19 (TREC Deep Learning Track 2019): Contains high-quality relevance annotations
for a subset of queries, commonly used for zero-shot and fine-tuned re-ranker evaluation.
Craswell et al. provide more information and an overview of this dataset (Craswell et al.,
2020).

4More details at https://microsoft.github.io/msmarco/
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E FEATURE/LAYER CHOICE

Previous interpretability studies have been conducted on dense re-rankers, where Chowdhury et
al. found that using linear probing, several traditional IR features show a high likelihood of being
present in the forward pass activations of a dense re-ranker model(Chowdhury et al., 2025). Further
behavioral analysis by Nijasure et al. observed that large language models (LLMs) tend to learn
relevance-related features primarily in MLP layers 5 to 14 of re-ranker architectures(Nijasure et al.,
2025).

Motivated by these insights, we focused our probing and editing experiments on this layer range
(5–14) of Re-Ranker models. Figure 1 supports this choice: it shows R2 scores for predicting MSLR
features across all layers of the RankLLaMA-7b model using linear probing. Features like covered
query term number, covered query term ratio, mean of stream length normalized term frequency, and
variance of tf · idf exhibit increasing prominence from the lower to mid layers. This trend might
indicate that these layers are key to encoding relevance-related signals.

Figure 1: Probing for statistical features from the MSLR dataset in RankLlama2-7b model. Here
QT stands for Query Term, TF stands for Term Frequency and ·/L stands for length normalized.
The graph lines indicate the presence of a particular feature along the layers of the LLM. Certain
features like Min TF ∗ IDF show consistent presence across the layers. Other features like
Covered QT Number, Covered QT Ratio, Mean(TF/L) and V ariance TF ∗ IDF show
increasing prominence from the first layer to the last, ultimately playing an important role in making
ranking decisions. Other MSLR features like Sum(TF/L), Max(TF/L), and Sum TF ∗ IDF
show negative correlation with RankLlama decision making(Chowdhury et al., 2025).
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F LLM PERFORMANCE EVALUATION

We used LoRA (rank 8) fine-tuning on MLP modules alone for all models described in this section.
We had access to four A100 GPUs, depending on availability. We used DeepSpeed’s Stage 0
configuration with the AdamW optimizer for fine-tuning all these models.

Two of the LLMs used in our experiments were fine-tuned on the MS MARCO dataset for 0.3 epochs
using Mean Squared Error (MSE) as the loss function. The models were trained to predict statistical
IR signals such as the Covered Query Term Ratio (CQTR) and the mean term frequency normalized
by passage length (mean(TF/L)). Following this fine-tuning, the models were evaluated on a sampled
subset of the DL19 dataset. This evaluation set comprised 43 queries, each associated with 10
documents sampled from a larger candidate pool of 200 documents per query, retrieved using the
ReplLLaMA retriever. This setup was designed to assess the models’ ability to learn and generalize
statistical IR features relevant to document ranking. Table 5 summarizes the finetuning results of the
LLMs.

For fine-tuning the re-rankers, we used the code provided in the Tevatron repository (Ma et al., 2024b).
For more details, refer to the paper by (Ma et al., 2024a). Evaluation was conducted on the full DL19
dataset, with document ranking based on the top 200 passages retrieved via the ReplLLaMA retriever.
Results for finetuned re-rankers is presented in the table 4.

Base LLM Target Feature Base NDCG@10 NDCG@10 (Finetuned)
LLaMA3(Dubey et al., 2024) Re-Ranking 0.18 0.7497
Pythia(Biderman et al., 2023) Re-Ranking 0.18 0.7521
Mistral(Jiang et al., 2023) Re-Ranking 0.18 0.7570

Table 4: NDCG@10 evaluation on DL19 dataset, showing baseline vs post-finetuning performance.
All models were fine-tuned on MS MARCO for 1 epoch.

Base LLM Function MSE (Start) MSE (Finetuned, 0.3 epoch)
LLaMA3(Dubey et al., 2024) CQTR 3.88 0.52
Pythia(Biderman et al., 2023) CQTR 1.84 0.05
Mistral(Jiang et al., 2023) CQTR 36.92 10.94
LLaMA3(Dubey et al., 2024) mean(TF/L) 5.06 4.49
Pythia(Biderman et al., 2023) mean(TF/L) 2.24 0.00
Mistral(Jiang et al., 2023) mean(TF/L) 38.32 22.23

Table 5: MSE before and after finetuning (0.3 epochs) for CQTR and mean(TF/L) prediction tasks on
the sampled DL19 dataset.
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Table 6: Coalition Synergy (↑) measured via Pairwise and ratio: mean ±95% CI across three seeds.

Task / Algorithm LLaMA-3.1 Mistral Pythia

Pairwise Ratio Pairwise Ratio Pairwise Ratio

Covered Query Term Ratio
Random 0.01±0.05 0.49±0.04 −0.02±0.06 0.53±0.05 0.00±0.05 0.50±0.04
K-means −0.23±0.03 0.32±0.03 −0.20±0.04 0.36±0.03 −0.18±0.03 0.37±0.03
Hier. clustering −0.11±0.04 0.41±0.03 −0.13±0.04 0.43±0.03 −0.17±0.04 0.40±0.03
Hedonic (OCA) 0.08±0.01 0.74±0.02 0.10±0.01 0.71±0.02 0.06±0.01 0.78±0.02
Hedonic (PAS) 0.12±0.005 0.86±0.01 0.13±0.005 0.84±0.01 0.15±0.006 0.89±0.01

Mean of Normalized Term Frequency
Random 0.02±0.05 0.41±0.04 −0.01±0.05 0.53±0.05 0.00±0.05 0.50±0.04
K-means −0.22±0.03 0.34±0.03 −0.21±0.03 0.35±0.03 −0.16±0.03 0.31±0.03
Hier. clustering −0.08±0.04 0.43±0.03 −0.08±0.04 0.43±0.03 −0.15±0.04 0.39±0.03
Hedonic (OCA) 0.01±0.01 0.72±0.02 0.04±0.01 0.77±0.02 0.03±0.01 0.74±0.02
Hedonic (PAS) 0.09±0.006 0.85±0.01 0.14±0.006 0.82±0.01 0.16±0.007 0.89±0.01

Relevance
Random 0.01±0.05 0.42±0.04 −0.02±0.05 0.44±0.04 0.03±0.05 0.49±0.04
K-means −0.13±0.03 0.33±0.03 −0.14±0.03 0.36±0.03 −0.19±0.03 0.38±0.03
Hier. clustering −0.09±0.04 0.42±0.03 −0.12±0.04 0.44±0.03 −0.08±0.04 0.44±0.03
Hedonic (OCA) 0.05±0.01 0.77±0.02 0.05±0.01 0.75±0.02 0.04±0.01 0.73±0.02
Hedonic (PAS) 0.11±0.005 0.81±0.01 0.13±0.005 0.87±0.01 0.14±0.006 0.86±0.01

G INTRINSIC COALITION EVALUATION

Synergy Metrics. Let x be an input sampled from the task distribution D and ℓ(x) ∈ R the layer-
local logit (defined in §3.2) with all neurons active. For any neuron set S we denote by ℓ−S(x) the
same forward pass after zeroing the activations of every k ∈ S only inside the LoRA-adapted MLPs.
We define the marginal contribution of a single neuron as ψ(i) = Ex∼D[ℓ(x)− ℓ−{i}(x)], and the
pairwise interaction (synergy) of two neurons as ψ(i, j) = Ex∼D[ℓ(x) − ℓ−{i}(x) − ℓ−{j}(x) +
ℓ−{i,j}(x)]. A positive ψ(i, j) means that removing both neurons harms the logit more than the sum
of their individual removals (synergy), while a negative value indicates redundancy. For a coalition
C ⊆ {1, . . . , n} we report two size-agnostic aggregates: Pair(C) = 1

|C|(|C|−1)

∑
i,j∈C
i ̸=j

ψ(i, j) and

Ratio(C) =
∑

i̸=j∈C ψ(i,j)∑
i∈C ψ(i)

. Pairwise Synergy is the mean interaction strength across all ordered
neuron pairs, fully normalized for coalition size, while Ratio Synergy compares the extra value
created by pairwise cooperation (numerator) to the value explained by separate single-neuron effects
(denominator). A ratio near 1 or greater (super-additivity) indicates that the coalition’s joint influence
exceeds the sum of its parts, whereas a ratio near 0 (or negative) signals antagonistic or redundant
behavior.

Intrinsic Evaluation Results. Regarding synergy quality (Table 6), the two hedonic variants strictly
dominate all baselines across all three backbones and all three MS-MARCO objectives: Hedonic-PAS
attains the best Pairwise and Ratio score in 26 out of 27 model-metric cells, while Hedonic-OCA
follows as a close second. Relative to spherical k-means, the average margin is +0.29 Pairwise and
+0.49 Ratio, indicating that activation similarity alone is a poor proxy for functional cooperation.
Random and hierarchical clusterings even dip into negative Pairwise values (sub-additivity) and hover
near the additive boundary on the Ratio metric, underscoring the value of an explicit game-theoretic
objective. Confidence intervals (95%, df = 2) never overlap between Hedonic-PAS and the best
baseline, with paired t-tests yielding p < 0.01 for every layer. K-means/HAC produce fairly uniform
sizes (20-45 neurons per cluster), whereas hedonic output follows a heavy-tailed Zipf-like law:
each layer contains a single "macro" coalition (> 150 neurons), ∼ 100 coalitions of size 2, and
approximately 500 clusters with |C| > 1 covering ∼ 14, 000 neurons. In most settings, the top
cover algorithm converges with reservoir size m ≤ 120, 000 and number of samples per iteration
ω ≤ 32, 000.
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Figure 2: Coalition flow across depth for MISTRAL-7B fine-tuned on the relevance modelling task.
The figure depicts flow from layers 7→ 8, with orange depicting split, green depicting persist and
grey depicting vanish of coalitions.

H COALITION FLOW EXAMPLE
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I MNIST EXPERIMENT DEMONSTRATING EMERGENCE OF
HUMAN-INTERPRETABLE SYNERGISTIC COALITIONS

To address regarding (1) whether synergistic neuron coalitions yield human-interpretable structure,
and (2) whether our method works beyond large LLM backbones, we conducted a controlled study
on the MNIST classification task. This experiment demonstrates that our proposed hedonic/PAS
framework applies robustly to small, non-Transformer, non-LLM networks and discovers coalitions
that correspond to semantically meaningful visual concepts.

I.1 MODEL ARCHITECTURE

We train a six-layer gated MLP (similar to the gated feed-forward blocks in modern LLMs but on a
smaller dimension, minus the MHA blocks). The network consists of:

• Flattened input x ∈ R784.

• Linear projection to a residual stream of dimension dmodel = 256.

• Four GatedMLP blocks, each computing:

hl+1 = hl +W
(l)
↓

(
σ
(
W

(l)
gatehl

)
⊙W (l)

↑ hl

)
,

where σ is the SiLU nonlinearity.

• Final LayerNorm and a linear classifier:

logits =Wout · LayerNorm(h4).

The model contains no attention layers, recurrence, or convolutional structure. It reaches 98.8% test
accuracy after 20 epochs of training with AdamW.

I.2 ACTIVATION EXTRACTION

For all 10,000 MNIST test examples, we extract and store:

{h1, h2, h3, h4, h5, hfinal}

where hℓ is the post-residual activation of block ℓ and hfinal is the output of the final LayerNorm.
Each internal activation tensor has shape [10000, 256].

I.3 PER-NEURON IMPORTANCE AND LAYER-LOCAL LOGITS

For each hidden layer hℓ (we use all internal layers h1, . . . , h5), we compute a per-neuron loss-delta
score:

∆
(ℓ)
i = L

(
hℓ,−i

)
− L

(
hℓ
)
,

where hℓ,−i is obtained by ablating neuron i in hℓ and propagating the modified representation through
the remaining MLP blocks and the final classifier. This provides a local first-order approximation of
the functional contribution of neuron i within layer ℓ.

Following our LLM experiments, we also define a layer-local logit ℓ(ℓ)(x) by cloning the final
classifier head and applying it directly to hℓ(x). We keep this head fixed for all layers. This allows us
to compute synergy metrics at the point where coalitions are formed, without conflating effects from
deeper layers.

I.4 COALITION DISCOVERY PROTOCOL ON MNIST

We apply the same hedonic-game pipeline as in the main LLM experiments, but now run it inde-
pendently on every hidden layer h1, . . . , h5. In each layer, the players are all M = dmodel = 256
neurons; we do not restrict to a top-K subset by importance.
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Pairwise valuations. For this MLP, we instantiate the same pairwise valuations as in the main text:

• OCA: Orthogonal-Co-Activation based on weight geometry and activation correlation.

• PAS: Pairwise Ablation Synergy based on second-order ablation effects on the layer-local
logit ℓ(ℓ)(x).

As in the LLM setting, positive values indicate synergy and negative values indicate redundancy.

Hedonic coalition formation. For each layer ℓ, we construct a top-responsive hedonic game on
the M = 256 neurons using the Multi-Friend Choice (MFC) rule (§3).5 Neurons select their top-k
partners (k = 3) according to either OCA or PAS, and we run PAC Top-Cover with the same
hyperparameters used for LLMs:

• sampled coalition sizes in [2, 10],

• reservoir size m = 8× 104,

• per-round samples ω = 8× 103,

• PAC parameters (ε, δ) = (0.1, 0.1).

We refer to the resulting partitions as Hedonic-OCA and Hedonic-PAS respectively. Unless otherwise
stated, summary statistics aggregate coalitions across intermediate layers h2–h4; we find these layers
concentrate the most digit-specific structure, with qualitatively similar patterns in h1 and h5.

I.5 BASELINES

To demonstrate that the discovered coalitions are non-trivial, we compare against the following
activation-only or random baselines, all operating on the same M = 256 neurons in each layer and
producing partitions with size distributions matched to Hedonic-PAS:

1. Random Partition. Randomly partition the 256 neurons into coalitions with a size histogram
matched to that produced by Hedonic-PAS in the same layer. This baseline tests whether the
observed interpretability and synergy are simply artifacts of grouping neurons.

2. Activation K-Means. Run k-means on neuron activation vectors (rows of the [10000×256]
activation matrix for that layer), with k chosen to match the number of Hedonic-PAS
coalitions; treat each cluster as a coalition. This baseline tests whether simple activation-
level similarity is sufficient to recover interpretable structure.

3. Activation Hierarchical Clustering (Ward Linkage). Perform agglomerative hierarchical
clustering using Ward linkage on the same neuron activation vectors. We cut the dendro-
gram to produce the same number of coalitions as Hedonic-PAS, and greedily merge/split
clusters to approximately match the Hedonic-PAS size histogram. This evaluates whether
a more flexible non-parametric clustering method, which can capture multi-scale activa-
tion geometry, can match the interpretability and synergy obtained by hedonic coalition
formation.

All methods therefore operate on the same neuron set in each layer and produce partitions with
comparable size distributions.

I.6 QUANTITATIVE METRICS ON MNIST

For each coalition C (from any method), in any layer hℓ, we compute four families of metrics.

(1) Functional importance: accuracy drop under ablation. Let Accbase denote the test accuracy
of the full network. For each coalition C in layer hℓ, we ablate its neurons in hℓ and re-evaluate the
network on the MNIST test set to obtain Acc−C . We report the accuracy drop

∆Acc(C) = Accbase −Acc−C .

5Section references are to the main paper.
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We then aggregate ∆Acc(C) across all coalitions from each method and across layers h2–h4,
reporting mean and standard deviation. Larger values indicate coalitions whose removal is more
functionally important.

(2) Synergy metrics. Using layer-local logits ℓ(ℓ)(x), we reuse the interaction metrics from the
main paper:

ψ(i) = Ex
[
ℓ(ℓ)(x)− ℓ(ℓ)−{i}(x)

]
,

ψ(i, j) = Ex
[
ℓ(ℓ)(x)− ℓ(ℓ)−{i}(x)− ℓ

(ℓ)
−{j}(x) + ℓ

(ℓ)
−{i,j}(x)

]
.

For a coalition C we compute:

Pair(C) =
1

|C|(|C| − 1)

∑
i̸=j∈C

ψ(i, j),

Ratio(C) =

∑
i ̸=j∈C ψ(i, j)∑
i∈C ψ(i)

.

High Pair and Ratio indicate that the coalition’s effect is more than the sum of its parts (strong
synergy), rather than redundancy.

(3) Interpretability metrics: digit-level structure. For a coalition C in layer hℓ, define the
coalition activation for image n:

aC(n) =
1

|C|
∑
i∈C

hℓ(n, i).

We then:

• Rank all test images by aC(n) and take the top-K (we use K = 128).

• Compute the empirical digit distribution among these top-K images.

• Compute per-digit activation means

αd = E
[
aC(n) | digit(n) = d

]
,

for d ∈ {0, . . . , 9}.

Using these quantities we define:

• Digit Purity:

Purity(C) = max
d∈{0,...,9}

Pr
[
digit(n) = d | n ∈ top-K by aC(n)

]
.

• Digit Selectivity:
Sel(C) = max

d
αd −max

d′ ̸=d
αd′ .

This measures how much more strongly the coalition responds to its preferred digit compared
to the second-best digit.

• Activation Sparsity:

Sparsity(C) =
∥aC∥1
∥aC∥2

,

where aC is the vector of activations over all test images. Lower values indicate sharper
selectivity.
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(4) Stroke Alignment Score: visual shape templates. To capture human-interpretable shape
structure, we define a set of simple stroke templates corresponding to visually salient MNIST
patterns:

• a top horizontal bar (strong in digits like “3” and “7”),
• a bottom horizontal bar (present in “2”, “3”, “5”, “8”),
• a left vertical stem (e.g., part of “4”, “5”, “9”),
• a right vertical stem (e.g., part of “1”, “7”),
• a central loop / round stroke (e.g., “0”, “6”, “8”, “9”),
• a diagonal stroke (common in “2”, “7”).

We operationalize these templates using simple edge detectors and spatial masks. For each top-
activating image of coalition C, we:

1. Resize to 28× 28 if needed and normalize intensities.
2. Apply Sobel filters to compute horizontal and vertical gradient magnitudes.
3. For each template (e.g., “top horizontal”), restrict the gradients to the corresponding region

(e.g., top third of the image, central loop window) and average.

This yields per-image per-template scores. The stroke alignment score for coalition C is defined as
the maximum template score averaged over its top-K images:

Stroke(C) = max
τ∈T

En∈top-K [sτ (n)],

where T is the set of templates and sτ (n) is the template-specific edge score for image n.

Intuitively, this lets us say: one coalition “locks onto” a crisp horizontal line near the top (e.g., shared
by “3” and “7”), another picks out a round loop in the center (e.g., “0”/“6”/“8”), and another prefers a
vertical stem or diagonal stroke. In the next subsection we show that certain Hedonic-PAS coalitions
exhibit strong alignment with such shape templates, while random and clustering baselines do not.

I.7 QUALITATIVE INTERPRETABILITY EVALUATION

We visualize the top-activating images for selected Hedonic-PAS coalitions in layer h3. Each panel
shows the top-64 images, with the ground-truth digit printed above.

Across these examples, Hedonic-PAS coalitions consistently group neurons whose combined activa-
tion tracks a single human-recognizable shape feature (e.g., central loop, top bar, S-shaped curve),
even when the coalition responds to multiple digits (e.g., 0/8 or 3/7). Baseline coalitions from random,
k-means, or hierarchical clustering either mix unrelated digit classes or respond to more diffuse,
spatially scattered patterns, leading to lower digit purity and weaker stroke alignment.

I.8 RESULTS

We summarize the MNIST findings using the following tables, which mirror the LLM experiments
but on the six-layer MLP and aggregate coalitions across layers h2–h4. Hedonic-PAS consistently
yields coalitions that are more functionally important, more synergistic, and more interpretable than
baselines.

I.9 CONCLUSION

Taken together, these MNIST experiments show that our hedonic/PAS framework: (i) is not specific
to LoRA-tuned transformer MLPs, (ii) produces coalitions in a small gated MLP that are both
functionally important (large ∆Acc, high synergy) and semantically interpretable (high digit purity,
strong stroke alignment), and (iii) outperforms random and activation-clustering baselines even in
this simple non-LLM setting.
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Figure 3: Hedonic-PAS 0/8 loop coalition in h3. Top-activating images for one coalition; labels
are overwhelmingly 0 or 8. The digits share a central round loop, which yields the highest stroke-
alignment score for the “central loop” template.

Table 7: MNIST (layers h2–h4): functional importance and synergy of coalitions. ∆Acc is the mean
test accuracy drop (in percentage points) when ablating a single coalition. Pair and Ratio are the
intrinsic synergy metrics defined in §I.

Method ∆Acc (mean ± std, ↑) Pair (mean, ↑) Ratio (mean, ↑) Avg. |C|
Random Partition 0.18± 0.09 0.010 0.06 7.9
Activation K-Means 0.29± 0.14 0.018 0.11 8.1
Activation Hierarchical 0.33± 0.15 0.021 0.13 8.0
Hedonic-OCA 0.57± 0.23 0.036 0.21 8.2
Hedonic-PAS 0.91± 0.31 0.052 0.29 8.3
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Figure 4: Hedonic-PAS 3/7 horizontal-bar coalition in h3. Top-activating images for a second
coalition; almost all digits are 3 or 7. The coalition consistently fires on a strong horizontal stroke at
the top of the canvas, captured by the “top horizontal bar” template.

Table 8: MNIST (layers h2–h4): interpretability metrics for coalitions. Entries report mean ±
standard deviation across coalitions. Higher digit purity and selectivity and lower sparsity indicate
more interpretable, focused features.

Method Digit Purity (mean, ↑) Digit Selectivity (mean, ↑) Sparsity (mean, ↓)
Random Partition 0.18± 0.06 0.05± 0.03 1.90± 0.20
Activation K-Means 0.48± 0.16 0.18± 0.09 1.62± 0.19
Activation Hierarchical 0.52± 0.17 0.20± 0.10 1.56± 0.18
Hedonic-OCA 0.71± 0.14 0.31± 0.11 1.41± 0.15
Hedonic-PAS 0.86± 0.09 0.45± 0.12 1.30± 0.12
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Figure 5: Hedonic-PAS 3/5/6 S-shaped coalition in h3. A third coalition mixes 3, 5, and 6 digits that
share an lower half of S-shaped curved stroke. Its top images show a characteristic diagonal/curved
mid-level stroke, which obtains high scores on a combined diagonal+curve template.

Table 9: Stroke alignment and negative controls on MNIST. The Stroke column reports the average
stroke-alignment score (max over templates) for top-K images; Purity and Ratio report digit purity
and synergy ratio as in Tables 7–8.

Setting Method Stroke (↑) Digit Purity (↑) Ratio (↑)
Trained MLP, h3 Hedonic-PAS 0.42 0.88 0.31
Trained MLP, h3 Activation Hierarchical 0.29 0.55 0.14
Random Init, h3 Hedonic-PAS 0.17 0.20 0.05
Label-Shuffled, h3 Hedonic-PAS 0.19 0.23 0.06
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Figure 6: Hedonic-PAS pure-7 coalition in h3. A fourth coalition responds almost exclusively to
canonical 7s with a clean top bar and right-leaning diagonal. Digit purity is near 1.0 and the stroke
score is dominated by the top-bar + diagonal templates.
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