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Abstract
We introduce IRIS, a geometric and heuristic-
based scoring system for evaluating mathemat-
ical conjectures and theorems expressed as lin-
ear inequalities over numerical invariants. The
IRIS score reflects multiple dimensions of sig-
nificance—including sharpness, diversity, diffi-
culty, and novelty—and enables the principled
ranking of conjectures by their structural impor-
tance. As a tool for fully automated discovery,
IRIS supports the generation and prioritization
of high-value conjectures. We demonstrate its
utility through case studies in convex geometry
and graph theory, showing that IRIS can assist
in both rediscovery of known results and proposal
of novel, nontrivial conjectures.

1. Introduction
The formulation of mathematical conjectures has long been
seen as a deeply creative act—emerging from intuition, pat-
tern recognition, and structural insight. From Ramanujan’s
identities to the unsolved problems scattered across every
domain of mathematics, conjecture-making captures the
conceptual leaps often viewed as uniquely human.

This view, however, is evolving. Over the past several
decades, automated systems have begun to assist in the
generation of mathematical conjectures, often producing
results that inform or inspire new theorems—a field of
research known as automated conjecturing. Among the
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earliest and most influential was Fajtlowicz’s Graffiti (Fa-
jtlowicz, 1987; 1990), whose conjectures have led to well
over 60 publications in mathematical journals. Other sys-
tems have approached conjecturing through geometric and
symbolic means. These include GraPHedron (Mélot, 2008),
which framed conjecture discovery as a convex hull prob-
lem, and its successor program PHOEG (Devillez et al.,
2019). Still others invoke optimization techniques, such as
TxGraffiti (Davila, 2024a) and the Optimist agent (Davila,
2024d), or incorporate neural methods (Davies et al., 2021).

In this paper, we introduce IRIS: the Inequality Ranking
and Inference System. IRIS assigns each inequality a struc-
tured feature vector that encodes geometric and heuristic
signals—such as boundary tightness, dimensional diversity,
and directional novelty relative to previously accepted con-
jectures. While IRIS is not itself a fully automated conjec-
turing system, its scoring framework can be applied retroac-
tively to inequalities proposed by systems like GraPHedron,
TxGraffiti, or the Optimist, or used prospectively within
new automated pipelines as a scoring module. We demon-
strate the system’s effectiveness through case studies in
graph theory and convex geometry, showing that it can re-
cover classical results and propose new conjectures, some
of which parallel longstanding open problems in discrete
mathematics.

2. Related Automated Conjecturing Systems
We begin by surveying key automated systems that ex-
emplify distinct approaches to mathematical conjecturing.
These include symbolic heuristic systems (e.g., Graffiti), ge-
ometric approaches grounded in polyhedral reasoning (e.g.,
GraPHedron, PHOEG), hybrid systems that incorporate op-
timization techniques (e.g., TxGraffiti, Optimist), and recent
efforts that integrate neural methods with symbolic reason-
ing (e.g., (Davies et al., 2021)). Although IRIS is not itself
a conjecturing engine, it is designed to evaluate and score
the types of inequalities produced by such systems.

2.1. Graffiti

Siemion Fajtlowicz’s Graffiti (Fajtlowicz, 1987; 1990), de-
veloped in the 1980s, is arguably the most influential of all
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automated conjecturing systems. Its conjectures have led to
over 60 publications by leading mathematicians. At its core,
Graffiti operated on a collection of a few hundred graphs.
When asked to conjecture, it computed the values of dozens
of graph invariants and searched for symbolic inequalities
among them, retaining only those that satisfied two key con-
ditions—together known as the Dalmatian heuristic (Larson
& Cleemput, 2016). The first is the truth test: an inequal-
ity must hold for all known examples in the dataset. The
second is the significance test: it must offer a strictly better
bound than existing conjectures on at least one example.
This filtering process enforced what Fajtlowicz called the
Principle of the Strongest Conjecture, selecting statements
that were both empirically valid and non-redundant.

Over time, Graffiti generated hundreds of nontrivial and of-
ten deep conjectures, particularly in areas such as chemical
graph theory (Fowler, 1997; Fowler et al., 1998; 1999; Fajt-
lowicz & Larson, 2003; Fajtlowicz et al., 2005; Fajtlowicz,
2005) and graph distances (Fajtlowicz, 1988; Chung, 1988).
Its influence extended beyond published theorems—it also
played a transformative role in undergraduate research and
collaborative discovery (Pepper, 2001). For a detailed ret-
rospective on the system’s development and mathematical
impact, see (DeLaViña, 2005).

2.2. GraPHedron and PHOEG

A distinct approach to automated conjecturing emerged
in the early 2000’s from geometric reasoning, particularly
through the GraPHedron system (Mélot, 2003). Rather than
relying on symbolic heuristics, GraPHedron framed conjec-
ture generation as a problem in convex geometry. Graphs
were embedded as points in a high-dimensional Euclidean
space, where each coordinate represented a real-valued in-
variant such as order, size, or diameter.

The core insight was both elegant and powerful: linear in-
equalities among invariants correspond to the supporting
hyperplanes of the convex hull of these points. By com-
puting the facets of this polytope, the system extracted in-
equalities that were automatically satisfied by all graphs
in the dataset—conjectures justified directly by geometric
structure. Each graph was thus identified with a point in Rd,
where the coordinates correspond to a fixed list of invariants
i1, . . . , id, and ij(G) denotes the value of the j-th invariant
on graphG. The resulting facet inequalities were interpreted
as candidate conjectures of the form

a1i1(G) + · · ·+ adid(G) ≤ b.

The strength of GraPHedron lies in its exhaustive and unbi-
ased character: all sharp linear inequalities derivable from
the dataset are identified. However, its primary limitation
is computational. Convex hull algorithms scale poorly with
both the number of graphs and the number of invariants,

restricting practical usage to relatively small graph classes
and low-dimensional invariant spaces.

Building on these ideas, PHOEG (Polyhedral Help for Ob-
taining Extremal Graphs) extends GraPHedron’s method-
ology to larger datasets and improved scalability (Devillez
et al., 2019). PHOEG treats extremal graph theory as a struc-
tured data mining problem, combining a relational database
of graphs and precomputed invariants with fast convex hull
approximations, facet discovery heuristics, and interactive
query tools for retrieving extremal examples and conjec-
tured inequalities.

2.3. TxGraffiti

TxGraffiti (Davila, 2024a), developed in the mid-2010s, ap-
proaches conjecture generation as a structured optimization
process over invariant data. Given a dataset of mathematical
objects annotated with numerical invariants and Boolean
properties, the system selects a target invariant and con-
structs upper or lower bounds by solving a sequence of
linear programming problems. Each optimization model is
restricted to a Boolean-defined subclass of graphs (e.g., con-
nected graphs, connected cubic graphs, connected regular
graphs) and produces candidate inequalities that hold across
all known instances. These are then filtered using a suite
of heuristics inspired by Graffiti, including truth, sharpness,
generality, and significance tests (Davila, 2024d).

Beyond its research contributions—see, for instance, (Caro
et al., 2022; Davila & Henning, 2019; 2021; Brimkov et al.,
2024; Davila & Henning, 2020; Davila, 2024c; Schuerger
et al., 2024)—TxGraffiti also emphasizes accessibility. A
public-facing interface (Davila, 2024b) allows users to ex-
plore conjectures across standard and custom graph families,
lowering the barrier to engagement for both students and
researchers.

Although originally developed for graph-theoretic discovery,
the mechanisms of TxGraffiti are not domain-specific. Like
Graffiti, the system operates purely on invariant data and
Boolean filters, independent of the underlying mathematical
objects. As demonstrated in (Davila, 2024a), it has been
applied to conjecture over positive integers, matrix-derived
invariants, and even non-mathematical datasets such as the
wine quality dataset from scikit-learn.

2.4. DeepMind Approach

In a recent contribution to mathematical discovery, re-
searchers at DeepMind applied machine learning techniques
to identify novel patterns among invariants of knots and
posets (Davies et al., 2021). Their system was trained on
a dataset of over one million knots, each annotated with
geometric and algebraic features such as hyperbolic volume,
injectivity radius, and signature. Remarkably, the model
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uncovered an unexpected correlation between the algebraic
invariant known as the signature and a newly defined geo-
metric quantity called the natural slope.

This led to a conjecture bounding their difference:

|2σ(K)− slope(K)| < c1 · vol(K) + c2,

where σ(K) denotes the knot signature, vol(K) its hyper-
bolic volume, and c1, c2 are constants. The conjecture was
later proven and refined into a rigorous theorem by human
mathematicians, establishing a precise inequality involving
signature, slope, volume, and injectivity radius.

This work stands out for integrating large-scale neural mod-
els into the discovery pipeline and for catalyzing a human
proof of a previously unknown inequality. While earlier
systems such as Graffiti, Graffiti.pc (DeLaViña et al., 2024),
and TxGraffiti have also led to provable theorems—many
in geometric domains—the DeepMind approach illustrates
how machine learning can complement traditional methods
in modern mathematical research.

3. Problem Setup
Let O = {O1, O2, . . . , ON} denote a finite collection of
mathematical objects—such as graphs, polytopes, or other
combinatorial or geometric structures. Each object Oi ∈
O is associated with a feature vector x(i) ∈ Rk, where
each coordinate represents a real-valued invariant computed
on Oi. Collectively, these vectors form a dataset X =
{x(1), x(2), . . . , x(N)} ⊂ Rk, which we interpret as a table
of invariant data: each row corresponds to an object, and
each column to a specific invariant.

We define a conjecture over this dataset as a symbolic in-
equality of the form

a⊤x ≤ b,

where a ∈ Rk is a vector of coefficients and b ∈ R is a
scalar threshold. A conjecture is said to be valid under a
Boolean predicate p : O → {True,False} if it holds for
all vectors x(i) ∈ X such that p(Oi) = True. This al-
lows us to reason over structural subclasses, such as regular
graphs, fullerene polytopes, or trees, without requiring the
inequality to hold universally.

To evaluate conjectured inequalities, we adopt a geomet-
ric perspective that is agnostic to how the inequalities are
produced. Specifically, we consider a blackbox system that
proposes inequalities of the form a⊤x ≤ b, intended to
hold over the relevant subset of the dataset defined by a hy-
pothesis p. Such inequalities may originate from symbolic
reasoning, convex hull methods, optimization pipelines, or
neural models, and are the candidate conjectures we con-
sider.

Each valid inequality can be interpreted as defining a
closed halfspace that contains the filtered point cloud Xp =
{x(i) ∈ X : p(Oi) = True} ⊂ Rk. A collection S ⊆ H
of such inequalities defines a polyhedral outer approxima-
tion of the data:

P =
⋂

(a,b)∈S

{
x ∈ Rk : a⊤x ≤ b

}
,

where H denotes the full pool of candidate inequalities.
Each element of S is treated as a potential conjecture de-
scribing the structure of the invariant data.

This geometric framing motivates many of the scoring and
ranking techniques in IRIS. Rather than judging a conjec-
ture by its origin, we assess its mathematical significance
based on how it interacts with the ambient geometry of the
dataset.

4. IRIS
IRIS, the Inequality Ranking and Inference System, as-
signs numerical scores to valid inequalities interpreted as
conjectures over a dataset of invariant vectors. Given a valid
inequality a⊤x(i) ≤ b for all x(i) ∈ X , we define the touch
set of a conjecture h = (a, b) as the set of data points that
lie approximately on the boundary defined by the inequality:

T (h;X) =
{
x ∈ X : |a⊤x− b| < ε

}
.

We then define the touch matrixM(h;X) ∈ Rk×t as the
matrix whose columns are the vectors in T (h;X), where
t = |T (h;X)|. The IRIS framework evaluates each con-
jecture using a collection of geometric and heuristic mea-
sures derived from this matrix and the ambient dataset X .

Normalized Touch T (h;X): the fraction of data points
that lie approximately on the boundary defined by h,

T (h;X) =
1

N
|T (h;X)| .

This score captures sharpness: inequalities that are tight for
many instances are more likely to reflect extremal structural
boundaries in the data.

Normalized Rank R(h;X): the rank of the touch matrix,
normalized by the number of its columns,

R(h;X) =
rank(M(h;X))

d(M(h;X))
,

where d(M(h;X)) is the number of columns of the touch
matrix. The rank reflects the dimension of the affine sub-
space spanned by the touch points. Higher normalized rank
suggests the touch set is well-distributed and nearly full-
dimensional in the space of selected invariants.
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Before defining our next measure, recall that the diameter
of a finite set A ⊂ Rk is given by

diam(A) = max
x,y∈A

∥x− y∥2.

Normalized Diameter L(h;X): the diameter of the touch

set, normalized via the diameter of the full dataset,

L(h;X) =
diam(T (h;X))

diam(X)
.

This score reflects the geometric extent of the conjecture’s
active region. It approximates the length of an exposed face
defined by the inequality, normalized by the overall spread
of the data cloud.

Each conjecture may also be assigned scores reflecting its
relationship to the set of inequalities to which it belongs.
Let S denote the current set of accepted conjectures. Define
the Dalmatian set of h ∈ S as follows:

D(h;S,X) = {x ∈ X : b− a⊤x ≤ min
(a′,b′)∈S

(b′ − a′⊤x)}

The following scores give numerical ranking to each conjec-
ture in a set.

Binary Significance ∆(h;S): a binary indicator that equals
one if the conjecture h provides the tightest (or equally
tightest) bound for at least one data point in X compared to
all other conjectures in S. Formally,

∆(h;S, X) = I [D(h;S,X) ̸= ∅] ,

where I[·] denotes the indicator function. Note, only accept-
ing conjectures with this score nonzero is equivalent to the
Dalmatian heuristic of Graffiti.

Rational Significance σ(h;S): a soft measure indicating
the fraction of data points for which h is the most significant
conjecture in terms of slack:

σ(h;S, X) =
1

N
|D(h;S,X)|,

where I[·] denotes the indicator function.

Proximity P (h;S, X): the normalized inverse slack be-
tween the inequality and the dataset,

δ̄(h) =
1

N

∑
x∈X

(
b− a⊤x

)
,

P (h;S) = 1− δ̄(h)

max
h′∈S∪{h}

δ̄(h′)
.

This term favors conjectures that lie closer to the bound-
ary of the data cloud, indicating a more difficult or tight
inequality.

Angular Novelty N(h;S): the minimum angular distance
between the normal vector a and those of previously ac-
cepted conjectures,

N(h;S) = min
(a′,b′)∈S

∥∥∥∥ a

∥a∥
− a′

∥a′∥

∥∥∥∥
2

.

This encourages directional diversity in the space of conjec-
tures, promoting new inequalities that cut through invariant
space in distinct ways.

Together, these scoring metrics define IRIS. This set of
metrics is modular and can be applied in conjunction with
any system that produces linear conjectures. However, it is
important to emphasize that IRIS is not itself an automated
conjecturing system. It does not generate inequalities or
explore mathematical structures autonomously. Instead, it
serves as a flexible evaluation layer: a scoring framework
that allows existing systems to assess, filter, and rank the
conjectures they produce.

ϕ(h;X) =

T (h;X)
R(h;X)
L(h;X)

 ψ(h;S, X) =


P (h;S, X)
N(h;S, X)
∆(h;S, X)
σ(h;S, X)


Using these vectors derived from the scores of IRIS, we
now define a simple automated conjecturing system. Specif-
ically, given a threshold θ ≥ 0, a budget R > 0, and weight
vectors λ = [λ1, λ2, λ3]

⊤ and β = [β1, β2, β3, β4]
⊤, we

process a stream of valid linear inequalities produced by
a blackbox system (e.g., the convex hull of invariant vec-
tors). A candidate conjecture h is accepted into the working
set S of conjectures, if its composite score β⊤ψ(h;S, X)
exceeds the threshold θ. After each addition, retain only
the top R inequalities in S based on the composite score
λ⊤ϕ(h;X).

Algorithm 1 NUEVAMIRADA: Filtering Conjectures with
IRIS Scoring

Require: Threshold θ ≥ 0, Budget R > 0, Weights λ ∈
R3, β ∈ R4, Data X

1: Initialize working set S ← ∅
2: while streaming conjecture h from blackbox generator

do
3: if β⊤ψ(h;S, X) ≥ θ then
4: S ← S ∪ {h}
5: Sort S by structural score λ⊤ϕ(h;X) in de-

scending order
6: Retain top R elements of S
7: end if
8: end while
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5. Two Case Studies: Discovery and
Rediscovery in Graph Theory and
Geometry

Our goal is to assess whether IRIS scoring—when ap-
plied as a ranking and filtering layer within NUEVAMI-
RADA—can rediscover known relationships, refine struc-
tural bounds, or highlight previously overlooked inequali-
ties. In the results that follow, we report on the system’s
performance in rediscovering classical inequalities involv-
ing domination, independence, and zero forcing, as well as
its ability to identify meaningful structure in polyhedral face
vectors.

Each dataset used in our experiments is structured as a table:
rows correspond to individual mathematical objects (graphs
or polytopes), and columns represent computed proper-
ties—both numerical invariants (e.g., domination number,
number of triangular faces) and Boolean attributes (e.g., reg-
ular, bipartite, fullerene). These tables define the ambient
data space in which IRIS operates.

For simplicity, we fix the hyperparameters of NUEVAMI-
RADA as follows: threshold θ = 0.25, budget R = 100,
structural weight vector λ = [1, 1, 1]⊤, and discovery score
weight vector β = [1, 1, 1, 1]⊤. Users seeking different
types of conjectures may wish to experiment with alterna-
tive settings.

Geometric dataset. The first dataset consists of 496 three-
dimensional convex polytopes. By a classical theorem
of Steinitz, every convex 3-polytope corresponds to a 3-
connected planar 3-regular graph. Moreover, by a theorem
of Whitney (see Corollary on page 246 of (Whitney, 1933)),
each such graph admits a unique convex embedding. For
each polytope, we extract its p-vector, where pk denotes the
number of k-gonal faces in the embedding. These p-vectors
define the invariant space in which IRIS-based filtering is
applied.

Graph theory dataset. The second dataset consists of
invariants computed on the 335 simple connected graphs
used by the TxGraffiti conjecturing website (Davila, 2024b).
As our main comparison in graph theory, we focus on con-
nected graphs with maximum degree at most three—a rich
and well-studied class for which TxGraffiti has already pro-
duced published conjectures. This setting allows for mean-
ingful comparison against a system whose conjectures have
already led to mathematical results. In particular, we test
whether NUEVAMIRADA, equipped with IRIS scoring,
can rediscover or reimagine conjectures previously posed
by TxGraffiti.

5.1. On the p-vectors of simple convex 3-polytopes

The p-vector of a simple, 3-dimensional convex polytope P
is defined as p(P ) = (p3, p4, . . . , pm) where pk represents
the number of k-gonal 2-dimensional faces of P , and m
is the largest k such that pk > 0. In the particular case of
a simple 3-polytope, we can reformulate Euler’s relation
f0 − f1 + f2 = 2 in terms of the entries of the p-vector:∑

k≥3

(6− k)pk = 12. (1)

Eberhard showed that a sequence (p3, p4, p5, p7, ...) satisfy-
ing Equation 1 is necessarily realizable as a simple convex
3-polytope for some value(s) of p6 (Grünbaum, 2003). To-
day, the problem of classifying for which value(s) of p6 a
sequence is realizable remains open.

Our experiments aimed to better understand and control the
combinatorial information encoded by the p-vectors of sim-
ple 3-polytopes. To investigate such combinatorial proper-
ties, we utilized a dataset of 496 instances. 437 of these sim-
ple 3-polytopes originated from an online database of planar,
3-connected, 3-regular graphs (K. Coolsaet & Goedgebeur,
2023). The remaining 59 instances are randomly generated
such graphs, wherein new random instances were accepted
into the dataset only if they stretched the confines of the
of the combinatorial data. That is to say, new instances
were welcomed into the dataset of simple 3-polytopes if
they occurred outside of the convex hull of the existing data
(in regards to the combinatorial features of the p-vector and
f -vector). This resulted in a non-redundant dataset, having
the benefits of containing ‘special’ instances from theory
(coming from (K. Coolsaet & Goedgebeur, 2023)) as well
as random instances which expanded the boundaries of the
data.

On this dataset of simple 3-polytopes, we examine the IRIS
scores of four known inequalities which control the f and p
vectors of a polytope (our features of choice). For each in-
equality, we examine its IRIS score with a constant weight-
ing of λ = [1, 1, 1]⊤ and provide a visual plot of the bound.
Two notable lower bounds on p6 include the following theo-
rems.

Theorem 5.1. (Barnette, 1969) Let P be a simple 3-
polytope with p(P ) = (p3, ..., pm). If

∑
k≥7 pk ≥ 3, then

p6 ≥ 2 +
p3
2
− p5

2
−

∑
k≥7

pk. (2)

Theorem 5.2. (Jucovič, 1971) Let P be a simple 3-polytope
with p(P ) = (p3, ..., pm). If f2 ≥ 7, then

p6 ≥ 4− 2

3
p4 − p5 +

1

3

∑
k≥7

(⌊
k + 1

2

⌋
− 6

)
pk. (3)

5



Inequality Ranking and Inference System

We also investigate the classical Lower Bound Theorem by
Barnette, which when formulated for simple 3-polytopes
states f0 ≥ 2f2− 4 (Brøndsted, 1983). Finally, we examine
the IRIS score of the well-known Hirsch Conjecture on
our dataset of simple 3-polytopes. In this setting, the Hirsch
Conjecture is known to be a theorem (see (Ziegler, 1995))
which states that diam(P ) ≤ f2 − 3 for 3-dimensional
polytopes P and their combinatorial diameter.

Table 1. IRIS Scores of known inequalities
Statement h T (h;X) R(h;X) L(h;X)

Barnette’s Theorem 0.01754 1.0 0.14447

Juvovič’s Theorem 0.01626 0.5 0.050759

Lower Bound Theorem
If P is simple, then

f0 ≥ 2f2 − 4
0.99798 0.00404 1.0

Hirsch Conjecture
If P is a 3-polytope, then

diam(P ) ≤ f2 − 3
0.00806 0.5 0.007017

Barnette’s Theorem In our dataset of 496 simple 3-
polytopes, 171 instances meet the criteria of Barnette’s The-
orem 5.1. This is, in part, due to the dataset containing many
m-gonal prisms and fullerenes.

Figure 1. Barnette’s lower bound on p6. The black dashed line
represents the convex hull of the plotted data, and the red line
represents p6 = 2+ 1

2
p3 − 1

2
p5 −

∑
k≥7 pk, with λ⊤ϕ(h;X) ≈

1.16202.

Barnette’s Equation 2 lacks sharpness, and this small touch
set both spans a low-dimensional affine space and encom-
passes a small geometric area when compared to the overall
diameter of the data.

Jucovič’s Theorem From our dataset of simple 3-
polytopes, 492 instances satisfy conditions of Theorem 5.2.

Figure 2. Jucovič’s lower bound on p6. The black dashed line
represents the convex hull of the plotted data, and the red line
represents p6 = 4− 2

3
p4 − p5 +

1
3

∑
k≥7

(⌊
k+1
2

⌋
− 6

)
pk, with

λ⊤ϕ(h;X) ≈ 0.567019.

Lower Bound Theorem The Lower Bound Theorem
states that if P is a simple 3-polytope, then f0 ≥ 2f2 − 4.
That is to say, the number of vertices of P is bounded below
in terms of the number of facets of P .

Figure 3. The Lower Bound Theorem on f0. The black dashed
line represents the convex hull of the plotted data, and the red line
represents f0 = 2f2 − 4, with λ⊤ϕ(h;X) ≈ 2.002.

The Lower Bound Theorem excels under the Normalized
Touch and Normalized Diameter scores. This is due to
sharpness being common and widespread; the shape of the
convex hull of the dataset is largely encapsulated by this
hyperplane.
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Hirsch Conjecture The Hirsch Conjecture (again, a theo-
rem in dimension 3) states that diam(P ) ≤ f2 − d, wherein
d is the dimension of polytope P . There are no assumptions
on P , whereas the previous three theorems required P to
be simple. That being said, simple polytopes are the ‘worst
case’ scenario in terms of their diameter being large (Ziegler,
1995).

Figure 4. The Hirsch Conjecture in dimension 3. The black dashed
line represents the convex hull of the plotted data, and the red line
represents diam(P ) = f2 − 3, with λ⊤ϕ(h;X) ≈ 0.51508.

Conjectured Bound We used IRIS to rank computer-
developed conjectures in the spirit of Theorem 5.1. Our
dataset of simple 3-polytopes satisfying the conditions of
Barnette’s theorem with invariants p3, p5, p6 and

∑
k≥7 pk

was utilized. The convex hull of the dataset was taken,
and IRIS was run on the identified face-defining hyper-
planes with λ = [1, 1, 1]⊤, β = [1, 1, 1, 1]⊤, and R = 100.
Among the resulting conjectures, we observed:

p6 ≥
39

20
+
p3
2
− p5

4
−

∑
k≥7

pk.

Table 2. IRIS Scores of Conjecture 6.1
T (h;X) R(h;X) L(h;X) Score

0.029239 0.8 0.1444768 0.98123

The bound provided in Conjecture 6.1 is a stronger bound
than Equation 2 when p5 > 0.

5.2. Zero Forcing, Independence, and Domination in
Subcubic Graphs

We applied NUEVAMIRADA to the family of connected
graphs with maximum degree at most three, focusing on

Figure 5. The conjectured lowered bound on p6. The black dashed
line represents the convex hull of the plotted data, and the red line
represents p6 = 39

20
+ 1

2
p3− 1

4
p5−

∑
k≥7 pk, with λ⊤ϕ(h;X) ≈

0.98123.

three foundational invariants: the zero forcing number
Z(G), the domination number γ(G), and the independence
number α(G). These parameters have served as benchmarks
in prior work, including several conjectures produced by the
original TxGraffiti system.

To emphasize generality across Boolean hypotheses, we
applied NUEVAMIRADA separately to multiple subfamilies
of subcubic graphs, storing all valid conjectures. We then
filtered and ranked them using a three-stage process: first,
by retaining those with IRIS score λ⊤ϕ(h;X) ≥ 0.8, sec-
ond, by sorting with this score, and third, by applying the
Morgan heuristic (Davila, 2024d) to keep only the most gen-
eral version of each inequality across hypotheses; a system
together called NUEVAMIRADA+.

When prompted to explore relationships between the zero
forcing number and independence number, NUEVAMIRADA
generated the inequality

Z(G) ≤ α(G) + 1,

for all connected subcubic graphs that are not com-
plete graphs as its top-ranked conjecture (structural score
λ⊤ϕ(h;X) ≈ 1.259). This inequality was originally con-
jectured by TxGraffiti and is now widely believed to be true.
It has since been proven for claw-free cubic graphs (Davila,
2019; Davila & Henning, 2020), and for almost all cubic
graphs in (Schuerger et al., 2024).

In a separate experiment, we directed the system to examine
potential inequalities involving the domination number and
zero forcing number. Among the resulting statements was
the inequality

1

2
Z(G) ≤ γ(G),

7



Inequality Ranking and Inference System

valid for all connected subcubic graphs not isomorphic to
Kn (structural score λ⊤ϕ(h;X) ≈ 1.114). When rear-
ranged, this yields an upper bound on the zero forcing num-
ber for subcubic graphs: Z(G) ≤ 2γ(G). This statement
generalizes a known theorem for connected cubic graphs not
isomorphic to K4—a result that originated as a conjecture
from an early version of TxGraffiti and was later proven
in (Davila, 2019; Davila & Henning, 2020).

Additionally, the system proposed the inequality

Z(G) ≤ γ(G) + 2,

for all connected claw-free cubic graphs and all connected
diamond-free cubic graphs, with both versions achieving
a structural score of approximately λ⊤ϕ(h;X) ≈ 0.8439.
In both settings, this inequality had previously been conjec-
tured by the original TxGraffiti system. The claw-free case
has since been proven and fully characterized in (Davila,
2024c).

Among the inequalities surfaced by NUEVAMIRADA, one
notable conjecture appeared for connected cubic graphs

7

12
Z(G) ≤ γ(G) + 49

60
.

When rearranged, this yields an upper bound on the zero
forcing number:

Z(G) ≤ 12

7
γ(G) +

7

5
,

a bound that was not sharp - a consequence of rounding to
ratios in the floating point coefficients obtained via linear
optimization over the convex hull of the invariant dataset.
When looking at the true values, we see

0.5145 · Z(G)− 0.8575 · γ(G) ≤ 0.686.

These decimal coefficients suggested the presence of an
underlying rational structure. By observing that

0.8575

0.5145
≈ 5

3
, and

0.686

0.5145
≈ 4

3
.

Thus, by again solving for Z(G) with these approximations,
we obtain

Z(G) ≤ 5

3
γ(G) +

4

3
,

as a possible upper bound on Z(G) for connected cubic
graphs. This refined conjecture is supported by IRIS scores
and is presented in Figure 6.

This bound not only fits the data more tightly (sharp on the
complete graph K4) but also exhibits greater simplicity and
interpretability—qualities often associated with meaningful
mathematical structure. A visual representation of this in-
equality over the dataset of connected subcubic graphs is
shown in Figure 6.

Table 3 summarizes the main inequalities discovered in
these experiments.
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Figure 6. Upper bound on the zero forcing number in connected
subcubic graphs: Z(G) ≤ 5

3
γ(G) + 4

3
.

Inequality Graph Family Status

Z ≤ α+ 1 ∆ ≤ 3, G ̸∼= Kn Known Conjecture
Z ≤ 2γ ∆ ≤ 3, G ̸∼= Kn New Conjecture
Z ≤ γ + 2 Claw-free, cubic Known Theorem
Z ≤ γ + 2 Diamond-free, cubic Known Conjecture
Z ≤ 5

3
γ + 4

3
∆ ≤ 3 New Conjecture

Table 3. Inequalities discovered by NUEVAMIRADA in subcubic
graphs involving zero forcing, domination, and independence.

6. Conclusion
IRIS provides a new framework for rapidly identifying
mathematically meaningful conjectures. By combining ge-
ometric intuition with heuristic evaluation, the system is
capable of rediscovering known results, refining established
bounds, and surfacing novel inequalities—even when in-
tegrated with non-autonomous or hybrid workflows. This
suggests a broader role for IRIS as a foundation for what
might be called data science for mathematical discovery.

We conclude by formally stating several open conjectures
proposed by NUEVAMIRADA utilizing the IRIS scoring
system during our study.

Conjecture 6.1 (NuevaMirada). If P is a simple 3-polytope
with face vector (p3, p4, . . . , pm), such that

∑
k≥7 pk ≥ 3,

then

p6 ≥
39

20
+
p3
2
− p5

4
−

∑
k≥7

pk.

Conjecture 6.2 (Human and NuevaMirada+). If G ̸= K4

is a connected graph with maximum degree ∆ ≤ 3, then

Z(G) ≤ 5

4
γ(G) +

4

3
.

Conjecture 6.3 (NuevaMirada+). IfG is a connected graph

8
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with maximum degree ∆ ≤ 3, then

Z(G) ≤ 2γ(G).

Impact Statement
This paper presents work whose goal is to advance the field
of machine-assisted mathematical discovery. While there
may be long-term societal implications—particularly re-
garding the evolving role of the mathematician—we do not
believe any specific concerns need to be highlighted at this
time.
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