

RIEMANNIAN NETWORKS OVER FULL-RANK CORRELATION MATRICES

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Representations on the Symmetric Positive Definite (SPD) manifold have garnered
012 significant attention across different applications. In contrast, the manifold of full-
013 rank correlation matrices, a normalized alternative to SPD matrices, remains largely
014 underexplored. This paper introduces Riemannian networks over the correlation
015 manifold, leveraging five recently developed correlation geometries. We system-
016 atically extend Multinomial Logistic Regression (MLR), Fully Connected (FC),
017 and convolutional layers to these geometries. Additionally, we present methods for
018 accurate backpropagation for two correlation geometries. Experiments comparing
019 our approach against existing SPD and Grassmannian networks demonstrate its
020 effectiveness.
021
022

1 INTRODUCTION

023 Covariance matrices in the Symmetric Positive Definite (SPD) manifold have achieved significant
024 success in various applications, with many deep network architectures adapted to leverage their
025 Riemannian geometries (Huang & Van Gool, 2017; Brooks et al., 2019; Chakraborty et al., 2020;
026 Cruceru et al., 2021; Pan et al., 2022; Kobler et al., 2022; Wang et al., 2023; Chen et al., 2023; Katsman
027 et al., 2024; Li et al., 2025; Pouliquen et al., 2025; Wang et al., 2025). In contrast, correlation matrices,
028 despite serving as statistically compact alternatives to covariance matrices (Archakov & Hansen,
029 2024), remain unexplored in deep learning.
030

031 Only recently have Riemannian structures been developed for correlation matrices. David & Gu
032 (2019) identified full-rank correlation matrices as a quotient manifold of the SPD manifold, referred
033 to as the correlation manifold. However, this quotient geometry does not guarantee uniqueness or
034 closed forms of the Riemannian logarithm and Fréchet mean (Thanwerdas & Pennec, 2022b, Sec.
035 1.1). To close this gap, Thanwerdas & Pennec (2022b) proposed three theoretically and computationally
036 convenient geometries: Euclidean–Cholesky Metric (ECM), Log-Euclidean–Cholesky Metric
037 (LECM), and Poly-Hyperbolic–Cholesky Metric (PHCM). Thanwerdas (2024) further introduced
038 two efficient permutation-invariant metrics: Off-Log Metric (OLM) and Log-Scaled Metric (LSM).
039 These Riemannian structures provide promising foundations for intrinsically extending Euclidean
040 deep learning to the correlation manifold.

041 On the other hand, several fundamental layers in Euclidean deep learning, such as Multinomial
042 Logistics Regression (MLR), Fully Connected (FC), and convolutional layers, have been extended to
043 different manifolds by leveraging their rich Riemannian or algebraic structures (Huang & Van Gool,
044 2017; Huang et al., 2017; 2018; Ganea et al., 2018; Chakraborty et al., 2020; Chen et al., 2022;
045 Shimizu et al., 2021; Bdeir et al., 2024; Chen et al., 2024d; Nguyen et al., 2024; 2025). For the SPD
046 manifold, these layers have been extended into the SPD manifold based on bilinear mapping (Huang
047 & Van Gool, 2017), weighted Fréchet mean (Chakraborty et al., 2020), gyrovector spaces (Nguyen &
048 Yang, 2023; Nguyen et al., 2024), Riemannian geometry (Chen et al., 2024a;d), and invariant metric
049 over the symmetric space (Nguyen et al., 2025), respectively.

050 Inspired by these advancements, we develop MLR, FC, and convolutional layers for corre-
051 lation manifolds in a geometrically intrinsic manner. We begin by systematically introducing
052 four types of correlation-based MLR, FC, and convolutional layers, corresponding to ECM,
053 LECM, OLM, and LSM, respectively. Besides, we discuss backpropagation through Riemannian
computations over the correlation manifold, with novel approaches for accurate backprop-
agation under OLM and LSM. As the above four metrics have zero curvature, our next focus

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Table 1: Correspondence between Euclidean and correlation-based layers. For convolution, kernel-based FC refers to applying convolution kernel to a receptive field, which is an FC transformation.

Space	Euclidean \mathbb{R}^n	Correlation $\text{Cor}^+(n)$
c -class MLR FC layer Convolution Geometry	$f : \mathbb{R}^n \ni x \mapsto p = \text{Softmax}(Ax + b) \in \mathbb{R}^c$ $\mathcal{F} : \mathbb{R}^n \ni x \mapsto y = Ax + b \in \mathbb{R}^m$ Kernel-based FC in each receptive field Euclidean	$f : \text{Cor}^+(n) \ni C \mapsto p \in \mathbb{R}^c$ $\mathcal{F} : \text{Cor}^+(n) \ni C \mapsto Y \in \text{Cor}^+(m)$ Kernel-based correlation FC in each receptive field ECM, LECM, OLM, LSM and PHCM

is to build correlation layers under the geometry of a non-zero curvature. We target PHCM, induced by the product of multiple hyperbolic spaces (Thanwerdas & Pennec, 2022b, Thm. 4.4). By adapting existing Poincaré-based hyperbolic MLR, FC, and convolutional layers designed for a single Poincaré ball (Ganea et al., 2018; Shimizu et al., 2021), we construct their counterparts on the correlation manifold. With these basic layers, we can construct Correlation Networks (CorNets) under different geometries. The effectiveness is validated by experiments comparing our approach against existing SPD and Grassmannian baselines.

Tab. 1 summarizes the correspondence between Euclidean and our correlation layers, and Fig. 1 illustrates the overview of our theoretical derivation. Due to page limits, all the proofs are presented in App. J. In summary, our **main contributions** are as follows:

1. We systematically extend MLR, FC, and convolutional layers to the correlation manifold under five geometries: four with zero curvature and one with non-zero curvature. The developed layers enable flexible variation of the latent geometry under a consistent network architecture, allowing for straightforward comparisons across different correlation geometries.
2. We develop accurate backpropagation of Riemannian computations under OLM and LSM.
3. We conduct experiments against existing SPD and Grassmannian networks to demonstrate the effectiveness of correlation embeddings and networks.

2 FULL-RANK CORRELATION GEOMETRIES

Notations. For Euclidean spaces, we denote $\langle \cdot, \cdot \rangle$ as the standard inner product over \mathbb{R}^n or $\mathbb{R}^{n \times n}$, with $\|\cdot\|$ as the induced norms, *i.e.*, L_2 -norm for vectors and Frobenius norm for matrices. The zero vector and matrix are collectively denoted by $\mathbf{0}$. A Riemannian manifold (\mathcal{M}, g) endowed with the Riemannian metric g is abbreviated as \mathcal{M} . We denote Log_P , Exp_P , and $\langle \cdot, \cdot \rangle_P = g_P(\cdot, \cdot)$ as the Riemannian logarithm, exponentiation, and inner product at $P \in \mathcal{M}$, respectively. The parallel transport along the geodesic from $P \in \mathcal{M}$ to $Q \in \mathcal{M}$ is denoted by $\Gamma_{P \rightarrow Q}$, and the geodesic distance by $d(\cdot, \cdot)$. A summary of notations is provided in App. B.

We briefly review five recently developed geometries on full-rank correlation matrices, with details provided in App. C. Given a covariance matrix Σ , its correlation matrix is defined as

$$C = \text{Cor}(\Sigma) = \mathbb{D}(\Sigma)^{-1/2} \Sigma \mathbb{D}(\Sigma)^{-1/2}, \quad (1)$$

where $\mathbb{D}(\cdot)$ extracts the diagonal of Σ . The set of $n \times n$ full-rank correlation matrices, denoted $\text{Cor}^+(n)$, forms a Riemannian manifold (David & Gu, 2019, Thm. 1). As illustrated in Fig. 2, each correlation corresponds to a surface in the SPD manifold. Recent advances introduced five convenient Riemannian metrics: Euclidean–Cholesky Metric (ECM), Log-Euclidean–Cholesky Metric (LECM), Poly-Hyperbolic–Cholesky Metric (PHCM) (Thanwerdas & Pennec, 2022b), and the permutation-invariant Off-Log Metric (OLM) and Log-Scaled Metric (LSM) (Thanwerdas, 2024). All five are pullback metrics isometric to simpler prototype spaces: PHCM is derived

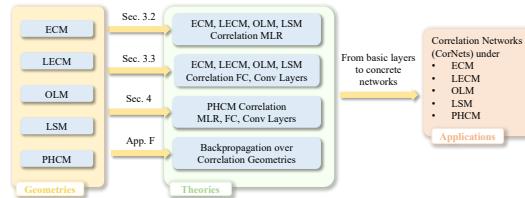


Figure 1: Overview of our theoretical derivation.

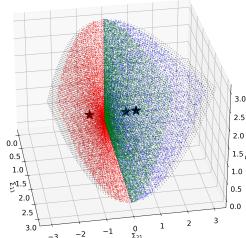


Figure 2: Illustration of correlation and SPD matrices. Black stars denote 2×2 correlation matrices, while the red, green, and blue dots denote corresponding SPD matrices.

from the product of hyperbolic spaces, while the other four are isometric to Euclidean spaces. We first review the associated prototype spaces before discussing each metric in detail.

- $\text{LT}^1(n)$: Euclidean space of $n \times n$ lower triangular matrices with unit diagonals.
- $\text{LT}^0(n)$: Euclidean space of $n \times n$ lower triangular matrices with null diagonals.
- $\text{Hol}(n)$: Euclidean space of $n \times n$ symmetric matrices with null diagonals. The tangent space $T_C \text{Cor}^+(n)$ at $C \in \text{Cor}^+(n)$ can be identified with $\text{Hol}(n)$.
- $\text{Row}_0(n)$: Euclidean space of $n \times n$ symmetric matrices with null row sum.
- \mathcal{L}^n : Manifold of $n \times n$ lower triangular matrices with positive diagonals and unit row L_2 -norm.

ECM is derived from $\text{LT}^1(n)$ by $\text{Cor}^+(n) \xrightarrow[\Theta^{-1} = \text{Cor} \circ \text{Chol}^{-1}]{\Theta = \mathbb{D}^{-1}(\text{Chol}(\cdot)) \text{Chol}(\cdot)} \text{LT}^1(n)$, where $\Theta(C) = \mathbb{D}(\text{Chol}(C))^{-1} \text{Chol}(C)$ for any $C \in \text{Cor}^+(n)$. Here, $\text{Chol}(C)$ is the Cholesky decomposition $C = \text{Chol}(C) \text{Chol}(C)^\top$ and $\mathbb{D}(\cdot)$ returns a diagonal matrix consisting of the input diagonals. As $\text{LT}^1(n) = I + \text{LT}^0(n)$, ECM is essentially induced from the Euclidean space of $\text{LT}^0(n)$.

Proposition 2.1 (ECM). *Let $\phi^{\text{EC}}(C) = [\Theta(C)]$, where $[\cdot]$ returns a strictly lower triangular matrix. ECM over $\text{Cor}^+(n)$ is the pullback metric from the Euclidean space $\text{LT}^0(n)$ by ϕ^{EC} .*

LECM is defined by further pulling back ECM: $\text{Cor}^+(n) \xrightarrow[\log \circ \Theta = \text{Cor} \circ \text{Chol}^{-1} \circ \exp]{\log \circ \Theta} \text{LT}^0(n)$, where $\log(\cdot) : \text{LT}^1(n) \rightarrow \text{LT}^0(n)$ is the matrix logarithm with the matrix exponentiation $\exp(\cdot)$ as its inverse. Due to the nilpotency of $\text{LT}^0(n)$, the matrix logarithm over $\text{LT}^1(n)$ and exponentiation over $\text{LT}^0(n)$ do not require eigendecomposition, as detailed in App. C.3.1.

OLM is derived from a permutation invariant inner product over $\text{Hol}(n)$ by $\text{Cor}^+(n) \xrightarrow[\text{Exp}^\circ]{\text{Log}^\circ = \text{off} \circ \log} \text{Hol}(n)$. For any symmetric hollow matrix $H \in \text{Hol}(n)$, the operator $\mathcal{D}(H)$ returns a unique diagonal matrix, such that $\text{Exp}^\circ(\cdot) : \text{Hol}(n) \ni H \mapsto \exp(\mathcal{D}(H) + H) \in \text{Cor}^+(n)$ is a diffeomorphism. As shown by Archakov & Hansen (2021, Sec. 5), $\mathcal{D}(H)$ can be computed by the following exponentially converging algorithm: $D_{k+1} = D_k - \log(\mathbb{D}(\exp(D_k + H)))$, with $D_0 = \mathbf{0}$ as the zero matrix.

LSM is derived from a permutation invariant inner product over $\text{Row}_0(n)$ by $\text{Cor}^+(n) \xrightarrow[\text{Exp}^* = \text{Cor} \circ \exp]{\text{Log}^*} \text{Row}_0(n)$. For any correlation matrix $C \in \text{Cor}^+(n)$, there exists a unique positive diagonal matrix $\mathcal{D}^*(C)$ such that $\text{Log}^*(\cdot) : \text{Cor}^+(n) \ni C \mapsto \log(\mathcal{D}^*(C) C \mathcal{D}^*(C)) \in \text{Row}_0(n)$ is a diffeomorphism. As shown by Thanwerdas (2024, Sec. 3.5), $\mathcal{D}^*(C)$ corresponds to the unique zero of $f : x \in \mathbb{R}_+^n \mapsto Cx - \frac{1}{x}$, with \mathbb{R}_+^n as the n -dimensional positive vectors and $\frac{1}{x} = \left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)$. This could be solved by damped Newton's method.

PHCM is defined by the product of hyperbolic open hemispheres via Cholesky decomposition. Denoting $L = \text{Chol}(C)$ for any correlation matrix $C \in \text{Cor}^+(n)$, the k -th row of L is $(L_{k1}, \dots, L_{k,k-1}, L_{kk}, 0, \dots, 0)$ with $L_{kk} > 0$, which belongs to the hyperbolic space of open hemisphere $\text{HS}^{k-1} = \{x \in \mathbb{R}^k \mid \|x\| = 1 \text{ and } x_k > 0\}$. Therefore, \mathcal{L}^n is identified with the product of $n - 1$ open hemispheres, denoted as $\text{PHS}^{n-1} = \prod_{i=1}^{n-1} \text{HS}^i$. Here, since $L_{11} = 1$ and $\text{HS}^0 = \{1\}$ are trivial, they are omitted from the product. PHCM is then defined by the pullback of the Cholesky decomposition from PHS^{n-1} .

The Riemannian operators under all five metrics, including the Riemannian logarithm, exponentiation, geodesic, and parallel transport, have closed-form expressions, which are reviewed in App. C. Except for \mathcal{D} and \mathcal{D}^* , all computations involved can be backpropagated by existing techniques. Although the gradients of \mathcal{D} and \mathcal{D}^* can be approximately backpropagated by PyTorch's autograd through their iterative algorithms, we propose accurate alternatives in App. F.

Remark 2.2. The Euclidean inner products in the prototype spaces of ECM, LECM, LSM, and OLM are assumed to be standard. For $\text{Cor}^+(n)$ with $n \leq 3$, the invariance of OLM and LSM is nuanced and discussed in Rmk. C.5 and App. C.3.2. However, this paper focuses on $n > 3$.

162 3 LOG-EUCLIDEAN CORRELATION LAYERS

164 Since ECM, LECM, OLM, and LSM are derived via diffeomorphisms from Euclidean spaces, they
 165 are collectively termed Log-Euclidean metrics (Thanwerdas, 2024). This motivates the principled
 166 development of Multinomial Logistics Regression (MLR), Fully Connected (FC), and convolutional
 167 layers under these four geometries. We begin by briefly revisiting the reformulation of MLR, followed
 168 by the introduction of correlation-based MLRs, FC layers, and convolutional layers.

170 3.1 REVISITING MULTINOMIAL LOGISTIC REGRESSION

172 As shown by Lebanon & Lafferty (2004, Sec. 5), the Euclidean MLR, $\text{Softmax}(Ax + b)$, computing
 173 the multinomial probability of each class $k \in \{1, \dots, C\}$ for the input feature vector $x \in \mathbb{R}^n$ can be
 174 reformulated as the distances from x to the margin hyperplanes describing the classes:

$$175 p(y = k | x) \propto \exp(v_k(x)), \text{ with } v_k(x) = \text{sign}(\langle a_k, x - p_k \rangle) \|a_k\| d(x, H_{a_k, p_k}), \quad (2)$$

177 where $a_k, p_k \in \mathbb{R}^n$, and $H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\}$ is a margin hyperplane, with
 178 $d(x, H_{a_k, p_k})$ as the margin distance to the hyperplane. Recently, Chen et al. (2024d) generalized this
 179 formulation to general manifolds. Given an m -dimensional manifold \mathcal{M} , the MLR is defined as

$$180 p(y = k | X) \propto \exp(v_k(X)), \text{ with } v_k(X) = \text{sign}(\langle A_k, \text{Log}_{P_k}(X) \rangle_{P_k}) \|A_k\|_{P_k} d(X, H_{A_k, P_k}), \quad (3)$$

$$181 d(X, H_{A_k, P_k}) = \inf_{Q \in H_{A_k, P_k}} d(X, Q), \text{ with } H_{A_k, P_k} = \{X \in \mathcal{M} : \langle \text{Log}_{P_k}(X), A_k \rangle_{P_k} = 0\}, \quad (4)$$

183 where $X \in \mathcal{M}$ is the manifold-valued input and H_{A_k, P_k} is a Riemannian hyperplane, while $P_k \in \mathcal{M}$
 184 and $A_k \in T_{P_k} \mathcal{M}$ for $1 \leq k \leq C$ are parameters. The key challenge is the optimization problem
 185 in Eq. (4). To circumvent this problem, Chen et al. (2024d, Sec. 3.2) relaxed it via Riemannian
 186 trigonometry. Unlike their method, this paper directly solves Eq. (4) to more faithfully respect the
 187 different correlation geometries. In addition, to avoid over-parameterization (Shimizu et al., 2021,
 188 Sec. 3.1), we set $P_k = \text{Exp}_E(\gamma_k[Z_k])$ and $A_k = \Gamma_{E \rightarrow P_k}(Z_k)$, with $[Z_k] = \frac{Z_k}{\|Z_k\|_E}$ as the unit
 189 direction vector of Z_k . Here, E is the origin¹ of \mathcal{M} , while $\gamma_k \in \mathbb{R}$ and $Z_k \in T_E \mathcal{M} \cong \mathbb{R}^m$ are the
 190 MLR parameters. Under this trivialization, each hyperplane H_{A_k, P_k} is denoted as H_{Z_k, γ_k} . We adopt
 191 from Lezcano Casado (2019) the term trivialization, which refers to optimizing manifold-valued
 192 parameters via the exponential map. App. D.1 presents a more detailed review of MLR.

194 3.2 LOG-EUCLIDEAN CORRELATION MLRs

195 As all Log-Euclidean metrics are isometric to the Euclidean ones, we can solve the associated MLRs
 196 defined by Eqs. (3) and (4) in a principled manner.

198 **Theorem 3.1.** [↓] Given m -dimensional manifold $(\mathcal{M}, g^{\mathcal{M}})$ isometric to the standard Euclidean
 199 space \mathbb{R}^m by the diffeomorphism $\phi : \mathcal{M} \rightarrow \mathbb{R}^m$. Denoting $E = \phi^{-1}(\mathbf{0})$ with $\mathbf{0}$ as the zero
 200 vector, each $v_k(X)$ and margin hyperplane H_{Z_k, γ_k} in the C -class Riemannian MLR are $v_k(X) =$
 201 $\langle \phi(X), \phi_{*, E}(Z_k) - \gamma_k \rangle \|\phi_{*, E}(Z_k)\|$ and $H_{Z_k, \gamma_k} = \{X \in \mathcal{M} : v_k(X) = 0\}$, respectively. Here,
 202 $Z_k \in T_E \mathcal{M} \cong \mathbb{R}^m$ and $\gamma_k \in \mathbb{R}$ for $1 \leq k \leq C$ are MLR parameters, while ϕ_* is the differential.

203 Simple computations show that

$$205 \text{ECM: } \phi^{\text{EC}}(I) = \mathbf{0}; \text{ LECM: } \log \circ \Theta(I) = \mathbf{0}; \text{ OLM: } \text{Log}^{\circ}(I) = \mathbf{0}; \text{ LSM: } \text{Log}^*(I) = \mathbf{0}. \quad (5)$$

206 Therefore, we define the origin of the correlation manifold under four Log-Euclidean metrics as the
 207 identity matrix. Besides, Thm. 3.1 suggests that Log-Euclidean MLRs can be obtained modulo the
 208 calculation of diffeomorphisms and their differentials at the identity matrix I .

209 **Proposition 3.2** (Differentials). [↓] For any tangent vector $V \in T_I \text{Cor}^+(n) \cong \text{Hol}(n)$, the differentials of ϕ^{EC} , $\log \circ \Theta$, Log° , and Log^* at the identity matrix I are

$$212 \phi_{*, I}^{\text{EC}}(V) = [V], \quad (\log \circ \Theta)_{*, I}(V) = [V], \quad \text{Log}_{*, I}^{\circ}(V) = V, \quad \text{Log}_{*, I}^*(V) = V - \text{diag}(V\mathbf{1}), \quad (6)$$

213 where $\text{diag} : \mathbb{R}^n \rightarrow \text{Diag}(n)$ returns a diagonal matrix, and $\mathbf{1} = (1, \dots, 1)^\top \in \mathbb{R}^n$.

215 ¹The origin is a predefined point on the manifold. For the correlation, we define the identity matrix as the
 216 origin and will explain the reason later.

Putting Prop. 3.2 into Thm. 3.1, we obtain correlation MLRs under four Log-Euclidean.

Theorem 3.3 (Log-Euclidean MLRs). *Given $C \in \text{Cor}^+(n)$, $v_k(C)$ in the correlation MLRs under four Log-Euclidean metrics are*

$$\begin{aligned} v_k^{\text{LE}}(C) &= \langle \lfloor \Theta(C) \rfloor, \lfloor Z_k \rfloor \rangle - \gamma_k \| \lfloor Z_k \rfloor \|, & v_k^{\text{LEC}}(C) &= \langle \log \circ \Theta(C), \lfloor Z_k \rfloor \rangle - \gamma_k \| \lfloor Z_k \rfloor \|, \\ v_k^{\text{OL}}(C) &= \langle \text{Log}^\circ(C), Z_k \rangle - \gamma_k \| Z_k \|, & v_k^{\text{LS}}(C) &= \langle \text{Log}^*(C), \text{Log}_{*,I}^*(Z_k) \rangle - \gamma_k \| \text{Log}_{*,I}^*(Z_k) \|, \end{aligned} \quad (7)$$

where $Z_k \in \text{Hol}(n)$ and $\gamma_k \in \mathbb{R}$ are parameters for the k -th class.

3.3 LOG-EUCLIDEAN CORRELATION FULLY CONNECTED AND CONVOLUTIONAL LAYERS

In order to build correlation FC and convolutional layers, we first reformulate the Euclidean FC layer.

The Euclidean FC layer is defined as $y = Ax + b$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. It can be expressed element-wise as $y_k = v_k(x) = \langle a_k, x - p_k \rangle$ with $a_k, p_k \in \mathbb{R}^n$ and $\langle p_k, a_k \rangle = b_k$. Shimizu et al. (2021, Sec. 3.2) reformulated the Euclidean FC layer as an operation that transforms the input $x \in \mathbb{R}^n$ by $v_k(x)$ in the Euclidean MLR and treats the k -th output coordinates y_k as the signed distance from the hyperplane containing the origin and orthogonal to the k -th axis of the output space \mathbb{R}^m . Based on this, they proposed the Poincaré FC layer between Poincaré balls. We generalize this reformulation into the correlation manifolds.

Definition 3.4 (Correlation FC layers). Given a metric g , the correlation FC layer $\mathcal{F} : \text{Cor}^+(n) \ni X \mapsto Y \in \text{Cor}^+(m)$ returns the output Y by solving the following $d = m(m-1)/2$ equations:

$$\text{sign}(\langle \text{Log}_I(Y), O_k \rangle_I) d(Y, H_{O_k, I}) = v_k(X; Z_k, \gamma_k), \quad 1 \leq k \leq d, \quad (8)$$

where I is the identity matrix, d is the dimension of $\text{Cor}^+(m)$, $\{O_k\}_{k=1}^d$ is an orthonormal basis over $T_I \text{Cor}^+(m)$, $d(\cdot, \cdot)$ is the margin distance to the hyperplane $H_{O_k, I}$, and $v_k^{\mathcal{N}}$ is defined by Eq. (3) for $\text{Cor}^+(n)$. The FC parameters are $\{Z_k \in \text{Hol}(n)\}_{k=1}^d$ and $\{\gamma_k \in \mathbb{R}\}_{k=1}^d$.

Remark 3.5. App. E.1 details how Def. 3.4 extends the SPD, Poincaré, and Euclidean FC layers.

Although Def. 3.4 is implicitly defined by d equations, the FC layers under four Log-Euclidean geometries can be derived with explicit expressions in a principled manner. Analogous to Thm. 3.1, a corresponding result for the FC layer is presented in Lem. J.2, which brings Log-Euclidean FC layers.

Theorem 3.6 (Log-Euclidean FC layers). *[↓] Given an input correlation $C \in \text{Cor}^+(n)$, the correlation FC layers $\mathcal{F}(\cdot) : \text{Cor}^+(n) \rightarrow \text{Cor}^+(m)$ under different Log-Euclidean metrics are*

$$\text{ECM: } Y = \text{Cor} \circ \text{Chol}^{-1} \left(V^{\text{EC}} + I_m \right), \text{LT}^0(m) \ni V_{ij}^{\text{EC}} = \begin{cases} v_{ij}^{\text{EC}}(C), & \text{if } i > j \\ 0, & \text{otherwise} \end{cases} \quad (9)$$

$$\text{LECM: } Y = \text{Cor} \circ \text{Chol}^{-1} \circ \exp \left(V^{\text{LEC}} \right), \text{LT}^0(m) \ni V_{ij}^{\text{LEC}} = \begin{cases} v_{ij}^{\text{LEC}}(C), & \text{if } i > j \\ 0, & \text{otherwise} \end{cases} \quad (10)$$

$$\text{OLM: } Y = \text{Exp}^\circ \left(V^{\text{OL}} \right), \text{Hol}(m) \ni V_{ij}^{\text{OL}} = \begin{cases} \frac{v_{ij}^{\text{OL}}(C)}{\sqrt{2}}, & \text{if } i > j \\ V_{ji}^{\text{OL}}, & \text{if } i < j \\ 0, & \text{otherwise} \end{cases} \quad (11)$$

$$\text{LSM: } Y = \text{Cor} \circ \exp \left(V^{\text{LS}} \right), \text{Row}_0(m) \ni V_{ij}^{\text{LS}} = \begin{cases} \frac{v_{ij}^{\text{LS}}(C)}{\sqrt{6}}, & \text{if } m > i > j \geq 1 \\ \frac{v_{ii}^{\text{LS}}(C)}{\sqrt{3}}, & \text{if } m > i \geq 1 \\ V_{ji}^{\text{LS}}, & \text{if } i < j \\ -\sum_{k=1}^{m-1} V_{kj}^{\text{LS}}, & \text{if } i = m, 1 \leq j < m \\ \sum_{k=1}^{m-1} \sum_{l=1}^{m-1} V_{lk}^{\text{LS}}, & \text{if } i = j = m \end{cases} \quad (12)$$

Each v_{ij}^g with $g \in \{\text{EC, LEC, OL, LS}\}$ is defined by Eq. (7) with parameters of $Z_{ij} \in \text{Hol}(n)$ and $\gamma_{ij} \in \mathbb{R}$. Each (i, j) index is defined as: For v_{ij}^{EC} , v_{ij}^{LEC} , and v_{ij}^{OL} , the indices are $i, j = 1, \dots, m$ and $i > j$; For v_{ij}^{LS} , the indices are $i, j = 1, \dots, m-1$ and $i \geq j$.

Euclidean convolution. As shown by Shimizu et al. (2021, Sec. 3.4), the Euclidean convolution takes the FC transformation on each receptive field. Given a c -channel concatenated feature vector $x \in (\mathbb{R}^n)^c$ in a receptive field, the k -th output of this receptive field can be described as an affine transformation, $y_k = \langle a_k, x \rangle - b_k$. Therefore, the correlation convolution can be defined by the correlation FC layer within each receptive field.

270
 271 **Correlation convolution.** The c -channel cor-
 272 relation matrices $\{C_i \in \text{Cor}^+(n)\}_{i=1}^c$ within a
 273 receptive field are first concatenated into $C \in$
 274 $(\text{Cor}^+(n))^c$. For each convolution kernel, C
 275 is then fed into a correlation FC layer.² Fig. 3
 276 illustrates the above process.

277 4 POLY-HYPERBOLIC-CHOLESKY 278 LAYERS

280 As discussed in Sec. 2, the space \mathcal{L}^n , consisting
 281 of the Cholesky factors of $\text{Cor}^+(n)$, can
 282 be identified with the product of $n - 1$ open
 283 hemispheres, $\mathbb{PHS}^{n-1} = \prod_{i=1}^{n-1} \mathbb{HS}^i$. As shown by Cannon et al. (1997, Sec. 7), there are
 284 five isometric models over the hyperbolic space.
 285 A widely used model is the Poincaré ball
 286 $\mathbb{P}_K^n = \{x \in \mathbb{R}^n \mid \|x\|^2 < -1/K\}$, where the MLR, FC, and convolutional layers have already
 287 been well studied (Ganea et al., 2018; Shimizu et al., 2021). In the following, we focus on the
 288 canonical Poincaré ball ($K = -1$), denoted as \mathbb{P}^n . We first identify the correlation manifold with
 289 the poly-Poincaré space $\mathbb{PP}^{n-1} = \prod_{i=1}^{n-1} \mathbb{P}^i$, the product of $n - 1$ Poincaré balls. Then, we develop
 290 correlation layers from the layers on a single Poincaré space.

292 4.1 CORRELATION GEOMETRY VIA POINCARÉ BALLS

294 **Proposition 4.1** (Isometries). \downarrow *The open hemisphere \mathbb{HS}^n is isometric to the Poincaré ball*
 295 \mathbb{P}^n *by* $\psi_{\mathbb{HS}^n \rightarrow \mathbb{P}^n}((x^\top, x_{n+1})^\top) = \frac{x}{1+x_{n+1}}$, *and* $\psi_{\mathbb{P}^n \rightarrow \mathbb{HS}^n}(y) = \frac{1}{1+\|y\|^2} \begin{pmatrix} 2y \\ 1 - \|y\|^2 \end{pmatrix}$, *with*
 296 $(x^\top, x_{n+1})^\top \in \mathbb{HS}^n \subset \mathbb{R}^n \times \mathbb{R}^+$ *and* $y \in \mathbb{P}^n \subset \mathbb{R}^n$.

298 Prop. 4.1 indicates that $\text{Cor}^+(n)$ can be identified with $\mathbb{PP}^{n-1} = \prod_{i=1}^{n-1} \mathbb{P}^i$ via the diffeomorphism:

$$301 \quad \Psi \circ \text{Chol} : C \xrightarrow{\text{Chol}} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ L_{21} & L_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix} \xrightarrow{\Psi} \begin{matrix} \Psi_1(h_1) \\ \vdots \\ \Psi_{n-1}(h_{n-1}) \end{matrix} \quad (13)$$

306 with $C \in \text{Cor}^+(n)$, $h_{i-1} = (L_{i1}, \dots, L_{ii})^\top \in \mathbb{HS}^{i-1}$, and $\Psi_i = \psi_{\mathbb{HS}^i \rightarrow \mathbb{P}^i}$. As different hyperbolic
 307 models are isometric, the induced geometry is still called PHCM. This identification motivates us to
 308 construct the correlation layers using the corresponding layers over Poincaré spaces.

310 4.2 REVISITING POINCARÉ LAYERS

311 The Poincaré MLR (Ganea et al., 2018; Shimizu et al., 2021) and FC layers on Poincaré spaces
 312 (Shimizu et al., 2021) follow the same logic as Sec. 3.1 and Def. 3.4, respectively. Their closed-form
 313 expressions are reviewed in App. D.2.

315 The Poincaré convolutional layer shares a logic similar to the correlation convolution, except it uses
 316 β -concatenation to concatenate the Poincaré vectors in each receptive field (Shimizu et al., 2021,
 317 Secs. 3.3-3.4), which can stabilize the norm of the Poincaré vector. The Poincaré β -concatenation
 318 generalizes the Euclidean concatenation via the scaled concatenation in the tangent space. Given
 319 inputs $\{x_i \in \mathbb{P}^{n_i}\}_{i=1}^N$, it is defined as $\text{Exp}_0(\beta_n(\beta_{n_1}^{-1}v_1^\top, \dots, \beta_{n_N}^{-1}v_N^\top))^\top \in \mathbb{P}^n$, where $v_i =$
 320 $\text{Log}_0(x_i)$ and $n = \sum_{i=1}^N n_i$. Here, β_{n_i} and β_n are defined by the beta function $\beta_\alpha = B(\alpha/2, 1/2)$.
 321 The inverse is called the Poincaré β -split. The Poincaré convolution is: (1) β -concatenating the
 322 multi-channel feature in a given receptive field; and (2) performing the Poincaré FC transformation.

323 ²Thm. 3.6 naturally support product geometries, which are detailed in App. E.2.

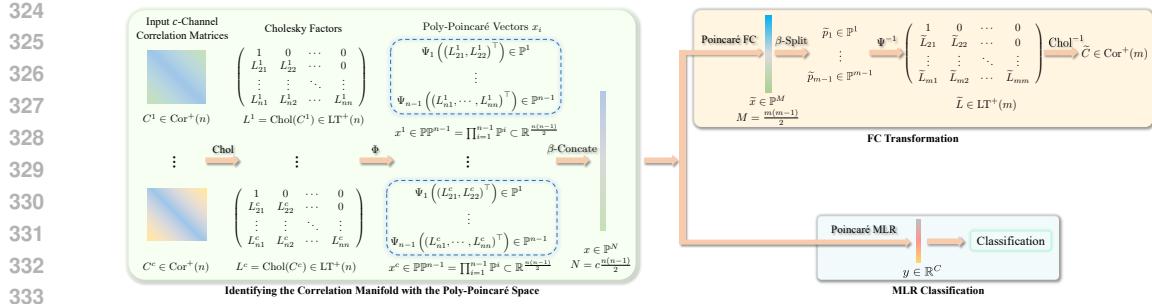


Figure 4: Illustration of the PHCM convolution and MLR. The multi-channel input correlation matrices are denoted as $\{C^i\}_{i=1}^c$. For the convolutional layer, the illustration focuses on the transformation within a receptive field and assumes a single-channel output.

4.3 BUILDING POLY-HYPERBOLIC-COLESKY LAYERS

PHCM MLR. The input multi-channel correlation matrices, $\mathbf{C} = \{C^i \in \text{Cor}^+(n)\}_{i=1}^c$, are first mapped into poly-Poincaré spaces as $\mathbf{x} = \{x^i = \Psi \circ \text{Chol}(C^i) \in \mathbb{P}^{n-1}\}_{i=1}^c$. The resulting Poincaré vectors are then β -concatenated into a single Poincaré vector $x \in \mathbb{P}^N$, where $N = c \frac{n(n-1)}{2}$. This concatenated vector is subsequently fed into the Poincaré MLR for classification.

PHCM convolutional and FC layer. The convolutional layer follows a logic similar to Log-Euclidean convolution. The multi-channel correlation matrices within a receptive field $\mathbf{C} = \{C^i \in \text{Cor}^+(n)\}_{i=1}^c$ are first mapped to a β -concatenated Poincaré vector $x \in \mathbb{P}^N$ as the PHCM MLR, which is then fed into the Poincaré FC layer for dimensionality transformation. This produces a vector $\tilde{x} \in \mathbb{P}^M$, with $M = k \frac{m(m-1)}{2}$, which is then split using β -split. Subsequently, applying $\text{Chol}^{-1} \circ \Psi^{-1}$ reconstructs new $k \times m \times m$ correlation matrices. When the input is a single correlation matrix, it is reduced to the FC correlation layer.

Fig. 4 illustrates the PHCM convolutional and MLR layers. However, there is an underlying ambiguity in the above discussion. To clarify, we write each $x^i \in \mathbb{P}^{n-1}$ in \mathbf{x} as $x^i = \{p_1^i \in \mathbb{P}^1, \dots, p_{n-1}^i \in \mathbb{P}^{n-1}\}$, which gives $\mathbf{x} = \{p_j^i \in \mathbb{P}^j\}_{i=1, j=1}^{i=c, j=n-1}$. Therefore, we can either concatenate twice by $i \rightarrow j$ or once along both i and j . A similar issue arises with β -split. However, we show the equivalence of the above two orders in App. G. Therefore, we always conduct β -operation simultaneously along both i and j .

5 EXPERIMENTS

We construct Riemannian networks on the correlation manifold, termed CorNets, using the proposed convolutional and MLR layers. Following previous work (Huang & Van Gool, 2017; Brooks et al., 2019; Chen et al., 2024b), we evaluate our approach on the Radar dataset (Brooks et al., 2019) for radar signal classification, along with the HDM05 (Müller et al., 2007), FPHA (Garcia-Hernando et al., 2018) and NTU120 (Liu et al., 2019) datasets for human action recognition. More details are provided in App. I.

Implementation. We denote CorNet-Metric as the CorNet composed of correlation convolution and MLR layers under a specified metric. In line with Nguyen et al. (2024), each CorNet consists of one correlation convolutional layer followed by a correlation MLR layer, trained with cross-entropy loss. Following Wang et al. (2024); Nguyen et al. (2024), each raw feature is modeled as a multi-channel $[c, n, n]$ SPD tensor. Since matrix power effectively activates SPD matrices by deforming their geometry (Thanwerdas & Pennec, 2022a; Chen et al., 2024b;d; 2025), we first apply a matrix power, and then convert the result to correlation matrices as the input of CorNet. Due to trivialization, all parameters lie in Euclidean space and are optimized by standard Euclidean optimizers. We compare CorNets against representative Grassmannian and SPD networks, including GrNet (Huang et al., 2018), GyroGr (Nguyen & Yang, 2023), GyroGr-Scaling (Nguyen & Yang, 2023), SPDNet (Huang & Van Gool, 2017), SPDNetBN (Brooks et al., 2019), RResNet (Kingma, 2015), LieBN (Chen et al., 2024b), SPD MLR (Chen et al., 2024d), Gyro (Nguyen & Yang, 2023), and GyroSPD++(Nguyen et al., 2024). Please refer to App. I.4 for more details.

378
379 Table 2: Five-fold results and training time per epoch on four datasets. The top 3 results are
380 highlighted with **red**, **blue**, and **cyan**. * denotes reproduced results due to missing official code.

381 Manifold	382 Method	383 Radar		384 HDM05		385 FPHA		386 NTU120	
		387 Mean±STD	388 Time	389 Mean±STD	390 Time	391 Mean±STD	392 Time	393 Mean±STD	394 Time
385 Grassmann	386 GrNet (Huang et al., 2018)	387 90.48 ± 0.76	388 1.39	389 63.19 ± 0.70	390 1.64	391 85.31 ± 0.90	392 0.70	393 57.59 ± 0.22	394 50.97
	386 GyroGr* (Nguyen & Yang, 2023)	387 90.64 ± 0.57	388 1.38	389 58.32 ± 1.23	390 2.48	391 79.62 ± 0.49	392 0.70	393 53.76 ± 0.18	394 136.96
	386 GyroGr-Scaling* (Nguyen & Yang, 2023)	387 88.88 ± 1.52	388 1.63	389 39.75 ± 0.93	390 3.52	391 58.62 ± 1.66	392 1.03	393 43.90 ± 0.23	394 338.01
385 SPD	386 SPDNet (Huang & Van Gool, 2017)	387 93.25 ± 1.10	388 0.66	389 64.57 ± 0.61	390 0.50	391 85.59 ± 0.72	392 0.28	393 51.25 ± 0.36	394 12.77
	386 SPDNetBN (Brooks et al., 2019)	387 94.85 ± 0.99	388 1.25	389 71.28 ± 0.79	390 0.94	391 89.33 ± 0.49	392 0.58	393 54.35 ± 0.43	394 19.78
	386 SPDResNet-AIM (Katsman et al., 2024)	387 95.71 ± 0.37	388 0.96	389 64.95 ± 0.82	390 1.23	391 86.63 ± 0.55	392 0.69	393 57.33 ± 0.35	394 23.84
	386 SPDResNet-LEM (Katsman et al., 2024)	387 95.89 ± 0.86	388 0.77	389 70.12 ± 2.45	390 0.55	391 85.07 ± 0.99	392 0.30	393 61.34 ± 2.02	394 13.00
	386 SPDNetLieBN-AIM (Chen et al., 2024b)	387 95.47 ± 0.90	388 1.21	389 71.83 ± 0.69	390 1.15	391 90.39 ± 0.66	392 0.97	393 58.20 ± 0.46	394 31.10
	386 SPDNetLieBN-LCM (Chen et al., 2024b)	387 94.80 ± 0.71	388 1.10	389 71.78 ± 0.44	390 1.11	391 86.33 ± 0.43	392 0.59	393 57.96 ± 0.43	394 22.06
	386 SPDNetMLR (Chen et al., 2024d)	387 94.59 ± 0.82	388 0.66	389 65.90 ± 0.93	390 5.46	391 85.60 ± 0.43	392 0.88	393 58.59 ± 0.13	394 22.48
	386 GyroLE* (Nguyen & Yang, 2023)	387 96.24 ± 0.24	388 0.79	389 73.17 ± 0.37	390 2.86	391 90.73 ± 0.92	392 1.59	393 59.29 ± 0.42	394 22.08
	386 GyroLC* (Nguyen & Yang, 2023)	387 93.60 ± 1.31	388 0.66	389 67.53 ± 0.85	390 1.49	391 76.10 ± 0.63	392 0.78	393 59.29 ± 0.42	394 14.14
	386 GyroAI* (Nguyen & Yang, 2023)	387 96.29 ± 0.48	388 0.99	389 72.34 ± 1.06	390 22.80	391 89.60 ± 0.37	392 12.62	393 62.21 ± 0.29	394 98.31
	386 GyroSPD++* (Nguyen et al., 2024)	387 95.20 ± 0.88	388 5.09	389 69.82 ± 1.79	390 103.57	391 89.50 ± 0.37	392 66.35	393 61.57 ± 0.30	394 216.46
392 Correlation	393 CorNet-ECM	394 97.71 ± 0.61	395 1.01	396 81.35 ± 1.27	397 0.60	398 92.17 ± 0.49	399 0.50	400 65.04 ± 0.14	401 12.06
	393 CorNet-LECM	394 98.40 ± 0.70	395 1.12	396 78.05 ± 1.14	397 0.64	398 91.17 ± 0.32	399 0.54	400 65.03 ± 0.10	401 12.68
	393 CorNet-OLM	394 97.57 ± 0.76	395 1.35	396 81.46 ± 0.61	397 0.93	398 91.63 ± 0.12	399 0.79	400 64.41 ± 0.23	401 16.07
	393 CorNet-LSM	394 96.24 ± 1.48	395 1.50	396 74.89 ± 1.07	397 0.98	398 83.43 ± 0.65	399 0.83	400 60.69 ± 0.85	401 16.28
	393 CorNet-PHCM	394 96.56 ± 0.86	395 2.37	396 82.26 ± 0.92	397 1.10	398 90.03 ± 0.63	399 0.77	400 60.01 ± 0.22	401 16.92

395 Table 3: Ablations on mixed geometries. Each row shows the metric used for Convolution (Conv),
396 and each column is the metric for MLR. The diagonal entries indicate configurations where both
397 layers use the same metric. The best result in each row is highlighted in **red**.

398 Dataset	399 HDM05					400 FPHA					
	401 MLR	402 ECM	403 LECM	404 OLM	405 LSM	406 PHCM	407 ECM	408 LECM	409 OLM	410 LSM	411 PHCM
412 ECM	413 81.35 ± 1.27	414 73.38 ± 0.34	415 80.11 ± 0.77	416 78.54 ± 0.43	417 80.80 ± 0.54	418 92.17 ± 0.49	419 91.50 ± 0.21	420 91.67 ± 0.28	421 87.37 ± 1.14	422 91.97 ± 0.24	423
424 LECM	425 66.49 ± 1.13	426 78.05 ± 1.14	427 79.21 ± 1.23	428 73.61 ± 0.99	429 58.37 ± 2.24	430 87.90 ± 0.57	431 91.17 ± 0.32	432 90.25 ± 0.25	433 89.63 ± 0.31	434 86.09 ± 0.98	435
436 OLM	437 77.82 ± 0.48	438 76.56 ± 0.89	439 81.46 ± 0.61	440 80.77 ± 0.81	441 77.39 ± 1.29	442 92.17 ± 0.58	443 92.27 ± 0.78	444 91.63 ± 0.12	445 89.90 ± 0.67	446 91.83 ± 0.15	447
448 LSM	449 68.83 ± 1.19	450 70.41 ± 1.57	451 67.56 ± 1.52	452 74.89 ± 1.07	453 72.69 ± 3.56	454 78.97 ± 2.80	455 75.10 ± 1.15	456 82.25 ± 3.38	457 83.43 ± 0.65	458 78.97 ± 4.97	459
462 PPC	463 81.16 ± 0.40	464 80.05 ± 0.45	465 81.96 ± 0.51	466 78.28 ± 0.64	467 82.26 ± 0.92	468 88.30 ± 0.81	469 79.80 ± 0.69	470 87.37 ± 0.72	471 86.63 ± 0.27	472 90.03 ± 0.63	473

404 **Main results.** Tab. 2 reports the five-fold results comparing our CorNets against existing SPD and
405 Grassmannian baselines. We summarize the key observations below. **(1) Effectiveness:** CorNets
406 consistently outperform both SPD and Grassmannian networks. Specifically, CorNets surpass the
407 classic SPDNet by 5.15%, 17.69%, 6.58%, and 13.84% on four datasets, respectively, and outperform
408 the best Grassmannian networks by 7.76%, 19.07%, 6.86%, and 7.45%. Despite not using batch
409 normalization or residual blocks, CorNets achieve superior performance compared to SPDNetBN,
410 SPDNetLieBN, and RResNet. Notably, although CorNets share the same architecture as GyroSPD++
411 (one SPD convolutional layer followed by one SPD MLR), CorNets exhibit better performance.
412 These results highlight the effectiveness of correlation embedding and our method for constructing
413 correlation networks. **(2) Optimal metric:** The optimal metric for CorNets varies across datasets,
414 indicating that the choice of geometry is a critical hyperparameter in Riemannian networks. Our
415 framework enables seamless switching among five correlation geometries in a consistent architecture,
416 demonstrating the adaptability of our approach to different tasks. **(3) Efficiency:** CorNets achieve
417 efficiency comparable to or better than several baseline methods. The most efficient CorNet variant is
418 based on ECM, owing to the simplest computations of ECM. Although GyroSPD++ uses the same
419 architecture, CorNets achieve significantly greater efficiency, attributed to the heavy computational
420 cost of the AIM-based computations in GyroSPD++ and the lightweight Riemannian computations
421 on the correlation manifold. **Particularly, on the largest NTU120 datasets, CorNet-ECM and CorNet-
422 LECM are the top two most efficient ones.**

423 **Ablations on mixed geometries.** Our main experiments use the same metric for convolution and
424 MLR. To evaluate mixed geometries, we assign different metrics to the two layers. Tab. 3 reports
425 five-fold results on HDM05 and FPHA. Overall, consistent metrics yield the best accuracy, with the
426 exception of LECM-OLM on HDM05 and OLM-LECM on FPHA.

427 **Visualization.** Fig. 5 shows that different metrics
428 induce visibly distinct curved hyperplanes.

429 **Potential and necessity.** Although correlation matrices
430 are still SPD, naively treating them as SPD inputs
431 and feeding them into existing SPD networks fails
432 to leverage their intrinsic geometric structures. To

433 Table 4: SPD vs. correlation on SPDNet.

434 Input	435 Radar	436 HDM05	437 FPHA
438 SPD	439 93.25 ± 1.10	440 64.57 ± 0.61	441 85.59 ± 0.72
442 Correlation	443 89.49 ± 0.67	444 66.81 ± 0.73	445 83.37 ± 0.40

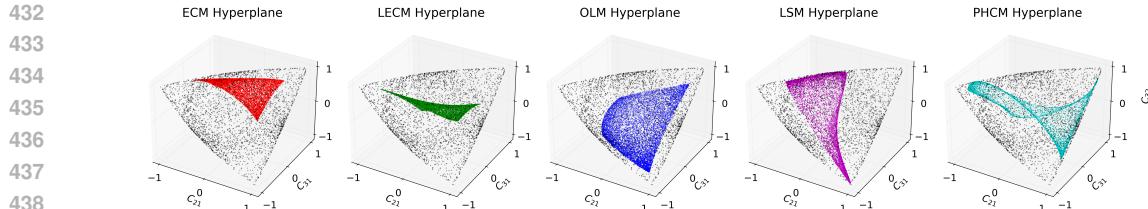


Figure 5: Illustration of the decision hyperplanes in the correlation MLRs under five different geometries. The 3×3 correlation manifold can be embedded as an open ellipope in \mathbb{R}^3 , by visualizing the strictly lower triangular part of each $C \in \text{Cor}^+(3)$. The black dots denote the boundary. The PHCM hyperplane is defined by the one in the β -concatenated Poincaré space.

Table 5: Comparison of SPDMLR-Trivlz on raw covariances against CorMLR on raw correlations on all three datasets. The input matrix dimensions are 93×93 , 63×63 , and 20×20 , respectively.

Dataset	Measurement	SPDMLR-Trivlz			CorMLR				
		LEM	LCM	AIM	ECM	LECM	OLM	LSM	PHCM
Radar	Acc	95.47 \pm 0.66	95.55 \pm 0.35	94.87 \pm 0.87	89.47 \pm 0.93	87.41 \pm 0.23	85.79 \pm 0.83	91.63 \pm 0.32	83.33 \pm 1.29
	Fit Time (s/epoch)	0.65	0.63	0.99	0.56	0.62	0.78	0.68	0.74
HDM05	Acc	54.31 \pm 1.65	45.12 \pm 1.05	52.46 \pm 2.44	65.57 \pm 0.62	64.44 \pm 0.63	62.86 \pm 0.65	64.01 \pm 0.92	62.78 \pm 0.85
	Fit Time (s/epoch)	3.24	5.38	260.67	3.18	3.87	3.39	3.57	2.73
FPFA	Acc	84.13 \pm 1.14	76.62 \pm 0.43	83.25 \pm 0.59	85.37 \pm 0.16	85.24 \pm 0.22	84.67 \pm 0.27	80.17 \pm 0.15	73.67 \pm 0.32
	Fit Time (s/epoch)	0.51	0.52	18.96	0.51	0.64	0.8	0.81	0.45

illustrate this, we use the classic SPDNet (Huang & Van Gool, 2017) but replace its covariance inputs with correlation matrices. The five-fold average results in Tab. 4 reveal two key insights: (1) on the HDM05 dataset, correlation inputs lead to improved performance, suggesting that correlation embeddings can serve as compact and effective alternatives to covariance representations; and (2) on the other two datasets, the performance degrades, indicating that ignoring the specific geometry of correlation matrices can be detrimental. These findings highlight both the promise and the necessity of designing networks respecting the unique geometry of the correlation manifold.

Ablations on correlation embeddings. To further evaluate the effectiveness of correlation embeddings, we compare the performance of directly classifying raw covariance matrices using SPDMLR (Chen et al., 2024d, Thm. 4.2) with that of classifying corresponding raw correlation matrices using correlation MLR (CorMLR). The original SPDMLR requires an SPD matrix parameter and a symmetric matrix parameter for each class, which causes heavy Riemannian computations. For a fair comparison, we also implement similar trivialization as Sec. 3.1 for the SPD parameters involved in SPDMLR, which will greatly improve the efficiency. The resulting MLR is denoted as SPDMLR-Trivlz. We implement SPDMLR-Trivlz under LEM, LCM, and AIM, respectively. Tab. 5 presents the 5-fold average results on all three datasets. CorMLR performs better than SPDMLR-Trivlz on HDM05 and FPFA. Although CorMLR performs worse on Radar, we emphasize that these comparisons are conducted on a single MLR layer, which fails to fully uncover the potential of correlation matrices. When integrated into a full network (our CorNet), correlation-based modeling consistently outperforms all SPD-based networks. Besides, SPDMLR under AIM is much slower than others, especially on HDM05, due to its complex computations. In contrast, CorMLR, especially under ECM and PHCM, offers competitive or superior efficiency relative to SPDMLR-Trivlz.

Covariance vs. correlation. Tabs. 2 and 5 show that correlation embeddings achieve relatively larger gains than covariance based SPD models on the HDM05 dataset. As detailed in Apps. I.5.1 and I.5.2, covariance embeddings on HDM05 exhibit large coefficients of variation for diagonal variances and diagonal magnitudes that are much larger than the off-diagonal entries. In such cases, covariance-based SPD representations can introduce nuisance noise and make it harder for the model to exploit informative off-diagonal correlations. In contrast, correlation normalization rebalances diagonal and off-diagonal contributions and encourages the network to focus on vibrant pairwise correlations. This behavior is consistent with the strong gains of correlation embeddings on HDM05 and suggests that correlation modeling is particularly beneficial when covariance representations are dominated by large and highly variable diagonal components.

Normalized covariance vs. correlation. As correlation matrices can be viewed as normalized covariance matrices, a natural idea is to normalize covariance by a scalar, such as its largest eigenvalue. As discussed in App. I.6, feeding SPD networks with covariance matrices scaled by their largest eigenvalue leads to only marginal changes and could degrade performance. These results indicate

486 that simple scalar scaling does not reproduce the benefits of correlation normalization. This can be
 487 explained from a statistical perspective. Since dividing a covariance matrix by a scalar is equivalent
 488 to uniformly rescaling raw samples before covariance computation, the normalized inputs remain
 489 covariance matrices. In contrast, correlation normalization rescales each pair of variables by their
 490 own standard deviations and produces standardized correlation coefficients, which is statistically
 491 distinct from scalar normalization.

492 **Activations.** Following HNN++ (Shimizu et al., 2021) and GyroSPD++ (Nguyen et al., 2024),
 493 CorNet omits explicit activations because the correlation manifold already introduces nonlinearity. In
 494 App. I.7, we further study the effects of the activation function. Following Ganea et al. (2018, Sec.
 495 3.2), we implement the activation via the tangent space. The results indicate that activation offers no
 496 benefit and can even degrade performance.

497 **Scalability.** We evaluate the efficiency of CorNet under different metrics across dimensions from
 498 30×30 to 1000×1000 . As shown in App. I.8, ECM is consistently the most efficient. At high
 499 dimensions, PHCM becomes the second most efficient due to its relatively simple diffeomorphism,
 500 whereas LECM is the slowest among LSM, OLM, and LECM due to its costly $\log \circ \Theta$ mapping.

502 6 CONCLUSION

504 This paper systematically extends the FC, convolutional, and MLR layers to the correlation manifold
 505 under five newly developed Riemannian geometries. By preserving intrinsic correlation structures and
 506 enabling flexible variation of latent geometry within a unified network architecture, our framework
 507 highlights the distinct advantages of correlation manifolds beyond SPD and Grassmannian alternatives.
 508 In addition, we propose accurate backpropagation schemes for OLM and LSM. Extensive experi-
 509 ments demonstrate the effectiveness, adaptability, efficiency, and scalability of our approach. These
 510 foundational layers open the door to constructing richer architectures on the correlation manifold,
 511 including RNNs, transformers, and residual networks.

513 REPRODUCIBILITY STATEMENT

515 All theoretical results are presented with clear assumptions, and complete proofs are provided in
 516 App. J. Details of the datasets and preprocessing are given in App. I.3. Implementation details,
 517 including network architectures, optimization strategies, and hyperparameters, are described in
 518 App. I.4. The code will be made available upon acceptance.

520 ETHICS STATEMENT

522 This work uses only publicly available benchmark datasets, which contain no personally identifiable
 523 or sensitive information. We do not identify ethical concerns.

526 REFERENCES

527 Ilya Archakov and Peter Reinhard Hansen. A new parametrization of correlation matrices. *Econo-*
 528 *metrica*, 89(4):1699–1715, 2021.

529 Ilya Archakov and Peter Reinhard Hansen. A canonical representation of block matrices with
 530 applications to covariance and correlation matrices. *Review of Economics and Statistics*, 106(4):
 531 1099–1113, 2024.

533 Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. *Fast and simple computations*
 534 *on tensors with log-Euclidean metrics*. PhD thesis, INRIA, 2005.

535 Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural
 536 networks for computer vision. In *ICLR*, 2024.

538 Rajendra Bhatia. *Positive Definite Matrices*. Princeton University Press, 2009.

539 Rajendra Bhatia. *Matrix analysis*, volume 169. Springer Science & Business Media, 2013.

540 Daniel Brooks, Olivier Schwander, Frédéric Barbaresco, Jean-Yves Schneider, and Matthieu Cord.
 541 Riemannian batch normalization for SPD neural networks. In *NeurIPS*, 2019.
 542

543 James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry.
 544 *Flavors of geometry*, 31(59-115):2, 1997.

545 Rudrasis Chakraborty, Jose Bouza, Jonathan H Manton, and Baba C Vemuri. Manifoldnet: A deep
 546 neural network for manifold-valued data with applications. *IEEE TPAMI*, 2020.
 547

548 Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
 549 Fully hyperbolic neural networks. In *ACL*, 2022.

550

551 Yuxin Chen, Ziqi Zhang, Chunfeng Yuan, Bing Li, Ying Deng, and Weiming Hu. Channel-wise
 552 topology refinement graph convolution for skeleton-based action recognition. In *ICCV*, 2021.

553 Ziheng Chen, Tianyang Xu, Xiao-Jun Wu, Rui Wang, Zhiwu Huang, and Josef Kittler. Riemannian
 554 local mechanism for SPD neural networks. In *AAAI*, 2023.

555

556 Ziheng Chen, Yue Song, Gaowen Liu, Ramana Rao Kompella, Xiaojun Wu, and Nicu Sebe. Riemannian
 557 multinomial logistics regression for SPD neural networks. In *CVPR*, 2024a.

558 Ziheng Chen, Yue Song, Yunmei Liu, and Nicu Sebe. A Lie group approach to Riemannian batch
 559 normalization. In *ICLR*, 2024b.

560

561 Ziheng Chen, Yue Song, Xiao-Jun Wu, and Nicu Sebe. Product geometries on Cholesky manifolds
 562 with applications to SPD manifolds. *arXiv preprint arXiv:2407.02607*, 2024c.

563

564 Ziheng Chen, Yue Song, Xiaojun, and Nicu Sebe. RMLR: Extending multinomial logistic regression
 565 into general geometries. In *NeurIPS*, 2024d.

566

567 Ziheng Chen, Yue Song, Xiaojun Wu, Gaowen Liu, and Nicu Sebe. Understanding matrix function
 568 normalizations in covariance pooling through the lens of Riemannian geometry. In *ICLR*, 2025.

569

570 Calin Cruceru, Gary Bécigneul, and Octavian-Eugen Ganea. Computationally tractable Riemannian
 571 manifolds for graph embeddings. In *AAAI*, 2021.

572

573 Paul David and Weiqing Gu. A Riemannian structure for correlation matrices. *Operators and
 574 Matrices*, 13(3):607–627, 2019.

575

576 Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In *NeurIPS*,
 577 2018.

578

579 Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek, and Tae-Kyun Kim. First-person hand
 580 action benchmark with RGB-D videos and 3D hand pose annotations. In *CVPR*, 2018.

581

582 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
 583 *AISTATS*, 2011.

584

585 Zhiwu Huang and Luc Van Gool. A Riemannian network for SPD matrix learning. In *AAAI*, 2017.

586

587 Zhiwu Huang, Chengde Wan, Thomas Probst, and Luc Van Gool. Deep learning on Lie groups for
 588 skeleton-based action recognition. In *CVPR*, 2017.

589

590 Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on Grassmann manifolds. In
 591 *AAAI*, 2018.

592

593 Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Training deep networks with structured
 594 layers by matrix backpropagation. *arXiv preprint arXiv:1509.07838*, 2015.

595

596 Isay Katsman, Eric Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser Nam Lim, and Christopher
 597 M De Sa. Riemannian residual neural networks. In *NeurIPS*, 2024.

598

599 Diederik P Kingma. Adam: A method for stochastic optimization. *ICLR*, 2015.

594 Reinmar Kobler, Jun-ichiro Hirayama, Qibin Zhao, and Motoaki Kawanabe. SPD domain-specific
 595 batch normalization to crack interpretable unsupervised domain adaptation in EEG. In *NeurIPS*,
 596 2022.

597 Guy Lebanon and John Lafferty. Hyperplane margin classifiers on the multinomial manifold. In
 598 *ICML*, 2004.

600 John M Lee. *Introduction to Riemannian manifolds*, volume 2. Springer, 2018.

601 Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. In *NeurIPS*,
 602 2019.

604 Shanglin Li, Motoaki Kawanabe, and Reinmar J Kobler. SPDIM: Source-free unsupervised condi-
 605 tional and label shift adaptation in EEG. In *ICLR*, 2025.

606 Zhenhua Lin. Riemannian geometry of symmetric positive definite matrices via Cholesky decompo-
 607 sition. *SIAM Journal on Matrix Analysis and Applications*, 40(4):1353–1370, 2019.

609 Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C Kot. NTU
 610 RGB+D 120: A large-scale benchmark for 3D human activity understanding. *IEEE T-PAMI*, 2019.

611 Miroslav Lovrić, Maung Min-Oo, and Ernst A Ruh. Multivariate normal distributions parametrized
 612 as a riemannian symmetric space. *Journal of Multivariate Analysis*, 74(1):36–48, 2000.

614 Meinard Müller, Tido Röder, Michael Clausen, Bernhard Eberhardt, Björn Krüger, and Andreas
 615 Weber. Documentation mocap database HDM05. Technical report, Universität Bonn, 2007.

616 Iain Murray. Differentiation of the Cholesky decomposition. *arXiv preprint arXiv:1602.07527*, 2016.

618 Xuan Son Nguyen. The Gyro-structure of some matrix manifolds. In *NeurIPS*, 2022.

619 Xuan Son Nguyen and Shuo Yang. Building neural networks on matrix manifolds: A Gyrovector
 620 space approach. In *ICML*, 2023.

622 Xuan Son Nguyen, Shuo Yang, and Aymeric Histace. Matrix manifold neural networks++. In *ICLR*,
 623 2024.

624 Xuan Son Nguyen, Shuo Yang, and Aymeric Histace. Neural networks on symmetric spaces of
 625 noncompact type. In *ICLR*, 2025.

627 Yue-Ting Pan, Jing-Lun Chou, and Chun-Shu Wei. MAtt: A manifold attention network for EEG
 628 decoding. In *NeurIPS*, 2022.

629 Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor computing.
 630 *IJCV*, 2006.

632 Can Pouliquen, Mathurin Massias, and Titouan Vayer. Schur’s positive-definite network: Deep
 633 learning in the SPD cone with structure. In *ICLR*, 2025.

634 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical
 635 statistics*, pp. 400–407, 1951.

637 Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In *ICLR*,
 638 2021.

639 Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoen-
 640 coders. In *ICLR*, 2020.

642 Yann Thanwerdas. *Riemannian and stratified geometries on covariance and correlation matrices*.
 643 PhD thesis, Université Côte d’Azur, 2022.

644 Yann Thanwerdas. Permutation-invariant log-Euclidean geometries on full-rank correlation matrices.
 645 *SIAM Journal on Matrix Analysis and Applications*, 45(2):930–953, 2024.

646 Yann Thanwerdas and Xavier Pennec. The geometry of mixed-Euclidean metrics on symmetric
 647 positive definite matrices. *Differential Geometry and its Applications*, 81:101867, 2022a.

648 Yann Thanwerdas and Xavier Pennec. Theoretically and computationally convenient geometries
649 on full-rank correlation matrices. *SIAM Journal on Matrix Analysis and Applications*, 43(4):
650 1851–1872, 2022b.

651 Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition by representing
652 3D skeletons as points in a Lie group. In *CVPR*, 2014.

653 Qilong Wang, Zhaolin Zhang, Mingze Gao, Jiangtao Xie, Pengfei Zhu, Peihua Li, Wangmeng Zuo,
654 and Qinghua Hu. Towards a deeper understanding of global covariance pooling in deep learning:
655 An optimization perspective. *IEEE TPAMI*, 2023.

656 Rui Wang, Chen Hu, Ziheng Chen, Xiao-Jun Wu, and Xiaoning Song. A Grassmannian manifold
657 self-attention network for signal classification. In *IJCAI*, 2024.

658 Rui Wang, Shaocheng Jin, Ziheng Chen, Xiaoqing Luo, and Xiao-Jun Wu. Learning to normalize on
659 the SPD manifold under Bures-Wasserstein geometry. In *CVPR*, 2025.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702	APPENDIX CONTENTS	
703		
704		
705	List of acronyms	16
706		
707	A Use of large language models	17
708		
709	B Notation	17
710		
711	C Full-rank correlation geometries	17
712		
713	C.1 Pullback metrics	17
714	C.2 Symmetric matrix functions	17
715	C.3 Geometries of the correlation manifold	18
716	C.3.1 Non-permutation-invariant metrics	18
717	C.3.2 Permutation-invariant metrics	20
718		
719		
720		
721	D Revisiting previous layers	22
722		
723	D.1 Revisiting multinomial logistic regression	22
724	D.2 Revisiting Poincaré layers	22
725		
726	E Discussion on correlation FC layer	23
727		
728	E.1 Connections among FC layers: correlation, SPD, Poincaré, and Euclidean	23
729	E.1.1 SPD Manifold	23
730	E.1.2 Poincaré ball	23
731	E.1.3 Euclidean space	24
732	E.2 Log-Euclidean layers under product geometry	24
733		
734		
735		
736	F Backpropagation over correlation geometries	25
737		
738	G Order-invariance of beta operations	26
739		
740	H Summary of correlation FC and MLR layers	26
741		
742		
743	I Additional details and experiments	26
744		
745	I.1 Basic layers in SPDNet	26
746	I.2 Datasets	27
747	I.3 Input data	28
748	I.3.1 SPD input in SPD networks	28
749	I.3.2 Grassmannian input in Grassmannian networks	29
750	I.3.3 Correlation input in CorNets	29
751	I.4 Implementation details	30
752		
753	I.5 Analysis of covariance versus correlation	31
754		
755	I.5.1 Coefficient of variation of diagonal variances	31

756	I.5.2	Ratio of diagonal to off-diagonal entries in covariance features	32
757	I.6	Normalized covariance vs. correlation	33
758	I.7	Ablations on activations.	35
759	I.8	Scalability of correlation metrics	35
760	I.9	Additional details on visualization	36
761	I.9.1	Visualization of low-dimensional SPD and correlation matrices.	36
762	I.9.2	Construction of Fig. 2.	36
763	I.9.3	Construction of Fig. 5.	37
764	I.10	Hardware	37
765			
766	J	Proofs	37
767	J.1	Proof of Thm. 3.1	37
768	J.2	Proof of Prop. 3.2	39
769	J.3	Proof of Thm. 3.6	40
770	J.4	Proof of Prop. 4.1	42
771	J.5	Proof of Prop. F.1	42
772	J.6	Proof of Prop. F.2	43
773	J.7	Proof of Thm. G.1	44
774			
775			
776			
777			
778			
779			
780			
781			
782			
783			
784			
785			
786			
787			
788			
789			
790			
791			
792			
793			
794			
795			
796			
797			
798			
799			
800			
801			
802			
803			
804			
805			
806			
807			
808			
809			

Table 6: Summary of notation. All numbers and operators are assumed to be real.

Notation	Explanation
(\mathcal{M}, g) or \mathcal{M}	Riemannian manifold
E or $E_{\mathcal{M}}$	Origin of the manifold \mathcal{M}
$T_P \mathcal{M}$	Tangent space at $P \in \mathcal{M}$
$\{O_k\}_{k=1}^m$	Orthonormal basis over the m -dimensional $T_E \mathcal{M}$
$g_P(\cdot, \cdot)$ or $\langle \cdot, \cdot \rangle_P$	Riemannian metric at $P \in \mathcal{M}$
$\ \cdot\ _P$	Norm induced by $\langle \cdot, \cdot \rangle_P$ on $T_P \mathcal{M}$
Log_P	Riemannian logarithmic map at P
Exp_P	Riemannian exponential map at P
$\gamma(t; P, Q)$	Geodesic connecting $P, Q \in \mathcal{M}$
$\Gamma_{P \rightarrow Q}$	Riemannian parallel transportation along the geodesic connecting P and Q
$H_{a,p}$ or $H_{A,P}$	Margin hyperplane
$f_{*,P}$	Differential map of the smooth map f at $P \in \mathcal{M}$
$v_k(X)$	$v_k(X)$ in Riemannian MLR (Eq. (3)) for $X \in \mathcal{M}$
$\mathcal{F} : \mathcal{N} \rightarrow \mathcal{M}$	Riemannian FC layer from \mathcal{N} to \mathcal{M} , defined by Eq. (8)
$\mathbb{R}, \mathbb{R}^n \& \mathbb{R}^{n \times n}$	Euclidean spaces of real scalars, n -dimensional real vectors, and $n \times n$ matrices
$\text{Diag}(n)$	Euclidean space of $n \times n$ diagonal matrices
$\text{Diag}^+(n)$	Manifold of $n \times n$ positive diagonal matrices
\mathcal{S}^n	Euclidean space of $n \times n$ symmetric matrices
$\text{Hol}(n)$	Euclidean space of $n \times n$ symmetric matrices with null diagonals
$\text{Row}_0(n)$	Euclidean space of $n \times n$ symmetric matrices with null row sum
\mathcal{S}_{++}^n	Manifold of $n \times n$ SPD matrices
$\text{Row}_1^+(n)$	Manifold of $n \times n$ SPD matrices with unit row sum.
$\text{Cor}^+(n)$	Manifold of $n \times n$ full rank correlation matrices
$\text{LT}(n)$	Euclidean space of $n \times n$ lower triangular matrices
$\text{LT}^1(n)$	Euclidean space of $n \times n$ lower triangular matrices with unit diagonals
$\text{LT}^0(n)$	Euclidean space of $n \times n$ lower triangular matrices with null diagonals
$\text{LT}^+(n)$	Cholesky manifold of $n \times n$ lower triangular matrices with positive diagonals
\mathcal{L}^n	Manifold of $n \times n$ lower triangular matrices with positive diagonals and unit row norm
PHS^{n-1}	Product space of $n - 1$ open hemispheres
\mathbb{P}^{n-1}	Product space of $n - 1$ Poincaré balls
$\langle \cdot, \cdot \rangle \& \ \cdot\ $	Canonical Euclidean inner product and norm
$\langle \cdot, \cdot \rangle^{(\alpha, \beta, \gamma)} \& \langle \cdot, \cdot \rangle^{(\alpha, \delta, \zeta)}$	Permutation-invariant inner product over $\text{Hol}(n)$ & $\text{Row}_0(n)$
$\log, \exp, \& \text{Chol}$	Matrix logarithm, exponentiation, Cholesky decomposition
$\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$	Returns the strictly lower triangular matrix of a square matrix
$\phi^{\text{EC}}(\cdot)$	$\phi^{\text{EC}}(C) = \Theta(C) $ the isometry w.r.t. ECM
$\mathbb{D}(\cdot)$	Returns a diagonal matrix with diagonals from a square matrix
$\text{diag}(\cdot)$	Returns a diagonal matrix from an input vector
$\text{Dv}(\cdot)$	Returns a vector of diagonal elements from a square matrix
$(\cdot)_{\frac{1}{2}}$	$(S)_{\frac{1}{2}} = [S] + \frac{1}{2}\mathbb{D}(S)$ for any square matrix S
\odot	Hadamard product
Cor	$\text{Cor} : \Sigma \in \mathcal{S}_{++}^n \mapsto \mathbb{D}(\Sigma)^{-1/2} \Sigma \mathbb{D}(\Sigma)^{-1/2} \in \text{Cor}^+(n)$
Θ	$\Theta : C \in \text{Cor}^+(n) \mapsto \mathbb{D}(\text{Chol}(C))^{-1} \text{Chol}(C) \in \text{LT}^1(n)$
off	Returns a matrix in $\text{Hol}(n)$ consisting of off-diagonal elements
$\text{Log}^\circ \& \text{Exp}^\circ$	Off-log and its inverse
$\text{Log}^* \& \text{Exp}^*$	Log-scaled and its inverse
I or I_n & $\mathbf{0}$	Identity matrix & Zero matrix or vector
$\mathbf{1}$	Vector with all 1 entities
\mathbb{P}_K^n	General Poincaré ball, $\mathbb{P}_K^n = \{x \in \mathbb{R}^n \mid \ x\ ^2 < -\frac{1}{K}\} (K < 0)$
\mathbb{P}^n	(Canonical) Poincaré ball, $\mathbb{P}^n = \mathbb{P}_{-1}^n$
HS^n	Open hemisphere, $\text{HS}^n = \{x \in \mathbb{R}^{n+1} \mid \ x\ = 1 \text{ and } x_{n+1} > 0\}$
\mathbb{H}^n	Hyperboloid, $\mathbb{H}^n = \{x \in \mathbb{R}^{n+1} \mid \ x\ _{\mathcal{L}}^2 = -1\}$ with $\ x\ _{\mathcal{L}}^2 = \sum_{i=1}^n x_i^2 - x_{n+1}^2$
$\psi_{\text{HS}^n \rightarrow \mathbb{P}^n}$	Isometries between HS^n and \mathbb{P}^n
$\psi_{\mathbb{P}^n \rightarrow \text{HS}^n}$	

LIST OF ACRONYMS

ECM	Euclidean–Cholesky Metric 1
LECM	Log-Euclidean–Cholesky Metric 1
LSM	Log-Scaled Metric 1
OLM	Off-Log Metric 1
PHCM	Poly-Hyperbolic-Cholesky Metric 1
CorNets	Correlation Networks 2
FC	Fully Connected 1

864	MLR	Multinomial Logistics Regression 1
865		
866	AIM	Affine-Invariant Metric 23
867	LCM	Log-Cholesky Metric 23
868	LEM	Log-Euclidean Metric 23
869	SPD	Symmetric Positive Definite 1
870		
871		

A USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used primarily for language polishing and text editing. In limited cases, they also assisted in translating certain mathematical formulations into PyTorch code. All generated outputs were carefully reviewed and, where necessary, corrected by the authors. The authors take full responsibility for the final content of this paper.

B NOTATION

Tab. 6 summarizes all the notation used in this paper for better clarity.

C FULL-RANK CORRELATION GEOMETRIES

This section follows all the notation in Tab. 6. As ECM, LECM, OLM, and LSM are pullback metrics from Euclidean spaces by diffeomorphisms, they are collectively called Log-Euclidean metrics (Thanwerdas, 2024). As all five metrics are pullback metrics, the Riemannian operators can be directly derived by the properties of Riemannian isometries (Chen et al., 2024c, App. A.2), without computing Christoffel symbols or solving ODEs.

C.1 PULLBACK METRICS

As all five involved Riemannian metrics on the correlation manifold are pullback metrics, we first review pullback metrics. The idea of pullback is ubiquitous in differential geometry and can be considered as a natural extension of the bijection in the set theory.

Definition C.1 (Pullback Metrics (Lee, 2018)). Suppose $\mathcal{M}_1, \mathcal{M}_2$ are smooth manifolds, g is a Riemannian metric on \mathcal{M}_2 , and $f : \mathcal{M}_1 \rightarrow \mathcal{M}_2$ is a diffeomorphism. Then the pullback of g by f is defined point-wisely,

$$(f^*g)_p(V, W) = g_{f(p)}(f_{*,p}(V), f_{*,p}(W)), \quad (14)$$

where $f_{*,p}(\cdot)$ is the differential map of f at $p \in \mathcal{M}_1$, and $V, W \in T_p \mathcal{M}_1$. f^*g is a Riemannian metric on \mathcal{M}_1 , called the pullback metric of g by f . Here, f is also called a Riemannian isometry.

Although pullback metrics can also be defined by smooth maps (Lee, 2018), this paper focuses on diffeomorphisms.

C.2 SYMMETRIC MATRIX FUNCTIONS

This subsection reviews the eigenvalue function over symmetric matrices. For more in-depth discussions, please refer to Bhatia (2009, Ch. 2.7.13) or Bhatia (2013, Ch. V.3).

We denote \mathcal{S}^n as the Euclidean space of $n \times n$ real symmetric matrices, and \mathcal{S}_{++}^n as the SPD manifold of $n \times n$ SPD matrices. Let \mathring{I} be an open interval of \mathbb{R} and $f : \mathring{I} \rightarrow \mathbb{R}$ be a smooth function. The smooth map induced by f for any symmetric matrix S with all eigenvalues in \mathring{I} is defined as

$$f : S \longmapsto U f(\Sigma) U^\top \in \mathcal{S}^n, \text{ with } S = U \Sigma U^\top \text{ as the eigendecomposition.} \quad (15)$$

Its differential is known as the Daleckii-Krein formula:

$$f_{*,S}(V) = U (L \odot (U^\top V U)) U^\top, \quad \forall V \in \mathcal{S}^n, \quad (16)$$

918
919
920
Table 8: Riemannian metrics on the correlation manifold with the associated isometric prototype
921 spaces and diffeomorphisms.

Metric	Prototype space	Diffeomorphisms	Properties
ECM (Thanwerdas & Pennec, 2022b)	$LT^1(n) = LT^0(n) + I_n$	$\Theta : C \in \text{Cor}^+(n) \mapsto \mathbb{D}(\text{Chol}(C))^{-1} \text{Chol}(C) \in LT^1(n)$ $\Theta^{-1} = \text{Cor} \circ \text{Chol}^{-1} : LT^1(n) \rightarrow \text{Cor}^+(n)$	Null curvature
LECM (Thanwerdas & Pennec, 2022b)	$LT^0(n)$	$\log \circ \Theta : \text{Cor}^+(n) \rightarrow LT^0(n)$ $(\log \circ \Theta)^{-1} = \text{Cor} \circ \text{Chol}^{-1} \circ \exp : LT^0(n) \rightarrow \text{Cor}^+(n)$	Null curvature
OLM (Thanwerdas, 2024)	$\text{Hol}(n)$	$\text{Log}^\circ : C \in \text{Cor}^+(n) \mapsto \text{off} \circ \log(C) \in \text{Hol}(n)$ $(\text{Log}^\circ)^{-1} = \text{Exp}^\circ : H \in \text{Hol}(n) \mapsto \exp(\mathcal{D}(H) + H) \in \text{Cor}^+(n)$	Permutation-invariance Null curvature
LSM (Thanwerdas, 2024)	$\text{Row}_0(n)$	$\text{Log}^* : C \in \text{Cor}^+(n) \mapsto \log(\mathcal{D}^*(C) C \mathcal{D}^*(C)) \in \text{Row}_0(n)$ $(\text{Log}^*)^{-1} = \text{Exp}^* : R \in \text{Row}_0(n) \mapsto \text{Cor}(\exp(R)) \in \text{Cor}^+(n)$	Permutation-invariance Null curvature
PHCM (Thanwerdas & Pennec, 2022b)	\mathbb{PHS}^{n-1}	$\text{Chol} : \text{Cor}^+(n) \rightarrow \mathcal{L}^n \cong \mathbb{PHS}^{n-1}$ $\text{Chol}^{-1} : \mathcal{L}^n \cong \mathbb{PHS}^{n-1} \rightarrow \text{Cor}^+(n)$	Nonpositive sectional curvature

$$930 \quad L_{i,j} = \begin{cases} \frac{f(\sigma_i) - f(\sigma_j)}{\sigma_i - \sigma_j}, & \text{if } \sigma_i \neq \sigma_j \\ f'(\delta_i), & \text{otherwise} \end{cases} \quad (17)$$

933 where L is called the Loewner matrix with the (i, j) -th element defined as Eq. (17), and \odot denotes
934 the Hadamard product. Two special cases are the matrix logarithm: $\log : \mathcal{S}_{++}^n \rightarrow \mathcal{S}^n$ and its inverse,
935 the matrix exponentiation $\exp : \mathcal{S}^n \rightarrow \mathcal{S}_{++}^n$.

937 C.3 GEOMETRIES OF THE CORRELATION MANIFOLD

938 Following the notation in Tab. 6, this subsection is a more detailed discussion of Sec. 2 in the main
939 paper. The involved five geometries on the correlation matrices can be classified into two classes:
940 (1) non-permutation-invariant metrics, including ECM, LECM, and PHCM; and (2) permutation-
941 invariant metrics, including OLM and LSM. Tab. 8 summarizes the diffeomorphisms and prototype
942 spaces discussed in Sec. 2.

944 C.3.1 NON-PERMUTATION-INVARIANT METRICS

945 The non-permutation-invariant metrics (Thanwerdas & Pennec, 2022b), namely ECM, LECM, and
946 PHCM, are defined by pullback:

$$947 \quad \text{ECM: } \text{Cor}^+(n) \xrightarrow[\Theta^{-1} = \text{Cor} \circ \text{Chol}^{-1}]{\Theta = \mathbb{D}^{-1}(\text{Chol}(\cdot)) \text{Chol}(\cdot)} LT^1(n) = I_n + LT^0(n), \quad (18)$$

$$948 \quad \text{LECM: } \text{Cor}^+(n) \xrightarrow[\log \circ \Theta]{(\log \circ \Theta)^{-1} = \text{Cor} \circ \text{Chol}^{-1} \circ \exp} LT^0(n), \quad (19)$$

$$949 \quad \text{PHCM: } \text{Cor}^+(n) \xrightarrow[\text{Chol}^{-1}]{\text{Chol}} \mathcal{L}^n \cong \mathbb{PHS}^{n-1} := \prod_{i=1}^{n-1} \{\text{HS}^i, \alpha_i g^{\text{HS}^i}\}, \quad (20)$$

950 where each $\alpha_i > 0$ is the positive weight. In the following, we first review the associated maps in
951 ECM and LECM, followed by a discussion of PHCM.

952 **ECM and LECM.** For any $C \in \text{Cor}^+(n)$, $V \in T_C \text{Cor}^+(n) \cong \text{Hol}(n)$, $K \in LT^1(n)$ and
953 $X, \xi \in LT^0(n)$, the involved maps and their differentials in ECM and LECM are

$$954 \quad \Theta(C) = \mathbb{D}(L)^{-1} L, \quad (21)$$

$$955 \quad \Theta^{-1}(K) = \mathbb{D}(KK^\top)^{-\frac{1}{2}} KK^\top \mathbb{D}(KK^\top)^{-\frac{1}{2}}, \quad (22)$$

$$956 \quad \log(K) = \sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{k} (K - I_n)^k, \quad (23)$$

$$957 \quad \exp(\xi) = \sum_{k=0}^{n-1} \frac{1}{k!} \xi^k, \quad (24)$$

$$958 \quad \Theta_{*,C}(V) = \Theta(C) (L^{-1} VL^{-\top})_{\frac{1}{2}} - \frac{1}{2} \mathbb{D}(L^{-1} VL^{-\top}) \Theta(C), \quad (25)$$

$$959 \quad (\Theta_{*,C})^{-1}(\xi) = (L\xi^\top - C \mathbb{D}(L\xi^\top)) \mathbb{D}(L) + \mathbb{D}(L) (\xi L^\top - \mathbb{D}(L\xi^\top) C), \quad (26)$$

972 Table 9: Riemannian operators under the non-permutation-invariant log-Euclidean Metrics. Here,
 973 $C, C' \in \text{Cor}^+(n)$ are correlation matrices and $V, W \in T_C \text{Cor}^+(n) \cong \text{Hol}(n)$ are tangent vectors.
 974 Although the inner product $\langle \cdot, \cdot \rangle$ could be any Euclidean inner product, this paper focuses on the
 975 canonical one.

977	Operation	ECM	LECM
978	$g_C(V, W)$	$\langle \Theta_{*,C}(V), \Theta_{*,C}(W) \rangle$	$\langle (\log \circ \Theta)_{*,C}(V), (\log \circ \Theta)_{*,C}(W) \rangle$
979	$\text{Exp}_C(V)$	$\Theta^{-1}(\Theta(C) + \Theta_{*,C}(V))$	$(\log \circ \Theta)^{-1}(\log \circ \Theta(C) + (\log \circ \Theta)_{*,C}(V))$
980	$\text{Log}_C(C')$	$\Theta_{*,\Theta(C)}^{-1}(\Theta(C') - \Theta(C))$	$(\log \circ \Theta)_{*,\log \circ \Theta(C)}^{-1}(\log \circ \Theta(C') - \log \circ \Theta(C))$
981	$\gamma(t; C, C')$	$\Theta^{-1}((1-t)\Theta(C) + t\Theta(C'))$	$(\log \circ \Theta)^{-1}((1-t)\log \circ \Theta(C) + t\log \circ \Theta(C'))$
982	$d(C, C')$	$\ \Theta(C) - \Theta(C')\ $	$\ \log \circ \Theta(C) - \log \circ \Theta(C')\ $
983	Fréchet mean	$\Theta^{-1}\left(\frac{1}{k} \sum_{i=1}^k \Theta(C_i)\right)$	$(\log \circ \Theta)^{-1}\left(\frac{1}{k} \sum_{i=1}^k \log \circ \Theta(C_i)\right)$
984	Curvature	0	0
985	$\Gamma_{C \rightarrow C'}(V)$	$(\Theta_{*,C'})^{-1}(\Theta_{*,C}(V))$	$((\log \circ \Theta)_{*,C'})^{-1}((\log \circ \Theta)_{*,C}(V))$

$$\log_{*,K}(\xi) = \sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{k} \left[(K - I_n)^{k-1} \xi + \dots + \xi (K - I_n)^{k-1} \right], \quad (27)$$

$$\exp_{*,X}(\xi) = \sum_{k=1}^{n-1} \frac{1}{k!} (X^{k-1} \xi + X^{k-2} \xi X + \dots + \xi X^{k-1}), \quad (28)$$

$$(\log \circ \Theta)_{*,C}(V) = \log_{*,\Theta(C)}(\Theta_{*,C}(V)), \quad (29)$$

$$\text{Chol}_{*,C}(V) = L (L^{-1} V L^{-\top})_{\frac{1}{2}}, \quad (30)$$

$$(\text{Chol}_{*,C})^{-1}(Z) = L Z^\top + Z L^\top, \quad \forall Z \in T_L \text{LT}^+(n) \cong \text{LT}(n). \quad (31)$$

998 where L is the Cholesky factor of C and I_n is the $n \times n$ identity matrix. Due to the nilpotency of
 999 $\text{LT}^0(n)$, the matrix logarithm over $\text{LT}^1(n)$ and exponentiation over $\text{LT}^0(n)$ are free from eigendecomposition.
 1000 With the above equations, Tab. 9 summarizes the Riemannian operators under ECM and LECM.
 1001

1002 **PHCM.** It is the pullback metric by the Cholesky decomposition from the product space
 1003 $\prod_{i=1}^{n-1} \{\text{HS}^i, \alpha_i g^{\text{HS}^i}\}$, where each α_i denotes positive weights and g^{HS^i} denotes the metric tensor
 1004 over HS^i . Particularly, the PHCM with all weights equal to 1 is called the canonical PHCM.
 1005 Without loss of generality, we focus on the canonical PHCM. The closed-form expressions of the
 1006 Riemannian operations under PHCM are a bit heavy as they are obtained by the product metric.
 1007

1008 Given $C \in \text{Cor}^+(n)$ and $L = \text{Chol}(C) \in \mathcal{L}^n$, we denote $\Psi = \psi^1 \times \dots \times \psi^{n-1} : \mathcal{L}^n \rightarrow \prod_{i=1}^{n-1} \text{HS}^i$
 1009 with each ψ^i as

$$\psi^i(L) = (L_{i+1,1}, \dots, L_{i+1,i+1}) \in \text{HS}^i, \quad (32)$$

1010 where $L_{i+1} = (L_{i+1,1}, \dots, L_{i+1,i+1}, 0, \dots, 0)$ is the $(i+1)$ -th row of L . The Riemannian operators
 1011 under PHCM can be obtained using the product geometry and HS^i geometry. Following the notation
 1012 in Tab. 9, the Riemannian metrics, logarithm, exponentiation, and geodesic (distance) under the
 1013 canonical PHCM are

$$g_C(V, V) = \left\| \mathbb{D}(L)^{-1} L (L^{-1} V L^{-\top})_{\frac{1}{2}} \right\|^2, \quad (33)$$

$$\text{Exp}_C(V) = (\text{Chol})^{-1} \left(\psi^{-1} \left(\text{Exp}_{\psi^1(L)}^{\text{HS}^1}(\psi^1(\text{Chol}_{*,C}(V))), \dots, \text{Exp}_{\psi^{n-1}(L)}^{\text{HS}^{n-1}}(\psi^{n-1}(\text{Chol}_{*,C}(V))) \right) \right), \quad (34)$$

$$\text{Log}_C(C') = (\text{Chol})_{*,C'}^{-1} \left(\psi^{-1} \left(\text{Log}_{\psi^1(L)}^{\text{HS}^1}(\psi^1(L')), \dots, \text{Log}_{\psi^{n-1}(L)}^{\text{HS}^{n-1}}(\psi^{n-1}(L')) \right) \right), \quad (35)$$

$$\gamma(t; C, C') = (\text{Chol})^{-1} \left(\psi^{-1} \left(\gamma^{\text{HS}^1}(t; \psi^1(C), \psi^1(C')), \dots, \gamma^{\text{HS}^{n-1}}(t; \psi^{n-1}(C), \psi^{n-1}(C')) \right) \right), \quad (36)$$

$$d(C, C')^2 = \sum_{i=1}^{n-1} \text{arccosh} \left(- \left\langle \psi^i(L), \psi^i(L') \right\rangle_{\mathcal{L}} \right)^2, \quad (37)$$

1026 where $L = \text{Chol}(C) \in \mathcal{L}^n$, $L' = \text{Chol}(C') \in \mathcal{L}^n$, and Log^{HS^i} , Exp^{HS^i} and γ^{HS^i} are the
 1027 counterparts over HS^i , which have closed-form expressions (Thanwerdas & Pennec, 2022b, Thm.
 1028 4.2). Here, $\|\cdot\|_{\mathcal{L}}$ is the norm induced by Lorentz inner product:
 1029

$$1030 \quad \|x\|_{\mathcal{L}}^2 = \sum_{i=1}^n x_i^2 - x_{n+1}^2, \quad \forall x \in \mathbb{R}^{n+1}. \quad (38)$$

1033 *Remark C.2.* The Riemannian structure of HS^n is defined by the pullback metric from the hyperboloid
 1034 model. All the Riemannian operators over HS^n have closed-form expressions (Thanwerdas & Pennec,
 1035 2022b, Thm. 4.2).

1036 C.3.2 PERMUTATION-INVARIANT METRICS

1038 Let \mathfrak{S}^n be the group of permutation matrices $P_{\sigma} = [\delta_{i,\sigma(j)}]_{1 \leq i,j \leq n}$ by permutation σ , and $\mathcal{D}^{\pm}(n) =$
 1039 $\{\text{diag}((\varepsilon_1, \dots, \varepsilon_n)), \varepsilon \in \{-1, 1\}^n\}$ be the group of diagonal matrices with coefficients in $\{-1, 1\}$.
 1040 Thanwerdas (2024, Thm. 1.1) showed that the largest congruence action on full-rank correlation
 1041 matrices is the action of signed permutation matrices:
 1042

$$1043 \quad \star : (A, C) \in \mathfrak{S}^{\pm}(n) \times \text{Cor}^+(n) \mapsto ACA^{\top} \in \text{Cor}^+(n), \quad (39)$$

1044 with $\mathfrak{S}^{\pm}(n) = \mathcal{D}^{\pm}(n)\mathfrak{S}^n$. Based on this finding, Thanwerdas (2024) proposed two permutation-
 1045 invariant metrics, namely OLM and LSM, by pulling back permutation-invariant inner products via
 1046 the following permutation-equivariant diffeomorphisms:
 1047

$$1048 \quad \text{Cor}^+(n) \xrightleftharpoons[\text{Exp}^{\circ}]{\text{Log}^{\circ} = \text{off} \circ \text{log}} \text{Hol}(n), \quad (40)$$

$$1050 \quad \text{Cor}^+(n) \xrightleftharpoons[\text{Exp}^* = \text{Cor} \circ \exp]{\text{Log}^*} \text{Row}_0(n), \quad (41)$$

$$1052 \quad \text{Exp}^{\circ} : \text{Hol}(n) \ni H \mapsto \exp(\mathcal{D}(H) + H), \quad (42)$$

$$1053 \quad \text{Log}^* : \text{Cor}^+(n) \ni C \mapsto \log(\mathcal{D}^*(C)C\mathcal{D}^*(C)) \in \text{Row}_0(n). \quad (43)$$

1055 where $\text{log}(\cdot)$ and $\exp(\cdot)$ are symmetric matrix logarithm and exponentiation. The involved \mathcal{D} and
 1056 \mathcal{D}^* can be formally expressed as $\mathcal{D} : \text{Hol}(n) \rightarrow \text{Diag}(n)$ and $\mathcal{D}^* : \text{Cor}^+(n) \rightarrow \text{Diag}^+(n)$, where
 1057 $\text{Diag}(n)$ denotes the Euclidean space of $n \times n$ diagonal matrices, and $\text{Diag}^+(n)$ is a submanifold of
 1058 $\text{Diag}(n)$, consisting of positive diagonal matrices.

1059 The differentials of Log° and Log^* and their inverses can be calculated by the differential of
 1060 symmetric matrix logarithm and exponentiation (Thanwerdas, 2024, Thms. 2.4 and 4.1). Given
 1061 $C \in \text{Cor}^+(n)$, tangent vector $V \in T_C \text{Cor}^+(n) \cong \text{Hol}(n)$, $H, W \in \text{Hol}(n)$, and $S = H + \mathcal{D}(H) =$
 1062 $U\Delta U^{\top}$, the differential of Log° and its inverse Exp° are

$$1063 \quad \text{Log}_{*,C}^{\circ}(V) = \text{off}(\text{log}_{*,C}(V)), \quad (44)$$

$$1065 \quad \text{Exp}_{*,H}^{\circ}(W) = \exp_{*,S}(W + \mathcal{D}_{*,H}(W)), \quad (45)$$

$$1066 \quad \mathcal{D}_{*,H}(W) = -\text{diag}\left(\left(H^0\right)^{-1} \mathbb{D}(\exp_{*,S}(W)) \mathbf{1}\right), \quad (46)$$

$$1068 \quad \mathcal{S}_{++}^n \ni H_{il}^0 = \sum_{j,k} P_{ij} P_{ik} P_{lj} P_{lk} L_{j,k}, \quad (47)$$

1070 where L is the Loewner matrix of $\exp_{*,S}$, and $\mathbf{1}$ is the vector of all 1 entities. Here, log_{*} and \exp_{*}
 1071 can be calculated using the Daleckii-Krein formula of the symmetric matrix, while $\text{diag}(\cdot) : \mathbb{R}^n \rightarrow$
 1072 $\text{Diag}(n)$ returns a diagonal matrix from an input vector. Further denoting $X, Y \in \text{Row}_0(n)$ and
 1073 $\Sigma = \mathcal{D}^*(C)C\mathcal{D}^*(C)$, the differentials of Log^* and its inverse Exp^* are

$$1075 \quad \text{Log}_{*,C}^*(V) = \text{log}_{*,\Sigma}\left(\Delta V \Delta + \frac{1}{2}(V^0 \Sigma + \Sigma V^0)\right), \quad (48)$$

$$1077 \quad \text{Exp}_{*,X}^*(Y) = \Delta^{-1} \left[\exp_{*,X}(Y) - \frac{1}{2}(\Delta^{-2} \mathbb{D}(\exp_{*,X}(Y)) \Sigma + \Sigma \mathbb{D}(\exp_{*,X}(Y)) \Delta^{-2}) \right] \Delta^{-1} \quad (49)$$

1079 with $\Delta = \mathbb{D}(\Sigma)^{1/2}$ and $V^0 = -2 \text{diag}\left((I_n + \Sigma)^{-1} \Delta V \Delta \mathbf{1}\right)$.

Table 10: Riemannian geometries under the permutation-invariant log-Euclidean Metrics.

Operation	OLM	LSM
$g_C(V, W)$	$\langle \text{Log}_{*,C}^\circ(V), \text{Log}_{*,C}^\circ(W) \rangle^{(\alpha, \beta, \gamma)}$	$\langle \text{Log}_{*,C}^*(V), \text{Log}_{*,C}^*(W) \rangle^{(\alpha, \delta, \zeta)}$
$\text{Exp}_C(V)$	$\text{Exp}^\circ(\text{Log}^\circ(C) + \text{Log}_{*,C}^\circ(V))$	$\text{Exp}^*(\text{Log}^*(C) + \text{Log}_{*,C}^*(V))$
$\text{Log}_C(C')$	$\text{Exp}_{*,\text{Log}^\circ(C)}^\circ(\text{Log}^\circ(C') - \text{Log}^\circ(C))$	$\text{Exp}_{*,\text{Log}^*(C)}^*(\text{Log}^*(C') - \text{Log}^*(C))$
$\gamma(t; C, C')$	$\text{Exp}^\circ((1-t)\text{Log}^\circ(C) + t\text{Log}^\circ(C'))$	$\text{Exp}^*((1-t)\text{Log}^*(C) + t\text{Log}^*(C'))$
$d(C, C')$	$\ \text{Log}^\circ(C) - \text{Log}^\circ(C')\ ^{(\alpha, \beta, \gamma)}$	$\ \text{Log}^*(C) - \text{Log}^*(C')\ ^{(\alpha, \delta, \zeta)}$
Fréchet mean	$\text{Exp}^\circ\left(\frac{1}{k} \sum_{i=1}^k \text{Log}^\circ(C_i)\right)$	$\text{Exp}^*\left(\frac{1}{k} \sum_{i=1}^k \text{Log}^*(C_i)\right)$
Curvature	0	0
$\Gamma_{C \rightarrow C'}(V)$	$(\text{Log}_{*,C'}^\circ)^{-1}(\text{Log}_{*,C}^\circ(V))$ Permutation-invariance	$(\text{Log}_{*,C'}^*)^{-1}(\text{Log}_{*,C}^*(V))$
Properties	Singed-permutation-invariance ($\beta = \gamma = 0$) Inverse-consistency	Permutation-invariance

As both Log_*^* and Log_*° are permutation-equivariant (Thanwerdas, 2024), permutation-invariant metrics over the correlation manifold can be induced by permutation-invariant inner products over $\text{Hol}(n)$ and $\text{Row}_0(n)$, respectively. The following two theorems review such inner products.

Theorem C.3 (Permutation-invariant inner products on $\text{Hol}(n)$ (Thanwerdas, 2022)). *Supposing $n \geq 4$, permutation-invariant inner products on $\text{Hol}(n)$ are:*

$$\langle X_1, X_2 \rangle^{(\alpha, \beta, \gamma)} = \alpha \text{tr}(X_1 X_2) + \beta \text{Sum}(X_1 X_2) + \gamma \text{Sum}(X_1) \text{Sum}(X_2), \quad \forall X_1, X_2 \in \text{Hol}(n), \quad (50)$$

with $\alpha > 0$, $2\alpha + (n-2)\beta > 0$, and $\alpha + (n-1)(\beta + n\gamma) > 0$. For $n = 3$, permutation-invariant inner products have the same form with $\alpha = 0$:

$$\langle X_1, X_2 \rangle^{(\alpha, \beta, \gamma)} = \beta \text{Sum}(X_1 X_2) + \gamma \text{Sum}(X_1) \text{Sum}(X_2), \quad \text{with } \beta > 0 \text{ and } \beta + 3\gamma > 0. \quad (51)$$

For $n = 2$, they have the same form with $\alpha = \beta = 0$:

$$\langle X_1, X_2 \rangle^{(\alpha, \beta, \gamma)} = \gamma \text{Sum}(X_1) \text{Sum}(X_2), \quad \text{with } \gamma > 0. \quad (52)$$

Theorem C.4 (Permutation-invariant inner products on $\text{Row}_0(n)$ (Thanwerdas, 2024)). *For $n \geq 4$, permutation-invariant inner products on $\text{Row}_0(n)$ are*

$$\langle Y_1, Y_2 \rangle^{(\alpha, \delta, \zeta)} = \alpha \text{tr}(Y_1 Y_2) + \delta \text{tr}(\mathbb{D}(Y_1) \mathbb{D}(Y_2)) + \zeta \text{tr}(Y_1) \text{tr}(Y_2), \quad \forall Y_1, Y_2 \in \text{Row}_0(n), \quad (53)$$

with $\alpha > 0$, $n\alpha + (n-2)\delta > 0$, and $n\alpha + (n-1)(\delta + n\zeta) > 0$. For $n = 3$, the permutation-invariant inner products have the same form with $\alpha = 0$. For $n = 2$, they have the same form with $\alpha = \delta = 0$.

As shown by Thanwerdas (2022), OLM is further invariant to signed-permutation under $\beta = \gamma = 0$, where the associated $\langle \cdot, \cdot \rangle^{(\alpha, 0, 0)}$ is reduced to the scaled canonical Euclidean inner product:

$$\langle V, W \rangle^{(\alpha, 0, 0)} = \alpha \langle V, W \rangle, \quad \forall V, W \in \text{Hol}(n). \quad (54)$$

In the main paper, we assume that $\langle \cdot, \cdot \rangle^{(\alpha, \beta, \gamma)}$ and $\langle \cdot, \cdot \rangle^{(\alpha, \delta, \zeta)}$ are the canonical Euclidean inner product.

Lastly, we briefly review inverse-consistency, a property exclusive to LSM. The cor-inversion is defined as $\mathcal{I} : \text{Cor}^+(n) \ni C \mapsto \text{Cor}(C^{-1}) \in \text{Cor}^+(n)$ (Thanwerdas, 2024, Def. 1.4). It corresponds to the matrix inversion $\text{inv} : \mathcal{S}_{++}^n \ni \Sigma \mapsto \Sigma^{-1} \in \mathcal{S}_{++}^n$, as represented on the following commuting diagram:

$$\begin{array}{ccc} \mathcal{S}_{++}^n & \xrightarrow{\text{inv}} & \mathcal{S}_{++}^n \\ \text{Cor} \downarrow & & \downarrow \text{Cor} \\ \text{Cor}^+(n) & \xrightarrow{\mathcal{I}} & \text{Cor}^+(n) \end{array} \quad (55)$$

As shown by Thanwerdas (2024, Thm. 1.7), LSM enjoys inverse-consistency:

$$\text{Log}^*(\mathcal{I}(C)) = -\text{Log}^*(C), \quad \forall C \in \text{Cor}^+(n). \quad (56)$$

Tab. 10 summarizes the Riemannian structures of OLM and LSM.

1134 *Remark C.5.* We make the following remarks w.r.t. OLM and LSM.
 1135

1136 1. **Invariance and dimension:** Thms. C.3 and C.4 implies that when $n \leq 3$, the canonical
 1137 inner products over $\text{Hol}(n)$ and $\text{Row}_0(n)$, as well as the induced OLM and LSM, are no
 1138 longer invariant metrics. However, our main paper focuses on cases where $n > 3$.
 1139

1140 2. **\mathcal{D} and \mathcal{D}^* :** \mathcal{D} is also well-defined over \mathcal{S}^n , a surjective map $\mathcal{D} : \mathcal{S}^n \rightarrow \text{Diag}(n)$. In this
 1141 way, $\text{Exp}^\circ : \mathcal{S}^n \rightarrow \text{Cor}^+(n)$ is no longer bijective (Thanwerdas, 2024, Thm. 2.1). Similarly,
 1142 \mathcal{D}^* is well defined over \mathcal{S}_{++}^n , a surjective map $\mathcal{D}^* : \mathcal{S}_{++}^n \rightarrow \text{Diag}^+(n)$. Consequently,
 1143 $\text{Log}^* : \mathcal{S}_{++}^n \rightarrow \text{Row}_0(n)$ is no longer bijective (Thanwerdas, 2024, Thm. 3.5).

1144

1145 D REVISITING PREVIOUS LAYERS

1146 D.1 REVISITING MULTINOMIAL LOGISTIC REGRESSION

1147 We briefly review the Euclidean Multinomial Logistic Regression (MLR) and its Riemannian ex-
 1148 tensions (Lebanon & Lafferty, 2004; Ganea et al., 2018; Nguyen & Yang, 2023; Nguyen et al.,
 1149 2024; Bdeir et al., 2024; Chen et al., 2024a;d). Given C classes, the Euclidean MLR computes the
 1150 multinomial probability of each class $k \in \{1, \dots, C\}$ for the input feature vector $x \in \mathbb{R}^n$:

1151

$$1152 \quad p(y = k \mid x) \propto \exp(v_k(x)), \quad (57)$$

1153 with $v_k(x) = \langle a_k, x \rangle - b_k$ and $b_k \in \mathbb{R}$, $a_k \in \mathbb{R}^n$. Lebanon & Lafferty (2004, Sec. 5) first reformulated
 1154 $v_k(x)$ by the margin distance to the hyperplane:

1155

$$1156 \quad v_k(x) = \text{sign}(\langle a_k, x - p_k \rangle) \|a_k\| d(x, H_{a_k, p_k}), \quad (58)$$

1157

$$1158 \quad H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\}, \quad (59)$$

1159

1160 where $\langle a_k, p_k \rangle = b_k$, and H_{a_k, p_k} is a margin hyperplane. Based on the above reformulation, Ganea
 1161 et al. (2018); Nguyen & Yang (2023); Bdeir et al. (2024); Chen et al. (2024a;d) generalized the MLR
 1162 to different manifolds. Given a manifold-valued input $X \in \mathcal{M}$, the MLR (Chen et al., 2024d) over
 1163 \mathcal{M} is defined as

1164

$$1165 \quad p(y = k \mid X) \propto \exp(v_k(X)), \quad (60)$$

1166

$$1167 \quad v_k(X) = \text{sign}(\langle A_k, \text{Log}_{P_k}(S) \rangle_{P_k}) \|A_k\|_{P_k} d(S, H_{A_k, P_k}), \quad (61)$$

1168

$$1169 \quad H_{A_k, P_k} = \{S \in \mathcal{M} : \langle \text{Log}_{P_k}(S), A_k \rangle_{P_k} = 0\}, \quad (62)$$

1170

$$1171 \quad d(S, H_{A_k, P_k}) = \inf_{Q \in H_{A_k, P_k}} d(S, Q), \quad (63)$$

1172

1173 with $P_k \in \mathcal{M}$ and $A_k \in T_{P_k} \mathcal{M}$. Shimizu et al. (2021, Sec. 3.1) demonstrates that P_k and A_k in
 1174 the hyperbolic Poincaré MLR can be optimized using a Euclidean vector at the tangent space at the
 1175 zero vector along with a biasing scalar. Inspired by this, this paper sets $P_k = \text{Exp}_E(\gamma_k[Z_k])$ and
 1176 $A_k = \Gamma_{E \rightarrow P_k}(Z_k)$. Here, E is the origin of the m -dimensional manifold \mathcal{M} , while $\gamma_k \in \mathbb{R}$ and
 1177 $Z_k \in T_E \mathcal{M} \cong \mathbb{R}^m$ are the MLR parameters.

1178

1179 Following the nomenclature by Chen et al. (2024d), Eq. (62) and Eq. (63) is called the Riemannian
 1180 hyperplane and Riemannian margin distance to the hyperplane, respectively. Obviously, solving the
 1181 optimization problem in Eq. (63) is the most challenging part. To circumvent this problem, Chen et al.
 1182 (2024d, Sec. 3.2) relaxed it via Riemannian trigonometry and approximately solved this problem.
 1183 Unlike their method, this paper precisely solves Eq. (63) under different metrics in the correlation
 1184 manifold.

1185

1186 D.2 REVISITING POINCARÉ LAYERS

1187

1188 Let $\mathbb{P}_K^n = \{x \in \mathbb{R}^n \mid \|x\|^2 < -1/K\}$ be the Poincaré ball ($K < 0$). The Poincaré MLR (Ganea
 1189 et al., 2018; Shimizu et al., 2021) and FC layers on Poincaré spaces (Shimizu et al., 2021) follow the
 1190 same logic as Sec. 3.1 and Def. 3.4, respectively.

1188 The Poincaré MLR was first proposed by Ganea et al. (2018), then simplified by Shimizu et al. (2021,
 1189 Eq. 6). Given $x \in \mathbb{P}_K^n$, the Poincaré MLR is
 1190

$$1191 \quad p(y = k \mid x) \propto \exp(v_k(x)), \\ 1192 \quad v_k(x) = \frac{2\|z_k\|}{\sqrt{|K|}} \operatorname{asinh}\left(\lambda_x^K \langle \sqrt{|K|}x, [z_k] \rangle \cosh(2\sqrt{|K|}\gamma_k) - (\lambda_x^K - 1) \sinh(2\sqrt{|K|}\gamma_k)\right), \quad (64)$$

1195 where $\lambda_x^K = 2(1 - |K|\|x\|^2)^{-1}$ is the conformal factor, and $[z_k] = \frac{z_k}{\|z_k\|}$. Here, $z_k \in \mathbb{R}^n$ and $\gamma_k \in \mathbb{R}$
 1196 are parameters. Note that $\lim_{K \rightarrow 0} v_k(x) = 4(\langle a_k, x \rangle - b_k)$.
 1197

1198 Based on the Poincaré MLR, Shimizu et al. (2021, Eq. 7) proposed the Poincaré FC layer $\mathcal{F}(\cdot) : \mathbb{P}_K^n \rightarrow \mathbb{P}_K^m$, which is
 1199

$$1200 \quad y = \frac{w}{1 + \sqrt{1 + |K|\|w\|^2}}, \quad w_k = |K|^{-1/2} \sinh\left(\sqrt{|K|}v_k(x)\right), \quad (65)$$

1203 where, $\mathbf{z} = \{z_k \in \mathbb{R}^n\}_{k=1}^m$ and $\boldsymbol{\gamma} = \{\gamma_k \in \mathbb{R}\}_{k=1}^m$ are the FC parameters.
 1204

1205 The Poincaré convolutional layer is defined by the Poincaré β -concatenation and FC layer. Poincaré
 1206 β -concatenation is defined as the scaled concatenation via the tangent space, which generalizes the
 1207 Euclidean concatenation. Given inputs $\{x_i \in \mathbb{P}_K^{n_i}\}_{i=1}^N$, it is defined as

$$1209 \quad \operatorname{Exp}_{\mathbf{0}}\left(\beta_n\left(\beta_{n_1}^{-1}v_1^\top, \dots, \beta_{n_N}^{-1}v_N^\top\right)\right)^\top \in \mathbb{P}_K^n, \quad (66)$$

1211 where $v_i = \operatorname{Log}_{\mathbf{0}}(x_i)$ and $n = \sum_{i=1}^N n_i$. Here, β_{n_i} and β_n are defined by the beta function, *i.e.*,
 1212 $\beta_\alpha = B(\alpha/2, 1/2)$. The inverse is called the Poincaré β -split. The Poincaré convolution is then defined
 1213 as: (1) β -concatenating the multi-channel feature in a given receptive field; and (2) performing the
 1214 Poincaré FC layer.

1215 In the main paper, we focus on the unit Poincaré ball \mathbb{P}^n with $K = -1$.
 1216

1217 E DISCUSSION ON CORRELATION FC LAYER

1220 E.1 CONNECTIONS AMONG FC LAYERS: CORRELATION, SPD, POINCARÉ, AND EUCLIDEAN

1222 We clarify the correspondence between our FC formulation in Eq. (8) and previous FC layers.
 1223

1224 E.1.1 SPD MANIFOLD

1226 Nguyen et al. (2024, Props. 3.4–3.6) introduced three SPD FC layers based on the gyrovector spaces
 1227 under Log-Euclidean Metric (LEM), Log-Cholesky Metric (LCM), and Affine-Invariant Metric
 1228 (AIM), respectively. These gyro SPD FC layers share the same definition as Eq. (8), except that their
 1229 signed distance and v_k are defined by gyrovector spaces.

1230 Furthermore, Nguyen et al. (2024, Eq. 4) proposed SPD FC layers grounded in invariant metrics over
 1231 the symmetric space of the SPD manifold. These layers also align with the formulation of Eq. (8),
 1232 except that their signed distance and v_k are defined by the Busemann function.
 1233

1234 E.1.2 POINCARÉ BALL

1236 We show that Poincaré FC layer $\mathcal{F}(\cdot) : \mathbb{P}_K^n \rightarrow \mathbb{P}_K^m$ in Eq. (65) is also defined as our correlation FC
 1237 layer in Def. 3.4.

1238 We define the zero vector $\mathbf{0} \in \mathbb{P}_K^n$ as the Poincaré origin, as it is the identity element of the Poincaré
 1239 gyrovector space (Ganea et al., 2018). Obviously, $\{e_k\}_{i=1}^m$ is the orthogonal basis over $T_{\mathbf{0}}\mathbb{P}_K^m$, where
 1240 $e_k = (\delta_{ik})_{i=1}^m$. Corresponding to Eq. (8), we have

$$1241 \quad \operatorname{sign}(\langle \operatorname{Log}_{\mathbf{0}}(y), e_k \rangle) d(y, H_{e_k, \mathbf{0}}) = v_k(x). \quad (67)$$

Compared with Eq. (56) by Shimizu et al. (2021), we only need to show the LHS. The sign can be calculated as

$$\begin{aligned} \text{sign}(\langle \text{Log}_0(y), e_k \rangle_{\mathbf{0}}) &\stackrel{(1)}{=} \text{sign} \left(4 \left\langle \tanh^{-1} \left(\sqrt{-K} \|y\| \right) \frac{y}{\sqrt{-K} \|y\|}, e_k \right\rangle \right) \\ &\stackrel{(2)}{=} \text{sign} (\langle y, e_k \rangle) \\ &= \text{sign} (y_k). \end{aligned} \quad (68)$$

The above comes from the following.

- (1) $\lambda_{\mathbf{0}}^K = \frac{2}{1+K\|\mathbf{0}\|^2} = 2$ and $\text{Log}_0(y) = \tanh^{-1} (\sqrt{-K} \|y\|) \frac{y}{\sqrt{-K} \|y\|}$.
- (2) $\tanh^{-1}(a) > 0, \iff a > 0$.

Therefore, the LHS of Eq. (67) is simplified as

$$\begin{aligned} \text{sign}(\langle \text{Log}_0(y), e_k \rangle) d(y, H_{e_k, \mathbf{0}}) &= \text{sign} (y_k) d(y, H_{e_k, \mathbf{0}}) \\ &\stackrel{(1)}{=} \text{sign} (y_k) \frac{1}{\sqrt{-K}} \sinh^{-1} \left(\frac{2\sqrt{-K}|y_k|}{1+K\|y\|^2} \right) \\ &\stackrel{(2)}{=} \frac{1}{\sqrt{-K}} \sinh^{-1} \left(\frac{2\sqrt{-K}y_k}{1+K\|y\|^2} \right). \end{aligned} \quad (69)$$

The above comes from the following.

- (1) Thm. 5 by Ganea et al. (2018).
- (2) $1+K\|y\|^2 > 0$ by definition and $\text{sign}(a) \sinh^{-1}(|a|) = \sinh^{-1}(a), \forall a \in \mathbb{R}$.

The last equation in Eq. (69) is the LHS of Eq. (56) in Shimizu et al. (2021), indicating the equality.

E.1.3 EUCLIDEAN SPACE

We show that the Euclidean FC layer $\mathcal{F}(\cdot) : \mathbb{R}^n \ni x \rightarrow y = Ax + b \in \mathbb{R}^m$ can also be defined as our correlation FC layer in Def. 3.4.

In Euclidean space \mathbb{R}^n , the zero vector $\mathbf{0} \in \mathbb{R}^n$ is the origin, and $\{e_k\}_{k=1}^m$ is the orthogonal basis over $T_{\mathbf{0}}\mathbb{R}^m \cong \mathbb{R}^m$. Then, the RHS of Eq. (8) becomes

$$\begin{aligned} v_k(x) &= \langle x - p_k, a_k \rangle \\ &\stackrel{(1)}{=} \langle x, z_k \rangle - \gamma_k \|z_k\|. \end{aligned} \quad (70)$$

where (1) comes from $\text{Exp}_{\mathbf{0}}(\gamma_k[z_k]) = \gamma_k[z_k]$ and $\Gamma_{\mathbf{0} \rightarrow p_k}(z_k) = z_k$. The above takes the form of $\langle x, a_k \rangle + b_k$.

On the other hand, the LHS of Eq. (8) becomes

$$\begin{aligned} \text{sign}(\langle \text{Log}_0(y), e_k \rangle) d(y, H_{e_k, \mathbf{0}}) &\stackrel{(1)}{=} \text{sign}(y_k) d(y, H_{e_k, \mathbf{0}}) \\ &\stackrel{(2)}{=} y_k. \end{aligned} \quad (71)$$

The above comes from the following.

- (1) $\text{Log}_0(y) = y$ and $\langle y, e_k \rangle = y_k$.
- (2) $d(y, H_{e_k, \mathbf{0}}) = \frac{|\langle y, e_k \rangle|}{\|e_k\|} = |y_k|$.

E.2 LOG-EUCLIDEAN LAYERS UNDER PRODUCT GEOMETRY

We first review some basic facts of the product geometry, and then discuss the Log-Euclidean correlation MLR and FC layer under the product geometry.

1296 **Product of correlation.** Given a manifold (\mathcal{M}, g) , the n -fold product is $(\mathcal{M}^n, g) = \prod_{i=1}^n (\mathcal{M}, g)$.
 1297 Each point and tangent vector over \mathcal{M}^n are
 1298

$$\mathcal{M}^n \ni P = (P_1 \in \mathcal{M}, \dots, P_n \in \mathcal{M}), \quad (72)$$

$$T_P \mathcal{M}^n \ni V = (V_1 \in T_{P_1} \mathcal{M}, \dots, V_n \in T_{P_n} \mathcal{M}). \quad (73)$$

1301 The product metric is
 1302

$$\langle V, W \rangle_P = \sum_{i=1}^n \langle V_i, W_i \rangle_{P_i}, \quad \forall V, W \in T_P \mathcal{M}^n. \quad (74)$$

1303 **Correlation MLR.** Following Thm. 3.1, the MLR layer for the input $\mathbf{X} = \{X_j \in \text{Cor}^+(n)\}_{j=1}^c \in$
 1304 $(\text{Cor}^+(n))^c$ is
 1305

$$\begin{aligned} v(\mathbf{X}) &\stackrel{(1)}{=} \langle \phi(X), \phi_{*, \mathbf{I}}(Z_k) \rangle - \gamma_k \|\phi_{*, \mathbf{I}}(Z_k)\| \\ &\stackrel{(2)}{=} \sum_{j=1}^c v_j(X; Z_{kj}, \gamma_{kj}), \end{aligned} \quad (75)$$

1313 where $\mathbf{I} = \{I, \dots, I\}$. Here, we use a separate γ_{kj} for the k -th component space. The above comes
 1314 from the following.
 1315

1316 (1) Thm. 3.1.
 1317

$$(2) Z_k = (Z_{k1} \in T_{P_1} \text{Cor}^+(n), \dots, Z_{kn} \in T_{P_n} \text{Cor}^+(n)), [Z_k] = \left\{ \frac{Z_{k1}}{\|Z_{k1}\|_I}, \dots, \frac{Z_{kc}}{\|Z_{kc}\|_I} \right\}.$$

1320 **Correlation FC layer.** Following Lem. J.2 and Eq. (75), the FC layer $\mathcal{F}(\cdot) : (\text{Cor}^+(n))^c \rightarrow$
 1321 $\text{Cor}^+(m)$ for the input \mathbf{X} is
 1322

$$Y = \phi^{-1} \left(\sum_{i=1}^{d_m} \sum_{j=1}^c v_{ij}(X_j; Z_{ij}, \gamma_{ij}) e_i \right), \quad (76)$$

1326 where $Z_{ij} \in \text{Hol}(n)$ and $\gamma_{ij} \in \mathbb{R}$.
 1327

1328 Eq. (76) implies that $\mathcal{F}(\cdot) : (\text{Cor}^+(n))^c \rightarrow \text{Cor}^+(m)$ differs from $\mathcal{F}(\cdot) : \text{Cor}^+(n) \rightarrow \text{Cor}^+(m)$
 1329 only in v_{ij} , where the former is a summation. For example, considering the FC layer $\mathcal{F}(\cdot) : (75)$
 1330 $(\text{Cor}^+(n))^c \rightarrow \text{Cor}^+(m)$ under ECM, its v_{ij} for the input $\mathbf{C} = \{C_j \in \text{Cor}^+(n)\}_{j=1}^c$ is

$$v_{ij}(\mathbf{C}) = \sum_{k=1}^c v_{ijk}^{\text{EC}}(C_k, Z_{ijk}, \gamma_{ijk}), \quad (77)$$

1334 where $Z_{ijk} \in \text{Hol}(n)$ and $\gamma_{ijk} \in \mathbb{R}$, for $i, j = 1, \dots, m$ with $i > j$, and $1 \leq k \leq c$.
 1335

1336 F BACKPROPAGATION OVER CORRELATION GEOMETRIES

1339 Except for \mathcal{D} and \mathcal{D}^* , all computations involved in the five metrics can be backpropagated using
 1340 existing techniques or PyTorch's auto-differentiation. Three kinds of matrix computations need to be
 1341 discussed: 1) matrix logarithm and exponentiation; 2) Cholesky decomposition; 3) \mathcal{D} and \mathcal{D}^* .

1342 **Matrix logarithm and exponentiation:** The symmetric matrix \exp and \log , *i.e.*, $\log : \mathcal{S}_{++}^n \rightarrow \mathcal{S}^n$
 1343 and $\exp : \mathcal{S}^n \rightarrow \mathcal{S}_{++}^n$, can be backpropagated using the Daleckii-Krein formula (Brooks et al., 2019,
 1344 Eq. 13).

1345 **Cholesky decomposition:** The backpropagation of the Cholesky decomposition has been well studied
 1346 by Murray (2016). In addition, as shown by Chen et al. (2024b, App. F), the one in Murray (2016)
 1347 yields a similar gradient to the one generated by the autograd of `torch.linalg.cholesky`.
 1348

1349 **\mathcal{D} and \mathcal{D}^* :** Their gradients can be backpropagated either approximately by the ones of their iterative
 1350 algorithms or accurately by our following two propositions.

1350 **Proposition F.1** (Gradients w.r.t. \mathcal{D}). [↓] Let $l(\cdot)$ be the loss function and $Y = \mathcal{D}(H) + H : \mathcal{H}(n) \rightarrow \mathcal{S}^n$ for any symmetric hollow matrix H , where \mathcal{S}^n is the Euclidean space of $n \times n$ symmetric matrices. Let $Y = U\Delta U^\top$ be the eigendecomposition with $(\delta_1, \dots, \delta_n)$ as eigenvalues. Given the succeeding gradient $\frac{\partial l}{\partial Y}$, the output gradient $\frac{\partial l}{\partial H}$ is

$$1355 \quad \frac{\partial l}{\partial H} = \text{off} \left(\frac{\partial l}{\partial Y} - \exp_{*,Y} \left(\mathbb{D} \left((H^0)^{-1} \text{Dv} \left(\frac{\partial l}{\partial Y} \right) \mathbf{1}^T \right) \right) \right), \quad (78)$$

1356 with $\mathcal{S}_{++}^n \ni H_{il}^0 = \sum_{j,k} U_{ij} U_{ik} U_{lj} U_{lk} L_{j,k}$ and

$$1359 \quad L_{j,k} = \begin{cases} \frac{\exp(\delta_j) - \exp(\delta_k)}{\delta_j - \delta_k}, & \text{if } \delta_j \neq \delta_k \\ \exp'(\delta_j), & \text{otherwise} \end{cases} \quad (79)$$

1361 Here, $\mathbb{D}(\cdot) : \mathbb{R}^{n \times n} \rightarrow \text{Diag}(n)$ extracts the diagonal matrix, while $\text{Dv}(\cdot) : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^n$ returns a
1362 vector of diagonal elements. Besides, $\text{off}(\cdot)$ subtracts the diagonal matrix from a matrix, and $\exp_{*,Y}$
1363 is the differential of the symmetric matrix exponential:

$$1364 \quad \exp_{*,Y}(V) = U (L \odot (U^\top V U)) U^\top, \quad (80)$$

1365 where \odot denotes the Hadamard product and L is called Loewner matrix, with the (j, k) -th element
1366 defined as Eq. (79).

1367 **Proposition F.2** (Gradients w.r.t. \mathcal{D}^*). [↓] Following the notation in Prop. F.1, we further denote
1368 $\Sigma = \mathcal{D}^*(C)C\mathcal{D}^*(C) : \text{Cor}^+(n) \rightarrow \text{Row}_1^+(n)$, where $\text{Row}_1^+(n)$ is the manifold of $n \times n$ SPD
1369 matrices with unit row sum. Given the succeeding gradient $\frac{\partial l}{\partial \Sigma}$, the output gradient $\frac{\partial l}{\partial C}$ is

$$1371 \quad \frac{\partial l}{\partial C} = \Delta \left(\frac{\partial l}{\partial \Sigma} - ((I + \Sigma)^{-1} \tilde{v} \mathbf{1}^\top)_{\text{sym}} \right) \Delta, \quad (81)$$

1373 where $\Delta = \mathbb{D}(\Sigma)^{1/2}$, $\tilde{v} = \text{Dv} \left(\Sigma \frac{\partial l}{\partial \Sigma} + \frac{\partial l}{\partial \Sigma} \Sigma \right)$, I is the identity matrix, and $\mathbf{1} \in \mathbb{R}^n$ is the vector with
1374 all entities as 1. Here, $(A)_{\text{sym}} = \frac{A + A^\top}{2}$.

G ORDER-INVARIANCE OF BETA OPERATIONS

1379 **Theorem G.1** (Order-invariance). [↓] Given multichannel data $x_{i_1, \dots, i_n} \in \mathbb{P}^{n_{i_n}}$ with $i_j \in \{1, \dots, N_j\}$, applying the β -concatenation sequentially n times in the order $i_n \rightarrow \dots \rightarrow i_1$ is
1380 equivalent to a single β -concatenation along all indices simultaneously. Similarly, β -splitting
1381 $x \in \mathbb{P}^N$ into multichannel data $x_{i_1, \dots, i_n} \in \mathbb{P}^{n_{i_n}}$ with $i_j \in \{1, \dots, N_j\}$ and $n_{i_n} \prod_{j=1}^n N_j = N$
1382 under the sequential order $i_1 \rightarrow \dots \rightarrow i_n$ is identical to the one under a single β -split to generate
1383 all indices simultaneously.

H SUMMARY OF CORRELATION FC AND MLR LAYERS

1388 Tab. 11 summarizes the c -class correlation MLR layers, while Algs. 1 and 2 provide the detailed
1389 algorithm. Tab. 12 summarizes our correlation FC layers, while Algs. 3 and 4 provide the detailed
1390 algorithm.

I ADDITIONAL DETAILS AND EXPERIMENTS

I.1 BASIC LAYERS IN SPDNET

1395 SPDNet (Huang & Van Gool, 2017) is the most classic SPD neural network. SPDNet mimics the
1396 conventional densely connected feedforward network, consisting of three basic building blocks:

1398 BiMap layer: $S^k = W^k S^{k-1} W^{k\top}$, with W^k semi-orthogonal, (82)

1399 ReEig layer: $S^k = U^{k-1} \max(\Sigma^{k-1}, \epsilon I_n) U^{k-1\top}$, with $S^{k-1} \stackrel{\text{SVD}}{=} U^{k-1} \Sigma^{k-1} U^{k-1\top}$, (83)

1401 LogEig layer: $S^k = \log(S^{k-1})$. (84)

1402 where $\max()$ is element-wise maximization and \log is the matrix logarithm. BiMap and ReEig mimic
1403 transformation and non-linear activation, where the input and output are both SPD matrices. LogEig
maps SPD matrices into the tangent space at the identity matrix for classification.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
Table 11: Summary of $v_k(C)$ in c -class correlation MLR layers, where k denotes the k -th class and $C \in \text{Cor}^+(n)$ is the input correlation matrix.

Metric	Expression	Parameters	Refs
ECM	$\langle \lfloor \Theta(C) \rfloor, \lfloor Z_k \rfloor \rangle - \gamma_k \ \lfloor Z_k \rfloor \ $	$\{Z_k \in \text{Hol}(n), \gamma_k \in \mathbb{R}\}_{k=1}^c$	Thm. 3.3
LECM	$\langle \log \circ \Theta(C), \lfloor Z_k \rfloor \rangle - \gamma_k \ \lfloor Z_k \rfloor \ $	$\{Z_k \in \text{Hol}(n), \gamma_k \in \mathbb{R}\}_{k=1}^c$	Thm. 3.3
OLM	$\langle \text{Log}^\circ(C), Z_k \rangle - \gamma_k \ Z_k \ $	$\{Z_k \in \text{Hol}(n), \gamma_k \in \mathbb{R}\}_{k=1}^c$	Thm. 3.3
LSM	$\langle \text{Log}^*(C), \text{Log}_{*,I}^*(Z_k) \rangle - \gamma_k \ \text{Log}_{*,I}^*(Z_k) \ $	$\{Z_k \in \text{Hol}(n), \gamma_k \in \mathbb{R}\}_{k=1}^c$	Thm. 3.3
PHCM	$\Psi \circ \text{Chol} \rightarrow \beta\text{-concat} \rightarrow \text{Poincaré } v_k(x)$	$\left\{ z_k \in \mathbb{R}^{\frac{n(n-1)}{2}}, \gamma_k \in \mathbb{R} \right\}_{k=1}^c$	Eqs. (13), (64) and (66)

Table 12: Summary of correlation FC layers, $\mathcal{F} : \text{Cor}^+(n) \ni C \mapsto Y \in \text{Cor}^+(m)$. Each v_{ij}^g with $g \in \{\text{EC, LEC, OL, LS}\}$ is defined by Tab. 11.

Metric	Expression	Parameters	Refs
ECM	$Y = \text{Cor} \circ \text{Chol}^{-1} (V^{\text{EC}} + I_m)$ $V_{ij}^{\text{EC}} = \begin{cases} v_{ij}^{\text{EC}}(C), & i > j, \\ 0, & \text{otherwise} \end{cases}$	$\{Z_{ij} \in \text{Hol}(n), \gamma_{ij} \in \mathbb{R}\}_{1 \leq j < i \leq m}$	Thm. 3.6
LECM	$Y = \text{Cor} \circ \text{Chol}^{-1} \circ \exp (V^{\text{LEC}})$ $V_{ij}^{\text{LEC}} = \begin{cases} v_{ij}^{\text{LEC}}(C), & i > j, \\ 0, & \text{otherwise} \end{cases}$	$\{Z_{ij} \in \text{Hol}(n), \gamma_{ij} \in \mathbb{R}\}_{1 \leq j < i \leq m}$	Thm. 3.6
OLM	$Y = \text{Exp}^\circ (V^{\text{OL}})$ $V_{ij}^{\text{OL}} = \begin{cases} v_{ij}^{\text{OL}}(C)/\sqrt{2}, & i > j, \\ V_{ji}^{\text{OL}}, & i < j, \\ 0, & \text{otherwise} \end{cases}$	$\{Z_{ij} \in \text{Hol}(n), \gamma_{ij} \in \mathbb{R}\}_{1 \leq j < i \leq m}$	Thm. 3.6
LSM	$Y = \text{Cor} \circ \exp (V^{\text{LS}})$ $V_{ij}^{\text{LS}} = \begin{cases} v_{ij}^{\text{LS}}(C)/\sqrt{6}, & m > i > j \geq 1, \\ v_{ii}^{\text{LS}}(C)/\sqrt{3}, & m > i \geq 1, \\ V_{ji}^{\text{LS}}, & i < j, \\ -\sum_{k=1}^{m-1} V_{kj}^{\text{LS}}, & i = m, 1 \leq j < m, \\ \sum_{k=1}^{m-1} \sum_{l=1}^{m-1} V_{lk}^{\text{LS}}, & i = j = m \end{cases}$	$\{Z_{ij} \in \text{Hol}(n), \gamma_{ij} \in \mathbb{R}\}_{1 \leq j \leq i \leq m-1}$	Thm. 3.6
PHCM	$\Psi \circ \text{Chol} \rightarrow \beta\text{-concat} \rightarrow \text{Poincaré FC}$ $\beta\text{-split} \rightarrow (\Psi \circ \text{Chol})^{-1}$	$\left\{ z_k \in \mathbb{R}^{\frac{n(n-1)}{2}}, \gamma_k \in \mathbb{R} \right\}_{k=1}^{m(m-1)/2}$	Eqs. (13), (65) and (66)

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
Remark I.1. All three basic layers in SPDNet are designed for the SPD manifold. Although correlation is still SPD, it has its own geometries. Therefore, applying SPD networks, such as SPDNet, to correlation inputs might bring suboptimal performance, which motivates us to develop correlation networks based on correlation geometries.

I.2 DATASETS

1447
The following introduces the details of each dataset.

1448
1449
Radar (Brooks et al., 2019).³ It consists of 3,000 synthetic radar signals equally distributed in 3 classes.

1450
1451
1452
1453
1454
1455
1456
1457
HDM05 (Müller et al., 2007).⁴ It consists of 2,343 skeleton-based motion capture sequences executed by different actors. Each frame consists of 3D coordinates of 31 joints. We remove the under-represented clips, trimming the dataset down to 2,326 instances scattered throughout 122 classes. We randomly select 50% of the samples from each category for training and the remaining 50% for testing.

³<https://www.dropbox.com/s/dfn1x2bnyh3kjwy/data.zip?dl=0>

⁴<https://resources.mpi-inf.mpg.de/HDM05/>

1458

Algorithm 1: Log-Euclidean correlation MLR

1459

Input : correlation matrix $C \in \text{Cor}^+(n)$, number of classes c , and Log-Euclidean metric $g \in \{\text{EC}, \text{LEC}, \text{OL}, \text{LS}\}$.

1460

Parameters: class weights $\{Z_k \in \text{Hol}(n)\}_{k=1}^c$ and class biases $\{\gamma_k \in \mathbb{R}\}_{k=1}^c$.

1461

Output : class probabilities $p \in \mathbb{R}^c$.

1462

// In practice, the following is efficiently implemented as
tensor operations in PyTorch rather than a for-loop.

1463

for $k \leftarrow 1$ to c **do**

1464

switch g **do**

1465

case EC **do**

1466

 $| v_k(C) \leftarrow \langle [\Theta(C)], [Z_k] \rangle - \gamma_k \| [Z_k] \|;$

// Thm. 3.6

1467

end

1468

case LEC **do**

1469

 $| v_k(C) \leftarrow \langle \log \circ \Theta(C), [Z_k] \rangle - \gamma_k \| [Z_k] \|;$

// Thm. 3.6

1470

end

1471

case OL **do**

1472

 $| v_k(C) \leftarrow \langle \text{Log}^\circ(C), Z_k \rangle - \gamma_k \| Z_k \|;$

// Thm. 3.6

1473

end

1474

case LS **do**

1475

 $| v_k(C) \leftarrow \langle \text{Log}^*(C), \text{Log}_{*,I}^*(Z_k) \rangle - \gamma_k \| \text{Log}_{*,I}^*(Z_k) \|;$

// Thm. 3.6

1476

end

1477

end

1478

end

1479

 $p = \text{softmax}(v_1(C), \dots, v_c(C))$

1480

1481

1482

1483

Algorithm 2: PHCM correlation MLR

1484

Input : correlation matrix $C \in \text{Cor}^+(n)$ and number of classes c .

1485

Parameters: Poincaré MLR weights $\{z_k \in \mathbb{R}^N\}_{k=1}^c$ and biases $\{\gamma_k \in \mathbb{R}\}_{k=1}^c$, where $N = n(n-1)/2$.

1486

Output : class probabilities $p \in \mathbb{R}^c$.

1487

 $\{p_j\}_{j=1}^{n-1} \leftarrow \Psi \circ \text{Chol}(C);$ // map to \mathbb{PP}^{n-1} by Eq. (13)

1488

 $x \leftarrow \beta\text{-concat}(\{p_j\}_{j=1}^{n-1});$ // Poincaré β -concat in Eq. (66)

1489

 $p \leftarrow \text{Poincaré MLR}(x; \{z_k, \gamma_k\}_{k=1}^c);$ // Poincaré MLR in Eq. (64)

1490

1491

1492

1493

FPHA (Garcia-Hernando et al., 2018).⁵ It includes 1,175 skeleton-based first-person hand gesture videos of 45 different categories with 600 clips for training and 575 for testing. Each frame contains the 3D coordinates of 21 hand joints.

1494

NTU120⁶ (Liu et al., 2019). This data set contains 114,480 sequences in 120 action classes. We use mutual actions and adopt the cross-setup protocol (Liu et al., 2019).

1495

For the HDM05 and FPHA datasets, we preprocess each sequence using the code⁷ provided by Vemulapalli et al. (2014) to normalize body part lengths and ensure invariance to scale and view. For NTU120, we follow Chen et al. (2021) to preprocess the data.

1496

1497

I.3 INPUT DATA

1498

I.3.1 SPD INPUT IN SPD NETWORKS

1499

For GyroLE, GyroAI, GyroLC, and GyroSPD++, inputs are similar to our CorNets, except that inputs are the SPD covariance matrices. For other SPD baselines, such as SPDNet, SPDNetBN, LieBN,

1500

⁵https://github.com/guiggh/hand_pose_action

1501

⁶<https://github.com/shahroudy/NTURGB-D>

1502

⁷<https://ravitejav.weebly.com/kbac.html>

1512

Algorithm 3: Log-Euclidean correlation FC layer

1513

Input : input correlation $C \in \text{Cor}^+(n)$, output size m , and Log-Euclidean metric $g \in \{\text{EC}, \text{LEC}, \text{OL}, \text{LS}\}$.

1514

Parameters : FC parameters $\{Z_{ij} \in \text{Hol}(n), \gamma_{ij} \in \mathbb{R}\}$ with valid index pairs (i, j) as in Tab. 12.

1515

Output : output correlation $Y \in \text{Cor}^+(m)$.

1516

switch g **do**

1517

case EC **do**

1518

$| Y \leftarrow \text{Cor} \circ \text{Chol}^{-1}(V^{\text{EC}} + I_m); \quad // V^{\text{EC}}: \text{ Eqs. (7) and (9)}$

1519

end

1520

case LEC **do**

1521

$| Y \leftarrow \text{Cor} \circ \text{Chol}^{-1} \circ \exp(V^{\text{LEC}}); \quad // V^{\text{LEC}}: \text{ Eqs. (7) and (10)}$

1522

end

1523

case OL **do**

1524

$| Y \leftarrow \text{Exp}^\circ(V^{\text{OL}}); \quad // V^{\text{OL}}: \text{ Eqs. (7) and (11)}$

1525

end

1526

case LS **do**

1527

$| Y \leftarrow \text{Cor} \circ \exp(V^{\text{LS}}); \quad // V^{\text{LS}}: \text{ Eqs. (7) and (12)}$

1528

end

1529

end

1530

1531

1532

1533

Algorithm 4: PHCM correlation FC layer

1534

Input : input correlation $C \in \text{Cor}^+(n)$ and output size m .

1535

Parameters : Poincaré FC weights $\{z_k \in \mathbb{R}^N\}_{k=1}^d$ and biases $\{\gamma_k \in \mathbb{R}\}_{k=1}^d$, where

1536

$N = n(n-1)/2$ and $d = m(m-1)/2$.

1537

Output : output correlation $Y \in \text{Cor}^+(m)$.

1538

$\{p_j\}_{j=1}^{n-1} \leftarrow \Psi \circ \text{Chol}(C); \quad // \text{map to } \mathbb{P}^{n-1} \text{ by Eq. (13)}$

1539

$x \leftarrow \beta\text{-concat}(\{p_j\}_{j=1}^{n-1}); \quad // \text{Poincaré } \beta\text{-concat in Eq. (66)}$

1540

$y \leftarrow \text{Poincaré FC}(x; \{z_k, \gamma_k\}_{k=1}^d); \quad // \text{Eq. (65)}$

1541

$\{q_j\}_{j=1}^{m-1} \leftarrow \beta\text{-split}(y); \quad // \text{Poincaré } \beta\text{-split, inverse of Eq. (66)}$

1542

$Y \leftarrow (\Psi \circ \text{Chol})^{-1}(\{q_j\}_{j=1}^{m-1}); \quad // \text{the inverse of Eq. (13)}$

1543

1544

1545

1546

1547

MLR, and RResNet, each sequence is represented by a global covariance matrix as their original papers (Huang & Van Gool, 2017; Brooks et al., 2019; Chen et al., 2024b;a; Katsman et al., 2024). The sizes of the covariance matrices are 20×20 , 93×93 , 63×63 , and 150×150 on the Radar, HDM05, FPHA, and NTU120 datasets, respectively.

1548

I.3.2 GRASSMANNIAN INPUT IN GRASSMANNIAN NETWORKS

1549

For GrNet, GyroGr, and GyroGr-Scaling baselines, each sequence is represented by an 8-channel Grassmannian tensor as their original papers (Huang et al., 2018; Nguyen & Yang, 2023). The sizes of the Grassmannian matrices are $8 \times 20 \times 8$, $8 \times 93 \times 10$, $8 \times 63 \times 10$ and $8 \times 150 \times 10$ on the Radar, HDM05, FPHA, and NTU120 datasets, respectively.

1550

1551

I.3.3 CORRELATION INPUT IN CORNETS

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

For the input of our CorNets, we first follow Wang et al. (2024); Nguyen et al. (2024) to model each sample into a multi-channel SPD tensor. Then, each SPD matrix is transformed to their correlation matrix by

$$\text{Cor} : \mathcal{S}_{++}^n \ni \Sigma \longmapsto C = \mathbb{D}(\Sigma)^{-\frac{1}{2}} \Sigma \mathbb{D}(\Sigma)^{-\frac{1}{2}} \in \text{Cor}^+(n). \quad (85)$$

The following introduces the SPD modeling.

1566 For the HDM05 and FPHA datasets, we follow Nguyen (2022, Sec. 4.1.3) to model each skeleton
 1567 sequence into a multi-channel covariance tensor $[c, n, n]$. Specifically, we first identify the closest
 1568 left (right) neighbor of every joint based on their distance to the hip (wrist) joint, and then combine
 1569 the 3D coordinates of each joint and those of its left (right) neighbor to create a feature vector for the
 1570 joint. For a given frame t , we compute its Gaussian embedding (Lovrić et al., 2000):

$$Y_t = (\det \Sigma_t)^{-\frac{1}{n+1}} \begin{bmatrix} \Sigma_t + \mu_t (\mu_t)^T & \mu_t \\ (\mu_t)^T & 1 \end{bmatrix}, \quad (86)$$

1574 where μ_t and Σ_t are the mean vector and covariance matrix computed from the set of feature vectors
 1575 within the frame. The lower part of matrix $\log(Y_t)$ is flattened to obtain a vector \tilde{v}_t . All vectors \tilde{v}_t
 1576 within a time window $[t, t + c - 1]$, where c is determined from a temporal pyramid representation of
 1577 the sequence (the number of temporal pyramids is set to 2 in our experiments), are used to compute a
 1578 covariance matrix as

$$\tilde{\Sigma}_t = \frac{1}{c} \sum_{i=t}^{t+c-1} (\tilde{v}_i - \bar{v}_t) (\tilde{v}_i - \bar{v}_t)^T, \quad (87)$$

1581 where $\bar{v}_t = \frac{1}{c} \sum_{i=t}^{t+c-1} \tilde{v}_i$. The resulting $\{\tilde{\Sigma}_t\}$ are the covariance matrices that we need. On the
 1582 FPHA dataset, we generate the covariance based on three sets of neighbors: left, right, and vertical
 1583 (bottom) neighbors.

1584 For the Radar dataset, we follow Wang et al. (2024) to use the temporal convolution followed by a
 1585 covariance pooling layer to obtain a multi-channel covariance tensor of shape $[c, 20, 20]$.
 1586

1587 After preprocessing, the input correlation tensor shapes are $[7, 20, 20]$, $[3, 28, 28]$, $[9, 28, 28]$ and
 1588 $[6, 28, 28]$ on the Radar, HDM05, FPHA, and NTU120 datasets, respectively.

1589 I.4 IMPLEMENTATION DETAILS

1591 1592 **Table 13: Hyer-parameters in CorNets**

1594 Dataset	1595 Model	1596 Optimizer	1597 lr	1598 wd	1599 Matrix Power	1600 Converged Epoch
1595 Radar	CorNet-ECM	ADAM	$1e^{-2}$	N/A	1.5	50
	CorNet-LECM	ADAM	$1e^{-2}$	N/A	-0.25	50
	CorNet-OLM	ADAM	$1e^{-2}$	N/A	-0.25	50
	CorNet-LSM	ADAM	$1e^{-2}$	N/A	0.75	50
	CorNet-PHCM	ADAM	$1e^{-2}$	N/A	0.75	50
1600 HDM05	CorNet-ECM	ADAM	$1e^{-3}$	$1e^{-3}$	0.125	100
	CorNet-LECM	ADAM	$1e^{-4}$	$1e^{-3}$	0.5	150
	CorNet-OLM	SGD	$5e^{-2}$	$1e^{-3}$	0.25	200
	CorNet-LSM	ADAM	$1e^{-3}$	N/A	-0.75	50
	CorNet-PHCM	ADAM	$1e^{-2}$	N/A	-0.25	50
1604 FPHA	CorNet-ECM	ADAM	$5e^{-3}$	N/A	-0.25	150
	CorNet-LECM	ADAM	$5e^{-4}$	$1e^{-4}$	-0.5	150
	CorNet-OLM	ADAM	$1e^{-4}$	N/A	-1	50
	CorNet-LSM	ADAM	$1e^{-3}$	N/A	-1	50
	CorNet-PHCM	ADAM	$1e^{-3}$	$1e^{-4}$	-0.5	150
1609 NTU120	CorNet-ECM	SGD	$1e^{-2}$	N/A	0.25	50
	CorNet-LECM	SGD	$1e^{-2}$	N/A	0.25	50
	CorNet-OLM	SGD	$5e^{-3}$	N/A	0.25	50
	CorNet-LSM	SGD	$1e^{-3}$	N/A	0.25	50
	CorNet-PHCM	ADAM	$1e^{-3}$	N/A	0.25	50

1613 **SPD baselines.** We follow the official Pytorch code of SPDNetBN⁸ to implement SPDNet and
 1614 SPDNetBN. For LieBN⁹, we focus on the instantiation under Log-Cholesky Metric (LCM) (Lin,
 1615 2019), while for RResNet¹⁰, we implement the ones induced by Affine-Invariant Metric (AIM)

1617 ⁸https://proceedings.neurips.cc/paper_files/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-Supplemental.zip

1618 ⁹<https://github.com/GitZH-Chen/LieBN>

1619 ¹⁰<https://github.com/CUAI/Riemannian-Residual-Neural-Networks>

(Pennec et al., 2006) and Log-Euclidean Metric (LEM) (Arsigny et al., 2005). For SPD MLR¹¹, we implement the one based on LCM. Due to the lack of official code, Gyro-based models are carefully reimplemented from their original papers. Following Nguyen et al. (2024), GyroSPD++ combines an AIM-based convolution with an LEM-based MLR.

Grassmannian baselines. Since GrNet is officially implemented by Matlab, we carefully reimplemented it using PyTorch. Additionally, as both GyroGr and GyroGr-Scaling do not release official code, we re-implemented them based on the original paper (Nguyen & Yang, 2023). For all Grassmannian comparative methods, we use SGD (Robbins & Monro, 1951) with a learning rate of $5e^{-2}$.

CorNets. On all three datasets, we employ a single convolutional kernel for global convolution, *i.e.*, applying a global receptive field across the channel dimension. The output dimensions of the correlation convolutional layer are 8×8 , 26×26 , 26×26 , and 11×11 for the Radar, HDM05, FPHA, and NTU120 datasets, respectively.

We primarily use the Adam (Kingma, 2015) and SGD (Robbins & Monro, 1951) optimizers. Inspired by the deformation effect on the latent SPD geometries by the matrix power over the SPD manifold (Chen et al., 2024d, Fig. 1), we apply the matrix power before correlation modeling ($\text{Cor}(\cdot)$) as activation. In particular, when the data are centered at zero and power is -1 , $\text{Cor}(\Sigma^{-1})$ corresponds to the partial correlation matrix of the covariance matrix Σ (Thanwerdas, 2024, Lem. 1.6). The batch size is set to 30, and training is capped at 200 epochs, although most cases converge in fewer than 150 epochs. Due to the different correlation geometries, the hyperparameters vary for CorNets under different geometries. Tab. 13 summarize all the hyperparameters.

Extra computational details for OLM and LSM layers. For the MLR, FC, and convolutional layers induced by OLM and LSM, the key computations involve Exp° and Log^* , which depend on the calculations of \mathcal{D} and \mathcal{D}^* . In our experiments, we empirically observe that iterating until convergence is more effective for \mathcal{D} , whereas a single step of Newton’s method generally performs best for \mathcal{D}^* . Accordingly, we set \mathcal{D} to iterate until convergence, leveraging Prop. F.1 for accurate backpropagation. For \mathcal{D}^* , we adopt a single iteration in Newton’s method and use automatic differentiation (autograd) through this single step for backpropagation.

I.5 ANALYSIS OF COVARIANCE VERSUS CORRELATION

In this section, we analyze when and why correlation matrices provide stronger representations than covariance matrices. App. I.5.1 quantifies the variability of diagonal variances via per-sample coefficients of variation, and App. I.5.2 compares the magnitudes of diagonal and off-diagonal entries via their ratios. These analyses lead to two insights: (1) large variability and magnitude of diagonal elements can act as nuisance noise for SPD networks by overshadowing informative off-diagonal correlations; (2) under such cases, correlation representations that normalize variances and emphasize pairwise correlations tend to be more effective, which is especially evident on HDM05.

I.5.1 COEFFICIENT OF VARIATION OF DIAGONAL VARIANCES

This section investigates why CorNets yield substantially larger gains over SPD networks on HDM05 compared to FPHA.

Setup. For each covariance matrix $\Sigma \in \mathcal{S}_{++}^n$ we extract the diagonal vector

$$v = (\Sigma_{11}, \dots, \Sigma_{NN}). \quad (88)$$

We compute the coefficient of variation of v as

$$\text{CV} = \frac{\text{std}(v)}{\text{mean}(v) + \varepsilon}, \quad (89)$$

where $\varepsilon = 10^{-8}$ ensures numerical stability. As shown in App. I.3.3, each sequence is modeled as a c -channel tensor of covariance matrices. The above procedure yields one coefficient of variation per channel for each sample. We visualize their empirical distributions per channel.

1673

¹¹<https://github.com/GitZH-Chen/SPDMLR>

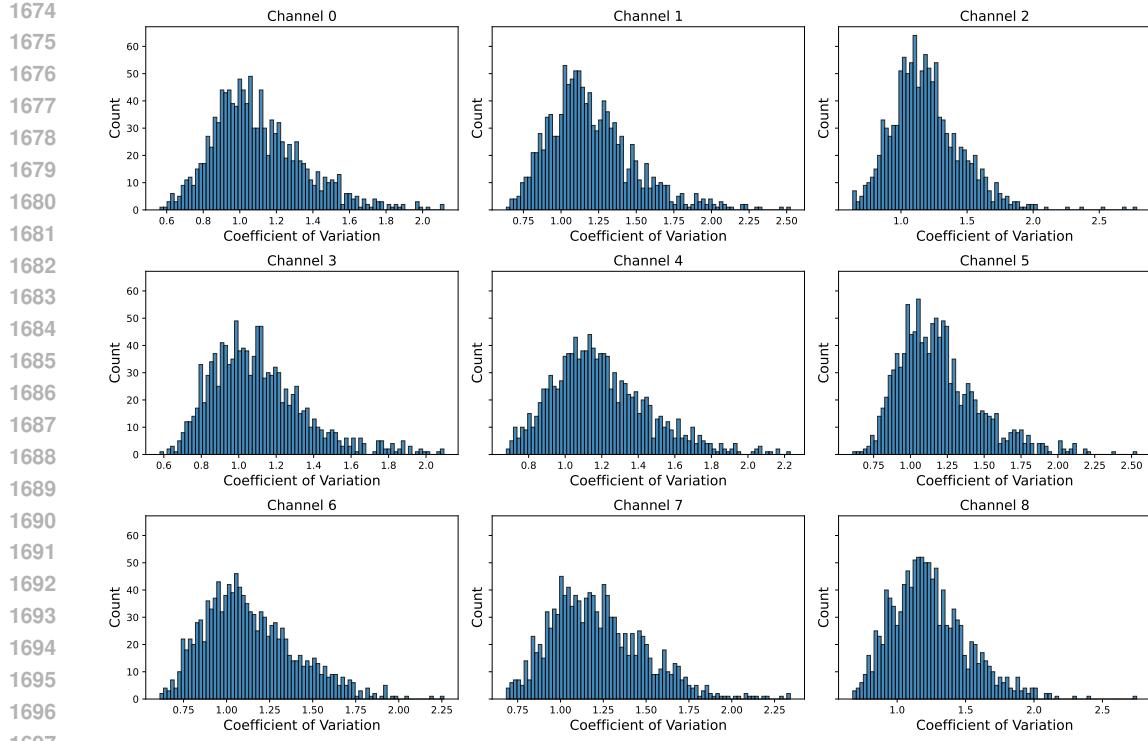


Figure 6: Distribution of per-sample coefficients of variation of diagonal variances on FPHA. Higher values indicate stronger diagonal variability, which could cause nuisance noise.

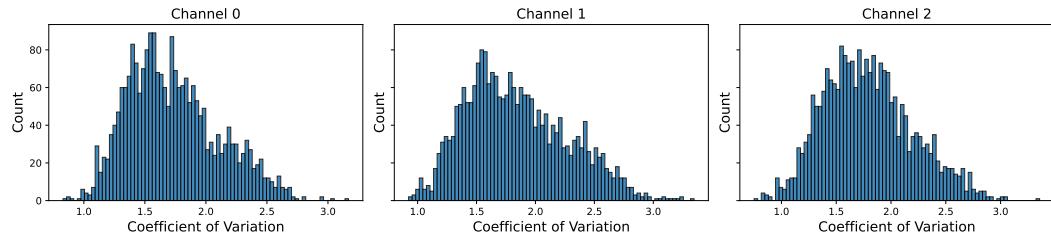


Figure 7: Distribution of per-sample coefficients of variation of diagonal variances on HDM05. Higher values indicate stronger diagonal variability, which could cause nuisance noise.

Analysis. Figs. 6 and 7 show that the coefficients of variation w.r.t. diagonal variance are large on both datasets. On FPHA, most values fall between 0.8 and 2.0. On HDM05, they are even larger, typically between 1.0 and 3.0. Such large fluctuations indicate that diagonal variances change substantially and could bring nuisance noise for SPD networks. In contrast, correlation matrices allow CorNets to focus on pairwise relationships. This explains the consistent improvements over SPD networks and the larger gains on HDM05.

I.5.2 RATIO OF DIAGONAL TO OFF-DIAGONAL ENTRIES IN COVARIANCE FEATURES

This section further examines why CorNets achieve larger gains over SPD networks on HDM05 than on FPHA. We analyze the ratio of diagonal to off-diagonal entries in covariance matrices on FPHA and HDM05, to quantify how strongly variance terms overshadow pairwise correlations.

Setup. For each covariance matrix $\Sigma \in \mathcal{S}_{++}^n$ we compute the mean magnitude of diagonal entries

$$D = \frac{1}{N} \sum_{i=1}^N |\Sigma_{ii}|, \quad (90)$$

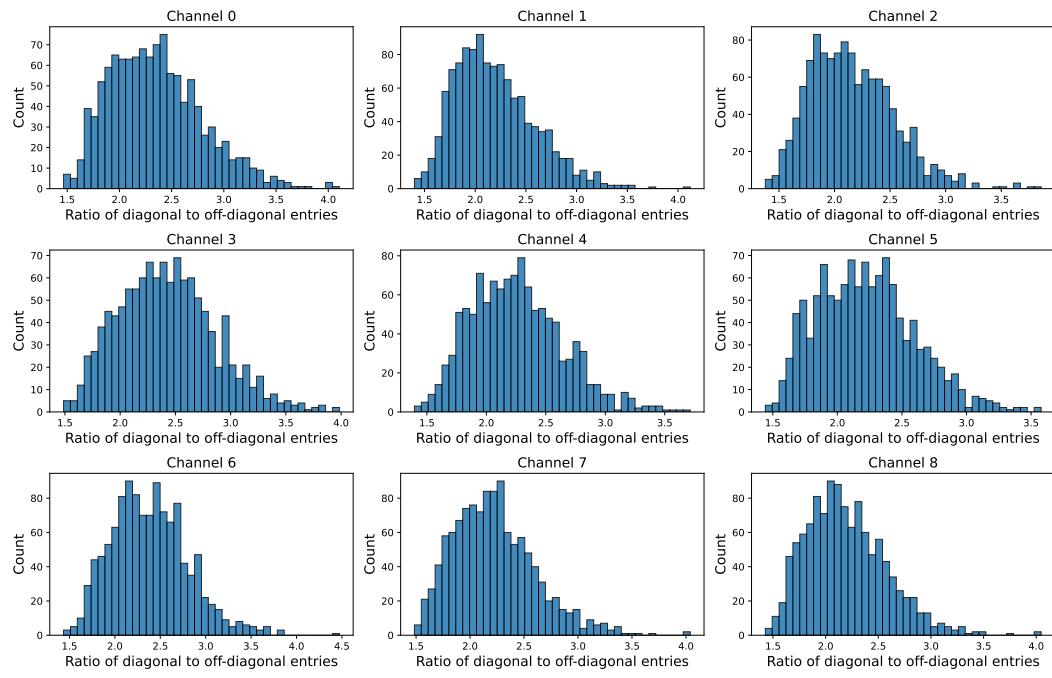


Figure 8: Distribution of ratios of diagonal to off-diagonal entries on FPHA.

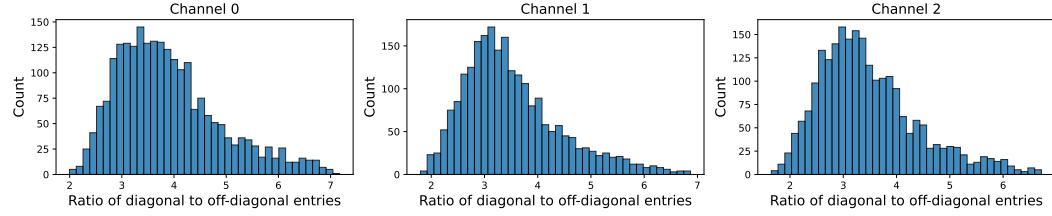


Figure 9: Distribution of ratios of diagonal to off-diagonal entries on HDM05.

and the mean magnitude of off-diagonal entries

$$O = \frac{1}{N(N-1)} \sum_{i \neq j} |\Sigma_{ij}|. \quad (91)$$

We then form the sample-wise ratio

$$R = \frac{D}{O}, \quad (92)$$

which measures how much larger the diagonal amplitudes are compared to the off-diagonal correlations. Each sample yields one ratio per channel, and we visualize the empirical distributions of these ratios on FPHA and HDM05.

Analysis. Figs. 8 and 9 show that both datasets have ratios well above one. On FPHA, most ratios lie between 1.7 and 3.0, indicating that diagonal amplitudes are noticeably larger than off-diagonal correlations. HDM05 exhibits even larger ratios, typically between 2.0 and 6.0, with many above 3.0. These statistics indicate that covariance representations on both datasets are strongly dominated by diagonal entries, with more pronounced dominance on HDM05. When diagonal terms dominate, SPD networks trained on covariance inputs tend to overemphasize variances and underexploit informative pairwise correlations. Correlation matrices normalize variances and highlight off-diagonal interactions, which explains why CorNets outperform SPD baselines on both datasets and why the improvement is substantially larger on HDM05.

1.6 NORMALIZED COVARIANCE VS. CORRELATION

Table 14: SPD networks with or without normalized SPD inputs

Manifold	Method	Radar	HDM05	FPHA
S_{++}^n	SPDNet	93.25 ± 1.10	64.57 ± 0.61	85.59 ± 0.72
	SPDNet-EigN	86.91 ± 0.57	66.62 ± 0.73	84.90 ± 0.62
	SPDNetBN	94.85 ± 0.99	71.28 ± 0.79	89.33 ± 0.49
	SPDNetBN-EigN	89.25 ± 1.19	71.59 ± 0.68	88.47 ± 0.39
	SPDResNet	95.89 ± 0.86	70.12 ± 2.45	85.07 ± 0.99
	SPDResNet-EigN	92.61 ± 0.96	71.02 ± 0.91	84.53 ± 0.46
	SPDNetLieBN	94.80 ± 0.71	71.78 ± 0.44	86.33 ± 0.43
	SPDNetLieBN-EigN	88.91 ± 1.21	70.61 ± 1.04	83.73 ± 0.65
	SPDNetMLR	95.64 ± 0.83	65.90 ± 0.93	85.67 ± 0.69
	SPDNetMLR-EigN	89.41 ± 0.58	66.89 ± 0.63	83.63 ± 1.09
Cor ⁺ (n)	GyroAI	96.29 ± 0.48	72.34 ± 1.06	89.60 ± 0.37
	GyroAI-EigN	91.36 ± 0.80	72.64 ± 0.70	89.90 ± 0.31
	GyroSPD++	95.20 ± 0.88	69.82 ± 1.79	89.50 ± 0.37
	GyroSPD++-EigN	90.83 ± 1.09	66.92 ± 0.28	84.29 ± 0.14
	CorNet-ECM	97.71 ± 0.61	81.35 ± 1.27	92.17 ± 0.49
	CorNet-LECM	98.40 ± 0.70	78.05 ± 1.14	91.17 ± 0.32
	CorNet-OLM	97.57 ± 0.76	81.46 ± 0.61	91.63 ± 0.12
	CorNet-LSM	96.24 ± 1.48	74.89 ± 1.07	83.43 ± 0.65
	CorNet-PHCM	96.56 ± 0.86	82.26 ± 0.92	90.03 ± 0.63

Setup. We evaluate SPD-based baselines by covariance inputs normalized by their largest eigenvalue. Given a covariance matrix Σ , we get the normalized SPD input $\hat{\Sigma} = \Sigma/\lambda_{\max}(\Sigma)$ and feed it into existing SPD networks. This variant is denoted by “-EigN”. We report results on the Radar, HDM05, and FPHA datasets for representative SPD models: SPDNet, SPDNetBN, SPDResNet, SPDNetLieBN, SPDNetMLR, GyroAI, and GyroSPD++. Here, SPDResNet is implemented under the LEM, while SPDNetLieBN follows the LCM.

Results. Tab. 14 summarizes the results. On HDM05, eigenvalue normalization has only a marginal effect and the normalized variants achieve accuracy comparable to their unnormalized counterparts. On FPHA and, in particular, on Radar, normalization usually reduces accuracy. The behavior of GyroSPD++ is especially informative. GyroSPD++ and CorNet share similar architecture, consisting of one convolution followed by a MLR layer. However, GyroSPD++-EigN performs worse than GyroSPD++ on all three datasets, while CorNet with correlation inputs achieves clear improvements over GyroSPD++. These phenomena can be explained by two factors.

1. *Redundancy.* The raw samples on HDM05 and FPHA have already undergone centering, scaling, and normalization before covariance modeling. Dividing by $\lambda_{\max}(\Sigma)$ therefore introduces little additional control over scale, which explains the marginal effect on HDM05.
2. *Scaled covariance versus correlation.* Since EigN is equivalent to uniformly rescaling the raw samples before covariance computation, the normalized covariance matrices remain covariances and do not encode new statistical information. Moreover, forcing the largest eigenvalue to 1 can remove potentially informative differences in overall energy across samples, which aligns with the degradation observed for EigN variants, especially GyroSPD++-EigN. In contrast, correlation normalization uses a different scaling factor for each pair of variables,

$$\text{Cor}_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}, \quad (93)$$

producing standardized correlation coefficients. Therefore, global eigenvalue scaling is statistically distinct from correlation normalization and fails to capture the benefits of explicit correlation modeling.

1836 I.7 ABLATIONS ON ACTIVATIONS.
18371838 Table 15: Comparison of CorNet with or without activations.
1839

Metric	Activation	Radar	HDM05	FPHA
ECM	ReLU	97.41 ± 0.25	81.23 ± 0.46	89.80 ± 0.58
	None	97.71 ± 0.61	81.35 ± 1.27	92.17 ± 0.49
LECM	ReLU	97.23 ± 0.67	77.51 ± 1.02	91.00 ± 0.15
	None	98.40 ± 0.70	78.05 ± 1.14	91.17 ± 0.32
OLM	ReLU	97.52 ± 0.47	81.86 ± 0.65	91.47 ± 0.19
	None	97.57 ± 0.76	81.46 ± 0.61	91.63 ± 0.12
LSM	ReLU	95.60 ± 0.97	N/A	N/A
	None	96.24 ± 1.48	74.89 ± 1.07	83.43 ± 0.65
PHCM	ReLU	96.40 ± 0.25	77.32 ± 1.56	88.63 ± 0.22
	None	96.56 ± 0.86	82.26 ± 0.92	90.03 ± 0.63

1853 In the main experiments, we follow HNN++ (Shimizu et al., 2021) and GyroSPD++ (Nguyen et al.,
1854 2024), and do not use explicit activations, as the manifold itself introduces nonlinearity. We further
1855 conduct an ablation on activations. Following Ganea et al. (2018, Sec. 3.2), we define activations in the
1856 tangent space at the identity, *i.e.*, $\text{Exp}_I \circ \delta \circ \text{Log}_I$ for four Log-Euclidean metrics, and $\text{Exp}_0 \circ \delta \circ \text{Log}_0$
1857 for PHCM in the β -concatenated Poincaré vector, where δ is ReLU (Glorot et al., 2011). Specifically,
1858 we insert a ReLU after the correlation convolution. As shown in Tab. 15, adding activations generally
1859 yields no benefits and can even degrade performance. The variant without activation consistently
1860 achieves higher or comparable accuracy, except CorNet-OLM for HDM05. Moreover, CorNet-LSM
1861 with activation fails to converge on HDM05 and FPHA. These results suggest that CorNet already
1862 provides sufficient nonlinearity, rendering additional activations redundant.
1863

1864 I.8 SCALABILITY OF CORRELATION METRICS
18651866 Table 16: Average runtime (s) of a single forward pass in CorNet under different metrics and input
1867 dimensions. The top two efficient metrics in each row are highlighted in **red** and **blue**, respectively.
1868

Dim	ECM	LECM	OLM	LSM	PHCM
30	0.0004	0.0018	0.0012	0.0019	0.0131
50	0.0004	0.0027	0.0318	0.0334	0.0211
100	0.0008	0.0054	0.0764	0.0781	0.0413
150	0.0015	0.0100	0.1247	0.1267	0.2284
200	0.0025	0.0197	0.1906	0.1938	0.3320
250	0.0037	0.0345	0.2352	0.2379	0.4414
300	0.0053	0.0733	0.3434	0.3454	0.5732
400	0.0092	0.1796	0.5163	0.5261	0.4807
500	0.0143	0.3076	0.6907	0.6961	0.5693
600	0.0206	0.5983	0.9331	0.9484	0.7923
700	0.0289	1.0961	1.2432	1.2575	1.0417
800	0.039	1.8689	1.6658	1.6815	1.3387
900	0.0535	2.9886	2.2156	2.2303	1.7324
1000	0.0706	3.7259	2.539	2.5783	1.229

1884 We evaluate the computational efficiency of correlation metrics across increasing input dimensions
1885 using CorNet with one correlation FC layer followed by one correlation MLR layer. Each input
1886 correlation matrix of size $[n, n]$ is mapped to $[20, 20]$ by the FC layer and then classified into 10
1887 classes by the MLR layer. For each $30 \leq n \leq 1000$, we randomly generate 30 correlation matrices
1888 and record the average runtime of a single forward pass. As implied by Tab. 8, the runtime is governed
1889 by two factors: the co-domain computation (Euclidean or hyperbolic) and the complexity of the
diffeomorphism. The results are summarized in Tab. 16. We have the following findings.

- ECM is consistently the most efficient metric, benefiting from both a Euclidean co-domain and the simplest diffeomorphism.
- At low dimensions ($n \leq 400$), the ordering is

$$\text{ECM} < \text{LECM} < \text{OLM} \approx \text{LSM} < \text{PHCM}.$$

Here, co-domain operations dominate, and PHCM is slowest due to costly hyperbolic computations.

- At high dimensions ($n \geq 700$), the ordering changes to

$$\text{ECM} < \text{PHCM} < \text{OLM} \approx \text{LSM} < \text{LECM}.$$

Here, diffeomorphisms dominate: ECM and PHCM scale better thanks to relatively lightweight Cholesky decomposition, while OLM and LSM slow down due to matrix logarithm/exponentiation. LECM is the slowest, as its $\log \Theta$ requires two nested matrix functions.

I.9 ADDITIONAL DETAILS ON VISUALIZATION

We provide additional interpretations on Figs. 2 and 5 by first describing how SPD and correlation matrices are visualized, then explaining the construction of Fig. 2, and finally clarifying how the decision hyperplanes in Fig. 5 are obtained.

I.9.1 VISUALIZATION OF LOW-DIMENSIONAL SPD AND CORRELATION MATRICES.

Any 2×2 covariance matrix in \mathcal{S}_{++}^2 can be written as

$$\Sigma = \begin{pmatrix} a & b \\ b & d \end{pmatrix}, \quad a > 0, d > 0, ad - b^2 > 0. \quad (94)$$

Embedding Σ into \mathbb{R}^3 via the map $\Sigma \mapsto (a, b, d)$ identifies \mathcal{S}_{++}^2 with the interior of the quadratic cone

$$\{(a, b, d) \in \mathbb{R}^3 \mid a > 0, d > 0, ad - b^2 > 0\}, \quad (95)$$

which is an open cone in \mathbb{R}^3 .

For 2×2 correlation matrices, any $C \in \text{Cor}^+(2)$ has the form

$$C = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}, \quad r \in (-1, 1). \quad (96)$$

Thus, $\text{Cor}^+(2)$ is one dimensional. Embedding C into \mathbb{R}^3 as $(1, r, 1)$ yields a line segment inside the cone corresponding to \mathcal{S}_{++}^2 .

For 3×3 correlation matrices, any $C \in \text{Cor}^+(3)$ is parameterized by its off-diagonal entries (r_{12}, r_{13}, r_{23}) :

$$C = \begin{pmatrix} 1 & r_{12} & r_{13} \\ r_{12} & 1 & r_{23} \\ r_{13} & r_{23} & 1 \end{pmatrix}. \quad (97)$$

Embedding C into \mathbb{R}^3 via $C \mapsto (r_{12}, r_{13}, r_{23})$ produces an open ellotope in \mathbb{R}^3 . This is the representation of $\text{Cor}^+(3)$ used in Fig. 5, where each point in the ellotope corresponds to one 3×3 correlation matrix.

I.9.2 CONSTRUCTION OF FIG. 2.

Given a covariance matrix $\Sigma \in \mathcal{S}_{++}^n$, its correlation matrix is defined in Sec. 2 as

$$C = \text{Cor}(\Sigma) = \mathbb{D}(\Sigma)^{-1/2} \Sigma \mathbb{D}(\Sigma)^{-1/2}. \quad (98)$$

This map normalizes the diagonal entries and thus many covariance matrices share the same correlation. To see this explicitly in the 2×2 case, fix a correlation matrix

$$C = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}, \quad r \in (-1, 1), \quad (99)$$

1944 and consider any positive diagonal matrix
 1945

$$1946 \quad D = \text{diag}(\lambda_1, \lambda_2), \quad \lambda_1 > 0, \lambda_2 > 0. \quad (100)$$

1947 The corresponding covariance matrix
 1948

$$1949 \quad \Sigma = DCD = \begin{pmatrix} \lambda_1^2 & \lambda_1 \lambda_2 r \\ \lambda_1 \lambda_2 r & \lambda_2^2 \end{pmatrix} \quad (101)$$

1951 satisfies $\text{Cor}(\Sigma) = C$. Since λ_1 and λ_2 can take any positive values, there are infinitely many
 1952 $\Sigma \in \mathcal{S}_{++}^2$ that map to the same correlation C . When embedded into \mathbb{R}^3 as (a, b, d) , these Σ form
 1953 a two-dimensional surface lying inside the cone corresponding to \mathcal{S}_{++}^2 . Fig. 2 visualizes this one-
 1954 to-many relationship by plotting several such surfaces for different correlations, together with their
 1955 corresponding points on the correlation manifold.
 1956

1957 I.9.3 CONSTRUCTION OF FIG. 5.

1958 For ECM, LECM, OLM, and LSM, the decision hyperplane in the correlation MLR is the Riemannian
 1959 hyperplane in Eq. (62) specialized to $\mathcal{M} = \text{Cor}^+(n)$:
 1960

$$1961 \quad H_{A,P} = \{X \in \text{Cor}^+(n) \mid \langle \text{Log}_P(X), A \rangle_P = 0\}, \quad P \in \text{Cor}^+(n), A \in T_P \text{Cor}^+(n). \quad (102)$$

1963 In Fig. 5, we focus on $\text{Cor}^+(3)$ and visualize it as the open ellipope in \mathbb{R}^3 via the embedding
 1964

$$1965 \quad C \in \text{Cor}^+(3) \mapsto (C_{21}, C_{31}, C_{32}) \in \mathbb{R}^3. \quad (103)$$

1966 Given a Log-Euclidean metric and parameters (A, P) , each correlation matrix C is first mapped to
 1967 the tangent space at P by $\text{Log}_P(C)$, and we evaluate the linear form $\langle \text{Log}_P(C), A \rangle_P$. The set of
 1968 points in the ellipope where this scalar equals zero corresponds to the decision hyperplane $H_{A,P}$ and
 1969 is plotted as the separating surface.

1970 For PHCM, the margin hyperplane is defined in the β -concatenated Poincaré embedding. Let $\Psi \circ \text{Chol}$
 1971 be the diffeomorphism in Eq. (13) that maps $C \in \text{Cor}^+(n)$ to the poly-Poincaré space \mathbb{PP}^{n-1} , and
 1972 let β -concatenation be the Poincaré operation in Eq. (66). We define
 1973

$$1974 \quad \tilde{x}(X) = \beta\text{-concat}(\Psi \circ \text{Chol}(X)) \in \mathbb{P}^N, \quad N = \frac{n(n-1)}{2}, \quad (104)$$

1975 and the PHCM hyperplane
 1976

$$1977 \quad H_{a,p} = \{X \in \text{Cor}^+(n) \mid \langle \text{Log}_p(\tilde{x}(X)), a \rangle_p = 0\}, \quad p \in \mathbb{P}^N, a \in T_p \mathbb{P}^N. \quad (105)$$

1979 Here $\mathbb{P}^N = \{x \in \mathbb{R}^N \mid \|x\|^2 < 1\}$ is the N -dimensional Poincaré ball. In Fig. 5, we first map each
 1980 correlation matrix $C \in \text{Cor}^+(3)$ to $\tilde{x}(C) \in \mathbb{P}^N$, apply the Poincaré logarithm Log_p at a reference
 1981 point p , and then visualize the zero level set of the linear form $\langle \text{Log}_p(\tilde{x}(C)), a \rangle_p$ as the PHCM
 1982 decision hyperplane.
 1983

1984 I.10 HARDWARE

1987 On the HDM05 and FPHA datasets, SPDNet, RResNet, SPDNetBN, SPDNetLieBN, and MLR
 1988 require SVD operations on relatively large matrices, which are more efficiently executed on a CPU.
 1989 As a result, these methods are implemented on a CPU, whereas all other cases are executed on a
 1990 single A6000 GPU.
 1991

1992 J PROOFS

1994 J.1 PROOF OF THM. 3.1

1995 We first prove a lemma for MLRs on general isometric manifolds, of which this theorem is a specific
 1996 case. Notably, the result and proof can be readily extended to the case where \mathbb{R}^m is endowed with an
 1997 arbitrary inner product.

1998 **Lemma J.1** (Isometric Riemannian MLRs). *Given m -dimensional Riemannian manifolds $(\widetilde{\mathcal{M}}, g^{\widetilde{\mathcal{M}}})$
1999 and $(\mathcal{M}, g^{\mathcal{M}})$ with a Riemannian isometry $\phi: \widetilde{\mathcal{M}} \rightarrow \mathcal{M}$, their origins are $E \in \widetilde{\mathcal{M}}$ and $\phi(E) \in \mathcal{M}$.
2000 The Riemannian MLR over $\widetilde{\mathcal{M}}$ for the input $X \in \mathcal{M}$ of each class $k = 1, \dots, C$ can be calculated
2001 by the one over \mathcal{M} :*

$$v_k^{\widetilde{\mathcal{M}}}(X; Z_k, \gamma_k) = v_k^{\mathcal{M}}(\phi(X); \phi_{*,E}(Z_k), \gamma_k), \quad (106)$$

2004 with $\gamma_k \in \mathbb{R}$, $Z_k \in T_E \widetilde{\mathcal{M}} \cong \mathbb{R}^m$, and $\phi_{*,E}: T_E \widetilde{\mathcal{M}} \rightarrow T_{\phi(E)} \mathcal{M}$ as the differential map. Here, $v_k^{\widetilde{\mathcal{M}}}$
2005 and $v_k^{\mathcal{M}}$ are the specific realizations of Eq. (3) over $\widetilde{\mathcal{M}}$ and \mathcal{M} , respectively.

2008 *Proof.* We omit the subscript k in A_k and P_k for simplicity. We denote $\widetilde{\Gamma}$, $\widetilde{\text{Log}}$, $\langle \cdot, \cdot \rangle_P$, $\|\cdot\|_P$,
2009 $\widetilde{d}(X, \widetilde{H}_{A,P})$, $\widetilde{H}_{A,P}$ as the parallel transport along the geodesic, Riemannian logarithm, Riemannian
2010 metric, the induced norm, margin distance and hyperplane over $\widetilde{\mathcal{M}}$, while the counterparts over \mathcal{M}
2011 are denoted as Γ , Log , $\langle \cdot, \cdot \rangle_{\phi(P)}$, $\|\cdot\|_{\phi(P)}$, d , and H , respectively.

2012 From the isometry, we have

$$\|A\|_P = \|\phi_{*,P}(A)\|_{\phi(P)}, \quad (107)$$

$$\langle \widetilde{\text{Log}}_P(X), A \rangle_P = \langle \text{Log}_{\phi(P)}(\phi(X)), \phi_{*,P}(A) \rangle_{\phi(P)}. \quad (108)$$

2013 The above equations imply

$$\phi(\widetilde{H}_{A,P}) = H_{\phi_{*,P}(A), \phi(P)}. \quad (109)$$

2014 Denoting $\mathcal{H} = H_{\phi_{*,P}(A), \phi(P)}$, we have the following for the margin distance

$$\begin{aligned} \widetilde{d}(X, \widetilde{H}_{A,P}) &= \inf_{Q \in \widetilde{H}_{A,P}} \widetilde{d}(X, Q) \\ &\stackrel{(1)}{=} \inf_{Q \in \widetilde{H}_{A,P}} d(\phi(X), \phi(Q)) \\ &\stackrel{(2)}{=} \inf_{R \in \mathcal{H}} d(\phi(X), R) \\ &\stackrel{(3)}{=} d(\phi(X), \mathcal{H}). \end{aligned} \quad (110)$$

2015 The above comes from the following.

- 2016 (1) Isometry.
- 2017 (2) Eq. (109).
- 2018 (3) Definition of margin distance.

2019 Combining the above, we have

$$\begin{aligned} v^{\widetilde{\mathcal{M}}}(X; P, A) &= \text{sign}(\langle A, \widetilde{\text{Log}}_P(X) \rangle_P) \|A\|_P \widetilde{d}(X, \widetilde{H}_{A,P}) \\ &= \text{sign} \left(\langle \text{Log}_{\phi(P)}(\phi(X)), \phi_{*,P}(A) \rangle_{\phi(P)} \right) \|\phi_{*,P}(A)\|_{\phi(P)} d(X, H_{\phi_{*,P}(A), \phi(P)}) \\ &= v^{\mathcal{M}}(\phi(X); \phi(P), \phi_{*,P}(A)). \end{aligned} \quad (111)$$

2020 Finally, let us further consider trivialization. By isometry, we have the following:

$$\begin{aligned} A &= \widetilde{\Gamma}_{E \rightarrow P}(Z) \\ &= \phi_{*,P}^{-1}(\Gamma_{\phi(E) \rightarrow \phi(P)}(\phi_{*,E}(Z))), \end{aligned} \quad (112)$$

$$\begin{aligned} P &= \widetilde{\text{Exp}}_E(\gamma[Z]) \\ &= \phi^{-1} \left(\text{Exp}_{\phi(E)}(\gamma[\phi_{*,E}(Z)]) \right). \end{aligned} \quad (113)$$

2052 Then, we have
 2053

$$\phi_{*,P}(A) = \Gamma_{\phi(E) \rightarrow \phi(P)}(\phi_{*,E}(Z)), \quad (114)$$

$$\phi(P) = \text{Exp}_{\phi(E)}(\gamma[\phi_{*,E}(Z)]). \quad (115)$$

2056 Putting the above two equations into Eq. (111), we have
 2057

$$\begin{aligned} v^{\mathcal{M}}(X; Z, \gamma) &= v^{\mathcal{M}}(X; P, A) \\ &= v^{\mathcal{M}}(\phi(X); \phi(P), \phi_{*,P}(A)) \\ &= v^{\mathcal{M}}\left(\phi(X); \text{Exp}_{\phi(E)}(\gamma[\phi_{*,E}(Z)]), \Gamma_{\phi(E) \rightarrow \phi(P)}(\phi_{*,E}(Z))\right) \\ &= v_k^{\mathcal{M}}(\phi(X); \phi_{*,E}(Z_k), \gamma_k). \end{aligned} \quad (116)$$

2064 \square
 2065

2066 Thm. 3.1 is a special case of Lem. J.1 and can be readily proven accordingly.
 2067

2068 *Proof of Thm. 3.1. MLR:* In Euclidean space \mathbb{R}^m , simple computations show that Eq. (3) becomes
 2069 Eq. (2), where the latter is equal to $\langle a_k, x - p_k \rangle$. Based on Lem. J.1, we have
 2070

$$\begin{aligned} v_k(X; Z_k, \gamma_k) &= v_k^{\mathbb{R}^m}(\phi(X); \phi_{*,E}(Z_k), \gamma_k), \\ &= \langle \phi(X) - \gamma_k[\phi_{*,E}(Z_k)], \phi_{*,E}(Z_k) \rangle \\ &= \langle \phi(X), \phi_{*,E}(Z_k) \rangle - \gamma_k \|\phi_{*,E}(Z_k)\|, \end{aligned} \quad (117)$$

2075 **Margin hyperplane:** In Euclidean space \mathbb{R}^m , the Riemannian margin hyperplane becomes the
 2076 Euclidean one, which is parameterized by $\langle a_k, x - p_k \rangle = 0$. Together with Eq. (117), the results can
 2077 be easily obtained. \square
 2078

2079 J.2 PROOF OF PROP. 3.2

2080 *Proof.* First, we have the following:

$$\Theta(I) = I, \quad (118)$$

$$\text{Chol}(I) = I, \quad (119)$$

$$\log_{*,I}(V) = V, \quad \forall V \in \text{Hol}(n), \quad (120)$$

$$\log_{*,I}(V) = V, \quad \forall V \in \text{LT}^0(n), \quad (121)$$

$$\mathcal{D}^*(I) = I. \quad (122)$$

2089 Putting the above into Eqs. (25), (29) and (44), one can directly get the result w.r.t. ECM, LECM,
 2090 and OLM. For LSM, based Eq. (48), we have

$$\begin{aligned} \text{Log}_{*,I}^*(V) &= \log_{*,\Sigma}\left(\Delta V \Delta + \frac{1}{2}(V^0 \Sigma + \Sigma V^0)\right) \\ &\stackrel{(1)}{=} V + \frac{1}{2}(V^0 + V^0) \\ &\stackrel{(2)}{=} V - \text{diag}(V\mathbf{1}). \end{aligned} \quad (123)$$

2097 The above comes from the following.
 2098

$$(1) \Sigma = \Delta = I$$

$$(2)$$

$$\begin{aligned} V^0 &= -2 \text{diag}\left((I_n + \Sigma)^{-1} \Delta V \Delta \mathbf{1}\right) \\ &= -\text{diag}(V\mathbf{1}) \end{aligned} \quad (124)$$

2105 \square

2106 J.3 PROOF OF THM. 3.6
2107

2108 Denote $\mathbf{0}_n$ and $\mathbf{0}_m$ as the $n \times n$ and $m \times m$ zero matrices. Let $d_n = \frac{n(n-1)}{2}$ and $d_m = \frac{m(m-1)}{2}$ be
2109 the manifold dimensions of $\text{Cor}^+(n)$ and $\text{Cor}^+(m)$, respectively. We have the following general
2110 results.

2111 **Lemma J.2.** *Let $(\text{Cor}^+(n), g^n)$ be isometric to \mathbb{R}^{d_n} by the diffeomorphism $\phi : \text{Cor}^+(n) \rightarrow \mathbb{R}^{d_n}$,
2112 and $(\text{Cor}^+(m), g^m)$ be isometric to \mathbb{R}^{d_m} by the diffeomorphism $\phi : \text{Cor}^+(m) \rightarrow \mathbb{R}^{d_m}$. The
2113 diffeomorphism satisfies $I_n = (\phi)^{-1}(\mathbf{0}_n)$ and $I_m = (\phi)^{-1}(\mathbf{0}_m)$. The correlation FC layer $\mathcal{F} :
2114 \text{Cor}^+(n) \rightarrow \text{Cor}^+(m)$ for the input $X \in \text{Cor}^+(n)$ is
2115*

$$2116 \quad 2117 \quad 2118 \quad Y = (\phi)^{-1} \left(\sum_{i=1}^{d_m} v_i(X) e_i \right), \quad (125)$$

2119 where $\{e_i\}_{i=1}^{d_m}$ is the canonical orthonormal basis over \mathbb{R}^{d_m} with $e_i = (\delta_{ik})_{k=1}^{d_m}$ for each i . Here,
2120 $\{v_i(X)\}_{i=1}^{d_m}$ is given by Thm. 3.1: $v_i(X) = \langle \phi(X), \phi_{*, I_n}(Z_i) \rangle - \gamma_i \|\phi_{*, I_n}(Z_i)\|$, with $Z_i \in \mathbb{R}^{d_n}$
2121 and $\gamma_i \in \mathbb{R}$ as the FC parameters.
2122

2123 *Proof of Lem. J.2.* For simplicity, we use I and $\mathbf{0}$ for the identity and zero matrices. Let $\{O_k =
2124 \phi_{*, I}^{-1}(e_k)\}_{i=1}^{d_m}$. Then $\{O_k\}_{i=1}^{d_m}$ is an orthonormal basis over $T_I \text{Cor}^+(m)$.
2125

2126 The LHS of Eq. (8) is
2127

$$\begin{aligned} 2128 \quad 2129 \quad & \text{sign} (\langle \text{Log}_I(Y), O_k \rangle_I) d(Y, H_{O_k, I}) d(Y, H_{O_k, I}) \\ 2130 \quad & \stackrel{(1)}{=} \text{sign} (\langle (\phi_{*, I})^{-1} \phi(Y), O_k \rangle_I) d(Y, H_{O_k, I}) \\ 2131 \quad & \stackrel{(2)}{=} \text{sign} (\langle \phi(Y), e_k \rangle) d(Y, H_{O_k, I}) \\ 2132 \quad & \stackrel{(3)}{=} \text{sign} (\langle \phi(Y), e_k \rangle) d(\phi(Y), H_{e_k, \mathbf{0}}) \\ 2133 \quad & = (\phi(Y))_k, \end{aligned} \quad (126)$$

2136 where (1-2) come from the isometry, and (3) comes from Eq. (110).
2137

2138 The RHS of Eq. (8) can be implied by Thm. 3.1. \square
2139

2140 Lem. J.2 can be naturally extended to the cases where the inner products of \mathbb{R}^{d_n} and \mathbb{R}^{d_m} are not
2141 canonical.

2142 **Lemma J.3.** *Following all the notation in Lem. J.2, we further assume that the inner products $Q^n(\cdot, \cdot)$
2143 over \mathbb{R}^{d_n} and $Q^m(\cdot, \cdot)$ over \mathbb{R}^{d_m} are not necessarily canonical. In addition, $f : (\mathbb{R}^{d_m}, Q^m(\cdot, \cdot)) \rightarrow
2144 (\mathbb{R}^{d_m}, \langle \cdot, \cdot \rangle)$ is a linear isometry to the canonical inner product. Then, we have
2145*

$$2146 \quad 2147 \quad 2148 \quad Y = \phi^{-1} \circ f^{-1} \left(\sum_{i=1}^{d_m} v_i(X) f^{-1}(e_i) \right), \quad (127)$$

$$2149 \quad v_i(X) = Q^n(\phi(X), \phi_{*, I_n}(Z_i)) - \gamma_i \|\phi_{*, I_n}(Z_i)\|^{Q^n}, \quad (128)$$

2150 where $\|\cdot\|^{Q^n}$ is the norm induced by Q^n .
2151

2153 *Proof of Lem. J.3.* First, we denote
2154

$$2155 \quad \psi^m = f \circ \phi : (\text{Cor}^+(m), g^m) \rightarrow (\mathbb{R}^{d_m}, \langle \cdot, \cdot \rangle). \quad (129)$$

2156 Note that the differential of any linear map between vector spaces is itself. The rest of the proof is
2157 identical to that of Lem. J.2. \square
2158

2159 Now, we present the proof of Thm. 3.6.

$$\begin{array}{l}
2160 \quad \left(\begin{array}{cccccc} 0 & 0 & 0 & \cdots & 0 \\ l_{21} & 0 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{m1} & l_{m2} & l_{m3} & \cdots & 0 \end{array} \right) \quad L \in \text{LT}^0(m) \\
2161 \quad \left(\begin{array}{ccccc} 0 & \star & \star & \cdots & \star \\ h_{21} & 0 & \star & \cdots & \star \\ h_{31} & h_{32} & 0 & \cdots & \star \\ \vdots & \vdots & \vdots & \ddots & \star \\ h_{m1} & h_{m2} & h_{m3} & \cdots & 0 \end{array} \right) \quad H \in \text{Hol}(m) \\
2162 \quad \left(\begin{array}{ccccc} r_{11} & \star & \cdots & \cdots & \star \\ r_{21} & r_{22} & \cdots & \cdots & \star \\ \vdots & \vdots & \ddots & \ddots & \star \\ r_{m-1,1} & r_{m-1,2} & \cdots & \cdots & \star \\ -\sum_{i=1}^{m-1} r_{i1} & -\sum_{i=1}^{m-1} r_{i2} & \cdots & \sum_{j=1}^{m-1} \sum_{i=1}^{m-1} r_{ij} & \end{array} \right) \quad R \in \text{Row}_0(m) \\
2163 \\
2164 \\
2165
\end{array}$$

Figure 10: Illustration of the Euclidean spaces $\text{LT}^0(m)$, $\text{Hol}(m)$ and $\text{Row}_0(m)$, where \star can be obtained by symmetry.

2168

2169

2170 *Proof of Thm. 3.6.* As ECM, LECM, OLM, and LSM are pullback metrics from Euclidean spaces,
2171 we resort to Lem. J.2 and its extension Lem. J.3. Denoting the zero matrix as $\mathbf{0}$, we have the following:

$$2172 \quad \phi^{\text{EC}}(I_n) = \log \circ \Theta(I_n) = \mathbf{0} \in \text{LT}^0(n), \quad (130)$$

$$2173 \quad \text{Log}^\circ(I_n) = \mathbf{0} \in \text{Hol}(n), \quad (131)$$

$$2174 \quad \text{Log}^*(I_n) = \mathbf{0} \in \text{Row}_0(n). \quad (132)$$

2175

Therefore, the identity matrix is indeed the origin defined in Lem. J.2.

2177

2178 Recalling Lem. J.2, the prototype space is the vector space with the standard vector inner product.
2179 Obviously, $\text{LT}^0(m)$, $\text{Hol}(m)$, and $\text{Row}_0(m)$ are linearly isomorphic to $\mathbb{R}^{\frac{m(m-1)}{2}}$. As shown in
2180 Fig. 10, each $L \in \text{LT}^0(m)$ can be identified with a vector of its lower triangular part. Besides,
2181 $\text{LT}^0(m)$ with the canonical matrix inner product is identified with $\mathbb{R}^{\frac{m(m-1)}{2}}$ with standard vector
2182 inner product. Therefore, the basis over $\text{LT}^0(n)$ corresponding to the canonical orthonormal basis
2183 over $\mathbb{R}^{\frac{m(m-1)}{2}}$ is

$$2184 \quad (\text{LT}^0(m), \langle \cdot, \cdot \rangle) : U_{ij}^{\text{LT}^0(m)} = E_{ij}, \quad 1 \leq j < i \leq m, \quad (133)$$

2185 where $E_{ij} \in \mathbb{R}^{m \times m}$ is the standard basis matrix, with the (k, l) -th element defined as

2186

$$2187 \quad (E_{ij})_{kl} = \begin{cases} 1 & \text{if } k = i \text{ and } l = j, \\ 0 & \text{otherwise.} \end{cases} \quad (134)$$

2188

Without loss of generality, we identify $(\text{LT}^0(m), \langle \cdot, \cdot \rangle)$ with $(\mathbb{R}^{\frac{m(m-1)}{2}}, \langle \cdot, \cdot \rangle)$, and refer to
2190 $\{E_{ij}\}_{1 \leq j < i \leq m}$ as the canonical orthonormal basis.

2191

2192 However, $\{E_{ij}\}$ is neither a canonical orthonormal basis nor even orthonormal for $\text{Hol}(m)$ and
2193 $\text{Row}_0(m)$ under the standard matrix inner product. According to Lem. J.3, we only need to find the
2194 linear isometry that maps these two spaces into $(\text{LT}^0(m), \langle \cdot, \cdot \rangle)$. By Fig. 10, we have the following
2195 linear isometries to pull back these two inner products to the standard ones over $\text{LT}^0(m)$:

2196

2197

$$f_{\text{Hol}(m) \rightarrow \text{LT}^0(m)} : (\text{Hol}(m), \langle \cdot, \cdot \rangle) \rightarrow (\text{LT}^0(m), \langle \cdot, \cdot \rangle),$$

$$\text{Hol}(m) \ni H \mapsto \sqrt{2} \lfloor H \rfloor \in \text{LT}^0(m), \quad (135)$$

2198

2199

$$f_{\text{Row}_0(m) \rightarrow \text{LT}^0(m)} : (\text{Row}_0(m), \langle \cdot, \cdot \rangle) \rightarrow (\text{LT}^0(m), \langle \cdot, \cdot \rangle),$$

$$\text{Row}_0(m) \ni R \mapsto \sqrt{6} \lfloor \tilde{R} \rfloor + \sqrt{3}\mathbb{D}(\tilde{R}) \in \text{LT}^0(m),$$

2200

2201

2202

where $\tilde{R} \in \mathcal{S}^{m-1}$ is the leading principal submatrix of order $m-1$ of R . The bases
2203 $f_{\text{Hol}(m) \rightarrow \text{LT}^0(m)}^{-1}(\{E_{ij}\})$ and $f_{\text{Row}_0(m) \rightarrow \text{LT}^0(m)}^{-1}(\{E_{ij}\})$ are as follows:

2204

2205

2206

2207

$$(\text{Hol}(m), \langle \cdot, \cdot \rangle) : U_{ij}^{\text{Hol}(m)} = \frac{E_{ij} + E_{ji}}{\sqrt{2}}, \quad 1 \leq j < i \leq m \quad (136)$$

2208

2209

2210

2211

2212

2213

Putting the required diffeomorphisms and v_{ij}^g in Thm. 3.3 into Lem. J.3 for ECM, LECM, OLM, and
2212 LSM, the corresponding FC layers can be readily obtained.

□

2214 J.4 PROOF OF PROP. 4.1
22152216 *Proof.* First, we review the isometries between the open hemisphere and hyperboloid (Thanwerdas &
2217 Pennec, 2022b, Eqs. (4.1-4.2)), and the one between Poincaré ball and hyperboloid (Skopek et al.,
2218 2020, Sec. 2.1):
2219

2220
$$\psi_{\text{HS}^n \rightarrow \mathbb{H}^n} : (x_1, \dots, x_{n+1})^\top \in \text{HS}^n \mapsto \frac{1}{x_{n+1}} (x_1, \dots, x_n, 1)^\top \in \mathbb{H}^n, \quad (138)$$

2223
$$\psi_{\mathbb{H}^n \rightarrow \text{HS}^n} : (y_1, \dots, y_{n+1})^\top \in \mathbb{H}^n \mapsto \frac{1}{y_{n+1}} (y_1, \dots, y_n, 1)^\top \in \text{HS}^n, \quad (139)$$

2225
$$\psi_{\mathbb{H}^n \rightarrow \mathbb{P}^n} : (x^T, x_{n+1})^\top \in \mathbb{H}^n \mapsto \frac{x}{1+x_{n+1}} \in \mathbb{P}^n, \quad (140)$$

2227
$$\psi_{\mathbb{P}^n \rightarrow \mathbb{H}^n} : y \in \mathbb{P}^n \mapsto \left(\frac{2y^T}{1-\|y\|^2}, \frac{1+\|y\|^2}{1-\|y\|^2} \right)^T = \frac{1}{1-\|y\|^2} \begin{pmatrix} 2y \\ 1+\|y\|^2 \end{pmatrix} \in \mathbb{H}^n. \quad (141)$$

2231 For any $(x^\top, x_{n+1})^\top \in \text{HS}^n$ and $y \in \mathbb{P}^n$, we have
2232

2233
$$\begin{aligned} \psi_{\text{HS}^n \rightarrow \mathbb{P}^n} \left(\begin{pmatrix} x \\ x_{n+1} \end{pmatrix} \right) &= \psi_{\mathbb{H}^n \rightarrow \mathbb{P}^n} \circ \psi_{\text{HS}^n \rightarrow \mathbb{H}^n} \left(\begin{pmatrix} x \\ x_{n+1} \end{pmatrix} \right) \\ &= \psi_{\mathbb{H}^n \rightarrow \mathbb{P}^n} \left(\frac{1}{x_{n+1}} \begin{pmatrix} x \\ 1 \end{pmatrix} \right) \\ &= \frac{x}{x_{n+1}} \frac{1}{1 + \frac{1}{x_{n+1}}} \\ &= \frac{x}{1+x_{n+1}} \end{aligned} \quad (142)$$

2243
$$\begin{aligned} \psi_{\mathbb{P}^n \rightarrow \text{HS}^n} (y) &= \psi_{\mathbb{H}^n \rightarrow \text{HS}^n} \circ \psi_{\mathbb{P}^n \rightarrow \mathbb{H}^n} (y) \\ &= \psi_{\mathbb{P}^n \rightarrow \mathbb{H}^n} \left(\frac{1}{1-\|y\|^2} \begin{pmatrix} 2y \\ 1+\|y\|^2 \end{pmatrix} \right) \\ &= \frac{1}{1-\|y\|^2} \begin{pmatrix} 2y \\ 1-\|y\|^2 \end{pmatrix} \end{aligned} \quad (143)$$

2253 \square
22542255 J.5 PROOF OF PROP. F.1
22562259 *Proof.* We denote $D = \mathcal{D}(H)$. By Eq. (46), we have
2260

2261
$$\begin{aligned} dY &= dD + dH \\ dD &= -\text{diag} \left((H^0)^{-1} \mathbb{D} (\exp_{*,Y}(dH)) \mathbf{1} \right). \end{aligned} \quad (144)$$

2265 Following Ionescu et al. (2015), we denote the inner product $\langle \cdot, \cdot \rangle$ as $\cdot : \cdot$ for simplicity. By the
2266 invariance of differential and properties of trace (Ionescu et al., 2015, Eqs. 67-72), we have the

2268 following:

$$\begin{aligned}
 \frac{\partial l}{\partial Y} : dY &= \frac{\partial l}{\partial Y} : dD + \frac{\partial l}{\partial Y} : dH \\
 &= \frac{\partial l}{\partial Y} : -\text{diag}((H^0)^{-1}\mathbb{D}(\exp_{*,Y}(dH))\mathbf{1}) + \frac{\partial l}{\partial Y} : dH \\
 &\stackrel{(1)}{=} \text{tr}\left(-\text{Dv}\left(\frac{\partial l}{\partial Y}\right)^T (H^0)^{-1}\mathbb{D}(\exp_{*,Y}(dH))\mathbf{1}\right) + \frac{\partial l}{\partial Y} : dH \\
 &\stackrel{(2)}{=} \text{tr}\left(-\left[\mathbf{1}\text{Dv}\left(\frac{\partial l}{\partial Y}\right)^T (H^0)^{-1}\right]\mathbb{D}(\exp_{*,Y}(dH))\right) + \frac{\partial l}{\partial Y} : dH \\
 &= -(H^0)^{-1}\text{Dv}\left(\frac{\partial l}{\partial Y}\right)\mathbf{1}^T : \mathbb{D}(\exp_{*,Y}(dH)) + \frac{\partial l}{\partial Y} : dH \\
 &= -\mathbb{D}\left((H^0)^{-1}\text{Dv}\left(\frac{\partial l}{\partial Y}\right)\mathbf{1}^T\right) : \exp_{*,Y}(dH) + \frac{\partial l}{\partial Y} : dH \\
 &\stackrel{(3)}{=} \left[\frac{\partial l}{\partial Y} - \exp_{*,Y}\left(\mathbb{D}\left((H^0)^{-1}\text{Dv}\left(\frac{\partial l}{\partial Y}\right)\mathbf{1}^T\right)\right)\right] : dH \\
 &\stackrel{(4)}{=} \text{off}\left[\frac{\partial l}{\partial Y} - \exp_{*,Y}\left(\mathbb{D}\left((H^0)^{-1}\text{Dv}\left(\frac{\partial l}{\partial Y}\right)\mathbf{1}^T\right)\right)\right] : dH
 \end{aligned} \tag{145}$$

2289 The above comes from the following.

2291 (1)

$$A : \text{diag}(b) = \text{Dv}(A) : b, \quad \forall A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, \tag{146}$$

$$a : b = a^\top b = \text{tr}(a^\top b), \quad \forall a, b \in \mathbb{R}^n. \tag{147}$$

2296 (2) Cyclic property of the trace for matrices A, B , and C of compatible dimensions:
2297 $\text{tr}(ABC) = \text{tr}(CAB)$.

2299 (3) For any $A \in \mathbb{R}^{n \times n}$ and $S \in \mathcal{S}^n$, by the properties of trace, we have

$$\begin{aligned}
 A : \exp_{*,Y}(S) &= A : U(L \odot (U^\top S U))U^\top \\
 &= U(L \odot U^\top A U)U^\top : S \\
 &= \exp_{*,Y}(A) : S.
 \end{aligned} \tag{148}$$

2305 (4) H has zero diagonal elements.

2307 The invariance of the first-order differential gives

$$\frac{\partial l}{\partial Y} : dY = \frac{\partial l}{\partial H} : dH. \tag{149}$$

2311 By the last equation in Eq. (145), we can differentiate $\frac{\partial l}{\partial C}$. □

2315 J.6 PROOF OF PROP. F.2

2316 *Proof.* Denoting $\Sigma = f(C) = \mathcal{D}^*(C)C\mathcal{D}^*(C) : \text{Cor}^+(n) \rightarrow \text{Row}_1^+(n)$, we have

$$\text{Log}_{*,C}^* = \log_{*,\Sigma} \circ f_{*,C}. \tag{150}$$

2320 Combining with the differential of Log^* shown in Eq. (48), we have the following differential
2321 equation:

$$d\Sigma = \Delta dC \Delta - (V^0 \Sigma + \Sigma V^0), \tag{151}$$

2322 with $V^0 = \text{diag}((I_n + \Sigma)^{-1} \Delta dC \Delta \mathbf{1})$. Similar with Prop. F.1, we have the following:
 2323

$$\begin{aligned}
 2324 \quad \frac{\partial l}{\partial \Sigma} : d\Sigma &= \frac{\partial l}{\partial \Sigma} : (\Delta dC \Delta - (V^0 \Sigma + \Sigma V^0)) \\
 2325 \quad &= \left(\Delta \frac{\partial l}{\partial \Sigma} \Delta \right) : dC - \frac{\partial l}{\partial \Sigma} : (V^0 \Sigma + \Sigma V^0) \\
 2326 \quad &= \left(\Delta \frac{\partial l}{\partial \Sigma} \Delta \right) : dC - \left(\frac{\partial l}{\partial \Sigma} \Sigma + \Sigma \frac{\partial l}{\partial \Sigma} \right) : \text{diag}((I_n + \Sigma)^{-1} \Delta dC \Delta \mathbf{1}) \\
 2327 \quad &= \left(\Delta \frac{\partial l}{\partial \Sigma} \Delta \right) : dC - \text{Dv} \left(\frac{\partial l}{\partial \Sigma} \Sigma + \Sigma \frac{\partial l}{\partial \Sigma} \right) : ((I_n + \Sigma)^{-1} \Delta dC \Delta \mathbf{1}) \\
 2328 \quad &= \left(\Delta \frac{\partial l}{\partial \Sigma} \Delta \right) : dC - \text{tr} \left(\tilde{v}^\top (I_n + \Sigma)^{-1} \Delta dC \Delta \mathbf{1} \right) \\
 2329 \quad &= \left(\Delta \frac{\partial l}{\partial \Sigma} \Delta \right) : dC - \text{tr} \left(\Delta \mathbf{1} \tilde{v}^\top (I_n + \Sigma)^{-1} \Delta dC \right) \\
 2330 \quad &= \left(\Delta \frac{\partial l}{\partial \Sigma} \Delta \right) : dC - \left(\Delta (I_n + \Sigma)^{-1} \tilde{v} \mathbf{1}^\top \Delta \right) : dC \\
 2331 \quad &= \left(\Delta \frac{\partial l}{\partial \Sigma} \Delta - \Delta (I_n + \Sigma)^{-1} \tilde{v} \mathbf{1}^\top \Delta \right) : dC \\
 2332 \quad &= \left(\Delta \left(\frac{\partial l}{\partial \Sigma} - (I_n + \Sigma)^{-1} \tilde{v} \mathbf{1}^\top \right) \Delta \right) : dC. \\
 2333 \quad & \\
 2334 \quad & \\
 2335 \quad & \\
 2336 \quad & \\
 2337 \quad & \\
 2338 \quad & \\
 2339 \quad & \\
 2340 \quad & \\
 2341 \quad & \\
 2342 \quad & \\
 2343 \quad & \\
 2344 \quad &
 \end{aligned} \tag{152}$$

2345 By imposing symmetrization, we can obtain the results. \square
 2346

2347 J.7 PROOF OF THM. G.1

2349 As β -splitting is the inverse of β -concatenation (Shimizu et al., 2021), we only need to show the case
 2350 w.r.t. β -concatenation. Besides, it suffices to prove the 2D case, which is shown in the following
 2351 lemma.

2352 **Lemma J.4.** *Given $x_{ij} \in \mathbb{P}^{n_j}$ with $\{i \in 1, \dots, N_i\}$ and $\{1, \dots, N_j\}$, applying the β -concatenation
 2353 sequentially 2 times in the order $j \rightarrow i$ is equivalent to a single β -concatenation along all indices
 2354 simultaneously.*

2355 *Proof.* Denoting $d = n_j \times N_j$ and $v_{ij} = \text{Log}_0(x_{ij})$, we have the following

$$\begin{aligned}
 2356 \quad &\text{Exp}_0 \left(\text{concat}_{i=1}^{N_i} \left(\beta_{N_i \times d} \beta_d^{-1} \text{concat}_{j=1}^{N_j} \left(\beta_d \beta_{n_j}^{-1} v_{ij} \right) \right) \right) \\
 2357 \quad &= \text{Exp}_0 \left(\text{concat}_{i=1, j=1}^{i=N_i, j=N_j} \left(\beta_{N_i \times d} \beta_d^{-1} \beta_d \beta_{n_j}^{-1} v_{ij} \right) \right) \\
 2358 \quad &= \text{Exp}_0 \left(\text{concat}_{i=1, j=1}^{i=N_i, j=N_j} \left(\beta_{N_i \times d} \beta_{n_j}^{-1} v_{ij} \right) \right). \\
 2359 \quad & \\
 2360 \quad & \\
 2361 \quad & \\
 2362 \quad &
 \end{aligned} \tag{153}$$

2363 The last line implies the claim. \square
 2364

2365 A special case of the above lemma is where all n_j are identical.

2366 **Corollary J.5.** *Given $x_{ij} \in \mathbb{P}^n$ with $\{i \in 1, \dots, N_i\}$ and $\{1, \dots, N_j\}$, applying the β -concatenation
 2367 sequentially 2 times in the order $j \rightarrow i$ is equivalent to a single β -concatenation along all indices
 2368 simultaneously.*

2369 Thm. G.1 can be obtained by Lem. J.4 and Cor. J.5.

2370
 2371
 2372
 2373
 2374
 2375