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Abstract

Recently, significant attention has been given to the idea of viewing relational databases as
heterogeneous graphs, enabling the application of graph neural network (GNN) technology
for predictive tasks. However, existing GNN methods struggle with the complexity of the
heterogeneous graphs induced by databases with numerous tables and relations. Traditional
approaches either consider all possible relational meta-paths, thus failing to scale with the
number of relations, or rely on domain experts to identify relevant meta-paths. A recent
solution does manage to learn informative meta-paths without expert supervision, but as-
sumes that a node’s class depends solely on the existence of a meta-path occurrence. In this
work, we present a self-explainable heterogeneous GNN for relational data, that supports
models in which class membership depends on aggregate information obtained from multi-
ple occurrences of a meta-path. Experimental results show that in the context of relational
databases, our approach effectively identifies informative meta-paths that faithfully capture
the model’s reasoning mechanisms. It significantly outperforms existing methods in both
synthetic and real-world scenarios.

1 Introduction

Graph Neural Networks (GNNs) have increasingly become the de-facto standard for many predictive tasks
involving networked data, such as physical systems (Sanchez-Gonzalez et al., 2018} Battaglia et al.l [2016)),
Knowledge Graphs (Hamaguchi et all 2017)) and social networks (Wu et al., |2020). By learning effective
node embeddings, GNNs offer a unified framework for addressing various graph-based tasks, including node
classification, graph classification, and link prediction. However, similar to other representation learning
paradigms, GNNs often exhibit a black-box nature in their predictions. Numerous solutions have been
proposed for post-hoc explainability of GNN predictions, primarily at the instance-based level (Ying et al.)
2019; 'Vu & Thail [2020; [Miao et al.l [2022; [Yuan et al., |2021). Yet, as with other deep learning architectures,
the ability of these approaches to genuinely reflect the underlying reasoning of the predictor has been called
into question (Longa et all [2024)). To tackle this challenge, self-explainable GNNs (Kakkad et al., [2023;
Christiansen et al.l 2023; [Seo et al., 2023|) have recently emerged, aiming to ensure that GNN predictions
are grounded in interpretable elements, such as subgraphs (Wu et al., 2022 Yu et al., 2020)) or prototypes
(Zhang et al.| |2022; [Ragno et al.| [2022).

Despite the widespread adoption of GNNs, most approaches are tailored for homogeneous graphs, where
edge types are indistinguishable. While encoding edge types as features is a common workaround, the
standard solution simply consists in concatenating the one-hot encoded edge type to node features, which
eventually boils down to learning an edge-type specific bias. This limitation is particularly problematic in
knowledge graphs, which typically feature numerous relations (corresponding to edge types), with only a
few being pertinent to a specific predictive task—forming the so-called meta-paths. Existing approaches for
heterogeneous GNNs either rely on domain experts to provide relevant meta-paths a priori (Chang et al.|
2022; [Fu et al., |2020; |Li et al., 2021; Wang et al.l [2019)), or attempt to learn them from data by assigning
different weights to various relations (Hu et al.,|[2020; [Lv et al.l [2021bj |[Mitra et al., [2022; |Schlichtkrull et al.)
2018; [Yu et al., 2022; [Yun et all 2019b; [2022a; |Zhu et al.l |2019) , a solution that fails to scale with the
number of candidate relations.
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Recently, MP-GNN (Ferrini et all [2024) has been proposed as a solution for learning meta-paths without
requiring user supervision. This approach employs a scoring function to predict the potential informativeness
of partial meta-paths, enabling efficient exploration of the combinatorial space of candidate meta-paths.
However, a key limitation of MP-GNN is its assumption that a node’s class is primarily dependent on the
ezistence of a meta-path instance. While this assumption may be reasonable for knowledge graphs, it is
unrealistic when dealing with relational databases, where entities are characterized by numerous categorical
and numerical attributes. On the other hand, this same complexity makes relational databases particularly
well-suited for GNN technology, as evidenced by the growing interest in what is now being termed relational

deep learning (Fey et al.| 2023).
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Figure 1: Left: Relational database schema for a medical domain. Right: Heterogeneous graph represen-
tation of (part of) the database. The highlighted subgraph shows a prototypical counts-of-counts pattern
characterising positive patients, namely having at least two exempt prescriptions (indicated as true), each
containing at least two medications. Existing heterogeneous GNNs struggle with these patterns as they need
to learn a separate weight matrix for each edge type in the graph, while MPS-GNN is capable of learning them
without any direct user supervision.

In this paper, we extend the concept behind MP-GNN beyond the simple existential quantification of meta-
paths. We introduce Meta-Path Statistics GNN (MPS-GNN), an approach that automatically identifies relevant
meta-paths, where the informative content is determined by learnable statistics computed on their realiza-
tions. These include counts-of-counts statistics such as having at least two exempt prescriptions with at least
two medications each to characterize patients with severe illness, as shown in Figure An experimental
evaluation on both synthetic and real-world relational database tasks demonstrate the significant advantages
of the proposed solution over existing alternatives.

Additionally, results show how the meta-path learning strategy behind MPS-GNN renders it inherently and gen-
uinely self-explainable, in contrast to many existing self-explainable GNN architectures whose explanations
often lack fidelity (Christiansen et al., |2023).

2 Related Work

Relational deep learning has recently emerged as a paradigm advocating the application of
deep learning technology, and GNNs in particular, to relational databases. The rationale behind this research
direction is the popularity of relational databases as a mean to store relational information in a variety of
application domains, combined with the fact that relational databases can be seen as heterogeneous graphs,
with tables converted into sets of nodes and relations into (typed) edges between table entries
2024). This transformation allows the application of heterogeneous Graph Neural Networks (GNNs)
to this kind of data.

A common characteristics of most heterogeneous graphs, including those deriving from knowledge graphs
and relational databases, is that only few relations convey relevant information when targeting a specific
predictive task. For this reason, plain GNNs, that do not distinguish between edge types, struggle with
these type of graphs. The most popular line of research for heterogeneous GNNs identifies meta-paths, i.e.,
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sequences of relations, as primary sources of information. Existing approaches to incorporate meta-paths
follow in two main categories. The former requires domain experts to identify relevant meta-paths for the
task at hand (Chang et al.l 2022} [Fu et al.l [2020; |Li et al., [2021; |Wang et al., |2019). Clearly, this approach
is suboptimal as it requires this domain information to be readily available. The alternative solutions,
either utilize relation-specific graph convolutions, capturing relational patterns with distinct parameters or
dedicated components for each type of relation (Hu et al., 2020} [Lv et al., 2021b; |Schlichtkrull et al.
2018; [Yu et al., [2022) or focuses on graph transformation and multi-view learning to enhance relational
representations (Mitra et al., [2022; [Yun et al., |2019b; 2022a; |Zhu et al., |2019). Although these methods
are effective with a limited number of relations, their performance quickly deteriorates as the number of
candidate relations grows.

Recently, a novel approach named MP-GNN (Ferrini et al., |2024) has been introduced to tackle the afore-
mentioned challenges and automatically learn relevant meta-paths from data. The approach leverages a
scoring function predicting the potential informativeness of partial meta-paths to guide the search in the
combinatorial space of candidate meta-paths. A major limitation of this approach is the fact that it as-
sumes that the existential quantification of the meta-path is informative for the class label. This assumption
makes the approach unsuitable for relational deep learning tasks, in which statistics extracted from table
attributes are arguably crucial to characterize predictive targets. Our approach substantially generalizes the
MP-GNN method, by designing a scoring function that can predict the informativeness of partial meta-paths
in terms of the statistics that could be constructed on top of their realizations. This extension is crucial in
allowing MPS-GNN to be effectively applied to relational deep learning settings, as shown by our experimental
evaluation. More details about the comparison between MP-GNN and MPS-GNN in [£.6]

Explainability in GNN is a major research trend, with plenty of approaches for post-hoc explanation of GNN
predictions (instance-based explainability (Ying et al., [2019; |Vu & Thail, [2020; [Miao et al.,|2022; [Yuan et al.
2021)) and others aiming to explain the GNN model as a whole (model-based explainability (Chen et al.,
2024; [Wang & Shen, 2022; |Azzolin et all [2022; [Yuan et al., |2020))). Specialized metrics have been developed
to estimate the faithfulness of an explanation in relation to the method’s input processing behavior (Agarwal
et al., 2023; [Yuan et all [2022; |[Amara et al. 2022 2023} |Zheng et al., 2023). Following a similar evolution
in the XAI literature of convolutional neural networks, self-explainable GNNs (Wu et al.; 2022 |Yu et al.,
2020; |[Zhang et al., [2022; Ragno et al., [2022) have recently been proposed to encourage GNN models to
adhere to their explanations by design. However, experimental studies have questioned the faithfulness of
the explanations provided by these approaches (Christiansen et all 2023; |Azzolin et al.| [2024), highlighting
the difficulty of achieving genuine explainability with GNNs. A key advantage of our proposed method
is that meta-paths can naturally serve as model-level explanations, making MPS-GNN the first truly self-
explainable GNN designed for relational deep learning applications. Our experimental evaluation confirms
the faithfulness of the explanations to the model’s behaviour.

3 Preliminaries

This section presents the core concepts that will be utilized in the rest of the paper.

Definition 3.1 (Relational Database). A relational database (7, L) consists of a collection of tables
T = Ti,..T, and links between these tables £ C T x T . Each table is a set T = {uy, ..., u,} where the
elements u € T are referred to as rows or entities. Each entity is a tuple u = (P, Ky, a,,) where P, is the
Primary Key that uniquely identifies the entity u; IC,, is the set of Foreign Keys corresponding to a
primary key in other tables, thus connecting the tables; a, corresponds to the Attributes of the entity u.

Definition 3.2 (Heterogeneous graph). A heterogeneous graph is a directed graph G = (V, €, Xy,) where
V is the set of nodes or entities, £ is the set of directed edges (graphs induced by relational databases will
be inherently directed) and Xy is a matrix of node attributes (with x, being the attribute vector of node
v). Each edge is represented as a triple (u,r,v), indicating that nodes u and v are connected via relation r
(written as u — v). We indicate the set of relations in the graph as R.

For a node v and a relation 7 we denote with N the set of nodes that can be reached from v by following
relation r. We refer to this set as r-neighbors.
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Definition 3.3 (Meta-path). A meta-path mp is a sequence of relations defined on a heterogeneous graph
G, represented as —»—2 ... ~% where 71, ...,7 are relations in R. knowledge graphs.

From relational database to heterogeneous graph A relational database can be interpreted as an
heterogeneous graph where row u becomes node v; attributes a, become node features x,; links £ between
entries of two tables are identified by the pair of primary P and foreign K keys in the two tables. Each pair
of connected tables, originates a relation in the graph, specified by r.

4 Methodology

For now we restrict attention to binary node classification problems. Our main problem is to construct
meta-paths —»-—25 ... =55 that are predictive features for the class label. When considering a meta-path as
a feature, we are thinking of possible numerical features that can be defined by collecting and aggregating
information that is found along all occurrences of the meta-path in a concrete data graph, such as the

count-of-count feature illustrated in Figure [Il We construct meta-paths following a strategy that is

e Greedy: a partially constructed meta-path 25 ... = is extended by a next relation DL without
lookahead for possible completions Dty IEs. Similar as in Ferrini et al. (2024), we try to estimate

the potential informativeness of nodes reached by SAAEN by learned weights associated with the nodes.
These weights represent putative features that can either be directly materialized as functions of
the nodes’ attributes, or that can be constructed as features of meta-path extensions starting at the
node.

e Local: the meta-path construction step RANEAE IS performed based only on local consideration
of the nodes reached by r;, and their ;11 successors. The already constructed meta-path prefix
52 .5 plays no explicit role in this step. We realize this locality by defining for each step a
surrogate classification task for the nodes reached by r;. The problem of extending the constructed
meta-path prefix then translates into the problem of finding the first relation for a relevant meta-
path solving the surrogate problem. The surrogate problems take the form of weighted multi-instance

classification tasks.

Note that both the greedy and local properties mirror core principles of growing decision trees, which are
built incrementally, adding one relation at a time based on solving local classification sub-tasks.

4.1 Weighted multi-instance classification

We consider a variant of multi-instance classification, where each instance consists of a bag B of nodes with
a class label in {+, —}, and each node v € B is assigned a weight «(v, B). We denote with ST,S~ (training)
sets of positively and negatively labeled bags, respectively. The intention is to interpret the label of the bag
as a function of element-level features, and that a(v, B) represents a weight of the contribution of v’s feature
value to the class label of B. This contribution can be different for different bags that v can be an element
of. See|Foulds & Frank| (2010) for related generalizations of the standard multi-instance learning setting.

Our goal is to predict the bag label via discriminant functions of the form
F(B) =Y o(v,B)- F(v), (1)
veB

where F(v) is a learnable node feature function. Specifically, we consider functions that are parameterized
by a relation r, and are of the form

F(’U,’I",@,W):@'Z'U' Zwua (2)
ueN7

where x, denotes the attribute vector of v, © is a trainable parameter vector, and w is a vector of trainable
weights w,, € [0, 1] assigned to v’s r-neighbors. The node feature function value for v can, thus, be determined
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by v’s own attributes, or by aggregating the putative feature w, of its successors — or a combination of both
elements.

Ideally, the discriminant function separates the classes in the sense that for any pair Bt € 7,8~ € S~ we
have F(BT) > F(B~). We note that this problem would be trivially solvable e.g. in the case where every
positive bag contains a node v that has an r-successor, which is not also an r-successor of some node in
a negative bag. Then assigning a weight of 1 to all such r-successor nodes, and a weight of 0 to all other
nodes, would separate the classes. In reality, the complex connectivity of relations will preclude such simple
solutions, and perfect separation in general. We therefore use as our learning objective the relaxed loss
function

L(r,0,w) = Z U(F(B_,T',®7w) —F(B+,r,@,w)), (3)
BteS+,B—eS—

where o is the sigmoid function. In practice, we approximate by a random sample of positive and negative
bags.

4.2 Relation Scoring

The initial weighted multi-instance classification problem for our meta-path construction process is defined
by letting each positive (negative) target node v form a one-element bag {v} with the corresponding label,
and weight a(v, {v}) = 1. Denote with S;%,S; the sets of all initial positive and negative bags, respectively.
At all iterations we select the relation that minimizes the loss

L(r) = min L(r, 0, w). (4)
,Ww

If for some relation r this loss is effectively minimized by suitable parameters ©, such that the Y w, term
in plays no significant role, then the meta-path construction can terminate at this point (without adding
r to the meta-path). If, on the other hand, the r-successors and their weights w are needed to solve the
current multi-instance classification task, then we need to extend the meta-path by r, and we need to capture
the putative node features w by an actual node feature. A possible approach would be to set this up as a
node regression task with target values w,. However, due to the often very large set of alternative optimal
solutions w in the minimization , this would lead to a too restrictive task. Our goal is to approximate
the whole space of possible regression tasks defined by alternative w as a single weighted multi-instance
classification task. For this, let r; denote the relation found to minimize in iteration ¢ with optimal
parameters ;. For each positive bag B;” € S; define the new bag

By = Upen- NI (5)

containing the r;-children of the nodes in B;r. Similarly for negative bags. For u € B;EH define the node
weight
a(u, B ) = Z Q; - xy - v, Bf). (6)

viueEN,

Thus, nodes have a bigger weight in the subsequent multi-instance classification task, if they are r;- successors
of many nodes from the previous task, that make a significant contribution to the discriminant function
learned for the previous task. The sets of all B;, (B;,) form the new training sets S;, (S;, ;)

Figures|2|illustrates an example of first and second iteration of the scoring function applied to the toy scenario
depicted in Figure |1} In the first iteration (Figure [2 top), relation "a" achieves (close to) zero loss. On the
other hand, relation 'b’ is a poor candidate, as its loss cannot be minimized with the learnable parameters.
Relation "a" is thus chosen for further extension. However, relation "a" alone is insufficient to discriminate
between nodes 0 and 1 (they both have two true neighbors and one false neighbor according to relation
'a"). Figure 2| bottom demonstrates the next iteration of the scoring function, where the targets are bags Ba
and Bs, constructed according to Equation [b| Again, two relations ("c" and "d") compete to minimize the
loss, with relation "c¢" winning due to a parameter configuration that allows effective loss minimization. At
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this stage, the constructed meta-path is <. Differently from the previous iteration, the meta-path is now
sufficient to discriminate positive and negative examples, so that building an MPS-GNN from it (as described
in Section [4.3)) produces a highly accurate model, and the procedure stops.

c :ru F(0,a) = O (wy + w3 + wy) ;Q +
- F(0,b) =0
'g .S F(1,a) = ©0 (ws + w5 + we) § . ; (0,0) (wr)
E E ,_‘; F(1,b) = Oui(wy)
v L(a) = mino(F(0, a) — F(1,a)) = o .
9 £ (a) 1({)1}‘};10( (0,a) (1,a)) = L(b) = Igmg(F(U’b) — F(1,b)) =
w = Igin o(06(ws +we —wy —w3))=0 S *
44 S U U U U U o 3 =mino(0) =1/2
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Figure 2: Top: First iteration scoring function. For simplicity, we assume the features of the patient nodes
to be uninformative, represented by a constant "I”(rue) vector. Top Left: By simultaneous optimization
of wa, ..., wg and © parameters, the loss for relation ’a’ can be brought arbitrarily close to 0 by choosing
O so that Z := © - T > 0. Top Right:The loss for relation "b" is constant 1/2 for any choice of the
parameters wr, ©. Bottom: Second iteration of the scoring function. With Z as in first iteration we have
a(2,B2) = (3, B2) = a(5, B3) = (6, B3) = Z and a(4, Bz) = a(4, B3) = 2Z (details in App.[A]]). Bottom
Left: With relation "c¢" optimal parameters give 0 loss. Bottom Right: Relation "d" obtains non-optimal
loss (1/2).

4.3 MPS-GNN

Similarly to MP-GNN, in the MPS-GNN framework a meta-path ri,...,ry defines a multi-relational GNN with
L layers. In this setup, each layer of the network corresponds to a specific relation in the meta-path: the
initial layer is linked to the final relation rp, progressing sequentially until the last layer, which corresponds
to r1. Our forward model then takes the form:

WD = o (WhD Wil > b+ W) (7)
UENJLil

where A, “~' are neighbours of node v under relation rz,_, A is the embedding of node v in layer [, Y =,

is the feature vector of node v, while W(l), w

neigh and Wl(l) are learnable parameter vectors. Note that the

latter term Wl(l)hg,o), which is missing the original MP-GNN dFerrini et al.l, |2024I), represents a skip connection
between the input and the [ + 1 layer. This allows the network to access the node attributes at each layer,
which is essential for enabling the MPS-GNN to capture node features corresponding to the © - z, terms in
the meta-path construction as shown in the ablation study in[A.2). As in[Ferrini et al. (2024), the definition
can be generalized to multiple meta-paths by concatenating the embeddings obtained from each of them.
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4.4 The overall algorithm

Algorithm [T] outlines the whole MPS-GNN procedure for
the single meta-path case (in practice, a K beam size

is used and multiple meta-paths are learned). The al- Algorithm 1 MPS-GNN LEARNING
gorithm takes as input a graph G, the set of available procedure MPS-GNN(G, R, Y, Lajax)
relations R, an initial set of binary node labels J and mp* <[], Ff <0, S+ Y, A« 1
a maximal meta-path length Ljsax. It initializes the while |mp| < Lyrax do

targets S with a set of singletons (one per labelled r* < SCORE(G,S, R, A)

node) and their alpha values (collectively indicated by mp < mp, r*

A) to 1. At each iteration, the scoring function iden- Fy + TEST(MPS-GNN)

tifies the relation minimizing Eq. ] The algorithm if F| > F} then

then constructs an MPS-GNN with the current (partial) mp* « mp, Ff < F,
meta-path, trains it on node labels, and evaluates it end if

using the F} score (computed on a validation set, omit- A, S + NEW-TARGETS(S, ")
ted for brevity), which reflects the meta-path’s perfor- end while

mance when embedded in an MPS-GNN, as opposed to return mp*

its potential informativeness measured by the scoring end procedure

function

The algorithm keeps track of the best meta-path prefix together to its Fy score, and updates the bags and
« values as specified in Equations [f] and [6] for the next relation scoring round. The algorithm ends when
the maximum meta-path length Lj; 4 x is reached. MPS-GNN scales linearly in the number of relations and
nodes, thanks to its incremental construction of meta-paths.

4.5 MPS-GNN is a self-explainable model

By relying on meta-paths for its predictions, MPS-GNN is a self-explainable model. The scoring function serves
as the detector, identifying relevant meta-paths, while the network built using them acts as the classifier.
By construction, the network can only access the meta-path induced subgraph, making it strictly sufficient
by construction (no changes outside the meta-path induced graph affect the prediction). An analysis of the
faithfulness of MPS-GNN’s explanations is provided in Section [5.3

4.6 Comparison with MP-GNN

The novelty of our approach compared to MP-GNN lies in our model’s ability to learn meta-paths that are
relevant to the target node class, not merely based on their existence but on statistical measures related
to their occurrences. As illustrated in the example in Figure [I, MP-GNN would not be able to distinguish
between the classes of the two patient nodes, as both have a single occurrence of the correct meta-path.
This is due to how the function that iteratively constructs meta-paths in MP-GNN works. Specifically, under
the existential quantification assumption, a candidate relation r is informative for the label of a node v f
at least one of the neighbors N7 of v according to r belongs to the ground-truth meta-path, and v has
the right features. To achieve this, MP-GNN selects the optimal relation by identifying the connected node
that maximizes information for class label prediction. This represents a significant limitation for MP-GNN,
as it cannot differentiate between node classes that are determined by aggregate statistics (e.g. counts) of
multiple occurrences of meta-paths.

5 Experiments
Our experimental evaluation seeks to address the following research questions:

Q1 Can MPS-GNN recover the correct meta-path when increasing the setting complexity?
Q2 Does MPS-GNN outperform existing approaches in tasks over real world relational databases?

Q3 Is MPS-GNN self-explainable?
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We compared MPS-GNN with approaches that don’t require predefined meta-paths, handle numerous re-
lations, and incorporate node features in learning. The identified competitors include: MLP, to test the
sufficiency of target node features alone; GCN (Kipf & Welling} [2016), a baseline non-relational model;
RGCN (Schlichtkrull et all [2017), extending GCN for multi-relational graphs, with distinct parameters for
each edge type; HGN 2021al), a heterogeneous GNN model extending GAT for multiple relations;
GTN (Yun et al., 2019al), which transforms input graphs into different meta-path graphs where node repre-
sentations are learned; Fast-GTN (Yun et al.l [2022b), an optimized GTN variant; R-HGNN 2021,
a relation-aware GNN using cross-relation message passing; and MP-GNN (Ferrini et al) 2024), the original
meta-path GNN supporting only existentially quantified meta-paths.

We implemented our model using PyTorch Geometric, and used the competitors’ code from their respective
papers for comparison. For training MPS-GNN, we used a 70/20/10 split for training, validation, and testing,
respectively, and reported the test results for the model selected based on its validation performance. For
the sake of comparison with Ferrini et al.| (2024)), we set the maximum meta-path length to 4 and the beam
size to 3. We employed F} as evaluation metric to account for the unbalancing in many of the datasets. The
code is freely available at El

5.1 QI1: MPS-GNN consistently identifies the correct meta-path in synthetic scenarios

In order to address the first research question, we designed a sequence of synthetic node classification scenarios
where the correct structure to be learnt is known. In each scenario, a node is labelled as positive if it is the
starting point of at least ¢ occurrences of a given meta-path of length [, and negative otherwise. Crucially,
existential quantification of meta-paths (as modelled by MP-GNN (Ferrini et al., [2024)) is insufficient here, as
nodes which are starting points of less than ¢ meta-path occurrences are labelled as negatives. We designed
scenarios of increasing complexity by changing the length of the ground-truth meta-path [, the number of
occurrences ¢, and the overall number of relations r in the dataset. See Figure [3] for the statistics of the
different scenarios (left), and for a prototypical example for [ = 2 and ¢ = 3 (right).

TARGET NODES EXAMPLE
LEGEND
R 5 _E R
iy r/rr '
g; g ; 3 A/%/ \\ CORRECT PATTERN:
S3 5 3 3 +
S4 5 4 2 . . . sl /IN
S5 10 2 2 E’
S6 10 2 3 g
S7 100 3 3 g
S8 10 4 2 =
AAA
| —
Number of instances

Figure 3: (left) statistics of synthetic datasets, with |R| total number of relations, ¢ number of (correct)
meta-path instances in positive nodes, | meta-path length. (right) sample scenario. Nodes are labeled as
positive if and only if they are the starting point of at least ¢ = 3 instances of the [ = 2 meta-path "grey
node — red node = green node'".

Table [I] shows the F score of each model for an increasing complexity of the classification scenario. Results
clearly show that this experimental setting is challenging for existing solutions. While the poor performance
of MLP, which completely ignores the topological structure, and GCN, which ignores the difference between
relations, are expected, solutions specifically conceived for heterogeneous networks also struggle with these
datasets. Models like R-HGNN, HGN, GTN, and Fast-GTN, despite accounting for different relations in the graph,
are affected by both the imbalance between positive and negative target nodes and the limited number of
instances of neighbors of a certain type. RGCN and MP-GNN achieve better performance but are still sub-
optimal. The former, like other relational methods, takes into account the diversity of relations in the graph

Hhttps://anonymous.4open.science/r/GNN-3DDE
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but still uses all of them, thus struggling to single out the relevant portion of the graph. MP-GNN, on the other
hand, suffers from its existential quantification assumption, and fails to find the correct meta-path in all
scenarios. Conversely, MPS-GNN manages to achieve nearly-optimal performance in all scenarios, substantially
outperforming all existing strategiesﬂ Note that the lookahead capabilities of the scoring function are crucial
to the effectiveness of MPS-GNN. Appendix [A-6]shows how replacing the scoring function with a simple greedy
approach leads to failure in learning the correct meta-path. These results allow us to answer the first research
question in the affirmative.

Table 1: F} metric with standard deviations for synthetic datasets

S1 S2 S3 S4 S5 S6 S7 S8
MLP 0.46(+0.00)  0.44(+0.00) 0.48(+0.00) 0.47(+0.00) 0.44(+0.00) 0.51(+0.00)  0.45(x0.00) 0.47(+0.00)
GCN 0.46(+0.00)  0.46(%+0.02)  0.48(#0.03)  0.52(+0.05)  0.44(+0.00) 0.48(+0.00)  0.46(z+0.00)  0.48(+0.00)
RGCN 0.78(+0.02)  0.87(+0.03)  0.86(+0.03)  0.81(+0.02)  0.86(+0.03)  0.77(x0.01)  0.91(x0.00)  0.79(+0.01)
R-HGNN 0.50(+0.00)  0.44(+0.03)  0.47(+0.01) 0.47(+0.04)  0.53(+0.00) 0.48(+0.01)  0.46(+0.02)  0.48(+0.02)
HGN 0.45(+0.00)  0.46(+0.00)  0.50(+0.03)  0.46(+0.00)  0.46(+0.00)  0.48(+0.00)  0.45(+0.03)  0.40(+0.12)
GTN 0.46(+0.00)  0.52(+0.00) 0.49(+0.00)  0.48(+0.00) 0.44(+0.00) 0.47(+0.00)  0.49(x0.00) 0.47(+0.00)
Fast-GTN  0.46(+0.00)  0.48(+0.00)  0.51(+0.00)  0.49(+0.00)  0.44(+0.00)  0.46(+0.00)  0.53(+0.00)  0.47(+0.00)
MPGNN 0.84(+0.09)  0.82(+0.13)  0.85(+0.10)  0.95(+0.02)  0.89(+0.06)  0.79(+0.03)  0.84(+0.06) 0.71(x+0.21)

MPS-GNN 0.98(+0.00) 0.98(+0.01) 0.99(+0.10) 0.98(+0.00) 0.99(+0.00) 0.93(+0.10) 0.94(+0.00) 0.95(+0.00)

5.2 Q2: MPS-GNN surpasses competitors in real world databases, learning relevant meta-paths

Our approach is particularly useful for predictive tasks in relational databases with multiple tables, where
features for a target entity may involve statistics from related tables. To address the second research question,
we thus focused on three relational databases with many tables: EICU, a medical database with 31 tables,
where we predict patient stay duration in the eICU; MONDIAL, a geographic database where the task
is predicting whether a country’s religion is Christian; and ErgastF1, containing Formula 1 data, where
the task is predicting the winner of a race. The databases were transformed into graphs as explained in
Section [3} for disconnected components, we enhanced connectivity by clustering rows of auxiliary tables.
Additional details for the dataset and the procedure are in the Appendix.

Results Table |2 presents the F) scores of MPS-GNN and its competitors across three real-world databases,
averaged over 5 runs with different seeds. The poor performance of MLP clearly indicates that using target
node features only is insufficient for classification. Plain GCN, which treats the graph as homogeneous,
performs well only on the EICU dataset, where node degree differences exist between positive and negative
nodes. Heterogeneous GNN methods also struggle with these datasets, especially MONDIAL, where most
approaches fail to outperform a simple MLP, and only one (HGN) manages to substantially outperform the
non-heterogeneous baseline (GCN). MP-GNN does not provide the performance boost that was observed when
applied to knowledge graphs (Ferrini et al., 2024), confirming our intuition that existential quantification of
meta-path is insufficient when dealing with relational databases. On the other hand, MPS-GNN manages to
substantially outperform all competitors, thanks to its ability to identify meta-paths that are informative
thanks to the statistics that can be computed over their realizations, as shown in the following. It is worth
noting that this result is achieved with one/two orders of magnitude fewer parameters than the runner-ups,
namely HGN and R-HGNN. See Table[J]in the Appendix for the details. Additionally, Table[I0]in the Appendix
shows that MPS-GNN has competitive execution times with respect to other heterogeneous GNN approaches,
thanks to its ability to focus training on relevant meta-path induced subgraphs.

2The residual error for MPS-GNN is due to the fact that despite relying on the correct meta-path, it occasionally leverages
spurious instances where the relation sequence is correct but (some of) the node features are not.
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Table 2: Fi-score with standard deviations of our method and competitors on real-world datasets.

EICU MONDIAL ErgastF1 rel-fl-dnf rel-fl-top3

MLP 0.53(+0.02) 0.52(40.00) 0.50(x0.00)  0.48(+0.00) 0.48(+0.00)
GCN 0.89(+0.00) 0.60(=+0.02) 0.50(x0.01)  0.57(=+o0.01) 0.52(+0.02)
RGCN 0.70(+0.00) 0.53(+0.08) 0.57(x0.01)  0.44(+0.02) 0.54(+0.02)
R-HGNN 0.61(+0.00) 0.61(+0.01) 0.72(x0.02)  0.60(+0.01) 0.63(+0.02)
HGN 0.75(40.00) 0.72(%0.01) 0.70(x0.04)  0.61(=+0.02) 0.61(%0.01)
GTN 0.56(40.02) 0.38(+0.01) 0.60(£0.01)  0.41(+0.02) 0.45(+0.01)

Fast-GTN  0.46(+0.03) 0.39(+0.04) 0.60(x0.03)  0.51(=*0.01) 0.50(%0.02)
MP-GNN 0.87(+0.02) 0.36(=+0.06) 0.71(x0.01)  0.54(+0.02) 0.52(+0.02)
MPS-GNN 0.92(40.01) 0.74(+0.01) 0.83(+0.02) 0.62(+0.02) 0.65(+0.01)

T Eicu MONDIAL " ErgastFi

Vital Border L Constructor
al Country anguage Race standings
Aperiodic *}
¥ — A B — &
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Vital Ethnic Border ~ ‘ Driver
Periodic group Country standings
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Figure 4: Extracted meta-paths for the three real world datasets.

Identified Meta-Paths Figure [4] shows the meta-paths extracted by MPS-GNN in the three real world
datasets, which clearly convey relevant features for the respective task. For EICU (left), meta-paths correlate
the patient’s length of stay (predictive task) with information on patients with similar periodic (top) and
aperiodic (bottom) vital signs. For MONDIAL (middle), Christianity is predicted collecting information
about the language of border countries (top), and the ethnic group of the country and its neighbouring
countries. Finally, in ErgastF1 the winner is predicted via meta-paths collecting information about the
constructor (top) and driver (top) standings.

Finally, in Appendix [A77] we present an experimental evaluation where MPS-GNN is adapted to deal with
temporal databases and tasks (Robinson et al., [2024), showing how it outperforms its competitors also in
this context. Summing up, these results enable us to confidently answer Q2 in the affirmative.

5.3 Q3: MPS-GNN is a self-explainable method

To address the third research question, we assessed the faithfulness of the extracted meta-paths. The
meta-paths identified by the model from the graph are evaluated based on the complementary metrics of
sufficiency and necessity. High sufficiency implies that changing the complement to the explanation (leaving
the explanation unchanged) should not affect the model’s output. High necessity implies that altering the
explanation itself (leaving the complement unchanged) should result in a change in the model’s output. It
is easy to show that our approach is inherently sufficient. Indeed, the computational graph of MPS-GNN
consists solely of the subgraph containing the occurrences of the identified meta-paths. Necessity, on the
other hand, is calculated as a distance metric, measuring the difference in predicted probabilities between the
original predictions and those obtained after masking parts of the explanation (i.e. deleting some instances
of meta-paths). This metric is calculated as with Eq.

N

Nee = 3 (pu(6) ~ pul(G) (8)

v=1

10
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where v is a target node, G is the original graph and p,, denotes the probability associated with the predicted
class. G’ is obtained by removing certain meta-path occurrences and p,(G’) is the probability associated at
the class predicted with p,. Since MPS-GNN utilizes just the explanation for making prediction one should
expect that removing some part of the explanation, has as effect a decrease in prediction F.

Table 3: Changes to F; and necessity when removing 25%, 50%, and 75% of the learned meta-path occur-
rences for the real-world datasets.

F, Necessity
Removed (%) 0 25 50 75 0 25 50 75
EICU 0.92 0.82 0.67 0.56 0 016 0.18 0.24
MONDIAL 0.74 0.61 0.48 0.43 0 0.13 0.29 0.32
ErgastF1 0.814 0.65 0.61 0.58 0 0.08 0.16 0.26

EICU , , MONDIAL , , ErgastF1
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Figure 5: Changes to F; and posterior probability difference (necessity) when removing 25%, 50%, and 75%
of the learned meta-path occurrences for the real-world datasets.

Table |3 and figure [5] illustrate the effects of removing 25%, 50%, and 75% of the meta-path occurrences in
terms of changes in F; and necessity between original and modified graphs (Azzolin et al., [2024).

In all datasets, there’s a noticeable decline in F; performance and a steep increase in probability difference,
suggesting that the learned meta-paths are also necessary. These results clearly indicate the faithfulness of
the explanations of our self-explainable method.

6 Conclusion

We introduced a novel approach to identify relevant meta-paths of relations for node classification tasks in
heterogeneous graphs with a potentially large number of different relations, notably graphs derived from
relational databases. Compared to earlier work, our approach does not require any user supervision, and
it can learn meta-paths for predictive features defined by aggregate statistics over meta-path occurrences.
Experiments clearly demonstrate advantages over alternative approaches in terms of accuracy, sparsity,
and explainability. The approach was presented for binary classification, but it can be straightforwardly
extended to multiclass classification using standard one-vs-all strategies. Extending it to regression tasks is
an interesting direction for further research.
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A Appendix

A.1 Second iteration loss computation

In this Section we show the loss computation and minimization for relation "c¢" of the example in Figure
Note that Z refers to the learned parameters related to the features of the target nodes in the previous
iteration as shown in Figure 2] and (é) and ((1)) represent the features of prescription nodes.

Z>0

F(By,c) = Z© (g) +276 (é) (wg + wg) + ZO (é) (w10 + w11)

F(Bs,c) =270 <(1)> (ws + wg) + Z0O (?) (w1o +w11) + Z0O (é) (w12)
L(e) = mino (F(By,c) = F(B2,c))

1
= mino (Z@ (0> (211)8 + 2wg + Wiy — 2wg — 2wg — W19 — wu)

o,w

+7Z0 (?) (w10 + w11 — 1)>
=mino (Z@ (é) (w12 — wip — wi1) + ZO <(1)> (w10 + w11 — 1))

,W

1
@<0>>>0; 9<(1))0; w1z = 0;  wig, w11 =1

A.2 Ablation study

In this section, we highlight the importance of the skip connection Wl(l)hgo) considered in equation H Table
[ and [p] demonstrate respectively the significance of skip connections in the synthetic and real-world settings.
Without considering the initial target node features, the F; score drops significantly, underscoring the critical
role these features play.

Table 4: F; metric with standard deviations for synthetic datasets with MPS-GNN and MPS-GNN without using
skip connection.

S1 S2 S3 S4 S5 S6 S7 S8
MPS-GNN 0.98(+0.00) 0.98(x0.01) 0.99(+0.10) 0.98(£0.00) 0.99(+0.00) 0.93(+0.10) 0.94(+0.00) 0.95(+0.00)
MPS-GNN,o skip  0.91(+0.01)  0.93(0.01)  0.89(x0.02) 0.91(+0.01) 0.88(+0.00) 0.87(+0.02) 0.91(x0.01) 0.85(40.03)

Table 5: F} metric with standard deviations for real-world datasets with MPS-GNN and MPS-GNN without
using skip connection.

EICU MONDIAL ErgastF1
MPS-GNN 0.92(+0.01) 0.74(+0.01) 0.83(+0.02)
MPS-GNN,, skip  0.85(+0.02) 0.71(+o0.01) 0.80(+0.01)

A.3 Real world setting

In our real-world scenario, we utilized three relational databases, which are detailed below. To convert
these databases into heterogeneous graphs, we applied transformations to the attribute columns: categorical
attributes were transformed using one-hot encoding, and numerical attributes were normalized to the range
[0, 1].
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To improve connectivity between target nodes, particularly when the transformation from a relational
database to a graph results in each target node (or row in the target table) becoming a separate con-
nected component, we employed simple clustering techniques on the rows of other tables based on their
features.

Below, we provide detailed information about the databases and describe the clustering methods used when
applicable.

EICU Medical database with 31 tables (node types)El The task is predicting the duration of a patient’s
stay in the eICU after admission, modeled as binary node classification by thresholding duration at 20 hours
to achieve two balanced classes. To create clusters of nodes, where each cluster is represented by a single
new node that replaces all the nodes within that cluster, we utilized a categorical attribute for each table
that is best suited for clustering the specific table.

Table [7] provides details about the clustering process applied to the nodes of the EICU database. For each
table, the initial number of rows and the resulting number of clusters (representing the final number of nodes
for that type) are shown. The "Clustering Feature" column specifies the column used for creating clusters; if
not specified, this indicates the absence of categorical features, and the DBSCAN algorithm is used instead.

MONDIAL Database E| containing data from multiple geographical web data sources May| (1999)). We
predict the religion of a country as Christian (positive) with 114 instances vs. all other religions with 71
instances. In this dataset, clustering of tables is done using DBSCAN [Ester et al.|(1996) clustering algorithm.

Table [8shows the resulting number of clusters for each table of the original database. Clustering is computed
using DBSCAN algorithm.

ErgastF1 Database E| containing Formula 1 races from the 1950 season to the present day. It contains
detailed information including lap times, pit stop durations, and qualifying performance for all races up to
2017. The objective is to predict the winner of a race using the data available before the race starts, such as
the list of participants and qualifying times, while the actual lap times during the race are not yet available.

Table 6: Setting of real-world datasets. |7| and |R| refers respectively to the total number of tables in the
original database and the number of relations in the graph used by the models. Rows is the sum of all the
rows of each specific database.

Database [T |R] Rows
EICU 31 87 457325320

MONDIAL 40 45 21497

ErgastF1 14 33 544056

A.4 Number of parameters

In Table [9] we present the total number of parameters required for evaluating the various models. In the
synthetic setting, when comparing with the only two models that yield satisfactory results, we observe
that our approach has a similar number of parameters as RGCN (when the total number of relations in
the graphs is limited) and MP-GNN. MP-GNN, which also considers only a subset of graph relations like our
method, is designed to have a lower number of parameters; however, it still falls short of matching MPS-GNN’s
performance.

In the real-world setting, among the models that achieve decent results, GCN exhibits the lowest number of
parameters on the EICU dataset. However, among the relational methods, MPS-GNN emerges as the most
efficient. On the MONDIAL dataset, the two leading competitors, HGN and R-HGNN, despite achieving lower
F scores, utilize all edge types and consequently require a significantly larger number of parameters.

3https://eicu-crd.mit.edu
4https://relational-data.org/dataset/Mondial
Shttps://relational-data.org/dataset/ErgastF1
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Table 7: Tables from the EICU dataset. 'Clustering Feature’ refers to the feature used to group the rows
in each table. If not present, it means that the specific table does not have any feature for that purpose, so
the DBSCAN algorithm is employed. Clusters indicates the final number of nodes after the clustering step.

Table name Clustering Feature Rows Clusters
admissiondrug drughiclseqno 7417 578
admissiondx admitdxname 7578 268
allergy drughiclseqno 2475 251
apacheapsvar - 2205 200
apachepatientresult - 3676 200
apachepredvar - 2205 200
careplancareprovider specialty 5627 40
careplaneol specialty 5627 40
careplangeneral cplgroup 3314 28
careplangoal cplcategory 3633 9
careplaninfectiousdisease cplcategory 112 11
customlab labothername 30 19
diagnosis diagnosisstring 24978 110
hospital region 186 4
infusiondrug drugname 38256 257
intakeoutput celllabel 100466 740
lab labname 434660 147
medication drughiclseqno 75604 1027
microlab organism 342 16
note notepath 24758 360
nurseassessment cellattributepath 91589 81
nursecare cellattributepath 42080 19
nursecharting nursingchartcelltypevalname 1477163 49
pasthistory pasthistorypath 12109 190
physicalexam physicalexampath 84058 310
respiratorycare currenthistoryseqnum 5436 243
respiratorycharting respchartvaluelabel 5436 243
treatment treatmentstring 38290 414
vitalaperiodic - 274088 200
vitalperiodic - 1634960 200

Finally, on the ErgastF1 dataset, although MP-GNN outperforms other methods in terms of parameter
efficiency by considering different meta-paths, it results in a considerably lower F} score. In contrast, HGN
and R-HGNN exhibit an exponential increase in the number of parameters.

Table 9: Number of parameters for each model across synthetic and real-world datasets.

MLP GCN RGCN R-HGNN HGN GTN Fast-GTN MP-GNN MPS-GNN
S1 194 690 3730 525996 10927 866 126902 1346 3618
S2 194 690 6770 787796 42314 946 126942 1346 3618
S3 194 690 3730 525996 42314 866 126902 1346 3618
S4 194 690 6770 787796 74125 946 126942 1346 3618
S5 194 690 3730 525996 74125 866 126902 1346 6786
S6 194 690 6770 787796 74125 946 126942 1346 6786
S7 194 690 3730 525996 74125 866 126902 1346 6786
S8 194 690 6770 787796 74125 946 126942 8834 6786
EICU 1346 3506 400690 47496672 611785 32024 110408 24898 12066

MONDIAL 2144 90546 3709106 88396572 1142962 180554 1539457 183138 234050
ErgastF1 4356 198142 5422432 396543021 439021 2542354 11325242 23413 29538
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Table 8: Tables from the MONDIAL dataset. Clusters indicates the final number of clusters after applying
DBSCAN algorithm on the features of the specific table.

Table name Rows Clusters

economy 234 5
ethnicGroup 540 65
language 144 20
politics 238 25
population 238 4
encompasses 242 2
province 1450 18
organization 153 15
continent ) 5
city 3111 93
river 218 24
sea, 34 17
desert 63 6
lake 130 16
mountain 241 40

A.5 Execution times

In Table we present the training times for each model across the individual datasets. In the synthetic
settings, we observe that among models achieving a significant Fj score (RGCN, MP-GNN, and MPS-GNN),
MPS-GNN typically demonstrates the shortest execution time. We would like to highlight that our model
is specifically designed to learn meaningful meta-paths in networks with many relation types, whereas the
synthetic datasets are limited in the number of relation types. In the EICU database, while the MLP model
achieves the shortest execution time, it performs poorly in terms of Fj. Among the models with notable
results, MPS-GNN exhibits the best execution time. In the MONDIAL database, all models have relatively
low execution times due to the small graph size, as shown in Table [f] However, MPS-GNN still achieves the
best Fj score. For the ErgastF1 dataset, while MLP again has the lowest execution time, its final accuracy
is poor. In contrast, MPS-GNN is comparable to MP-GNN and R-HGNN in terms of execution time but surpasses
them by 12 and 11 percentage points in Fj score, respectively. Overall, our approach is consistently neither
the quickest nor the slowest, yet it reliably achieves the highest average F1 score across all settings.

Table 10: Training times, in seconds, for each model across synthetic and real-world datasets.

MLP GCN RGCN R-HGNN HGN GTN Fast-GTN MP-GNN MPS-GNN

S1 66 660 1094 898 363 388 315 234 322
S2 67 660 2197 674 375 570 812 1461 245
S3 73 675 536 612 380 260 456 657 356
S4 72 483 2142 951 373 697 369 986 457
S5 69 420 445 575 360 875 845 158 467
S6 69 620 111 616 377 567 467 453 321
ST 72 677 285 519 371 834 442 o87 449
S8 4 77T 167 680 373 878 765 1502 490
EICU 342 5882 4355 4842 3210 10324 682 5787 1273
MONDIAL 156 125 132 131 265 220 119 120 134
ErgastF1 543 954 1491 2456 2245 3015 2945 2280 2421
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A.6 Scoring Function Lookahead lllustration

We report an additional experiment demonstrating the lookahead capabilities implemented in the scoring
function of our method, and its advantage over a simplistic greedy approach. We construct a synthetic
dataset of a multi-relational graph with three relations and the ground truth metapath, rq,ry for the target.
We compare our approach against a simple greedy one, in which one always extends the metapath with the
relation for which a trained MPS-GNN achieves maximal Fj score. The results are presented in Table [I1] In
the first iteration of the scoring function, relation r; achieves the lowest loss in our scoring function and
would therefore be chosen as the first relation of the metapath. Looking only at the immediate benefit of
the relations in terms of the accuracy achieved by a corresponding MPS-GNN, however, ro would be selected
as the best relation. The column ro-Extensions shows the Fj scores of all possible length 2 metapaths
starting with ro. Comparing with the Fj score of the ground truth metapath we find that, indeed, starting
the metapath with r is a suboptimal choice, and that our scoring function correctly identifies the most
informative relation to start the metapath with, even though this informativeness only is materialized after
extension of the metapath with ro.

Table 11: Comparison: our metapath construction vs. simple greedy alternative.

Iteration 1 ro- Extensions Ground truth
Meta-paths 1 ro T3 To,T1  T2,T2  T9,T3 1,79
Score 0.001 45 56
I3y 0.79 0.82 0.69 0.83 0.82 0.85 0.99

A.7 Temporal experiment

Recently, a novel benchmark, rel-bench [Robinson et al.| (2024), has been introduced. This benchmark consists
of multiple relational databases represented as temporal graphs. Additionally, the authors propose RDL, a
temporal-aware relational message-passing model. It’s important to note that the released temporal graphs
are not directly compatible with static models. Therefore, in this section, we reconstruct one dataset from
the rel-bench repository in a static format and apply our method to this static representation of the graph
(setting in table [12). The tasks are: (1) dnf, predicting whether a driver will fail to finish a race within the
next month, and (2) top3, predicting if a driver will place in the top 3. To handle these temporal tasks,
we treated each instance of a node at different timestamps as distinct nodes with separate label predictions.
Table reports the Fj-scores for MPS-GNN and the baselines. Our approach outperforms all competitors,
including RDL which performs lower due to overpredicting the majority class. Note that RDL cannot be
straightforwardly applied to our other datasets, being designed for temporal datasets. In Section we
provide the necessity calculations for these datasets.

Table 12: Setting of temporal real-world dataset.

Database |T] |R| Rows
rel-f1 9 26 97606
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Table 13: Fi-score with standard deviations of our method and competitors on two temporal datasets.

rel-fl-dnf rel-fl-top3
MLP 0.48(+0.00) 0.48(+0.00)
GCN 0.57(x0.01) 0.52(40.02)
RGCN 0.44(+0.02) 0.54(40.02)
R-HGNN 0.60(=+0.01) 0.63(+£0.02)
HGN 0.61(+0.02) 0.61(+0.01)
GTN 0.41(+0.02) 0.45(+0.01)
Fast-GTN  0.51(=%o0.01) 0.50(£0.02)
MP-GNN 0.54(+0.02) 0.52(40.02)
RDL 0.58(£0.03) 0.53(+0.7)
MPS-GNN 0.62(+0.02) 0.65 (+0.01)

A.7.1 Necessity calculation in temporal tasks

In this section, we present the necessity calculation for the temporal datasets. Specifically, as detailed
in Section [5.3] Table and figurd6] demonstrates that removing certain identified meta-paths results in
decreased performance (F) and an increased necessity value. This finding confirms that the learned meta-
paths are essential for the prediction task in these datasets as well.

Table 14: Changes to F; and necessity when removing 25%, 50%, and 75% of the learned meta-path
occurrences for the real-world temporal tasks rel-f1-dnf and rel-f1-top3.

Fi Necessity

Removed (%) 0 25 50 75 0 25 50 75
rel-f1-dnf 0.63 0.56 0.49 0.48 0 012 022 031
rel-fl1-top3 0.65 0.62 0.55 0.50 0 019 034 0.3
Lo rel-f1-dnf rel-f1-top3
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Figure 6: Changes to F; and posterior probability difference (necessity) when removing 25%, 50%, and 75%
of the learned meta-path occurrences for the real-world temporal tasks rel-fl-dnf and rel-fl-top3.

A.8 Non-GNN models on real-world databases

For the MONDIAL and ErgastF1 databases, non-GNN methods have shown competitive performance
in the past. For example, Schulte et al.| (2013)); Bina et al. (2013)) report F; scores of 0.78 and 0.77 on
MONDIAL, 0.4 and 0.3 points higher than MPS-GNN. However, these results are achieved on a simplified
version of the database with only 12 tables, requiring manual feature selection. In contrast, MPS-GNN is

21



Under review as submission to TMLR

applied directly to the raw input data across all 40 tables. The non-GNN methods use Multi-relational
Bayes Net Classifiers and Simple Decision Forests, where reducing the number of tables and relations aids
performance. By comparison, MPS-GNN is designed to handle scenarios with a large number of relations
effectively.
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