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Abstract

To successfully navigate its environment, an agent must construct and maintain
representations of the other agents that it encounters. Such representations are
useful for many tasks, but they are not without cost. As a result, agents must
make decisions regarding how much information they choose to store about the
agents in their environment. Using selective social learning as an example task,
we motivate the problem of finding agent representations that optimally trade
off between downstream utility and information cost, and illustrate two example
approaches to resource-constrained social representation.

Representing agents under cost constraints

In order to produce adaptive behaviour, an agent must acquire and maintain an internal representation
of its environment [Craik, 1943, Tolman, 1948, Wilson et al., 2014]. Furthermore, unless condemned
to an entirely solitary existence, we can expect that many environments encountered by a hypothetical
agent will contain other agents. Much as our agent should represent the rest of the environment,
we expect that it ought also to be able to represent these other agents. Humans do this—in fact, it
seems we are intrinsically motivated to form mental representations of the other people we encounter
[Dennett, 1987, Malle, 2008, Baker et al., 2017]. We use these representations for a variety of different
purposes: understanding the strengths and weaknesses of a colleague to effectively collaborate with
them; determining whether a stranger should be treated as friend or foe; or predicting the plays of
a chess opponent in order to beat them. In an ideal world, we would maintain representations that
encode all possible available information about every agent in our environment. But real agents,
whether biological or artificial, will inevitably have to contend with limits on their cognitive resources.
Inspired by a growing body of work in computational cognitive science that models human cognition
through the lens of resource rationality [Lieder and Griffiths, 2019, Bhui et al., 2021], we consider the
problem of developing social representations that balance downstream utility against cognitive cost.

Social decision tasks

To consider the idea of using social representations for decision-making, we develop the general
construct of a social decision task—which describes any decision task where the optimal strategy
depends on some representation of some set of other agents. That is, adapting the notation of
Markov Decision Processes (MDPs) [Sutton and Barto, 2018, Puterman, 1994], the optimal policy
(in terms of maximising expected return) is conditional on the value of some social representation χ:
π∗(s, a) = π∗(s, a;χ). To consider the utility of a particular social representation χ, first let Π(χ)
be the class of possible policies whose output depend on the value of χ. We can then consider the
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Figure 1: We generate several agents with randomly sampled scalar utility functions u(m) ∈ [0, 1],
which control each agent’s relative preference for the two states labelled A and B. From each agent
we sample a number of trajectories using different values of the decision noise parameter β(m). We
then plot social learning reward as a function of the similarity between u(m) and uego, and β(m),
averaged over both repeated trials and different values of uego.

utility of χ as the expected return induced by the best member of Π(χ):

U(χ) = max
π∈Π(χ)

E[R |a ∼ π(s, a;χ)] (1)

Where R is the total (possibly discounted) return achieved from executing actions a in the environment.
Equation 1 tells us, given access to social representation χ, how well we expect to perform on a
particular task assuming that we’re able to make the best possible use of the information in χ? Given
some function C : χ → R that measures cognitive cost, we then define the cost-adjusted utility of χ
as

U ′(χ) = (1− λ)U(χ)− λC(χ) (2)

where λ ∈ [0, 1] is a parameter that trades off between utility and cost. A representation χ∗ is
then considered optimal if it satisfies χ∗ = argmaxχ U ′(χ). This optimality criterion is similar
to the objectives used within work on capacity-limited Bayesian decision-making and RL, such as
Arumugam et al. [2023]. The key difference (beyond our explicit focus on social representations) is
that we are interested not so much in the cognitive cost of converting representations into behaviour,
but in the cost the representations themselves. In general, we expect this be a combination of the
cost involved in acquiring a representation (i.e. inferring it from observation), and the cost involved
in storing it—for now we simply group both under entropy (for more details see Appendix A),
i.e. C(χ) = H[χ]. This makes intuitive sense as an objective—essentially saying that we want to
maximise our expected task performance while minimising the amount of information we store about
other agents. This is related to the objective used in Abel et al. [2019], which considers a similar
tradeoff for the problem of state abstraction in apprenticeship learning.

Selective social learning as an example downstream task

As a simple example of a social decision task, we consider selective social learning, a common
component of human and animal social behaviour which involves the problem of identifying the ‘best’
agent to learn from within a given environment [Rendell et al., 2011, Heyes, 2016]. In our framing
of this task, the learning agent αego is situated within some environment populated by a number of
other agents, with the ability to observe their behaviour (in the form of state-action transitions). At
each trial, αego selects an agent αtarget. All agents then execute some sequence of behaviour within
the environment, visible to αego. αego executes the same behaviour observed from the chosen αtarget,
and receives some reward corresponding to their own internal utility function uego. A general policy
for selecting social learning targets on the basis of representations is given by

Pr(αtarget = α(m)) ∝ exp

(
w(α(m);χ)

βego

)
(3)

where w is some function that weights agents based on the value of χ and βego gives the decision
noise of the social learning agent.
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Figure 2: Left: illustration of state-aggregated estimates of an example 2D utility function (lighter
grid squares indicate higher values). Middle: average return from selective social learning using
state-aggregated value function estimates as agent representation (with indiscriminate selection as a
baseline). Right: cost-adjusted return for aggregated representations at different values of λ. Since
we are interested only in the tradeoff between return and cost (entropy), rather than each quantity’s
absolute values, both are individually normalised to lie in [0,1].

We can use Equation 3 to express different selection strategies by changing the weighting function w.
Of course, the optimal choice of w will depend on the type of decision-making employed by the other
agents. We assume that each observed agent attempts to maximise its own return in a noisily rational
manner, according to a Boltzmann-style policy with decision noise β(m). Under this model, the social
learner’s expected reward should be optimised by selecting an agent such that we maximise some
measure of the similarity between utarget and uego while minimising β(m). We can demonstrate this
through simulation using a simplified one-dimensional gridworld environment—Fig. 1 shows that
the social learner’s return indeed increases with increasing utility function similarity and decreasing
β(m). For the remainder of this paper, we will make the assumption that all observed agents are
equivalently rational, and thus set aside the decision noise parameter. We therefore consider optimal
social representations of the form χ(m) = û(m) where û(m) is some approximation of u(m).

To study strategies for selective social learning, we use a contextual bandit setting. At each trial, each
observed agent m is placed at a random tile within a 2D grid, chooses an destination tile to travel to,
and then receives a reward r = u

(m)
dest − c

(
|xdest − xstart|+ |ydest − ystart|

)
where c ≥ 0 is a constant

scalar that determines the cost of taking one step on the grid. Following the design of Wu et al. [2018]
and Witt et al. [2023], we generate spatially correlated 2D utility functions (i.e. nearby tiles generally
yield similar rewards) by sampling from a Gaussian process prior with a radial basis function kernel.
The social learner selects targets according to Eq. 3, with weights given by

w(α(m);χ) = w(α(m); û(m)) = sim(uego, û(m)) =
uego · û(m)

|û(m)||û(m)|
(4)

Experiment 1: state aggregation

If αego has to choose between only a small number of agents, or faces only a small state space, then
it may be feasible to represent utility functions exactly (i.e. use û(m) = u(m)), even for λ > 0.
But if the agent population or state space is large, then the optimal representation in terms of cost-
adjusted utility (Eq. 2) will likely be an approximation that discards some information for the sake
of lower entropy (see Appendix A). A simple way to obtain such an approximation is through state
aggregation—i.e. group all states within a given-sized ‘patch’ of the grid under a single value [Sutton
and Barto, 1998, Abel et al., 2019]. Fig. 2 shows how the cost-balanced utility of aggregated value
function representations under various values of the tradeoff parameter λ. As expected, we observe
that increasing the amount of aggregation leads to a decrease in both average return and representation
cost, with the relative advantage or disadvantage determined by the tradeoff parameter.

Experiment 2: representing social groups

So we have seen how naive compression of utility function information can help a social learner
navigate this tradeoff. But rather than merely taking individual representations and making them
coarser, a more humanlike approach might involve using information about the agent population as a
whole, and how individual agents within the population relate to one another. For instance, we often
represent people that we’re unfamiliar with in terms of their membership of certain social groups or
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Figure 3: Top: cost-adjusted return for group-only and individual representations (with indiscriminate
baseline) for different values of the group variance ratio ρ and the tradeoff parameter λ. As before,
both return and cost (entropy) are normalised to lie in [0,1]. Bottom: illustration of example utility
functions sampled for a 3-member group for three different values of the variance ratio ρ.

categories, using our knowledge of those groups to make inferences about the unknown properties of
their members [Rhodes and Baron, 2019, Liberman et al., 2017]. To see how this can produce cheap
agent representations, imagine that we have a known fixed number of groups K, and a population
of M agents that are partitioned such that each agent m belongs to only one group (given by zm).
Continuing our example of selective social learning, we will say that each group k is associated with
a corresponding distribution over utility functions, p(u(m)|zm = k), with mean value µ(k). As an
extreme, if we treat all members of group k as having u = µ(k) (i.e. representing zero intragroup
variance), then we need only represent each agent with a single scalar value zm. Including the group
means, this would yield an overall representation cost

C(χgrp) = KH[µ(k)] +MH[zm] (5)

Intuitively, the extent to which this representation is useful will be primarily determined by the ratio
between inter- and intragroup variation. When groups are very different, and agents within each
group are very similar, then knowing an agent’s group assignment tells you a lot about their individual
properties; when groups are similar or agents vary a lot within each group, then group assignments
are less informative. We can test this using the same task setup as in the previous experiment. We
first sample a number of group mean value functions µ(k) from the original GP prior; for each group
we then sample a number of agents from a multivariate Gaussian distribution with mean µ(k) and
covariance Σ = ρΣGP where ρ > 0 is a scalar and ΣGP is the covariance of the GP prior. Fig. 3
compares the cost-adjusted utility of the groups-only and individuals-only representation strategies
for different values of ρ and λ. We can see that, below a certain λ threshold, individual representations
are always as good or better than group representations; above a certain λ threshold, the reverse is
true. Otherwise, as predicted, the optimal representation depends on the group variance ratio, with
group-only representations becoming less useful as ρ increases.

Discussion

In this paper, we have briefly laid out and motivated the problem of cost-constrained social represen-
tation; that is, representing other agents in such a way that optimally trades off between downstream
utility and information cost. Using selective social learning as an example task, we explored two
potential approaches to this problem: compressing individual representations, and representing agents
in terms of group identity. While we hope the work we present here is of some value, it is of course
very much a preliminary step—in future work we hope to consider how agents can learn good
social representations by optimising directly for this tradeoff, as well as broadening our analysis
to encompass additional example tasks and agent features. As hinted at earlier, we also hope to
explore a more detailed conception of representation cost that considers both acquisition and storage
of information.
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A Representation entropy

Here we provide some additional details on our use of representation entropy as a measure of cognitive
cost. For a comprehensive introduction to entropy (and other related information-theoretic quantities)
we direct the reader to Cover and Thomas [2006]. For a discrete random variable X ∈ X with
probability mass function p(x) := Pr(X = x), the entropy of X is given by

Hb(X) = −
∑
x∈X

p(x) logb(p(x)) (6)

When b = 2 (as it typically is), the entropy has units of bits. For a continuous random variable Y ∈ Y
with probability density function p(y), the differential entropy of Y is given by

Hb(Y ) = −
∫
y∈Y

p(y) logb(p(y)) (7)

If Y follows a multivariate Gaussian distribution with covariance Σ, then H(Y ) is computed as

H2(Y ) =
1

2
log2 |Σ|+

n

2

(
log2(2πe)

)
(8)

where n is the dimensionality of Y [Rasmussen and Williams, 2006]. This allows us to compute the
entropy of our agent value functions v, since each value function is in effect a continuous random
variable distributed according to a multivariate Gaussian with known Σ. The total entropy of a
representation χind that consists of the value functions of M agents over n states is thus given by

H2[χind] =
M

2

[
log2 |Σ|+ n

(
log2(2πe)

)]
(9)

To compute the entropy of a state-aggregated value function estimate v̂, we can treat v̂ as a new
continuous RV with a lower-dimensional multivariate Gaussian distribution whose covariance Σagg is
determined entirely by Σ and the level of state aggregation. Determining Σagg is then sufficient to
compute H(v̂). For the group-only representation cost, we need simply to compute the entropy of
the scalar discrete random variable z (the agents’ group assignments). With a uniform distribution
over K groups, this is simply given (following Eq. 6) by

H2(z) = −
K∑

k=1

1

K
log2

( 1

K

)
= log2(K) (10)

The total entropy of a groups-only representation χgrp is given by combining this with the total
entropy of the group mean value functions:

H2[χgrp] =
K

2

[
log2 |Σ|+ n

(
log2(2πe)

)]
+M log2(K) (11)
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