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Figure 1: Given a 2D image and user queries of candidate object-part categories, our method
LangHOPS grounds the hierarchy between objects and parts in language space and subsequently
leverages a Multimodal Large Language Model to break down the segmented objects into parts.

Abstract

We propose LangHOPS, the first Multimodal Large Language Model (MLLM)-
based framework for open-vocabulary object–part instance segmentation. Given
an image, LangHOPS can jointly detect and segment hierarchical object and part
instances from open-vocabulary candidate categories. Unlike prior approaches that
rely on heuristic or learnable visual grouping, our approach grounds object–part
hierarchies in language space. It integrates the MLLM into the object-part pars-
ing pipeline to leverage its rich knowledge and reasoning capabilities, and link
multi-granularity concepts within the hierarchies. We evaluate LangHOPS across
multiple challenging scenarios, including in-domain and cross-dataset object-part
instance segmentation, and zero-shot semantic segmentation. LangHOPS achieves
state-of-the-art results, surpassing previous methods by 5.5% Average Precision
(AP) (in-domain) and 4.8% (cross-dataset) on the PartImageNet dataset and by
2.5% mIOU on unseen object parts in ADE20K (zero-shot). Ablation studies
further validate the effectiveness of the language-grounded hierarchy and MLLM-
driven part query refinement strategy. The code will be released here.
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1 Introduction

2D instance segmentation is a well-established computer vision research field and has experienced
significant progress in object-level instance segmentation in the past decades [6, 17, 54, 64, 69].
While recent efforts have expanded toward higher-level reasoning from visual input [22, 54, 62],
the growing demand for finer semantic understanding has led to increased interest in part-level
segmentation [37, 50, 55, 58]. Unlike object-level segmentation, part-level understanding introduces
new challenges, as it requires richer contextual awareness, reasoning about object-part relationships,
and task-dependent interpretation. For example, a car can break down into coarse-grained components
such as the body and wheels, or further delineated into finer-grained elements, including windows,
doors, headlights, mirrors, or screws, depending on the downstream task and desired granularity.

Open-Vocabulary object-Part Instance Segmentation (OVPIS) emerges as a promising approach to
address this challenge and has gained increasing interest in recent years. Unlike open-vocabulary
object–part semantic segmentation [8, 9, 55], which assigns part labels to pixels without distinguishing
between multiple part instances, object-part instance segmentation requires detecting and segmenting
object and part instances separately. This introduces additional complexity, as the model must
establish part–whole relationships at the instance level and maintain consistent grouping between
objects and their constituent parts. In contrast to closed-vocabulary settings that rely on predefined
object-part lists, open-vocabulary models aim to generalize to unseen part categories and novel
compositions, which is a key capability for real-world generalization. Among existing works, SAM
[20, 43] relies on handcrafted object-part and subpart heuristics for part-level segmentation. However,
it does not offer control over the semantic granularity of the parts. Recent works [46, 63] extend
SAM with a text prompt module to guide the segmentation process, but lack modeling of object–part
hierarchies, which limits their ability to reason about relationships between objects and corresponding
parts.

Moving beyond interactive or prompt-tuned variants of SAM, a separate line of work focuses on
open-vocabulary part segmentation by leveraging vision–language models. OV-Parts [55], Part-
CLIPSeg [9], and PartCATSeg [8] implement object-part hierarchical reasoning implicitly in CLIP
embedding space [41] and enable zero-shot transfer to novel part categories. However, the perfor-
mance of these methods is constrained by the limitations of CLIP in compositional and part-level
understanding [1, 51, 55]. PartGLEE [24] explicitly models object-part structures using a Q-Former
and performs joint object and part instance segmentation. Nevertheless, it has suboptimal segmen-
tation performance in open-vocabulary scenarios since the Q-Former module lacks mechanisms to
handle part granularity variations. Addressing this limitation is essential for improving generalization
in real-world applications, where part granularity naturally varies across contexts and user intentions.
For example, operating a laptop may require segmenting coarse parts such as the lid, while repairing
it demands finer segmentation of detailed components such as screws or hinges.

In contrast, we propose LangHOPS, a novel framework that leverages language-grounded hierarchy
and integrates MLLM for the task of OVPIS, as shown in Fig. 1. LangHOPS embeds object–part
hierarchies directly in the language space, producing language-grounded part queries with object
context. Those queries are further processed by a MLLM to link compositional object-part concepts
and to generate adaptive segmentation queries. To verify the performance of LangHOPS, we conduct
experiments in multiple settings (in-domain, cross-dataset and zero-shot) and on multiple dataset (Par-
tImageNet, PascalPart-116 and ADE20K). As a result, LangHOPS significantly outperforms baselines
by 5.5% AP (in-domain) and 4.8% AP (cross-dataset) on the PartImageNet dataset and by 2.5%
mIOUunseen on ADE20K (zero-shot). Experiment also shows the advanced scalability of LangHOPS
with improvement by 10.0% AP on PartImageNet when trained on more dataset, Ablation study
shows that LangHOPS have object-part synergy that part-level instance segmentation can improve
object segmentation by 5.4% AP. In summary, our key contributions are:

• We propose LangHOPS, the first framework integrating an MLLM for the task of OVPIS.
• We propose language-space grounded object-part hierarchy modeling for part query representation

and link the multi-granularity concepts with an MLLM to enable context-aware and accurate
object-part parsing.

• We conduct experiments and demonstrate superior performance of LangHOPS in in-domain, cross-
dataset, and zero-shot settings, as well as its scalability when on larger datasets. Notably, we show
for the first time that part-level supervision can significantly enhance object-level segmentation.
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2 Related Work

2D Object-Part Segmentation aims to jointly detect and segment both objects and their semantic
parts, while preserving the hierarchical structure between them [10, 16, 67]. This task goes beyond
traditional object-level understanding [2, 3, 12, 13, 26, 57, 65, 68] by introducing part-level granularity
within object instances. This topic has gained attention [8, 11, 24, 25, 35, 39, 53] due to its potential
in downstream applications such as image editing [19, 29] and robotics [5, 36]. TAPPS [10] extends
Mask2Former [6] to predict jointly objects and parts with a set of shared queries. However, it is
limited to a fixed set of predefined categories. PartCLIPSeg [9] applies a two-stage strategy for
part-level semantic segmentation by first extracting mask proposals and then applying CLIP [41] to
classify the masked image crops. Nevertheless, CLIP-based approaches such as PartCLIPSeg [9]
and OV-Part [55] often exhibit suboptimal performance in fine-grained part segmentation, largely
due to CLIP’s limited capacity for compositional reasoning and explicit modeling of object–part
hierarchies [1, 51, 55]. More recently, PartCATSeg [8] introduces a cost aggregation framework
with a compositional loss and DINO-based structural guidance to enhance part-level image–text
alignment and structural understanding. However, this method still lacks an explicit, language-
grounded mechanism for representing hierarchical object–part relationships, which is essential for
robust compositional generalization. Separately, PartGLEE [24] adopts a different two-stage pipeline
that first segments object instances and then parses object queries into parts using a Q-Former.
Since the Q-Former in PartGLEE [24] is not explicitly aware of part granularity during training or
inference, it struggles to adapt across datasets with differing levels of annotation detail. For instance,
a model trained on fine-grained parts such as “eye,” “nose,” and “ear” for cats in Pascal-Part-116
performs poorly on PartImageNet, where the same category is annotated only with coarser parts
(“head,” “body,” “foot,” and “tail”). Although [8, 24] incorporate object-level context into part
segmentation, they do not entirely leverage the hierarchical relationships between objects and parts
from candidate category definitions, consequently limiting their overall performance. In contrast,
LangHOPS explicitly embeds the object-part hierarchies in language space to guide the MLLM for
object-part parsing, as detailed in Sec. 3.4.

Open-Vocabulary Segmentation requires models to detect and segment object parts from novel
categories guided by free-form text descriptions, without relying on category-specific training data.
Early works, such as MaskCLIP [12] and GroupViT [57], initiated this paradigm by using Vision
Language Models (VLMs) to transfer knowledge from text supervision to pixel-level tasks. Follow-
up methods [26, 66] further enhance this capability by introducing text embeddings into mask
prediction, contrastive learning, or region-level alignment. These approaches demonstrate the
potential of using language as a flexible and scalable supervision signal for segmentation tasks.
However, most of the existing works [12, 26, 30, 38, 44, 45, 57, 66] focus on object-level semantics,
consequently lacking fine-grained part-level reasoning. OV-Part [55] and VLPart [50] establish
benchmarks for open-vocabulary part segmentation by augmenting existing datasets with part-level
annotations [4, 16, 42, 67]. Although recent methods [8, 24, 50, 55] make progress towards an open-
vocabulary setting, they still exhibit limited generalization, particularly in zero-shot and cross-dataset
scenarios where both the label space and data distribution differ from those seen during training.
LangHOPS leverages MLLMs and object-part hierarchies to improve generalization and accuracy in
the OVPIS task, setting a new benchmark in the open-vocabulary zero-shot and cross-dataset settings.

MLLM-based Image Segmentation integrates multimodal language models into image segmen-
tation tasks, unlocking strong performance in various domains such as open-vocabulary panoptic
segmentation, referring segmentation, interactive segmentation, and reasoning-based segmenta-
tion [22, 54, 62, 64]. LISA [22] introduces “reasoning segmentation”, allowing MLLMs to generate
the mask token in response to complex and implicit textual queries. PSALM [64] extends LLMs with
a vision encoder and a mask decoder with a flexible input prompt to handle diverse segmentation tasks.
OMG-LLaVA [62] proposes an end-to-end MLLM-based framework capable of image-, object- and
pixel-level understanding including pixel-level segmentation. While effective, these methods focus on
object-level understanding and lack the ability to decompose objects into fine-grained semantic parts.
Osprey [58] achieves part-level visual understanding but relies on off-the-shelf class-agnostic part
masks (e.g. from SAM [20]) and cannot control over part granularity. More recently, CALICO [37]
leverages MLLM for multi-image part-focused object comparison by identifying unique and common
parts of certain object across images. In contrast, LangHOPS is the first framework to leverage
MLLMs for open-vocabulary object-part instance segmentation, enabling fine-grained parsing at the
instance level, beyond the semantic and multi-image settings explored in prior work.
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Figure 2: LangHOPS framework. The left block illustrates the overall architecture, with an
image backbone, an object segmentation module, object-part parser and a part segmentation module.
The right block illustrates the ideas on the object-part parser, consisting of a "Language-Grounded
Hierarchies" module embedding the object-part hierarchy in language space, and a "MLLM-based
Parsing" module producing the part queries for segmentation using a MLLM.

3 Method

3.1 Problem Definition

OVPIS aims to segment an image into distinct object-level instances and object-specific part-level
instances, with the capability to generalize in novel object-part categories. Given an image and user-
defined open-vocabulary object-part categories, the model outputs masks and categories of objects
with their corresponding parts (e.g., “bus 1”, “bus 1’s headlight 1”, “bus 1’s headlight 2”, etc.). Note
that, in contrast to the semantic part segmentation task proposed in [55], OVPIS also distinguishes
between different instances of the same object category. For open-vocabulary segmentation, we adopt
the commonly used settings in prior work [50] where the model takes images and ground-truth mask
pairs, for one set of object and part categories Ctrain during training, and segment objects and parts of
novel categories Cnovel during inference.

3.2 Method Overview

Our model is illustrated in Fig. 2. Given an input RGB image I with a set of user-defined open-
vocabulary candidate objects and part categories C, the model outputs the masks and categories
of the segmented instances of objects and parts, as well as the object-part hierarchies between the
instances. Specifically, our framework in Fig. 2 is composed as follow:

Object Segmentation. We derive the initial object queries O0 with prior information from image
features X, and apply the object decoder utilized in [24] together with CLIP text encoder to obtain
predictions of object-level categories CO, bounding boxes BO and segmentation masks MO.
Language-grounded Hierarchies. We first extract hierarchies between objects and parts from the
input candidate categories C and encode them in CLIP’s language space E(C). Subsequently, given
predictions of objects’ categories, we construct initial part-level queries P0 by retrieving object-
conditioned part embeddings from E(C), and concatenating them with object queries, enabling
context-aware and granularity-adaptive object-part parsing.
MLLM-based Parsing. We leverage a MLLM to refine initial object-part-concatenated queries P0

by linking visual concepts with object-part-concatenated queries through structured prompt guidance,
producing enriched part queries P that capture hierarchical part relationships across both language
and visual domains for subsequent decoding.
Part segmentation. We use P and X as inputs to the part decoder with the same structure as the
object decoder and predict categories CP , bounding boxes BP and masks MP of part instances.
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By integrating the language-grounded hierarchies and MLLM into the object-part parsing framework,
our object and part segmentation modules are tightly coupled. Joint information between parts and
objects is utilized through the following information flow: For each segmented object, a set of part
queries is constructed by a concatenation of the object embedding generated in the object decoder
and the language-encoded part description. These queries are processed by the MLLM, generating
queries capable of open-vocabulary part segmentation. The processed queries are used in the part
decoder to segment each requested part. The details are provided in the following subsections.

3.3 Object Segmentation

Following PartGLEE [24], we apply the transformer decoder implemented in [23] as object decoder.
Object queries O0 ∈ RN×Dq are initialized given priors from the multi-scale image features
Xs ∈ RDs× H

2s ×W
2s , s = {2, 3, 4, 5}, with N as hyper-parameter denoting the number of object

queries. Next, L layers of a deformable transformer decoder module [23] are applied for cross-
attention computation between Xs and Oi, as well as self-attention of Oi, i ∈ [1, L]. The output
queries OL are utilized to perform object-level detection, classification and segmentation with 3
separate prediction head. For detection, a 3-layer MLP is utilized to map OL to the coordinates of
the bounding boxes BO ∈ RN×4:

BO = MLP (OL). (1)
For open-vocabulary object-level classification, we apply the CLIP text encoder to process the
user-defined candidate object categories and obtain the object-level class embeddings:

E(Cobj) = CLIPtext(Cobj) (2)
Then the classification logits are calculated by:

SO = fCO(O
L) ·E(Cobj), (3)

where fCO is the linear layer mapping OL to CLIP embedding space. By taking the maximum
logits over the candidate categories, semantic categories predictions, CO, are obtained. For object
segmentation, masks are generated by calculating the inner-product between OL and the dense mask
features fM (X2) obtained with a 2D convolutional network fM on the dense features X2:

MO = fMO(O
L) · fM (X2), (4)

where fMO is 3-layer MLP mapping queries into mask features’s embedding space.

3.4 Language-grounded Hierarchies

Following object segmentation, the next objective is to decompose each segmented object into its
corresponding part-level instances. This requires first modeling the relationship between objects and
their constituent parts. PartGLEE [24] addresses this by introducing a set of learnable, universal
parsing queries that, together with object queries, are processed by a Q-Former to generate a fixed
number of part queries for each object. However, such Q-Former-based object-part parsing method
has inherent limitations. First, it lacks of context awareness as it does not incorporate user-defined
open-vocabulary categories C during object-part parsing. Consequently, the model may fail to
generalize across domains where the definition of parts differs (e.g., coarse vs. fine-grained part sets).
Second, the Q-Former-based method suffers from limited generalization from data priors. In fact,
it has to be entirely trained and lacks external knowledge, which makes it highly dependent on the
distribution and coverage of the training data.

To effectively address these issues, we explicitly model the hierarchical object-part structure from
C in the well-generalizable language space. Specifically, given one object OL ∈ R1×Dq and its
predicted object category Co from Sec. 3.3, we query its potential part categories using C: Cpart.
For example, if an object with the query OL is classified as a "bus", then we retrieve all the parts
belonging to "bus" from C ("bus’s wheel", "bus’s window", "bus’s door", etc). Subsequently, we
encode the retrieved part categories into the CLIP text embedding space:

E(Cpart(Co)) = {CLIPtext(C
p
o )}, Cp

o ∈ Cpart(Co) (5)
where Cpart(Co) represents part categories belonging to a corresponding object category Co. Ulti-
mately, the embedding of each candidate part is concatenated with the corresponding object query
separately as the initial part queries, with both object-level context and part-level language priors:

p0
i = (OL ∥ fCO(e

i
o) ), e

i
o ∈ E(Cpart(Co)), (6)
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where (·∥·) represents the concatenation of two tensors. The query p0
i is beyond pure text embeddings.

Instead, it incorporates both visual information and language semantics for open-vocabulary classifi-
cation and segmentation tasks. Each initialized part query p0

i is repeated Np times to accommodate
multiple instances of the same part category within a single object (e.g., a bus having four wheels).
Consequently, the part queries of the same part category and the same object are identical, e.g., p0 of
bus1’s wheel1 and bus1’s wheel2. On the other hand, the queries of the same category but different
objects are different due to the distinct visual information from the objects, e.g., p0 of bus1’s wheel1
and bus2’s wheel1. The initialized query is further refined by a MLLM to link the visual and text
information between the object and its corresponding part, as detailed in the following subsection.

3.5 MLLM-based Parsing

To parse the multi-granularity concepts embedded in P0 = {p0
i }, we utilize PaliGemma 2 [49],

a lightweight and state-of-the-art MLLM that takes the image I , the concatenated object-part
queries P0, and prompt guidance as input and implements object-part parsing in our frame-
work. From the prompt, the MLLM receives the object query OL followed by part queries
P0 and outputs refined part queries that integrate both object- and part-level information. This
design enables the MLLM to leverage object-level context to infer part semantics, and also
allows bidirectional information flow - from parts back to the object - during training (see
Sec. 4.3 Object-Part Synergy). Subsequently, the image tokens from SigLIP [49] and the
prompt with queries P0 are provided to Gemma 2 model in a structured text prompt as follows:
Please do object−part parsing on the image <img><img_tokens></img>.

For each object, you will be given a list of object−part queries:
<obj_part>part_query1, part_query 2, ..., part_query n</obj_part>,
please implement object−part parsing by refine the queries so that it can be used
for later part category and mask prediction.

These are all the candidate object−part queries:
object 1 with parts <obj_part>part_query1, part_query 2, ...,

part_query n1</obj_part> ;
object 2 with parts <obj_part>part_query1, part_query 2, ...,

part_query n2</obj_part>;
...

This stage processes object-part queries jointly and outputs part queries P integrated with visual
information and object context. Note we utilize Gemma 2 as a feed-forward model, instead of
utilizing auto-regressive generation to ensure a controlled output structure. P is obtained from the
last hidden states of the corresponding input part queries. P will be used as input for a separate part
decoder with same structure as the object decoder introduced in Sec. 3.3.

3.6 Implementation Details

We employ a two-stage training strategy. In the first stage, we train the model with an object instance
segmentation loss only:

L1 = λcls · Lobj
cls + λbbox · Lobj

bbox + λmask · Lobj
mask. (7)

Lobj
cls is the focal loss [27] on the prediction logits SO. Lobj

bbox is the L1 loss on predicted object
bounding boxes BO. Lobj

mask is the combination of focal loss and dice loss [34] on the predicted object
masks MO. In the second stage, joint object and part segmentation training is implemented with
losses on both object and part predictions:

L2 = λcls · (Lobj
cls + Lpart

cls ) + λbbox · (Lobj
bbox + Lpart

bbox) + λmask · (Lobj
mask + Lpart

mask). (8)

The loss functions on part segmentation are the same with the ones on object. The parameters of
the Swin-L backbone and MaskDINO decoder are initialized with the pre-trained checkpoints from
GLEE [18]. Following MaskDINO, the hyperparameters are set to λcls = 4, λbbox = 2, λmask =
5, L = 9. The number of repeated part queries Np = 3. The training is conducted on 4 x H200 GPUs
with a batch size of 16.
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Method PPS-116 +INS +INS+PART PartImageNet
obj part AP obj part AP obj part AP obj part AP

VLPart – 4.5 – – – – – – – – 29.7 –
PSALM† 31.6 8.27 13.4 48.0 10.7 (+2.4) 18.9 (+5.5) 58.6 11.6 (+3.3) 21.9 (+8.5) 79.2 40.1 48.7
PartGLEE 38.4 9.20 15.6 58.7 11.0 (+1.8) 21.5 (+5.9) 61.0 9.57 (+0.4) 21.0 (+5.4) 81.4 41.5 50.4
LangHOPS 44.5 8.86 16.7 60.5 11.4 (+2.5) 22.3 (+5.6) 62.8 16.4 (+7.5) 26.7 (+10.) 83.9 49.2 56.9

Table 1: Cross-dataset experiment: PascalPart-116 (training) → PartImageNet (evaluation) and
in-domain experiment: PartImageNet (training) → PartImageNet (evaluation). We report object-level
(obj), part-level (part), and overall (AP ) mAP. The best result is in bold and the second best one is in
underline. The notations "+INS" and "+INS+PART" indicate additional training dataset for scalability.
Green values reflect relative AP gains over the PPS-116 baseline; Cyan values reflect relative mAP
gains over the PPS-116 baseline. Gray columns shows in-domain performance.

Method PartImgNet +INS +INS+PART PPS-116
obj part AP obj part AP obj part AP obj part AP

PSALM 8.58 1.87 2.89 20.0 3.33 (+1.5) 5.87 (+3.0) 20.1 3.58 (+1.7) 6.09 (+3.2) 48.7 13.2 18.6
PartGLEE 8.00 2.18 3.06 23.1 3.06 (+0.9) 6.17 (+3.1) 22.2 3.37 (+1.2) 6.33 (+3.3) 53.2 14.5 20.4
LangHOPS 9.57 2.20 3.32 23.3 3.64 (+1.4) 6.63 (+3.3) 22.6 4.67 (+2.5) 7.39 (+4.1) 54.6 15.0 21.0

Table 2: Cross-dataset experiment: PartImageNet (training) → PPS-116 (evaluation) and in-domain
experiment: PPS-116 (training) → PPS-116 (evaluation).

4 Experiments

4.1 Cross-dataset Object-Part Instance Segmentation

We conduct experiments to evaluate the cross-dataset generalization performance of LangHOPS, as
well as baseline methods for the object-part instance segmentation task.

Experiment Setup. We follow the setup proposed in VLPart [50] where each method is trained
on one base dataset and evaluated on another unseen dataset, without finetuning. Two settings are
implemented: Pascal-Part-116 [55] → PartImageNet [16] and PartImageNet → Pascal-Part-116 (i.e.,
the model is trained on Pascal-Part-116 and evaluated on PartImageNet, and vice versa). We further
evaluate the scalability of LangHOPS by integrating two additional sets of datasets into training,
including object-level datasets INS (consisting of COCO [28], VisualGenome [21] and LVIS [14],
with object annotations) and part-level datasets (PART consisting of ADE20K [67], SA1B [20] and
PACO [42], with object and part annotations). Note the granularity of the part-level annotations
across the datasets within PART are different. The metric is mAPmask on the evaluation set of
PartImageNet and Pascal-Part-116 dataset.

Baseline methods. The existing methods for the OVPIS task include VLPart [50] and PartGLEE [24].
To extend the set of baselines for comparison, we further adapt PSALM [64], a state-of-the-art LLM-
based 2D object-level segmentation method by extending the LLM mask tokens with learnable part
queries for object-part parsing and part segmentation. The adapted PSALM is denoted as PSALM†.

Cross-dataset and in-domain evaluation on PartImageNet. As shown in Tab. 1, LangHOPS
achieves the best performance of object-part instance segmentation in both cross-dataset and in-
domain settings (i.e.,trained with Pascal-Part-116 and evaluated on PartImageNet). LangHOPS
surpasses PartGLEE by 1.1% and PSALM† by 3.3% in mAP on object-part instance segmenta-
tion. Our experiments further show that LangHOPS has better scalability with additional training
datasets containing part-level annotations. Trained on Pascal-Part-116+INS, all methods achieve
similar performance gains in both part-level mAP and overall AP. However, when the training set is
extended with additional part-level datasets (Pascal-Part-116 + INS + PART) our approach achieves a
significant performance boost in both part-level mAP (+7.5) and overall AP (+10.0). In contrast,
the performance gain of PartGLEE in part-level segmentation drops (+5.9 → +5.4) compared to
the Pascal-Part-116+INS setting, mainly due to lacking the object-part hierarchy context during part
parsing phase, as illustrated in Sec. 3.4.

Cross-dataset and in-domain evaluation on Pascal-Part-116. As shown in Tab. 2, training the
model on PartImageNet and implementing evaluation on Pascal-Part-116 is more challenging than
the previous condition for all the evaluated methods. Indeed, the latter dateset contains multiple
novel object categories and finer-granularity parts than the former. LangHOPS achieves the best
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Figure 3: Qualitative results of part-level segmentation if LangHOPS and baselines.

performance in both cross-dataset and in-domain object-part segmentation on Pascal-Part-116. The
experiments also shows the advantage of LangHOPS in scalability, especially in the setting with
PartImageNet+ INS + PART as training dataset (+4.1 over +3.2 and +3.3) when trained only on
PartImageNet dataset. Here, LangHOPS performs better than both baselines PartGLEE and PSALM†.

Qualitative Results are shown in Fig. 3 in the setting of PartImageNet + INS + PART → Pascal-
Part-116. As the figure shows, LangHOPS achieves more accurate part segmentation than other
baselines. Importantly, segmentation results on "person" and cat demonstrates LangHOPS’s superior
generalization performance to finer part granularity in the cross-dataset condition.

4.2 Zero-shot Part Segmentation

We further carry out experiments on the OV-Part benchmark [55] and PartImageNet dataset [16]
for the zero-shot segmentation. One must note that this benchmark is evaluating open-vocabulary
semantic segmentation of parts, which is not the core application of LangHOPS. The metric used is
the harmonic mean of intersection-over-union (hIoU), for both seen and unseen categories [56]:

hIOU =
2 ·mIoUseen ·mIoUunseen

mIoUseen +mIoUunseen
. (9)

As shown in Tab. 3, LangHOPS achieves the best performance on Pascal-Part-116 and PartImageNet
datasets, and reaches second-best performance on ADE20K-234 dataset, achieving competitive
performance with PartCATSeg [8]. LangHOPS obtains the highest mIoUseen on all three datasets,
demonstrating the superior generalization ability to unseen object and part categories. Noticeably,
our method is designed for open-vocabulary object-part instance segmentation while most others,
including PartCATSeg [8], are designed specifically for the OV-Part benchmark (semantic part
segmentation). Directly evaluating LangHOPS in the semantic segmentation still leads to superior
performance (hIOU) in PPS-116 and PartImageNet datasets, showing its great potential.

4.3 Ablation Study
Setting Detached Obj-Part Seg

obj 0.76 0.82
part 0.58 0.67

Table 5: Attention score.

Ablation studies further demonstrate the effectiveness of LangHOPS.

Object-Part Synergy. To showcase the object-part synergy enabled
by LangHOPS (i.e., a performance improvement from joint train-
ing of object and part instance segmentation) we reported the our
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Method PPS-116 [55] PartImageNet [16] ADE20K [55]
seen unseen hIoU seen unseen hIoU seen unseen hIoU

VLPart [50] 42.6 18.7 26.0 * * * * * *
ZSSeg+ [31] 54.4 19.0 28.2 * * * 43.2 27.8 33.9
CLIPSeg [52, 55] 48.9 27.5 35.2 53.9 37.2 44.0 38.2 30.9 34.2
CAT-Seg [7, 55] 43.8 27.7 33.9 47.3 35.1 40.3 33.8 25.9 29.3
PartCLIPSeg [9] 50.0 31.7 38.8 56.3 51.7 53.9 38.4 38.8 38.6
PartGLEE [24] 57.4 27.4 37.1 * * * 51.3 35.3 41.8
PartCATSeg [8] 57.5 44.9 50.4 73.8 71.5 72.7 53.1 47.2 50.0
LangHOPS 59.2 46.5 52.1 71.9 73.7 72.8 49.3 49.7 49.5

Table 3: h-IoU. Zero-shot evaluation on PPS-116, PartImageNet and ADE20K.

Training setup Obj Seg Detached Obj-Part Seg Obj-Part Seg
Eval Dataset Obj Part Obj Part Obj Part

PPS-116 25.8 0.00 25.2 9.66 26.2 10.3
PartImageNet 67.9 2.08 62.9 13.2 68.3 14.9

Table 4: mAP of object and part instance segmentation. Ablations on Object-Part Synergy.

performances in following training setups: a) "Obj Seg": LangHOPS is trained only with the loss
of object instance segmentation; b) "Detached Obj-Part Seg": LangHOPS is trained using losses of
both object and part instance segmentation. However, the gradient flow coming from "MLLM-based
parsing" module is interrupted, meaning that the gradients of P from the part segmentation loss will
not directly propagate to object queries OL. One can note that object and part segmentation will
still affect each other indirectly since both tasks use the same dense image features X. c) "Obj-Part
Seg": This setup allows a joint training of object and part instance segmentation without gradient
flow cut. As show in Tab. 4, in "Obj Seg" setting, the mAP of part segmentation performance is near
0, as the loss of part segmentation is not used. Compared to "Obj Seg", the performance of object
segmentation of "Detached Obj-Part Seg" drops 0.6% on PascalPart116 dataset and more significantly
on PartImageNet dataset by 5.0%, due to the absence of the gradient flow by the MLLM-based
parsing. In contrast, LangHOPS shows improved object segmentation performance in "Obj-Part
Seg" than "Obj Seg", and gains significant boost in both object (by 5.4%) and part segmentation (by
1.7%) over "Detached Obj-Part Seg". This demonstrates that the proposed MLLM-based object-part
parsing enables beneficial synergy effect in both cross-dataset and in-dataset conditions. We further
investigate the object-part synergy mechanism by reporting the average attention score. The average
attention score is calculated by summing attention scores of true positive predictions inside the ground
truth masks M , divided by the area of the masks. The attention is the normalized cos similarity
between object queries and the dense features of the final layer of the object/part decoder.

Sa =
∑
u∈M

1 + cos(fu, pM )

2 · |M |
, (10)

where u is the pixel within the ground truth mask M , (fu is the mapped feature for segmentation and
pM is the refined object/part query of the predicted instance matched to the ground truth instance.
The score shows the amount of attention correctly assigned by the model to the ground truth area,
and is in the range of [0, 1]. In the setting of PPS116+INS+PART -> PartImageNet, as shown in
Tab. 5, compared to the "detached object-part seg.", the synergized object-part segmentation leads to
higher attention scores for both object and part segmentation, proving strong evidence of the synergy
between both segmentation tasks.

Effect of MLLM-based Parsing. We implement an ablation study to demonstrate the effectiveness
of the MLLM-based Object-Part Parsing module by replacing it with a Q-Former. The Q-Former
takes the object queries O as key and value, and hierarchical part queries P0 as query. In the end, the
Q-former-based module outputs part queries PQ for part segmentation purposes. As shown in Tab. 7,
the ablated version, denoted as "w/o MLLM" shows inferior performances with both PartImageNet
and PPS116 datasets, demonstrating the effectiveness of the MLLM module in object-part parsing.

Ablation on two-stage. We also provide an ablation study on the training strategy of the model.
Two-stage refers to firstly training the model on object segmentation and secondly training it on
object-part segmentation. One-stage means we directly train the model on object-part segmentation
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Method PPS-116 +INS +INS+PART PartImageNet
obj part AP obj part AP obj part AP obj part AP

One-Stage 40.6 8.50 15.6 57.8 10.6 21.1 60.2 15.5 25.4 84.6 51.2 58.6
Two-Stage 44.5 8.86 16.7 60.5 11.4 22.3 62.8 16.4 26.7 83.9 49.2 56.9

Table 6: Ablations on training strategy in the cross-dataset setting of PascalPart-116 (training) →
PartImageNet (evaluation).

from scratch. Tab. 6 shows the model trained with the two-stage strategy achieves better cross-dataset
performance, though its in-domain performance is inferior compared to one-stage.

Module PartImageNet PPS116

w/o MLLM 23.2 18.4
w/o hierarchy 22.5 19.1
LangHOPS 26.7 19.8

Table 7: mAP on object-part instance
segmentation in the cross-dataset setting.
Ablations on architecture design.

Effect of Language-grounded Hierarchies. To investi-
gate the effectiveness of the language-space-aligned object-
part hierarchies, we conduct an ablation study by replacing
the representation proposed in Sec. 3.5 with N learnable
queries, denoted as "w/o hierarchy" in Tab. 7. Specifically,
we initialize N learnable queries and concatenate them
to each object query oL from OL to form the initial part
queries PN. Subsequently, the MLLM uses the OL, PN

and as input, and outputs parsed part queries that are for-
warded to the part decoder for final part segmentation. As shown in Tab. 7, by leveraging hierarchies
between object and parts, and formulating part queries within language space, LangHOPS achieves
better performance than the ablated version with learnable initial queries in both datasets.

4.4 Limitation and Future Work

As shown in the supplementary material (Section A.4), the computational cost of LangHOPS is
nontrivial compared to the baselines, primarily due to the integration of the MLLM for object–part
parsing. Improving efficiency is essential for deploying LangHOPS in real-time or on-board computer
vision and robotics applications. In addition, the training datasets [4, 14, 16, 21, 28] used in this work
mainly contain common object and part categories, which may not fully cover all potential application
scenarios. Therefore, additional datasets with task-specific annotations may still be required for
fine-tuning in specialized cases (e.g., interactable articulated objects for robotic manipulation), even
though LangHOPS demonstrates strong generalization capabilities compared to existing baselines.
Additionally, as 2D-to-3D lifting [32, 40, 48, 59] is increasingly popular, leveraging LangHOPS for
3D computer vision tasks [15, 33, 47, 60, 61] is also a promising future direction.

5 Conclusion

We propose a new method LangHOPS that performs Open-vocabulary Part Instance Segmentation
through hierarchical modeling in language space. Using language-grounded hierarchies improves
both the context awareness and the accuracy of object-part parsing. In experiments, we show that
LangHOPS performs notably better than existing state-of-the-art methods across multiple benchmark
settings. Notably, our method achieves significant improvements in in-domain and cross-dataset
object-part instance segmentation, where we outperform existing state-of-the-art approaches by
5.5% AP. LangHOPS further achieves the best mIOU on unseen object-parts in OVPIS tasks,
on all PartImageNet, PascalPart-116 and ADE20K datasets, consequently demonstrating strong
generalization ability in unseen object and part categories. In conclusion, LangHOPS establishes
a novel foundation for Open-vocabulary Part Segmentation and highlights the potential of MLLM-
based methods for fine-grained visual understanding, with the aim of encouraging further research
into scalable language-driven approaches for structured scene parsing.
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A Technical Appendices and Supplementary Material

This section provides additional visualization and ablation studies.

A.1 Visualization

Figure 4: Visualization on Annotations of PartImageNet and PascalPart116 datasets.

Granularity Difference Across Dataset. In Fig. 4, we provide additional visualizations of the an-
notations of PartImageNet and PascalPart116 datasets. The figure shows that the two datasets provide
annotations of parts in different granularity. Generally, PascalPart116 has finer part definition and
thus it is more challenging to implement part segmentation on PascalPart116 than on PartImageNet,
which explains that in both cross-dataset and in-domain settings, LangHOPS and baselines achieve
less mAP on PascalPart116 than on PartImageNet.

Failure Cases. We further provide failure cases of LangHOPS in the cross-dataset setting. As
shown in Fig. 5, LangHOPS can fail in several cases:

• when the object is distant to the camera and has small area in the image, LangHOPS may
not be able to detect all the parts (one motorbike’s wheel missing);

• in the cross-dataset setting, LangHOPS have difficulties in generalizing to some novel parts
which it has not see during training (bird’s eye, cat’s eye). As shown in Fig. 4, the training
dataset (PartImagenet) only contain annotations of animal’s head and no annotation of eyes.

• when the training and evaluation dataset have different annotation styles, the trained model
tends to predict the part segmentation in the style of training dataset (bicycle’s wheel, all the
pixels within the wheel circle).

A.2 Robustness Analysis

Statistical Robustness of Evaluation. We conduct repetitive experiments the same in Sec. 4.1 with
3 different random seeds. The average and standard deviation are calculated and reported in Tab. 8.
The table shows the statistical stability of the cross-dataset evaluation and verifies the superiority of
the proposed LangHOPS over the baseline.

Robustness to Prompt Formulation. We conducted two ablation studies on the ordering and
wording of the structured input prompts to assess the robustness of our method to prompt formulation.
(a) robustness to prompt ordering: We randomly shuffled (i) the order of object queries, and (ii)
the order of part queries within each object, multiple times during inference. For instance, object
3 may appear before object 1, or part queries within an object may be permuted (e.g., "part 9, part
4, part 6"). As shown in Tab. 9, our method remains highly stable across these permutations, with
minimal performance degradation, demonstrating robustness to input ordering. (b) robustness to
wording: We further test the model’s robustness to unseen part names by replacing the subset (from 0
to 100%) of the original part category names with GPT-4o-generated synonyms (e.g., "foot" → "leg").
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Figure 5: Failure cases of LangHOPS in the cross-dataset setting of PartImageNet+INS+PART (train-
ing) → PPS-116(evaluation).

Method PPS-116 +INS +INS+PART
obj part AP obj part AP obj part AP

PartGLEE 38.4±0.5 8.61±0.46 15.2±0.5 57.6±1.8 11.3±0.2 21.5±0.6 60.1±0.9 10.5±0.7 21.5±0.7
LangHOPS 48.7±3.3 8.89±0.24 17.7±0.9 60.9±0.7 12.1±1.0 22.9±1.0 63.7±1.4 16.6±0.3 27.0±0.5

(a) PPS-116 → PartImageNet

Method PPS-116 +INS +INS+PART
obj part AP obj part AP obj part AP

PartGLEE 8.53±0.52 2.05±0.09 3.04±0.16 23.3±0.1 3.10±0.16 6.17±0.16 22.5±0.4 3.60±0.24 6.46±0.26
LangHOPS 11.0±1.0 2.17±0.03 3.50±0.18 22.9±0.7 3.68±0.11 6.59±0.19 23.2±0.5 4.51±0.25 7.34±0.28

(b) PartImageNet → PPS-116

Table 8: Evaluation of PartGLEE and LangHOPS with mean ± standard deviation over 3 runs with
different random seeds in the cross-dataset settings .

As shown in Tab. 10, LangHOPS significantly outperforms PartGLEE under increasing synonym
replacement ratios, indicating strong generalization to semantically similar but unseen phrasing. Note
that synonym substitutions may introduce granularity mismatches with the dataset’s ground-truth
annotations (e.g., "leg" may exclude "paw" in the ground truth for “foot”), which partially explains
the observed performance drop.

Robustness to Noisy Hierarchy. We test on the common OVS setting using clean object-part
hierarchies, but believe in the value of closing the gap towards a noisy real-world deployment. To
evaluate the robustness of LangHOPS to noisy or automatically mined hierarchies, we replace a
portion of the clean object-part taxonomy with GPT-4o-generated object-part hierarchies. These
auto-mined hierarchies are constructed solely from the object category names and may introduce
ambiguity, inconsistency, or irrelevant parts. In Tab. 11, we report performance under the varying
noise hierarchies as the input prompt while the remaining the clean dataset annotations for evaluation.
We observe that: LangHOPS consistently outperforms PartGLEE across all noise levels; LangHOPS
degrades more gracefully as noise increases, maintaining reasonable AP even when the hierarchies
are noisy; The performance gap widens especially at high noise levels, demonstrating LangHOPS’s
stronger resilience to imperfect or automatically mined hierarchies. Please note that the auto-generated
hierarchies are often inconsistent with the ground truth annotations in the dataset, leading to lower
evaluation metrics. Overall, developing evaluation protocols for adaptive, task-specific hierarchies
remains an open problem and a promising direction for future benchmark design.
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Method PPS-116 +INS +INS+PART

obj part AP obj part AP obj part AP

Shuffling of Object 47.8±2.7 8.57±0.36 17.1±0.9 61.1±0.8 11.7±0.8 22.6±0.8 65.1±0.9 15.8±0.3 26.7±0.4
Shuffling of Part 46.9±2.4 9.08±0.33 17.5±0.8 58.8±1.1 13.6±0.9 23.6±0.9 64.2±1.6 16.9±0.3 27.4±0.6
No shuffling 48.7±3.3 8.89±0.24 17.7±0.9 60.9±0.7 12.1±1.0 22.9±0.97 63.7±1.4 16.6±0.3 27.0±0.5

Table 9: Ablations on the ordering of the object and part queries – PPS116→PartImageNet.

Method 0% 25% 50% 75% 100%
part AP part AP part AP part AP part AP

PartGLEE 11.2 21.8 9.3 20.3 8.6 19.7 6.6 18.2 5.1 17.0
LangHOPS 17.0 27.1 16.2 26.5 16.5 26.7 14.6 25.3 12.7 23.8

Table 10: Ablation on the robustness to input part category names. PPS116 + INS + PART →
PartImageNet. Different percentages of part category names replaced with GPT-4o generated
synonyms.

A.3 Additional Ablation study

Ablation on Np. We further provide ablation study on the number of repeated part queries for each
object Np in the cross-dataset setting of PPS-116+INS+PART (training) → PartImageNet (evaluation).
As shown in Tab. 12, the object-part segmentation performance drops when the Np is too small (1, 2)
or too large (4, 5, 6), .

Ablation on backbone finetuning. We further conduct an ablation study to show the necessity
of finetuning the visual backbone and pixel decoder during training. As we can see in the Tab. 13,
finetuning the visual backbone and pixel decoder leads to improved performance especially in the
part segmentation task. This effect is mainly due to the fact that the used visual backbone and
pixel [6, 23] are pretrained only on object-level tasks, and the extracted dense features lack part-level
understanding. Thus, finetuning them on the object-part-level tasks is beneficial.

A.4 Computation Cost

We report the footprint of GPU hours, carbon cost, inference cost and model size of PartGLEE,
PSALM and LangHOPS. The gpu hours and inference time are reported with Nvidia H200
GPU(s). The spec. power (700W) of H200 and world average carbon intensity of electricity
(0.475 kgCO2/kWh ) are used for calculating the footprint. The Tab. 14 shows that LangHOPS
has the largest model size, mainly due to the usage of MLLM (Paligemma2-3B). PSALM† has the
longest training time and carbon footprint since it trains the LLM instead of using LoRA, and needs
to process all candidate category names, which leads to long input prompts to the LLM. LangHOPS
achieves the best performance with reasonable training and inference cost compared to the baselines.
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Method 0% - 25% - 50% - 75% - 100% -
part AP part AP part AP part AP part AP

PartGLEE 11.2 21.8 10.3 21.1 9.8 20.7 8.2 19.4 3.6 15.8
LangHOPS 17.0 27.1 13.1 24.1 12.4 23.5 8.8 20.7 6.7 19.1

Table 11: Ablations on the noisy hierarchy construction. Different percentages of obj–part
hierarchies from the dataset are replaced with GPT-4o generated ones.

Np 1 2 3 4 5 6

Obj AP 61.7 62.1 62.8 62.4 61.4 61.8
Part AP 15.4 15.8 16.4 16.0 16.1 15.9

Table 12: Ablation Study on Np.

Method PPS-116 +INS +INS+PART PartImageNet
obj part AP obj part AP obj part AP obj part AP

Frozen Bk+Pd 48.2 6.99 16.1 64.1 8.85 21.1 66.1 9.34 22.0 80.6 30.1 41.3
Frozen Bk 47.6 7.36 16.3 63.0 6.98 19.4 63.4 12.4 23.8 83.2 34.7 45.4
LangHOPS 49.1 8.62 17.6 61.8 13.6 24.3 62.7 17.0 27.1 85.5 47.9 55.8

(a) (PPS-116 → PartImageNet.

Method PartImageNet +INS +INS+PART PPS-116
obj part AP obj part AP obj part AP obj part AP

Frozen Bk+Pd 10.5 1.71 3.05 23.4 2.57 5.73 23.2 2.76 5.86 53.3 7.48 17.7
Frozen Bk 11.8 1.95 3.45 23.3 2.92 6.01 23.0 3.34 6.32 44.2 7.65 15.8
LangHOPS 11.3 2.17 3.47 21.9 3.82 6.55 23.8 4.16 7.13 56.4 15.3 21.4

(b) PartImageNet → PPS-116.

Table 13: Ablations on frozen image backbones and pixel decoder in the cross-dataset settings. "BK"
refers to the visual encoder and "Pd" refers to the pixel decoder in the Fig. 2

Method Model Size Training GPU Hours Training Footprint (kg CO2e) Inference Time (ms)

PSALM† 1.5B 92 30.6 628
PartGLEE 1B 40 13.3 240
LangHOPS 4B 72 23.9 396

Table 14: Computation Cost of LangHOPS and the baselines. PPS116 + INS + PART → PartIma-
geNet.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract claims that the paper proposes a method which has key novelties in
the model design and achieves state-of-the-part the performance. The introduction, method
and experiment parts in the main paper clearly illustrate the model design, model’s novelty
and experiment implementation and demonstrate the contribution of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It’s in experiment section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details demonstrate the hyperparameters and training
strategy. Supplementary material will provide further details due to the page limit.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be released in Open Access, under some license.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: It’s in the method and experiment sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention this in the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the paper conform, in every respect, with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The models and data used in the paper are properly credited and the license
and terms of use are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: They will be provided upon acceptance of the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The proposed model leverages a open-source MLLM as the component of the
framework.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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