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ABSTRACT

Representations on the Symmetric Positive Definite (SPD) manifold have garnered
significant attention across different applications. In contrast, the manifold of full-
rank correlation matrices, a normalized alternative to SPD matrices, remains largely
underexplored. This paper introduces Riemannian networks over the correlation
manifold, leveraging five recently developed correlation geometries. We system-
atically extend Multinomial Logistic Regression (MLR), Fully Connected (FC),
and convolutional layers to these geometries. Additionally, we present methods for
accurate backpropagation for two correlation geometries. Experiments comparing
our approach against existing SPD and Grassmannian networks demonstrate its
effectiveness.

1 INTRODUCTION

Covariance matrices in the Symmetric Positive Definite (SPD) manifold have achieved significant
success in various applications, with many deep network architectures adapted to leverage their
Riemannian geometries (Huang & Van Gool, 2017; Brooks et al., 2019; Chakraborty et al., 2020;
Cruceru et al., 2021; Pan et al., 2022; Kobler et al., 2022; Wang et al., 2023; Chen et al., 2023; Katsman
et al., 2024; Li et al., 2025; Pouliquen et al., 2025; Wang et al., 2025). In contrast, correlation matrices,
despite serving as statistically compact alternatives to covariance matrices (Archakov & Hansen,
2024), remain unexplored in deep learning.

Only recently have Riemannian structures been developed for correlation matrices. David & Gu
(2019) identified full-rank correlation matrices as a quotient manifold of the SPD manifold, referred
to as the correlation manifold. However, this quotient geometry does not guarantee uniqueness or
closed forms of the Riemannian logarithm and Fréchet mean (Thanwerdas & Pennec, 2022b, Sec.
1.1). To close this gap, Thanwerdas & Pennec (2022b) proposed three theoretically and computation-
ally convenient geometries: Euclidean–Cholesky Metric (ECM), Log-Euclidean–Cholesky Metric
(LECM), and Poly-Hyperbolic-Cholesky Metric (PHCM). Thanwerdas (2024) further introduced
two efficient permutation-invariant metrics: Off-Log Metric (OLM) and Log-Scaled Metric (LSM).
These Riemannian structures provide promising foundations for intrinsically extending Euclidean
deep learning to the correlation manifold.

On the other hand, several fundamental layers in Euclidean deep learning, such as Multinomial
Logistics Regression (MLR), Fully Connected (FC), and convolutional layers, have been extended to
different manifolds by leveraging their rich Riemannian or algebraic structures (Huang & Van Gool,
2017; Huang et al., 2017; 2018; Ganea et al., 2018; Chakraborty et al., 2020; Chen et al., 2022;
Shimizu et al., 2021; Bdeir et al., 2024; Chen et al., 2024d; Nguyen et al., 2024; 2025). For the SPD
manifold, these layers have been extended into the SPD manifold based on bilinear mapping (Huang
& Van Gool, 2017), weighted Fréchet mean (Chakraborty et al., 2020), gyrovector spaces (Nguyen &
Yang, 2023; Nguyen et al., 2024), Riemannian geometry (Chen et al., 2024a;d), and invariant metric
over the symmetric space (Nguyen et al., 2025), respectively.

Inspired by these advancements, we develop MLR, FC, and convolutional layers for correla-
tion manifolds in a geometrically intrinsic manner. We begin by systematically introducing
four types of correlation-based MLR, FC, and convolutional layers, corresponding to ECM,
LECM, OLM, and LSM, respectively. Besides, we discuss backpropagation through Rieman-
nian computations over the correlation manifold, with novel approaches for accurate backprop-
agation under OLM and LSM. As the above four metrics have zero curvature, our next focus
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Table 1: Correspondence between Euclidean and correlation-based layers. For convolution, kernel-
based FC refers to applying convolution kernel to a receptive field, which is an FC transformation.

Space Euclidean Rn Correlation Cor+(n)

c-class MLR f : Rn ∋ x 7→ p = Softmax(Ax+ b) ∈ Rc f : Cor+(n) ∋ C 7→ p ∈ Rc

FC layer F : Rn ∋ x 7→ y = Ax+ b ∈ Rm F : Cor+(n) ∋ C 7→ Y ∈ Cor+(m)
Convolution Kernel-based FC in each receptive field Kernel-based correlation FC in each receptive field
Geometry Euclidean ECM, LECM, OLM, LSM and PHCM

is to build correlation layers under the geometry of a non-zero curvature. We target PHCM, in-
duced by the product of multiple hyperbolic spaces (Thanwerdas & Pennec, 2022b, Thm. 4.4).

Correlation Networks 
(CorNets) under
• ECM
• LECM
• OLM
• LSM
• PHCM

Sec. 3.2

ECM, LECM, OLM, LSM 
Correlation FC, Conv Layers

From basic layers 
to concrete 
networks

Theories

ECM, LECM, OLM, LSM 
Correlation MLR

Sec. 3.3

Sec. 4
PHCM Correlation 

MLR, FC, Conv Layers

Applications
Backpropagation over 

Correlation Geometries

App. F

Geometries

ECM

LECM

OLM

LSM

PHCM

Figure 1: Overview of our theoretical derivation.

By adapting existing Poincaré-based hyperbolic
MLR, FC, and convolutional layers designed
for a single Poincaré ball (Ganea et al., 2018;
Shimizu et al., 2021), we construct their coun-
terparts on the correlation manifold. With these
basic layers, we can construct Correlation Net-
works (CorNets) under different geometries.
The effectiveness is validated by experiments
comparing our approach against existing SPD
and Grassmannian baselines.

Tab. 1 summarizes the correspondence between Euclidean and our correlation layers, and Fig. 1
illustrates the overview of our theoretical derivation. Due to page limits, all the proofs are presented
in App. J. In summary, our main contributions are as follows:

1. We systematically extend MLR, FC, and convolutional layers to the correlation manifold under
five geometries: four with zero curvature and one with non-zero curvature. The developed layers
enable flexible variation of the latent geometry under a consistent network architecture, allowing
for straightforward comparisons across different correlation geometries.

2. We develop accurate backpropagation of Riemannian computations under OLM and LSM.
3. We conduct experiments against existing SPD and Grassmannian networks to demonstrate the

effectiveness of correlation embeddings and networks.

2 FULL-RANK CORRELATION GEOMETRIES

Notations. For Euclidean spaces, we denote ⟨·, ·⟩ as the standard inner product over Rn or Rn×n,
with ∥·∥ as the induced norms, i.e., L2-norm for vectors and Frobenius norm for matrices. The zero
vector and matrix are collectively denoted by 0. A Riemannian manifold (M, g) endowed with
the Riemannian metric g is abbreviated asM. We denote LogP , ExpP , and ⟨·, ·⟩P = gP (·, ·) as
the Riemannian logarithm, exponentiation, and inner product at P ∈M, respectively. The parallel
transport along the geodesic from P ∈M to Q ∈M is denoted by ΓP→Q, and the geodesic distance
by d(·, ·). A summary of notations is provided in App. B.

Figure 2: Illustration of cor-
relation and SPD matrices.
Black stars denote 2× 2 corre-
lation matrices, while the red,
green, and blue dots denote
corresponding SPD matrices.

We briefly review five recently developed geometries on full-rank
correlation matrices, with details provided in App. C. Given a co-
variance matrix Σ, its correlation matrix is defined as

C = Cor(Σ) = D(Σ)−1/2ΣD(Σ)−1/2, (1)

where D(·) extracts the diagonal of Σ. The set of n × n full-rank
correlation matrices, denoted Cor+(n), forms a Riemannian man-
ifold (David & Gu, 2019, Thm. 1). As illustrated in Fig. 2, each
correlation corresponds to a surface in the SPD manifold. Recent
advances introduced five convenient Riemannian metrics: Euclidean–
Cholesky Metric (ECM), Log-Euclidean–Cholesky Metric (LECM),
Poly-Hyperbolic-Cholesky Metric (PHCM) (Thanwerdas & Pennec,
2022b), and the permutation-invariant Off-Log Metric (OLM) and
Log-Scaled Metric (LSM) (Thanwerdas, 2024). All five are pullback
metrics isometric to simpler prototype spaces: PHCM is derived
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from the product of hyperbolic spaces, while the other four are isometric to Euclidean spaces. We
first review the associated prototype spaces before discussing each metric in detail.

• LT1(n): Euclidean space of n× n lower triangular matrices with unit diagonals.

• LT0(n): Euclidean space of n× n lower triangular matrices with null diagonals.
• Hol(n): Euclidean space of n × n symmetric matrices with null diagonals. The tangent

space TCCor+(n) at C ∈ Cor+(n) can be identified with Hol(n).
• Row0(n): Euclidean space of n× n symmetric matrices with null row sum.
• Ln: Manifold of n × n lower triangular matrices with positive diagonals and unit row
L2-norm.

ECM is derived from LT1(n) by Cor+(n)
Θ=D−1(Chol(·)) Chol(·)−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−

Θ−1=Cor ◦Chol−1
LT1(n), where Θ(C) =

D(Chol(C))−1 Chol(C) for any C ∈ Cor+(n). Here, Chol(C) is the Cholesky decomposition
C = Chol(C) Chol(C)⊤ and D(·) returns a diagonal matrix consisting of the input diagonals. As
LT1(n) = I + LT0(n), ECM is essentially induced from the Euclidean space of LT0(n).
Proposition 2.1 (ECM). Let ϕEC(C) = ⌊Θ(C)⌋, where ⌊·⌋ returns a strictly lower triangular matrix.
ECM over Cor+(n) is the pullback metric from the Euclidean space LT0(n) by ϕEC.

LECM is defined by further pulling back ECM: Cor+(n)
log ◦Θ−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−

(log ◦Θ)−1=Cor ◦Chol−1 ◦ exp
LT0(n),

where log(·) : LT1(n)→ LT0(n) is the matrix logarithm with the matrix exponentiation exp(·) as
its inverse. Due to the nilpotency of LT0(n), the matrix logarithm over LT1(n) and exponentiation
over LT0(n) do not require eigendecomposition, as detailed in App. C.3.1.

OLM is derived from a permutation invariant inner product over Hol(n) by Cor+(n)
Log◦=off◦log−−−−−−−−⇀↽−−−−−−−−

Exp◦

Hol(n). For any symmetric hollow matrix H ∈ Hol(n), the operatorD(H) returns a unique diagonal
matrix, such that Exp◦(·) : Hol(n) ∋ H 7→ exp(D(H) +H) ∈ Cor+(n) is a diffeomorphism. As
shown by Archakov & Hansen (2021, Sec. 5), D(H) can be computed by the following exponentially
converging algorithm: Dk+1 = Dk − log(D(exp(Dk +H))), with D0 = 0 as the zero matrix.

LSM is derived from a permutation invariant inner product over Row0(n) by

Cor+(n)
Log⋆

−−−−−−−−−−⇀↽−−−−−−−−−−
Exp⋆=Cor ◦ exp

Row0(n). For any correlation matrix C ∈ Cor+(n), there exists a unique

positive diagonal matrix D⋆(C) such that Log⋆(·) : Cor+(n) ∋ C 7→ log(D⋆(C)CD⋆(C)) ∈
Row0(n) is a diffeomorphism. As shown by Thanwerdas (2024, Sec. 3.5), D⋆(C) corresponds to
the unique zero of f : x ∈ Rn

+ 7−→ Cx − 1
x , with Rn

+ as the n-dimensional positive vectors and
1
x =

(
1
x1
, . . . , 1

xn

)
. This could be solved by damped Newton’s method.

PHCM is defined by the product of hyperbolic open hemispheres via Cholesky decomposi-
tion. Denoting L = Chol(C) for any correlation matrix C ∈ Cor+(n), the k-th row of L is
(Lk1, . . . , Lk,k−1, Lkk, 0, . . . , 0) with Lkk > 0, which belongs to the hyperbolic space of open
hemisphere HSk−1 =

{
x ∈ Rk | ∥x∥ = 1 and xk > 0}. Therefore, Ln is identified with the product

of n− 1 open hemispheres, denoted as PHSn−1 =
∏n−1

i=1 HSi. Here, since L11 = 1 and HS0 = {1}
are trivial, they are omitted from the product. PHCM is then defined by the pullback of the Cholesky
decomposition from PHSn−1.

The Riemannian operators under all five metrics, including the Riemannian logarithm, exponentiation,
geodesic, and parallel transport, have closed-form expressions, which are reviewed in App. C. Except
for D and D⋆, all computations involved can be backpropagated by existing techniques. Although the
gradients of D and D⋆ can be approximately backpropagated by PyTorch’s autograd through their
iterative algorithms, we propose accurate alternatives in App. F.
Remark 2.2. The Euclidean inner products in the prototype spaces of ECM, LECM, LSM, and OLM
are assumed to be standard. For Cor+(n) with n ≤ 3, the invariance of OLM and LSM is nuanced
and discussed in Rmk. C.5 and App. C.3.2. However, this paper focuses on n > 3.
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3 LOG-EUCLIDEAN CORRELATION LAYERS

Since ECM, LECM, OLM, and LSM are derived via diffeomorphisms from Euclidean spaces, they
are collectively termed Log-Euclidean metrics (Thanwerdas, 2024). This motivates the principled
development of Multinomial Logistics Regression (MLR), Fully Connected (FC), and convolutional
layers under these four geometries. We begin by briefly revisiting the reformulation of MLR, followed
by the introduction of correlation-based MLRs, FC layers, and convolutional layers.

3.1 REVISITING MULTINOMIAL LOGISTIC REGRESSION

As shown by Lebanon & Lafferty (2004, Sec. 5), the Euclidean MLR, Softmax(Ax+ b), computing
the multinomial probability of each class k ∈ {1, . . . , C} for the input feature vector x ∈ Rn can be
reformulated as the distances from x to the margin hyperplanes describing the classes:

p(y = k | x) ∝ exp (vk(x)) , with vk(x) = sign(⟨ak, x− pk⟩)∥ak∥ d(x,Hak,pk
), (2)

where ak, pk ∈ Rn, and Hak,pk
= {x ∈ Rn : ⟨ak, x − pk⟩ = 0} is a margin hyperplane, with

d(x,Hak,pk
) as the margin distance to the hyperplane. Recently, Chen et al. (2024d) generalized this

formulation to general manifolds. Given an m-dimensional manifoldM, the MLR is defined as

p(y = k | X) ∝ exp (vk(X)) , with vk(X) = sign(⟨Ak,LogPk
(X)⟩Pk )∥Ak∥Pk d(X,HAk,Pk ), (3)

d(X,HAk,Pk )) = inf
Q∈HAk,Pk

d(X,Q), with HAk,Pk = {X ∈ M :
〈
LogPk

(X), Ak
〉
Pk

= 0}, (4)

whereX ∈M is the manifold-valued input andHAk,Pk
is a Riemannian hyperplane, while Pk ∈M

and Ak ∈ TPk
M for 1 ≤ k ≤ C are parameters. The key challenge is the optimization problem

in Eq. (4). To circumvent this problem, Chen et al. (2024d, Sec. 3.2) relaxed it via Riemannian
trigonometry. Unlike their method, this paper directly solves Eq. (4) to more faithfully respect the
different correlation geometries. In addition, to avoid over-parameterization (Shimizu et al., 2021,
Sec. 3.1), we set Pk = ExpE(γk[Zk]) and Ak = ΓE→Pk

(Zk), with [Zk] =
Zk

∥Zk∥E
as the unit

direction vector of Zk. Here, E is the origin1 ofM, while γk ∈ R and Zk ∈ TEM∼= Rm are the
MLR parameters. Under this trivialization, each hyperplane HAk,Pk

is denoted as HZk,γk
. We adopt

from Lezcano Casado (2019) the term trivialization, which refers to optimizing manifold-valued
parameters via the exponential map. App. D.1 presents a more detailed review of MLR.

3.2 LOG-EUCLIDEAN CORRELATION MLRS

As all Log-Euclidean metrics are isometric to the Euclidean ones, we can solve the associated MLRs
defined by Eqs. (3) and (4) in a principled manner.
Theorem 3.1. [↓] Given m-dimensional manifold

(
M, gM

)
isometric to the standard Euclidean

space Rm by the diffeomorphism ϕ : M → Rm. Denoting E = ϕ−1(0) with 0 as the zero
vector, each vk(X) and margin hyperplane HZk,γk

in the C-class Riemannian MLR are vk(X) =
⟨ϕ(X), ϕ∗,E(Zk)⟩ − γk ∥ϕ∗,E(Zk)∥ and HZk,γk

= {X ∈ M : vk(X) = 0}, respectively. Here,
Zk ∈ TEM∼= Rm and γk ∈ R for 1 ≤ k ≤ C are MLR parameters, while ϕ∗ is the differential.

Simple computations show that

ECM: ϕEC(I) = 0; LECM: log ◦Θ(I) = 0; OLM: Log◦(I) = 0; LSM: Log⋆(I) = 0. (5)

Therefore, we define the origin of the correlation manifold under four Log-Euclidean metrics as the
identity matrix. Besides, Thm. 3.1 suggests that Log-Euclidean MLRs can be obtained modulo the
calculation of diffeomorphisms and their differentials at the identity matrix I .
Proposition 3.2 (Differentials). [↓] For any tangent vector V ∈ TICor+(n) ∼= Hol(n), the differen-
tials of ϕEC, log ◦Θ, Log◦, and Log⋆ at the identity matrix I are

ϕEC
∗,I (V ) = ⌊V ⌋ , (log ◦Θ)∗,I(V ) = ⌊V ⌋ , Log◦∗,I(V ) = V, Log⋆∗,I(V ) = V − diag(V 1), (6)

where diag : Rn → Diag(n) returns a diagonal matrix, and 1 = (1, · · · , 1)⊤ ∈ Rn.

1The origin is a predefined point on the manifold. For the correlation, we define the identity matrix as the
origin and will explain the reason later.
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Putting Prop. 3.2 into Thm. 3.1, we obtain correlation MLRs under four Log-Euclidean.
Theorem 3.3 (Log-Euclidean MLRs). Given C ∈ Cor+(n), vk(C) in the correlation MLRs under
four Log-Euclidean metrics are

vLE
k (C) = ⟨⌊Θ(C)⌋ , ⌊Zk⌋⟩ − γk ∥⌊Zk⌋∥ , vLEC

k (C) = ⟨log ◦Θ(C), ⌊Zk⌋⟩ − γk ∥⌊Zk⌋∥ ,

vOL
k (C) = ⟨Log◦(C), Zk⟩ − γk ∥Zk∥ , vLS

k (C) =
〈
Log⋆(C),Log⋆∗,I(Zk)

〉
− γk

∥∥Log⋆∗,I(Zk)∥∥ , (7)

where Zk ∈ Hol(n) and γk ∈ R are parameters for the k-th class.

3.3 LOG-EUCLIDEAN CORRELATION FULLY CONNECTED AND CONVOLUTIONAL LAYERS

In order to build correlation FC and convolutional layers, we first reformulate the Euclidean FC layer.

The Euclidean FC layer is defined as y = Ax+ b with A ∈ Rm×n and b ∈ Rm. It can be expressed
element-wise as yk = vk(x) = ⟨ak, x − pk⟩ with ak, pk ∈ Rn and ⟨pk, ak⟩ = bk. Shimizu et al.
(2021, Sec. 3.2) reformulated the Euclidean FC layer as an operation that transforms the input x ∈ Rn

by vk(x) in the Euclidean MLR and treats the k-th output coordinates yk as the signed distance from
the hyperplane containing the origin and orthogonal to the k-th axis of the output space Rm. Based on
this, they proposed the Poincaré FC layer between Poincaré balls. We generalize this reformulation
into the correlation manifolds.
Definition 3.4 (Correlation FC layers). Given a metric g, the correlation FC layer F : Cor+(n) ∋
X 7→ Y ∈ Cor+(m) returns the output Y by solving the following d = m(m−1)/2 equations:

sign (⟨LogI(Y ), Ok⟩I) d(Y,HOk,I) = vk(X;Zk, γk), 1 ≤ k ≤ d, (8)

where I is the identity matrix, d is the dimension of Cor+(m), {Ok}dk=1 is an orthonormal basis over
TICor

+(m), d(·, ·) is the margin distance to the hyperplane HOk,I , and vNk is defined by Eq. (3) for
Cor+(n). The FC parameters are {Zk ∈ Hol(n)}dk=1 and {γk ∈ R}dk=1.
Remark 3.5. App. E.1 details how Def. 3.4 extends the SPD, Poincaré, and Euclidean FC layers.

Although Def. 3.4 is implicitly defined by d equations, the FC layers under four Log-Euclidean
geometries can be derived with explicit expressions in a principled manner. Analogous to Thm. 3.1, a
corresponding result for the FC layer is presented in Lem. J.2, which brings Log-Euclidean FC layers.
Theorem 3.6 (Log-Euclidean FC layers). [↓] Given an input correlation C ∈ Cor+(n), the correla-
tion FC layers F(·) : Cor+(n)→ Cor+(m) under different Log-Euclidean metrics are

ECM: Y = Cor ◦Chol−1
(
V EC + Im

)
,LT0(m) ∋ V EC

ij =

{
vEC
ij (C), if i > j

0, otherwise
(9)

LECM: Y = Cor ◦Chol−1 ◦ exp
(
V LEC

)
,LT0(m) ∋ V LEC

ij =

{
vLEC
ij (C), if i > j

0, otherwise
(10)

OLM: Y = Exp◦
(
V OL

)
,Hol(m) ∋ V OL

ij =


vOL
ij (C)
√

2
, if i > j

V OL
ji , if i < j

0, otherwise

(11)

LSM: Y = Cor ◦ exp
(
V LS

)
,Row0(m) ∋ V LS

ij =



vLS
ij (C)/

√
6, if m > i > j ≥ 1

vLS
ii (C)/

√
3, if m > i ≥ 1

V LS
ji , if i < j

−
∑m−1
k=1 V LS

kj , if i = m, 1 ≤ j < m∑m−1
k=1

∑m−1
l=1 V LS

lk , if i = j = m

(12)

Each vgij with g ∈ {EC,LEC,OL,LS} is defined by Eq. (7) with parameters of Zij ∈ Hol(n) and
γij ∈ R. Each (i, j) index is defined as: For vEC

ij , vLEC
ij , and vOL

ij , the indices are i, j = 1, · · · ,m
and i > j; For vLSij , the indices are i, j = 1, · · · ,m− 1 and i ≥ j.

Euclidean convolution. As shown by Shimizu et al. (2021, Sec. 3.4), the Euclidean convolution
takes the FC transformation on each receptive field. Given a c-channel concatenated feature vector
x ∈ (Rn)c in a receptive field, the k-th output of this receptive field can be described as an affine
transformation, yk = ⟨ak, x⟩ − bk. Therefore, the correlation convolution can be defined by the
correlation FC layer within each receptive field.

5
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Input 3-Channel 
Correlation Matrices

C1 ∈ Cor+(n)

C2 ∈ Cor+(n)

C3 ∈ Cor+(n)

FC Transformation on Each Receptive Field

{C1, C2} ∈
(
Cor+(n)

)2

C̃1 ∈ Cor+(m)F1

C̃2 ∈ Cor+(m)
F2

{C2, C3} ∈
(
Cor+(n)

)2

C̃3 ∈ Cor+(m)F1

C̃4 ∈ Cor+(m)
F2

Split

Figure 3: Illustration of the Log-Euclidean 1D
convolution with two kernels. The 3-channel input
are first split into two receptive fields along the
channel dimension. In each receptive field, two
kernels are applied to the product space.

Correlation convolution. The c-channel cor-
relation matrices {Ci ∈ Cor+(n)}ci=1 within a
receptive field are first concatenated into C ∈
(Cor+(n))c. For each convolution kernel, C
is then fed into a correlation FC layer.2 Fig. 3
illustrates the above process.

4 POLY-HYPERBOLIC-CHOLESKY
LAYERS

As discussed in Sec. 2, the space Ln, consist-
ing of the Cholesky factors of Cor+(n), can
be identified with the product of n − 1 open
hemispheres, PHSn−1 =

∏n−1
i=1 HSi. As shown by Cannon et al. (1997, Sec. 7), there are

five isometric models over the hyperbolic space. A widely used model is the Poincaré ball
Pn
K =

{
x ∈ Rn | ∥x∥2 < −1/K

}
, where the MLR, FC, and convolutional layers have already

been well studied (Ganea et al., 2018; Shimizu et al., 2021). In the following, we focus on the
canonical Poincaré ball (K = −1), denoted as Pn. We first identify the correlation manifold with
the poly-Poincaré space PPn−1 =

∏n−1
i=1 Pi, the product of n− 1 Poincaré balls. Then, we develop

correlation layers from the layers on a single Poincaré space.

4.1 CORRELATION GEOMETRY VIA POINCARÉ BALLS

Proposition 4.1 (Isometries). [↓] The open hemisphere HSn is isometric to the Poincaré ball

Pn by ψHSn→Pn((x⊤, xn+1)
⊤) = x

1+xn+1
, and ψPn→HSn(y) = 1

1+∥y∥2

(
2y

1− ∥y∥2
)

, with

(x⊤, xn+1)
⊤ ∈ HSn ⊂ Rn × R+ and y ∈ Pn ⊂ Rn.

Prop. 4.1 indicates that Cor+(n) can be identified with PPn−1 =
∏n−1

i=1 Pi via the diffeomorphism:

Ψ ◦ Chol : C Chol7−→




1 0 · · · 0
L21 L22 · · · 0

...
...

. . .
...

Ln1 Ln2 · · · Lnn




Ψ7−→
Ψ1(h1)

...
Ψn−1(hn−1)

(13)

with C ∈ Cor+(n), hi−1 = (Li1, · · · , Lii)
⊤ ∈ HSi−1, and Ψi = ψHSi→Pi . As different hyperbolic

models are isometric, the induced geometry is still called PHCM. This identification motivates us to
construct the correlation layers using the corresponding layers over Poincaré spaces.

4.2 REVISITING POINCARÉ LAYERS

The Poincaré MLR (Ganea et al., 2018; Shimizu et al., 2021) and FC layers on Poincaré spaces
(Shimizu et al., 2021) follow the same logic as Sec. 3.1 and Def. 3.4, respectively. Their closed-form
expressions are reviewed in App. D.2.

The Poincaré convolutional layer shares a logic similar to the correlation convolution, except it uses
β-concatenation to concatenate the Poincaré vectors in each receptive field (Shimizu et al., 2021,
Secs. 3.3-3.4), which can stabilize the norm of the Poincaré vector. The Poincaré β-concatenation
generalizes the Euclidean concatenation via the scaled concatenation in the tangent space. Given
inputs {xi ∈ Pni}Ni=1, it is defined as Exp0

(
βn
(
β−1
n1
v⊤1 , · · · , β−1

nN
v⊤N
))⊤ ∈ Pn, where vi =

Log0(xi) and n =
∑N

i=1 ni. Here, βni and βn are defined by the beta function βα = B(α/2, 1/2).
The inverse is called the Poincaré β-split. The Poincaré convolution is: (1) β-concatenating the
multi-channel feature in a given receptive field; and (2) performing the Poincaré FC transformation.

2Thm. 3.6 naturally support product geometries, which are detailed in App. E.2.
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Input 𝑐-Channel 
Correlation Matrices

… …Chol

Cholesky Factors

…

C1 ∈ Cor+(n) L1 = Chol(C1) ∈ LT+(n)

Lc = Chol(Cc) ∈ LT+(n)




1 0 · · · 0
L1

21 L1
22 · · · 0

...
...

. . .
...

L1
n1 L1

n2 · · · L1
nn







1 0 · · · 0
Lc

21 Lc
22 · · · 0

...
...

. . .
...

Lc
n1 Lc

n2 · · · Lc
nn




Φ β-Concate

Ψ1

((
L1

21, L
1
22

)!)
∈ P1

...

Ψn−1

((
L1

n1, · · · , L1
nn

)!)
∈ Pn−1

Ψ1

(
(Lc

21, L
c
22)

!
)

∈ P1

...

Ψn−1

(
(Lc

n1, · · · , Lc
nn)

!
)

∈ Pn−1

x1 ∈ PPn−1 =
∏n−1

i=1 Pi ⊂ R
n(n−1)

2

x ∈ PN

N = cn(n−1)
2Cc ∈ Cor+(n)

Poincaré FC β-Split

x̃ ∈ PM

M = m(m−1)
2

Ψ−1




1 0 · · · 0

L̃21 L̃22 · · · 0
...

...
. . .

...

L̃m1 L̃m2 · · · L̃mm




xc ∈ PPn−1 =
∏n−1

i=1 Pi ⊂ R
n(n−1)

2

C̃ ∈ Cor+(m)

Poincaré MLR
Classification

Identifying the Correlation Manifold with the Poly-Poincaré Space

FC Transformation

MLR Classification

L̃ ∈ LT+(m)

Poly-Poincaré Vectors xi

Figure 4: Illustration of the PHCM convolution and MLR. The multi-channel input correlation matri-
ces are denoted as {Ci}ci=1. For the convolutional layer, the illustration focuses on the transformation
within a receptive field and assumes a single-channel output.

4.3 BUILDING POLY-HYPERBOLIC-CHOLESKY LAYERS

PHCM MLR. The input multi-channel correlation matrices, C = {Ci ∈ Cor+(n)}ci=1, are first
mapped into poly-Poincaré spaces as x = {xi = Ψ ◦ Chol(Ci) ∈ PPn−1}ci=1. The resulting
Poincaré vectors are then β-concatenated into a single Poincaré vector x ∈ PN , where N = cn(n−1)

2 .
This concatenated vector is subsequently fed into the Poincaré MLR for classification.

PHCM convolutional and FC layer. The convolutional layer follows a logic similar to Log-
Euclidean convolution. The multi-channel correlation matrices within a receptive field C = {Ci ∈
Cor+(n)}ci=1 are first mapped to a β-concatenated Poincaré vector x ∈ PN as the PHCM MLR,
which is then fed into the Poincaré FC layer for dimensionality transformation. This produces a
vector x̃ ∈ PM , with M = km(m−1)

2 , which is then split using β-split. Subsequently, applying
Chol−1 ◦Ψ−1 reconstructs new k×m×m correlation matrices. When the input is a single correlation
matrix, it is reduced to the FC correlation layer.

Fig. 4 illustrates the PHCM convolutional and MLR layers. However, there is an underlying ambiguity
in the above discussion. To clarify, we write each xi ∈ PPn−1 in x as xi = {pi1 ∈ P1, · · · , pin−1 ∈
Pn−1}, which gives x = {pij ∈ Pj}i=c,j=n−1

i=1,j=1 . Therefore, we can either concatenate twice by i→ j
or once along both i and j. A similar issue arises with β-split. However, we show the equivalence of
the above two orders in App. G. Therefore, we always conduct β-operation simultaneously along
both i and j

5 EXPERIMENTS

We construct Riemannian networks on the correlation manifold, termed CorNets, using the proposed
convolutional and MLR layers. Following previous work (Huang & Van Gool, 2017; Brooks et al.,
2019; Chen et al., 2024b), we evaluate our approach on the Radar dataset (Brooks et al., 2019) for
radar signal classification, along with the HDM05 (Müller et al., 2007), FPHA (Garcia-Hernando
et al., 2018) and NTU120 (Liu et al., 2019) datasets for human action recognition. More details are
provided in App. I.

Implementation. We denote CorNet-Metric as the CorNet composed of correlation convolution and
MLR layers under a specified metric. In line with Nguyen et al. (2024), each CorNet consists of one
correlation convolutional layer followed by a correlation MLR layer, trained with cross-entropy loss.
Following Wang et al. (2024); Nguyen et al. (2024), each raw feature is modeled as a multi-channel
[c, n, n] SPD tensor. Since matrix power effectively activates SPD matrices by deforming their
geometry (Thanwerdas & Pennec, 2022a; Chen et al., 2024b;d; 2025), we first apply a matrix power,
and then convert the result to correlation matrices as the input of CorNet. Due to trivialization, all
parameters lie in Euclidean space and are optimized by standard Euclidean optimizers. We compare
CorNets against representative Grassmannian and SPD networks, including GrNet (Huang et al.,
2018), GyroGr (Nguyen & Yang, 2023), GyroGr-Scaling (Nguyen & Yang, 2023), SPDNet (Huang
& Van Gool, 2017), SPDNetBN (Brooks et al., 2019), RResNet (Kingma, 2015), LieBN (Chen et al.,
2024b), SPD MLR (Chen et al., 2024d), Gyro (Nguyen & Yang, 2023), and GyroSPD++(Nguyen
et al., 2024). Please refer to App. I.4 for more details.
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Table 2: Five-fold results and training time per epoch on four datasets. The top 3 results are
highlighted with red, blue, and cyan. ∗ denotes reproduced results due to missing official code.

Manifold Method
Radar HDM05 FPHA NTU120

Mean±STD Time Mean±STD Time Mean±STD Time Mean±STD Time

Grassmann
GrNet (Huang et al., 2018) 90.48 ± 0.76 1.39 63.19 ± 0.70 1.64 85.31 ± 0.90 0.70 57.59 ± 0.22 50.97

GyroGr∗ (Nguyen & Yang, 2023) 90.64 ± 0.57 1.38 58.32 ± 1.23 2.48 79.62 ± 0.49 0.70 53.76 ± 0.18 136.96
GyroGr-Scaling∗ (Nguyen & Yang, 2023) 88.88 ± 1.52 1.63 39.75 ± 0.93 3.52 58.62 ± 1.66 1.03 43.90 ± 0.23 338.01

SPD

SPDNet (Huang & Van Gool, 2017) 93.25 ± 1.10 0.66 64.57 ± 0.61 0.50 85.59 ± 0.72 0.28 51.25 ± 0.36 12.77
SPDNetBN (Brooks et al., 2019) 94.85 ± 0.99 1.25 71.28 ± 0.79 0.94 89.33 ± 0.49 0.58 54.35 ± 0.43 19.78

SPDResNet-AIM (Katsman et al., 2024) 95.71 ± 0.37 0.96 64.95 ± 0.82 1.23 86.63 ± 0.55 0.69 57.33 ± 0.35 23.84
SPDResNet-LEM (Katsman et al., 2024) 95.89 ± 0.86 0.77 70.12 ± 2.45 0.55 85.07 ± 0.99 0.30 61.34 ± 2.02 13.00
SPDNetLieBN-AIM (Chen et al., 2024b) 95.47 ± 0.90 1.21 71.83 ± 0.69 1.15 90.39 ± 0.66 0.97 58.20 ± 0.46 31.10
SPDNetLieBN-LCM (Chen et al., 2024b) 94.80 ± 0.71 1.10 71.78 ± 0.44 1.11 86.33 ± 0.43 0.59 57.96 ± 0.43 22.06

SPDNetMLR (Chen et al., 2024d) 94.59 ± 0.82 0.66 65.90 ± 0.93 5.46 85.60 ± 0.43 0.88 58.59 ± 0.13 22.48
GyroLE∗ (Nguyen & Yang, 2023) 96.24 ± 0.24 0.79 73.17 ± 0.37 2.86 90.73 ± 0.92 1.59 59.29 ± 0.42 22.08
GyroLC∗ (Nguyen & Yang, 2023) 93.60 ± 1.31 0.66 67.53 ± 0.85 1.49 76.10 ± 0.63 0.78 59.29 ± 0.42 14.14
GyroAI∗ (Nguyen & Yang, 2023) 96.29 ± 0.48 0.99 72.34 ± 1.06 22.80 89.60 ± 0.37 12.62 62.21 ± 0.29 98.31

GyroSPD++∗ (Nguyen et al., 2024) 95.20 ± 0.88 5.09 69.82 ± 1.79 103.57 89.50 ± 0.37 66.35 61.57 ± 0.30 216.46

Correlation

CorNet-ECM 97.71 ± 0.61 1.01 81.35 ± 1.27 0.60 92.17 ± 0.49 0.50 65.04 ± 0.14 12.06
CorNet-LECM 98.40 ± 0.70 1.12 78.05 ± 1.14 0.64 91.17 ± 0.32 0.54 65.03 ± 0.10 12.68
CorNet-OLM 97.57 ± 0.76 1.35 81.46 ± 0.61 0.93 91.63 ± 0.12 0.79 64.41 ± 0.23 16.07
CorNet-LSM 96.24 ± 1.48 1.50 74.89 ± 1.07 0.98 83.43 ± 0.65 0.83 60.69 ± 0.85 16.28

CorNet-PHCM 96.56 ± 0.86 2.37 82.26 ± 0.92 1.10 90.03 ± 0.63 0.77 60.01 ± 0.22 16.92

Table 3: Ablations on mixed geometries. Each row shows the metric used for Convolution (Conv),
and each column is the metric for MLR. The diagonal entries indicate configurations where both
layers use the same metric. The best result in each row is highlighted in red.

Dataset HDM05 FPHA

Conv
MLR ECM LECM OLM LSM PHCM ECM LECM OLM LSM PHCM

ECM 81.35 ± 1.27 73.38 ± 0.34 80.11 ± 0.77 78.54 ± 0.43 80.80 ± 0.54 92.17 ± 0.49 91.50 ± 0.21 91.67 ± 0.28 87.37 ± 1.14 91.97 ± 0.24
LECM 66.49 ± 1.13 78.05 ± 1.14 79.21 ± 1.23 73.61 ± 0.99 58.37 ± 2.24 87.90 ± 0.57 91.17 ± 0.32 90.25 ± 0.25 89.63 ± 0.31 86.09 ± 0.98
OLM 77.82 ± 0.48 76.56 ± 0.89 81.46 ± 0.61 80.77 ± 0.81 77.39 ± 1.29 92.17 ± 0.58 92.27 ± 0.78 91.63 ± 0.12 89.90 ± 0.67 91.83 ± 0.15
LSM 68.83 ± 1.19 70.41 ± 1.57 67.56 ± 1.52 74.89 ± 1.07 72.69 ± 3.56 78.97 ± 2.80 75.10 ± 1.15 82.25 ± 3.38 83.43 ± 0.65 78.97 ± 4.97
PPC 81.16 ± 0.40 80.05 ± 0.45 81.96 ± 0.51 78.28 ± 0.64 82.26 ± 0.92 88.30 ± 0.81 79.80 ± 0.69 87.37 ± 0.72 86.63 ± 0.27 90.03 ± 0.63

Main results. Tab. 2 reports the five-fold results comparing our CorNets against existing SPD and
Grassmannian baselines. We summarize the key observations below. (1) Effectiveness: CorNets
consistently outperform both SPD and Grassmannian networks. Specifically, CorNets surpass the
classic SPDNet by 5.15%, 17.69%, 6.58%, and 13.84% on four datasets, respectively, and outperform
the best Grassmannian networks by 7.76%, 19.07%, 6.86%, and 7.45%. Despite not using batch
normalization or residual blocks, CorNets achieve superior performance compared to SPDNetBN,
SPDNetLieBN, and RResNet. Notably, although CorNets share the same architecture as GyroSPD++
(one SPD convolutional layer followed by one SPD MLR), CorNets exhibit better performance.
These results highlight the effectiveness of correlation embedding and our method for constructing
correlation networks. (2) Optimal metric: The optimal metric for CorNets varies across datasets,
indicating that the choice of geometry is a critical hyperparameter in Riemannian networks. Our
framework enables seamless switching among five correlation geometries in a consistent architecture,
demonstrating the adaptability of our approach to different tasks. (3) Efficiency: CorNets achieve
efficiency comparable to or better than several baseline methods. The most efficient CorNet variant is
based on ECM, owing to the simplest computations of ECM. Although GyroSPD++ uses the same
architecture, CorNets achieve significantly greater efficiency, attributed to the heavy computational
cost of the AIM-based computations in GyroSPD++ and the lightweight Riemannian computations
on the correlation manifold. Particularly, on the largest NTU120 datasets, CorNet-ECM and CorNet-
LECM are the top two most efficient ones.

Ablations on mixed geometries. Our main experiments use the same metric for convolution and
MLR. To evaluate mixed geometries, we assign different metrics to the two layers. Tab. 3 reports
five-fold results on HDM05 and FPHA. Overall, consistent metrics yield the best accuracy, with the
exception of LECM–OLM on HDM05 and OLM–LECM on FPHA.

Table 4: SPD vs. correlation on SPDNet.

Input Radar HDM05 FPHA

SPD 93.25 ± 1.10 64.57 ± 0.61 85.59 ± 0.72
Correlation 89.49 ± 0.67 66.81 ± 0.73 83.37 ± 0.40

Visualization. Fig. 5 shows that different metrics
induce visibly distinct curved hyperplanes.

Potential and necessity. Although correlation matri-
ces are still SPD, naively treating them as SPD inputs
and feeding them into existing SPD networks fails
to leverage their intrinsic geometric structures. To
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Figure 5: Illustration of the decision hyperplanes in the correlation MLRs under five different
geometries. The 3 × 3 correlation manifold can be embedded as an open elliptope in R3, by
visualizing the strictly lower triangular part of each C ∈ Cor+(3). The black dots denote the
boundary. The PHCM hyperplane is defined by the one in the β-concatenated Poincaré space.

Table 5: Comparison of SPDMLR-Trivlz on raw covariances against CorMLR on raw correlations on
all three datasets. The input matrix dimensions are 93× 93, 63× 63, and 20× 20, respectively.

Dataset Measurement
SPDMLR-Trivlz CorMLR

LEM LCM AIM ECM LECM OLM LSM PHCM

Radar
Acc 95.47 ± 0.66 95.55 ± 0.35 94.87 ± 0.87 89.47 ± 0.93 87.41 ± 0.23 85.79 ± 0.83 91.63 ± 0.32 83.33 ± 1.29

Fit Time (s/epoch) 0.65 0.63 0.99 0.56 0.62 0.78 0.68 0.74

HDM05
Acc 54.31 ± 1.65 45.12 ± 1.05 52.46 ± 2.44 65.57 ± 0.62 64.44 ± 0.63 62.86 ± 0.65 64.01 ± 0.92 62.78 ± 0.85

Fit Time (s/epoch) 3.24 5.38 260.67 3.18 3.87 3.39 3.57 2.73

FPHA
Acc 84.13 ± 1.14 76.62 ± 0.43 83.25 ± 0.59 85.37 ± 0.16 85.24 ± 0.22 84.67 ± 0.27 80.17 ± 0.15 73.67 ± 0.32

Fit Time (s/epoch) 0.51 0.52 18.96 0.51 0.64 0.8 0.81 0.45

illustrate this, we use the classic SPDNet (Huang & Van Gool, 2017) but replace its covariance inputs
with correlation matrices. The five-fold average results in Tab. 4 reveal two key insights: (1) on
the HDM05 dataset, correlation inputs lead to improved performance, suggesting that correlation
embeddings can serve as compact and effective alternatives to covariance representations; and (2) on
the other two datasets, the performance degrades, indicating that ignoring the specific geometry of
correlation matrices can be detrimental. These findings highlight both the promise and the necessity
of designing networks respecting the unique geometry of the correlation manifold.

Ablations on correlation embeddings. To further evaluate the effectiveness of correlation embed-
dings, we compare the performance of directly classifying raw covariance matrices using SPDMLR
(Chen et al., 2024d, Thm. 4.2) with that of classifying corresponding raw correlation matrices
using correlation MLR (CorMLR). The original SPDMLR requires an SPD matrix parameter and a
symmetric matrix parameter for each class, which causes heavy Riemannian computations. For a fair
comparison, we also implement similar trivialization as Sec. 3.1 for the SPD parameters involved in
SPDMLR, which will greatly improve the efficiency. The resulting MLR is denoted as SPDMLR-
Trivlz. We implement SPDMLR-Trivlz under LEM, LCM, and AIM, respectively. Tab. 5 presents
the 5-fold average results on all three datasets. CorMLR performs better than SPDMLR-Trivlz
on HDM05 and FPHA. Although CorMLR performs worse on Radar, we emphasize that these
comparisons are conducted on a single MLR layer, which fails to fully uncover the potential of
correlation matrices. When integrated into a full network (our CorNet), correlation-based modeling
consistently outperforms all SPD-based networks. Besides, SPDMLR under AIM is much slower
than others, especially on HDM05, due to its complex computations. In contrast, CorMLR, especially
under ECM and PHCM, offers competitive or superior efficiency relative to SPDMLR-Trivlz.

Covariance vs. correlation. Tabs. 2 and 5 show that correlation embeddings achieve relatively
larger gains than covariance based SPD models on the HDM05 dataset. As detailed in Apps. I.5.1
and I.5.2, covariance embeddings on HDM05 exhibit large coefficients of variation for diagonal
variances and diagonal magnitudes that are much larger than the off-diagonal entries. In such cases,
covariance-based SPD representations can introduce nuisance noise and make it harder for the model
to exploit informative off-diagonal correlations. In contrast, correlation normalization rebalances
diagonal and off-diagonal contributions and encourages the network to focus on vibrant pairwise
correlations. This behavior is consistent with the strong gains of correlation embeddings on HDM05
and suggests that correlation modeling is particularly beneficial when covariance representations are
dominated by large and highly variable diagonal components.

Normalized covariance vs. correlation. As correlation matrices can be viewed as normalized
covariance matrices, a natural idea is to normalize covariance by a scalar, such as its largest eigenvalue.
As discussed in App. I.6, feeding SPD networks with covariance matrices scaled by their largest
eigenvalue leads to only marginal changes and could degrade performance. These results indicate
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that simple scalar scaling does not reproduce the benefits of correlation normalization. This can be
explained from a statistical perspective. Since dividing a covariance matrix by a scalar is equivalent
to uniformly rescaling raw samples before covariance computation, the normalized inputs remain
covariance matrices. In contrast, correlation normalization rescales each pair of variables by their
own standard deviations and produces standardized correlation coefficients, which is statistically
distinct from scalar normalization.

Activations. Following HNN++ (Shimizu et al., 2021) and GyroSPD++ (Nguyen et al., 2024),
CorNet omits explicit activations because the correlation manifold already introduces nonlinearity. In
App. I.7, we further study the effects of the activation function. Following Ganea et al. (2018, Sec.
3.2), we implement the activation via the tangent space. The results indicate that activation offers no
benefit and can even degrade performance.

Scalability. We evaluate the efficiency of CorNet under different metrics across dimensions from
30 × 30 to 1000 × 1000. As shown in App. I.8, ECM is consistently the most efficient. At high
dimensions, PHCM becomes the second most efficient due to its relatively simple diffeomorphism,
whereas LECM is the slowest among LSM, OLM, and LECM due to its costly log ◦Θ mapping.

6 CONCLUSION

This paper systematically extends the FC, convolutional, and MLR layers to the correlation manifold
under five newly developed Riemannian geometries. By preserving intrinsic correlation structures and
enabling flexible variation of latent geometry within a unified network architecture, our framework
highlights the distinct advantages of correlation manifolds beyond SPD and Grassmannian alternatives.
In addition, we propose accurate backpropagation schemes for OLM and LSM. Extensive experi-
ments demonstrate the effectiveness, adaptability, efficiency, and scalability of our approach. These
foundational layers open the door to constructing richer architectures on the correlation manifold,
including RNNs, transformers, and residual networks.

REPRODUCIBILITY STATEMENT

All theoretical results are presented with clear assumptions, and complete proofs are provided in
App. J. Details of the datasets and preprocessing are given in App. I.3. Implementation details,
including network architectures, optimization strategies, and hyperparameters, are described in
App. I.4. The code will be made available upon acceptance.
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D.2 Revisiting Poincaré layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

E Discussion on correlation FC layer 23

E.1 Connections among FC layers: correlation, SPD, Poincaré, and Euclidean . . . . . 23
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Table 6: Summary of notation. All numbers and operators are assumed to be real.

Notation Explanation

(M, g) orM Riemannian manifold
E or EM Origin of the manifoldM
TPM Tangent space at P ∈M
{Ok}mk=1 Orthonormal basis over the m-dimensional TEM

gp(·, ·) or ⟨·, ·⟩P Riemannian metric at P ∈M
∥ · ∥P Norm induced by ⟨·, ·⟩P on TPM
LogP Riemannian logarithmic map at P
ExpP Riemannian exponential map at P

γ(t;P,Q) Geodesic connecting P,Q ∈M
ΓP→Q Riemannian parallel transportation along the geodesic connecting P and Q

Ha,p or HA,P Margin hyperplane
f∗,P Differential map of the smooth map f at P ∈M
vk(X) vk(X) in Riemannian MLR (Eq. (3)) for X ∈M

F : N →M Riemannian FC layer from N toM, defined by Eq. (8)

R,Rn&Rn×n Euclidean spaces of real scalars, n-dimensional real vectors, and n× n matrices
Diag(n) Euclidean space of n× n diagonal matrices
Diag+(n) Manifold of n× n positive diagonal matrices
Sn Euclidean space of n× n symmetric matrices

Hol(n) Euclidean space of n× n symmetric matrices with null diagonals
Row0(n) Euclidean space of n× n symmetric matrices with null row sum
Sn++ Manifold of n× n SPD matrices

Row+
1 (n) Manifold of n× n SPD matrices with unit row sum.

Cor+(n) Manifold of n× n full rank correlation matrices
LT(n) Euclidean space of n× n lower triangular matrices
LT1(n) Euclidean space of n× n lower triangular matrices with unit diagonals
LT0(n) Euclidean space of n× n lower triangular matrices with null diagonals
LT+(n) Cholesky manifold of n× n lower triangular matrices with positive diagonals
Ln Manifold of n× n lower triangular matrices with positive diagonals and unit row norm

PHSn−1 Product space of n− 1 open hemispheres
PPn−1 Product space of n− 1 Poincaré balls
⟨·, ·⟩& ∥·∥ Canonical Euclidean inner product and norm

⟨·, ·⟩(α,β,γ) & ⟨·, ·⟩(α,δ,ζ) Permutation-invariant inner product over Hol(n) & Row0(n)
log, exp,&Chol Matrix logarithm, exponentiation, Cholesky decomposition

⌊·⌋ Returns the strictly lower triangular matrix of a square matrix
ϕEC(·) ϕEC(C) = ⌊Θ(C)⌋ the isometry w.r.t. ECM
D(·) Returns a diagonal matrix with diagonals from a square matrix

diag(·) Returns a diagonal matrix from an input vector
Dv(·) Returns a vector of diagonal elements from a square matrix
(·) 1

2
(S) 1

2
= ⌊S⌋+ 1

2D(S) for any square matrix S
⊙ Hadamard product
Cor Cor : Σ ∈ Sn++ 7−→ D(Σ)−1/2ΣD(Σ)−1/2 ∈ Cor+(n)
Θ Θ : C ∈ Cor+(n) 7−→ D(Chol(C))−1 Chol(C) ∈ LT1(n)
off Returns a matrix in Hol(n) consisting of off-diagonal elements

Log◦ &Exp◦ Off-log and its inverse
Log⋆ &Exp⋆ Log-scaled and its inverse
I or In & 0 Identity matrix & Zero matrix or vector

1 Vector with all 1 entities

Pn
K General Poincaré ball, Pn

K =
{
x ∈ Rn | ∥x∥2 < − 1

K

}
(K < 0)

Pn (Canonical) Poincaré ball, Pn = Pn
−1

HSn Open hemisphere, HSn =
{
x ∈ Rn+1 | ∥x∥ = 1 and xn+1 > 0

}

Hn Hyperboloid, Hn =
{
x ∈ Rn+1 | ∥x∥2L = −1

}
with ∥x∥2L =

∑n
i=1 x

2
i − x2n+1

ψHSn→Pn

ψPn→HSn
Isometries between HSn and Pn

LIST OF ACRONYMS

ECM Euclidean–Cholesky Metric 1
LECM Log-Euclidean–Cholesky Metric 1
LSM Log-Scaled Metric 1
OLM Off-Log Metric 1
PHCM Poly-Hyperbolic-Cholesky Metric 1

CorNets Correlation Networks 2
FC Fully Connected 1
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MLR Multinomial Logistics Regression 1

AIM Affine-Invariant Metric 23
LCM Log-Cholesky Metric 23
LEM Log-Euclidean Metric 23
SPD Symmetric Positive Definite 1

A USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used primarily for language polishing and text editing. In
limited cases, they also assisted in translating certain mathematical formulations into PyTorch code.
All generated outputs were carefully reviewed and, where necessary, corrected by the authors. The
authors take full responsibility for the final content of this paper.

B NOTATION

Tab. 6 summarizes all the notation used in this paper for better clarity.

C FULL-RANK CORRELATION GEOMETRIES

This section follows all the notation in Tab. 6. As ECM, LECM, OLM, and LSM are pullback metrics
from Euclidean spaces by diffeomorphisms, they are collectively called Log-Euclidean metrics
(Thanwerdas, 2024). As all five metrics are pullback metrics, the Riemannian operators can be
directly derived by the properties of Riemannian isometries (Chen et al., 2024c, App. A.2), without
computing Christoffel symbols or solving ODEs.

C.1 PULLBACK METRICS

As all five involved Riemannian metrics on the correlation manifold are pullback metrics, we first
review pullback metrics. The idea of pullback is ubiquitous in differential geometry and can be
considered as a natural extension of the bijection in the set theory.

Definition C.1 (Pullback Metrics (Lee, 2018)). Suppose M1,M2 are smooth manifolds, g is a
Riemannian metric onM2, and f :M1 →M2 is a diffeomorphism. Then the pullback of g by f is
defined point-wisely,

(f∗g)p(V,W ) = gf(p)(f∗,p(V ), f∗,p(W )), (14)

where f∗,p(·) is the differential map of f at p ∈ M1, and V,W ∈ TpM1. f∗g is a Riemannian
metric onM1, called the pullback metric of g by f . Here, f is also called a Riemannian isometry.

Although pullback metrics can also be defined by smooth maps (Lee, 2018), this paper focuses on
diffeomorphisms.

C.2 SYMMETRIC MATRIX FUNCTIONS

This subsection reviews the eigenvalue function over symmetric matrices. For more in-depth discus-
sions, please refer to Bhatia (2009, Ch. 2.7.13) or Bhatia (2013, Ch. V.3).

We denote Sn as the Euclidean space of n×n real symmetric matrices, and Sn++ as the SPD manifold
of n × n SPD matrices. Let I̊ be an open interval of R and f : I̊ → R be a smooth function. The
smooth map induced by f for any symmetric matrix S with all eigenvalues in I̊ is defined as

f : S 7−→ Uf(Σ)U⊤ ∈ Sn, with S = UΣU⊤ as the eigendecomposition. (15)

Its differential is known as the Daleckii-Krein formula:

f∗,S(V ) = U
(
L⊙

(
U⊤V U

))
U⊤, ∀V ∈ Sn, (16)
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Table 8: Riemannian metrics on the correlation manifold with the associated isometric prototype
spaces and diffeomorphisms.

Metric Prototype space Diffeomorphisms Properties

ECM
(Thanwerdas & Pennec, 2022b) LT1(n) = LT0(n) + In

Θ : C ∈ Cor+(n) 7−→ D(Chol(C))−1 Chol(C) ∈ LT1(n)
Θ−1 = Cor ◦Chol−1 : LT1(n) −→ Cor+(n)

Null curvature

LECM
(Thanwerdas & Pennec, 2022b) LT0(n)

log ◦Θ : Cor+(n) −→ LT0(n)
(log ◦Θ)−1 = Cor ◦Chol−1 ◦ exp : LT0(n) −→ Cor+(n)

Null curvature

OLM
(Thanwerdas, 2024) Hol(n)

Log◦ : C ∈ Cor+(n) 7−→ off ◦ log(C) ∈ Hol(n)
(Log◦)−1 = Exp◦ : H ∈ Hol(n) 7−→ exp(D(H) +H) ∈ Cor+(n)

Permutation-invariance
Null curvature

LSM
(Thanwerdas, 2024) Row0(n)

Log⋆ : C ∈ Cor+(n) 7−→ log(D⋆(C)CD⋆(C)) ∈ Row0(n)
(Log⋆)−1 = Exp⋆ : R ∈ Row0(n) 7−→ Cor(exp(R)) ∈ Cor+(n)

Permutation-invariance
Null curvature

PHCM
(Thanwerdas & Pennec, 2022b) PHSn−1 Chol : Cor+(n) −→ Ln ∼= PHSn−1

Chol−1 : Ln ∼= PHSn−1 −→ Cor+(n)
Nonpositive

sectional curvature

Li,j =

{
f(σi)−f(σj)

σi−σj
, if σi ̸= σj

f ′(δi), otherwise
(17)

where L is called the Loewner matrix with the (i, j)-th element defined as Eq. (17), and ⊙ denotes
the Hadamard product. Two special cases are the matrix logarithm: log : Sn++ → Sn and its inverse,
the matrix exponentiation exp : Sn → Sn++.

C.3 GEOMETRIES OF THE CORRELATION MANIFOLD

Following the notation in Tab. 6, this subsection is a more detailed discussion of Sec. 2 in the main
paper. The involved five geometries on the correlation matrices can be classified into two classes:
(1) non-permutation-invariant metrics, including ECM, LECM, and PHCM; and (2) permutation-
invariant metrics, including OLM and LSM. Tab. 8 summarizes the diffeomorphisms and prototype
spaces discussed in Sec. 2.

C.3.1 NON-PERMUTATION-INVARIANT METRICS

The non-permutation-invariant metrics (Thanwerdas & Pennec, 2022b), namely ECM, LECM, and
PHCM, are defined by pullback:

ECM: Cor+(n)
Θ=D−1(Chol(·)) Chol(·)−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−

Θ−1=Cor ◦Chol−1
LT1(n) = In + LT0(n), (18)

LECM: Cor+(n)
log ◦Θ−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−

(log ◦Θ)−1=Cor ◦Chol−1 ◦ exp
LT0(n), (19)

PHCM: Cor+(n)
Chol−−−−⇀↽−−−−
Chol−1

Ln ∼= PHSn−1 :=

n−1∏

i=1

{HSi, αig
HSi}, (20)

where each αi > 0 is the positive weight. In the following, we first review the associated maps in
ECM and LECM, followed by a discussion of PHCM.

ECM and LECM. For any C ∈ Cor+(n), V ∈ TCCor
+(n) ∼= Hol(n), K ∈ LT1(n) and

X, ξ ∈ LT0(n), the involved maps and their differentials in ECM and LECM are

Θ(C) = D(L)−1L, (21)

Θ−1(K) = D
(
KK⊤)− 1

2 KK⊤D
(
KK⊤)− 1

2 , (22)

log(K) =

n−1∑

k=1

(−1)k−1

k
(K − In)k , (23)

exp(ξ) =

n−1∑

k=0

1

k!
ξk, (24)

Θ∗,C(V ) = Θ(C)
(
L−1V L−⊤)

1
2

− 1

2
D
(
L−1V L−⊤)Θ(C), (25)

(Θ∗,C)
−1

(ξ) =
(
Lξ⊤ − CD

(
Lξ⊤

))
D(L) + D(L)

(
ξL⊤ − D

(
Lξ⊤

)
C
)
, (26)
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Table 9: Riemannian operators under the non-permutation-invariant log-Euclidean Metrics. Here,
C,C ′ ∈ Cor+(n) are correlation matrices and V,W ∈ TCCor+(n) ∼= Hol(n) are tangent vectors.
Although the inner product ⟨·, ·⟩ could be any Euclidean inner product, this paper focuses on the
canonical one.

Operation ECM LECM

gC(V,W ) ⟨Θ∗,C(V ),Θ∗,C(W )⟩ ⟨(log ◦Θ)∗,C(V ), (log ◦Θ)∗,C(W )⟩
ExpC(V ) Θ−1 (Θ (C) + Θ∗,C (V )) (log ◦Θ)−1 (log ◦Θ(C) + (log ◦Θ)∗,C (V ))
LogC(C

′) Θ−1
∗,Θ(C) (Θ (C ′)−Θ(C)) (log ◦Θ)−1

∗,log ◦Θ(C) (log ◦Θ(C ′)− log ◦Θ(C))

γ(t;C,C ′) Θ−1 ((1− t)Θ (C) + tΘ(C ′)) (log ◦Θ)−1 ((1− t) log ◦Θ(C) + t log ◦Θ(C ′))
d(C,C ′) ∥Θ(C)−Θ(C ′)∥ ∥log ◦Θ(C)− log ◦Θ(C ′)∥

Fréchet mean Θ−1
(

1
k

∑k
i=1 Θ(Ci)

)
(log ◦Θ)−1

(
1
k

∑k
i=1 log ◦Θ(Ci)

)

Curvature 0 0

ΓC→C′(V ) (Θ∗,C′)
−1

(Θ∗,C (V )) ((log ◦Θ)∗,C′)
−1

((log ◦Θ)∗,C (V ))

log∗,K(ξ) =

n−1∑

k=1

(−1)k−1

k

[
(K − In)k−1

ξ + · · ·+ ξ (K − In)k−1
]
, (27)

exp∗,X(ξ) =

n−1∑

k=1

1

k!

(
Xk−1ξ +Xk−2ξX + · · ·+ ξXk−1

)
, (28)

(log ◦Θ)∗,C(V ) = log∗,Θ(C) (Θ∗,C(V )) , (29)

Chol∗,C(V ) = L
(
L−1V L−⊤)

1
2

, (30)

(Chol∗,C)
−1(Z) = LZ⊤ + ZL⊤, ∀Z ∈ TLLT+(n) ∼= LT(n). (31)

where L is the Cholesky factor of C and In is the n× n identity matrix. Due to the nilpotency of
LT0(n), the matrix logarithm over LT1(n) and exponentiation over LT0(n) are free from eigende-
composition. With the above equations, Tab. 9 summarizes the Riemannian operators under ECM
and LECM.

PHCM. It is the pullback metric by the Cholesky decomposition from the product space∏n−1
i=1 {HSi, αig

HSi}, where each αi denotes positive weights and gHSi denotes the metric ten-
sor over HSi. Particularly, the PHCM with all weights equal to 1 is called the canonical PHCM.
Without loss of generality, we focus on the canonical PHCM. The closed-form expressions of the
Riemannian operations under PHCM are a bit heavy as they are obtained by the product metric.

Given C ∈ Cor+(n) and L = Chol(C) ∈ Ln, we denote Ψ = ψ1× · · ·×ψn−1 : Ln →∏n−1
i=1 HSi

with each ψi as
ψi(L) = (Li+1,1, . . . , Li+1,i+1) ∈ HSi, (32)

where Li+1 = (Li+1,1, . . . , Li+1,i+1, 0, . . . , 0) is the (i+1)-th row of L. The Riemannian operators
under PHCM can be obtained using the product geometry and HSi geometry. Following the notation
in Tab. 9, the Riemannian metrics, logarithm, exponentiation, and geodesic (distance) under the
canonical PHCM are

gC(V, V ) =

∥∥∥∥D(L)−1L
(
L−1V L−⊤

)
1
2

∥∥∥∥2

, (33)

ExpC(V ) = (Chol)−1
(
ψ−1

(
ExpHS1

ψ1(L)(ψ
1(Chol∗,C(V ))), · · · ,ExpHSn−1

ψn−1(L)(ψ
n−1(Chol∗,C(V ))))

))
,

(34)

LogC(C
′) = (Chol)−1

∗,C′

(
ψ−1

(
LogHS1

ψ1(L)(ψ
1(L′)), · · · ,LogHSn−1

ψn−1(L)(ψ
n−1(L′))

))
, (35)

γ(t;C,C′) = (Chol)−1
(
ψ−1

(
γHS1(t;ψ1(C), ψ1(C′)), · · · , γHSn−1

(t;ψn−1(C), ψn−1(C′))
))

, (36)

d
(
C,C′)2 =

n−1∑
i=1

arccosh
(
−
〈
ψi(L), ψi(L′)

〉
L

)2

, (37)
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where L = Chol(C) ∈ Ln, L′ = Chol(C ′) ∈ Ln, and LogHSi , ExpHSi and γHSi are the
counterparts over HSi, which have closed-form expressions (Thanwerdas & Pennec, 2022b, Thm.
4.2). Here, ∥·∥L is the norm induced by Lorentz inner product:

∥x∥2L =

n∑

i=1

x2i − x2n+1, ∀x ∈ Rn+1. (38)

Remark C.2. The Riemannian structure of HSn is defined by the pullback metric from the hyperboloid
model. All the Riemannian operators over HSn have closed-form expressions (Thanwerdas & Pennec,
2022b, Thm. 4.2).

C.3.2 PERMUTATION-INVARIANT METRICS

Let Sn be the group of permutation matrices Pσ =
[
δi,σ(j)

]
1⩽i,j⩽n

by permutation σ, andD±(n) =

{diag ((ε1, . . . , εn)) , ε ∈ {−1, 1}n} be the group of diagonal matrices with coefficients in {−1, 1}.
Thanwerdas (2024, Thm. 1.1) showed that the largest congruence action on full-rank correlation
matrices is the action of signed permutation matrices:

⋆ : (A,C) ∈ S±(n)× Cor+(n) 7−→ ACA⊤ ∈ Cor+(n), (39)

with S±(n) = D±(n)Sn. Based on this finding, Thanwerdas (2024) proposed two permutation-
invariant metrics, namely OLM and LSM, by pulling back permutation-invariant inner products via
the following permutation-equivariant diffeomorphisms:

Cor+(n)
Log◦=off◦log−−−−−−−−⇀↽−−−−−−−−

Exp◦
Hol(n), (40)

Cor+(n)
Log⋆

−−−−−−−−−−⇀↽−−−−−−−−−−
Exp⋆=Cor ◦ exp

Row0(n), (41)

Exp◦ : Hol(n) ∋ H 7−→ exp(D(H) +H), (42)

Log⋆ : Cor+(n) ∋ C 7−→ log(D⋆(C)CD⋆(C)) ∈ Row0(n). (43)

where log(·) and exp(·) are symmetric matrix logarithm and exponentiation. The involved D and
D⋆ can be formally expressed as D : Hol(n) → Diag(n) and D⋆ : Cor+(n) → Diag+(n), where
Diag(n) denotes the Euclidean space of n× n diagonal matrices, and Diag+(n) is a submanifold of
Diag(n), consisting of positive diagonal matrices.

The differentials of Log◦ and Log⋆ and their inverses can be calculated by the differential of
symmetric matrix logarithm and exponentiation (Thanwerdas, 2024, Thms. 2.4 and 4.1). Given
C ∈ Cor+(n), tangent vector V ∈ TCCor+(n) ∼= Hol(n), H,W ∈ Hol(n), and S = H+D(H) =
U∆U⊤, the differential of Log◦ and its inverse Exp◦ are

Log◦∗,C(V ) = off
(
log∗,C(V )

)
, (44)

Exp◦∗,H(W ) = exp∗,S (W +D∗,H(W )) , (45)

D∗,H(W ) = −diag
((
H0
)−1 D

(
exp∗,S(W )

)
1
)
, (46)

Sn++ ∋ H0
il =

∑

j,k

PijPikPljPlkLj,k, (47)

where L is the Loewner matrix of exp∗,S , and 1 is the vector of all 1 entities. Here, log∗ and exp∗
can be calculated using the Daleckii-Krein formula of the symmetric matrix, while diag(·) : Rn →
Diag(n) returns a diagonal matrix from an input vector. Further denoting X,Y ∈ Row0(n) and
Σ = D⋆(C)CD⋆(C), the differentials of Log⋆ and its inverse Exp⋆ are

Log⋆∗,C(V ) = log∗,Σ

(
∆V∆+

1

2

(
V 0Σ+ ΣV 0)) , (48)

Exp⋆∗,X(Y ) = ∆−1

[
exp∗,X(Y )− 1

2

(
∆−2D

(
exp∗,X(Y )

)
Σ+ ΣD

(
exp∗,X(Y )

)
∆−2)]∆−1 (49)

with ∆ = D(Σ)1/2 and V 0 = −2 diag
(
(In +Σ)

−1
∆V∆1

)
.
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Table 10: Riemannian geometries under the permutation-invariant log-Euclidean Metrics.

Operation OLM LSM

gC(V,W )
〈
Log◦∗,C(V ),Log◦∗,C(W )

〉(α,β,γ) 〈
Log⋆∗,C(V ),Log⋆∗,C(W )

〉(α,δ,ζ)
ExpC(V ) Exp◦

(
Log◦ (C) + Log◦∗,C (V )

)
Exp⋆

(
Log⋆ (C) + Log⋆∗,C (V )

)

LogC(C
′) Exp◦∗,Log◦(C) (Log

◦ (C ′)− Log◦ (C)) Exp⋆∗,Log⋆(C) (Log
⋆ (C ′)− Log⋆ (C))

γ(t;C,C ′) Exp◦ ((1− t) Log◦ (C) + tLog◦ (C ′)) Exp⋆ ((1− t) Log⋆ (C) + tLog⋆ (C ′))

d(C,C ′) ∥Log◦ (C)− Log◦ (C ′)∥(α,β,γ) ∥Log⋆ (C)− Log⋆ (C ′)∥(α,δ,ζ)

Fréchet mean Exp◦
(

1
k

∑k
i=1 Log

◦ (Ci)
)

Exp⋆
(

1
k

∑k
i=1 Log

⋆ (Ci)
)

Curvature 0 0

ΓC→C′(V )
(
Log◦∗,C′

)−1 (
Log◦∗,C (V )

) (
Log⋆∗,C′

)−1 (
Log⋆∗,C (V )

)

Properties
Permutation-invariance

Singed-permutation-invariance (β = γ = 0)
Inverse-consistency

Permutation-invariance

As both Log⋆∗ and Log◦∗ are permutation-equivariant (Thanwerdas, 2024), permutation-invariant
metrics over the correlation manifold can be induced by permutation-invariant inner products over
Hol(n) and Row0(n), respectively. The following two theorems review such inner products.
Theorem C.3 (Permutation-invariant inner products on Hol(n) (Thanwerdas, 2022)). Supposing
n ≥ 4, permutation-invariant inner products on Hol(n) are:

⟨X1, X2⟩(α,β,γ) = α tr(X1X2) + β Sum (X1X2) + γ Sum(X1) Sum(X2), ∀X1, X2 ∈ Hol(n),
(50)

with α > 0, 2α+ (n− 2)β > 0, and α+ (n− 1)(β + nγ) > 0. For n = 3, permutation-invariant
inner products have the same form with α = 0:

⟨X1, X2⟩(α,β,γ) = β Sum(X1X2) + γ Sum(X1) Sum(X2), with β > 0 and β + 3γ > 0. (51)

For n = 2, they have the same form with α = β = 0:

⟨X1, X2⟩(α,β,γ) = γ Sum(X1) Sum(X2), with γ > 0. (52)

Theorem C.4 (Permutation-invariant inner products on Row0(n) (Thanwerdas, 2024)). For n ≥ 4,
permutation-invariant inner products on Row0(n) are

⟨Y1, Y2⟩(α,δ,ζ) = α tr(Y1Y2) + δ tr(D(Y1)D(Y2)) + ζ tr(Y1) tr(Y2), ∀Y1, Y2 ∈ Row0(n), (53)

with α > 0, nα+(n−2)δ > 0, and nα+(n−1)(δ+nζ) > 0. For n = 3, the permutation-invariant
inner products have the same form with α = 0. For n = 2, they have the same form with α = δ = 0.

As shown by Thanwerdas (2022), OLM is further invariant to signed-permutation under β = γ = 0,
where the associated ⟨·, ·⟩(α,0,0) is reduced to the scaled canonical Euclidean inner product:

⟨V,W ⟩(α,0,0) = α ⟨V,W ⟩ , ∀V,W ∈ Hol(n). (54)

In the main paper, we assume that ⟨·, ·⟩(α,β,γ) and ⟨·, ·⟩(α,δ,ζ) are the canonical Euclidean inner
product.

Lastly, we briefly review inverse-consistency, a property exclusive to LSM. The cor-inversion is
defined as I : Cor+(n) ∋ C 7→ Cor

(
C−1

)
∈ Cor+(n) (Thanwerdas, 2024, Def. 1.4). It

corresponds to the matrix inversion inv : Sn++ ∋ Σ 7→ Σ−1 ∈ Sn++, as represented on the following
commuting diagram:

Sn++ Sn++

Cor+(n) Cor+(n)

inv

Cor Cor

I

(55)

As shown by Thanwerdas (2024, Thm. 1.7), LSM enjoys inverse-consistency:

Log⋆(I(C)) = −Log⋆(C), ∀C ∈ Cor+(n). (56)

Tab. 10 summarizes the Riemannian structures of OLM and LSM.
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Remark C.5. We make the following remarks w.r.t. OLM and LSM.

1. Invariance and dimension: Thms. C.3 and C.4 implies that when n ≤ 3, the canonical
inner products over Hol(n) and Row0(n), as well as the induced OLM and LSM, are no
longer invariant metrics. However, our main paper focuses on cases where n > 3.

2. D and D⋆: D is also well-defined over Sn, a surjective map D : Sn → Diag(n). In this
way, Exp◦ : Sn → Cor+(n) is no longer bijective (Thanwerdas, 2024, Thm. 2.1). Similarly,
D⋆ is well defined over Sn++, a surjective map D⋆ : Sn++ → Diag+(n). Consequently,
Log⋆ : Sn++ → Row0(n) is no longer bijective (Thanwerdas, 2024, Thm. 3.5).

D REVISITING PREVIOUS LAYERS

D.1 REVISITING MULTINOMIAL LOGISTIC REGRESSION

We briefly review the Euclidean Multinomial Logistic Regression (MLR) and its Riemannian ex-
tensions (Lebanon & Lafferty, 2004; Ganea et al., 2018; Nguyen & Yang, 2023; Nguyen et al.,
2024; Bdeir et al., 2024; Chen et al., 2024a;d). Given C classes, the Euclidean MLR computes the
multinomial probability of each class k ∈ {1, . . . , C} for the input feature vector x ∈ Rn:

p(y = k | x) ∝ exp (vk(x)) , (57)

with vk(x) = ⟨ak, x⟩−bk and bk ∈ R, ak ∈ Rn. Lebanon & Lafferty (2004, Sec. 5) first reformulated
vk(x) by the margin distance to the hyperplane:

vk(x) = sign(⟨ak, x− pk⟩)∥ak∥d(x,Hak,pk
), (58)

Hak,pk
= {x ∈ Rn : ⟨ak, x− pk⟩ = 0}, (59)

where ⟨ak, pk⟩ = bk, and Hak,pk
is a margin hyperplane. Based on the above reformulation, Ganea

et al. (2018); Nguyen & Yang (2023); Bdeir et al. (2024); Chen et al. (2024a;d) generalized the MLR
to different manifolds. Given a manifold-valued input X ∈M, the MLR (Chen et al., 2024d) over
M is defined as

p(y = k | X) ∝ exp (vk(X)) , (60)
vk(X) = sign(⟨Ak,LogPk

(S)⟩Pk
)∥Ak∥Pk

d(S,HAk,Pk
), (61)

HAk,Pk
= {S ∈M :

〈
LogPk

(S), Ak

〉
Pk

= 0}, (62)

d(S,HAk,Pk
)) = inf

Q∈HAk,Pk

d(S,Q), (63)

with Pk ∈ M and Ak ∈ TPk
M. Shimizu et al. (2021, Sec. 3.1) demonstrates that Pk and Ak in

the hyperbolic Poincaré MLR can be optimized using a Euclidean vector at the tangent space at the
zero vector along with a biasing scalar. Inspired by this, this paper sets Pk = ExpE(γk[Zk]) and
Ak = ΓE→Pk

(Zk). Here, E is the origin of the m-dimensional manifoldM, while γk ∈ R and
Zk ∈ TEM∼= Rm are the MLR parameters.

Following the nomenclature by Chen et al. (2024d), Eq. (62) and Eq. (63) is called the Riemannian
hyperplane and Riemannian margin distance to the hyperplane, respectively. Obviously, solving the
optimization problem in Eq. (63) is the most challenging part. To circumvent this problem, Chen et al.
(2024d, Sec. 3.2) relaxed it via Riemannian trigonometry and approximately solved this problem.
Unlike their method, this paper precisely solves Eq. (63) under different metrics in the correlation
manifold.

D.2 REVISITING POINCARÉ LAYERS

Let Pn
K =

{
x ∈ Rn | ∥x∥2 < −1/K

}
be the Poincaré ball (K < 0). The Poincaré MLR (Ganea

et al., 2018; Shimizu et al., 2021) and FC layers on Poincaré spaces (Shimizu et al., 2021) follow the
same logic as Sec. 3.1 and Def. 3.4, respectively.
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The Poincaré MLR was first proposed by Ganea et al. (2018), then simplified by Shimizu et al. (2021,
Eq. 6). Given x ∈ Pn

K , the Poincaré MLR is

p(y = k | x) ∝ exp (vk(x)) ,

vk(x) =
2∥zk∥√
|K|

asinh
(
λKx ⟨

√
|K|x, [zk]⟩ cosh(2

√
|K|γk)−

(
λKx − 1

)
sinh(2

√
|K|γk)

)
,

(64)

where λKx = 2 (1−|K|∥x∥2)−1 is the conformal factor, and [zk] =
zk

∥zk∥ . Here, zk ∈ Rn and γk ∈ R
are parameters. Note that limK→0 vk(x) = 4(⟨ak, x⟩ − bk).
Based on the Poincaré MLR, Shimizu et al. (2021, Eq. 7) proposed the Poincaré FC layer F(·) :
Pn
K → Pm

K , which is

y =
w

1 +
√
1 + |K|∥w∥2

, wk = |K|−1/2 sinh
(√
|K|vk(x)

)
, (65)

where, z = {zk ∈ Rn}mk=1 and γ = {γk ∈ R}mk=1 are the FC parameters.

The Poincaré convolutional layer is defined by the Poincaré β-concatenation and FC layer. Poincaré
β-concatenation is defined as the scaled concatenation via the tangent space, which generalizes the
Euclidean concatenation. Given inputs {xi ∈ Pni

K }Ni=1, it is defined as

Exp0
(
βn
(
β−1
n1
v⊤1 , · · · , β−1

nN
v⊤N
))⊤ ∈ Pn

K , (66)

where vi = Log0(xi) and n =
∑N

i=1 ni. Here, βni
and βn are defined by the beta function, i.e.,

βα = B(α/2, 1/2). The inverse is called the Poincaré β-split. The Poincaré convolution is then defined
as: (1) β-concatenating the multi-channel feature in a given receptive field; and (2) performing the
Poincaré FC layer.

In the main paper, we focus on the unit Poincaré ball Pn with K = −1.

E DISCUSSION ON CORRELATION FC LAYER

E.1 CONNECTIONS AMONG FC LAYERS: CORRELATION, SPD, POINCARÉ, AND EUCLIDEAN

We clarify the correspondence between our FC formulation in Eq. (8) and previous FC layers.

E.1.1 SPD MANIFOLD

Nguyen et al. (2024, Props. 3.4–3.6) introduced three SPD FC layers based on the gyrovector spaces
under Log-Euclidean Metric (LEM), Log-Cholesky Metric (LCM), and Affine-Invariant Metric
(AIM), respectively. These gyro SPD FC layers share the same definition as Eq. (8), except that their
signed distance and vk are defined by gyrovector spaces.

Furthermore, Nguyen et al. (2024, Eq. 4) proposed SPD FC layers grounded in invariant metrics over
the symmetric space of the SPD manifold. These layers also align with the formulation of Eq. (8),
except that their signed distance and vk are defined by the Busemann function.

E.1.2 POINCARÉ BALL

We show that Poincaré FC layer F(·) : Pn
K → Pm

K in Eq. (65) is also defined as our correlation FC
layer in Def. 3.4.

We define the zero vector 0 ∈ Pn
K as the Poincaré origin, as it is the identity element of the Poincaré

gyrovector space (Ganea et al., 2018). Obviously, {ek}mi=1 is the orthogonal basis over T0Pm
K , where

ek = (δik)
m
i=1. Corresponding to Eq. (8), we have

sign(⟨Log0(y), ek⟩d(y,Hek,0) = vk(x). (67)
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Compared with Eq. (56) by Shimizu et al. (2021), we only need to show the LHS. The sign can be
calculated as

sign(⟨Log0(y), ek⟩0)
(1)
= sign

(
4

〈
tanh−1

(√
−K∥y∥

) y√
−K∥y∥ , ek

〉)

(2)
= sign (⟨y, ek⟩)
= sign (yk) .

(68)

The above comes from the following.

(1) λK0 = 2
1+K∥0∥2 = 2 and Log0(y) = tanh−1

(√
−K∥y∥

)
y√

−K∥y∥ .

(2) tanh−1(a) > 0, ⇐⇒ a > 0.

Therefore, the LHS of Eq. (67) is simplified as

sign(⟨Log0(y), ek⟩d(y,Hek,0) = sign (yk) d(y,Hek,0)

(1)
= sign (yk)

1√
−K sinh−1

(
2
√
−K|yk|

1 +K∥y∥2
)

(2)
=

1√
−K sinh−1

(
2
√
−Kyk

1 +K∥y∥2
)
.

(69)

The above comes from the following.

(1) Thm. 5 by Ganea et al. (2018).

(2) 1 +K∥y∥2 > 0 by definition and sign(a) sinh−1(|a|) = sinh−1(a),∀a ∈ R.

The last equation in Eq. (69) is the LHS of Eq. (56) in Shimizu et al. (2021), indicating the equality.

E.1.3 EUCLIDEAN SPACE

We show that the Euclidean FC layer F(·) : Rn ∋ x → y = Ax+ b ∈ Rm can also be defined as
our correlation FC layer in Def. 3.4.

In Euclidean space Rn, the zero vector 0 ∈ Rn is the origin, and {ek}mi=1 is the orthogonal basis over
T0Rm ∼= Rm. Then, the RHS of Eq. (8) becomes

vk(x) = ⟨x− pk, ak⟩
(1)
= ⟨x, zk⟩ − γk ∥zk∥ .

(70)

where (1) comes from Exp0(γk[zk]) = γk[zk] and Γ0→pk
(zk) = zk. The above takes the form of

⟨x, ak⟩+ bk.

On the other hand, the LHS of Eq. (8) becomes

sign(⟨Log0(y), ek⟩) d(y,Hek,0)
(1)
= sign(yk) d(y,Hek,0)

(2)
= yk.

(71)

The above comes from the following.

(1) Log0(y) = y and ⟨y, ek⟩ = yk.

(2) d(y,Hek,0) =
|⟨y,ek⟩|
∥ek∥ = |yk|.

E.2 LOG-EUCLIDEAN LAYERS UNDER PRODUCT GEOMETRY

We first review some basic facts of the product geometry, and then discuss the Log-Euclidean
correlation MLR and FC layer under the product geometry.
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Product of correlation. Given a manifold (M, g), the n-fold product is (Mn, g) =
∏n

i=1(M, g).
Each point and tangent vector overMn are

Mn ∋ P = (P1 ∈M, · · · , Pn ∈M), (72)
TPMn ∋ V = (V1 ∈ TP1

M, · · · , Vn ∈ TPn
M). (73)

The product metric is

⟨V,W ⟩P =

n∑

i=1

⟨Vi,Wi⟩Pi
, ∀V,W ∈ TPMn. (74)

Correlation MLR. Following Thm. 3.1, the MLR layer for the input X = {Xj ∈ Cor+(n)}cj=1 ∈
(Cor+(n))c is

v(X)
(1)
= ⟨ϕ(X), ϕ∗,I(Zk)⟩ − γk ∥ϕ∗,I(Zk)∥
(2)
=

c∑

j=1

vj(X;Zkj , γkj),
(75)

where I = {I, · · · , I}. Here, we use a separate γkj for the k-th component space. The above comes
from the following.

(1) Thm. 3.1.

(2) Zk = (Zk1 ∈ TP1
Cor+(n), · · · , Zkn ∈ TPn

Cor+(n)), [Zk] =
{

Zk1

∥Zk1∥I
, · · · , Zkc

∥Zkc∥I

}
.

Correlation FC layer. Following Lem. J.2 and Eq. (75), the FC layer F(·) : (Cor+(n))c →
Cor+(m) for the input X is

Y = ϕ−1




dm∑

i=1

c∑

j=1

vij(Xj ;Zij , γij)ei


 , (76)

where Zij ∈ Hol(n) and γij ∈ R.

Eq. (76) implies that F(·) : (Cor+(n))c → Cor+(m) differs from F(·) : Cor+(n) → Cor+(m)
only in vij , where the former is a summation. For example, considering the FC layer F(·) :

(Cor+(n))c → Cor+(m) under ECM, its vij for the input C = {Cj ∈ Cor+(n)}ck=1 is

vij(C) =

c∑

k=1

vEC
ijk(Ck, Zijk, γijk), (77)

where Zijk ∈ Hol(n) and γijk ∈ R, for i, j = 1, · · · ,m with i > j, and 1 ≤ k ≤ c.

F BACKPROPAGATION OVER CORRELATION GEOMETRIES

Except for D and D⋆, all computations involved in the five metrics can be backpropagated using
existing techniques or PyTorch’s auto-differentiation. Three kinds of matrix computations need to be
discussed: 1) matrix logarithm and exponentiation; 2) Cholesky decomposition; 3) D and D⋆.

Matrix logarithm and exponentiation: The symmetric matrix exp and log, i.e., log : Sn++ → Sn
and exp : Sn → Sn++, can be backpropagated using the Daleckii-Krein formula (Brooks et al., 2019,
Eq. 13).

Cholesky decomposition: The backpropagation of the Cholesky decomposition has been well studied
by Murray (2016). In addition, as shown by Chen et al. (2024b, App. F), the one in Murray (2016)
yields a similar gradient to the one generated by the autograd of torch.linalg.cholesky.

D and D⋆: Their gradients can be backpropagated either approximately by the ones of their iterative
algorithms or accurately by our following two propositions.
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Proposition F.1 (Gradients w.r.t. D). [↓] Let l(·) be the loss function and Y = D(H) + H :
Hol(n) → Sn for any symmetric hollow matrix H , where Sn is the Euclidean space of n × n
symmetric matrices. Let Y = U∆U⊤ be the eigendecomposition with (δ1, · · · , δn) as eigenvalues.
Given the succeeding gradient ∂l

∂Y , the output gradient ∂l
∂H is

∂l

∂H
= off

(
∂l

∂Y
− exp∗,Y

(
D
(
(H0)−1Dv

(
∂l

∂Y

)
1T

)))
, (78)

with Sn++ ∋ H0
il =

∑
j,k UijUikUljUlkLj,k and

Lj,k =

{
exp(δj)−exp(δk)

δj−δk
, if δj ̸= δk

exp′(δj), otherwise
(79)

Here, D(·) : Rn×n → Diag(n) extracts the diagonal matrix, while Dv(·) : Rn×n → Rn returns a
vector of diagonal elements. Besides, off(·) subtracts the diagonal matrix from a matrix, and exp∗,Y
is the differential of the symmetric matrix exponential:

exp∗,Y (V ) = U
(
L⊙

(
U⊤V U

))
U⊤, (80)

where ⊙ denotes the Hadamard product and L is called Loewner matrix, with the (j, k)-th element
defined as Eq. (79).
Proposition F.2 (Gradients w.r.t. D⋆). [↓] Following the notation in Prop. F.1, we further denote
Σ = D⋆(C)CD⋆(C) : Cor+(n) → Row+

1 (n), where Row+
1 (n) is the manifold of n × n SPD

matrices with unit row sum. Given the succeeding gradient ∂l
∂Σ , the output gradient ∂l

∂C is

∂l

∂C
= ∆

(
∂l

∂Σ
−
(
(I +Σ)−1ṽ1⊤)

sym

)
∆, (81)

where ∆ = D(Σ)1/2, ṽ = Dv
(
Σ ∂l

∂Σ + ∂l
∂ΣΣ

)
, I is the identity matrix, and 1 ∈ Rn is the vector with

all entities as 1. Here, (A)sym = A+A⊤

2 .

G ORDER-INVARIANCE OF BETA OPERATIONS

Theorem G.1 (Order-invariance). [↓] Given multichannel data xi1,...,in ∈ Pnin with ij ∈
{1, . . . , Nj}, applying the β-concatenation sequentially n times in the order in → · · · → i1 is
equivalent to a single β-concatenation along all indices simultaneously. Similarly, β-splitting
x ∈ PN into multichannel data xi1,...,in ∈ Pnin with ij ∈ {1, . . . , Nj} and nin

∏n
j=1Nj = N

under the sequential order i1 → · · · → in is identical to the one under a single β-split to generate
all indices simultaneously.

H SUMMARY OF CORRELATION FC AND MLR LAYERS

Tab. 11 summarizes the c-class correlation MLR layers, while Algs. 1 and 2 provide the detailed
algorithm. Tab. 12 summarizes our correlation FC layers, while Algs. 3 and 4 provide the detailed
algorithm.

I ADDITIONAL DETAILS AND EXPERIMENTS

I.1 BASIC LAYERS IN SPDNET

SPDNet (Huang & Van Gool, 2017) is the most classic SPD neural network. SPDNet mimics the
conventional densely connected feedforward network, consisting of three basic building blocks:

BiMap layer: Sk =W kSk−1W k⊤, with W k semi-orthogonal, (82)

ReEig layer: Sk = Uk−1 max(Σk−1, ϵIn)U
k−1⊤, with Sk−1 SVD

= Uk−1Σk−1Uk−1⊤, (83)

LogEig layer: Sk = log(Sk−1). (84)
where max() is element-wise maximization and log is the matrix logarithm. BiMap and ReEig mimic
transformation and non-linear activation, where the input and output are both SPD matrices. LogEig
maps SPD matrices into the tangent space at the identity matrix for classification.
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Table 11: Summary of vk(C) in c-class correlation MLR layers, where k denotes the k-th class and
C ∈ Cor+(n) is the input correlation matrix.

Metric Expression Parameters Refs

ECM ⟨⌊Θ(C)⌋ , ⌊Zk⌋⟩ − γk ∥⌊Zk⌋∥ {Zk ∈ Hol(n), γk ∈ R}ck=1 Thm. 3.3

LECM ⟨log ◦Θ(C), ⌊Zk⌋⟩ − γk ∥⌊Zk⌋∥ {Zk ∈ Hol(n), γk ∈ R}ck=1 Thm. 3.3

OLM ⟨Log◦(C), Zk⟩ − γk ∥Zk∥ {Zk ∈ Hol(n), γk ∈ R}ck=1 Thm. 3.3

LSM
〈
Log⋆(C),Log⋆∗,I(Zk)

〉
− γk

∥∥Log⋆∗,I(Zk)
∥∥ {Zk ∈ Hol(n), γk ∈ R}ck=1 Thm. 3.3

PHCM Ψ ◦ Chol→ β-concat→ Poincaré vk(x)
{
zk ∈ R

n(n−1)
2 , γk ∈ R

}c

k=1
Eqs. (13), (64) and (66)

Table 12: Summary of correlation FC layers, F : Cor+(n) ∋ C 7→ Y ∈ Cor+(m). Each vgij with
g ∈ {EC,LEC,OL,LS} is defined by Tab. 11.

Metric Expression Parameters Refs

ECM
Y = Cor ◦Chol−1

(
V EC + Im

)

V EC
ij =

{
vEC
ij (C), i > j,

0, otherwise
{Zij ∈ Hol(n), γij ∈ R}1≤j<i≤m Thm. 3.6

LECM
Y = Cor ◦Chol−1 ◦ exp

(
V LEC

)

V LEC
ij =

{
vLEC
ij (C), i > j,

0, otherwise
{Zij ∈ Hol(n), γij ∈ R}1≤j<i≤m Thm. 3.6

OLM

Y = Exp◦
(
V OL

)

V OL
ij =





vOL
ij (C)/

√
2, i > j,

V OL
ji , i < j,

0, otherwise

{Zij ∈ Hol(n), γij ∈ R}1≤j<i≤m Thm. 3.6

LSM

Y = Cor ◦ exp
(
V LS

)

V LS
ij =





vLS
ij (C)/

√
6, m > i > j ≥ 1,

vLS
ii (C)/

√
3, m > i ≥ 1,

V LS
ji , i < j,

−∑m−1
k=1 V

LS
kj , i = m, 1 ≤ j < m,∑m−1

k=1

∑m−1
l=1 V LS

lk , i = j = m

{Zij ∈ Hol(n), γij ∈ R}1≤j≤i≤m−1 Thm. 3.6

PHCM Ψ ◦ Chol→ β-concat→ Poincaré FC
β-split→ (Ψ ◦ Chol)−1

{
zk ∈ R

n(n−1)
2 , γk ∈ R

}m(m−1)/2

k=1
Eqs. (13), (65) and (66)

Remark I.1. All three basic layers in SPDNet are designed for the SPD manifold. Although correlation
is still SPD, it has its own geometries. Therefore, applying SPD networks, such as SPDNet, to
correlation inputs might bring suboptimal performance, which motivates us to develop correlation
networks based on correlation geometries.

I.2 DATASETS

The following introduces the details of each dataset.

Radar (Brooks et al., 2019).3 It consists of 3,000 synthetic radar signals equally distributed in 3
classes.

HDM05 (Müller et al., 2007).4 It consists of 2,343 skeleton-based motion capture sequences
executed by different actors. Each frame consists of 3D coordinates of 31 joints. We remove the
under-represented clips, trimming the dataset down to 2,326 instances scattered throughout 122
classes. We randomly select 50% of the samples from each category for training and the remaining
50% for testing.

3https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
4https://resources.mpi-inf.mpg.de/HDM05/
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Algorithm 1: Log-Euclidean correlation MLR

Input : correlation matrix C ∈ Cor+(n), number of classes c, and Log-Euclidean metric
g ∈ {EC,LEC,OL,LS}.

Parameters : class weights {Zk ∈ Hol(n)}ck=1 and class biases {γk ∈ R}ck=1.
Output : class probabilities p ∈ Rc.

// In practice, the following is efficiently implemented as
tensor operations in PyTorch rather than a for-loop.

for k ← 1 to c do
switch g do

case EC do
vk(C)← ⟨⌊Θ(C)⌋ , ⌊Zk⌋⟩ − γk ∥⌊Zk⌋∥; // Thm. 3.6

end
case LEC do

vk(C)← ⟨log ◦Θ(C), ⌊Zk⌋⟩ − γk ∥⌊Zk⌋∥; // Thm. 3.6
end
case OL do

vk(C)← ⟨Log◦(C), Zk⟩ − γk ∥Zk∥; // Thm. 3.6
end
case LS do

vk(C)←
〈
Log⋆(C),Log⋆∗,I(Zk)

〉
− γk

∥∥Log⋆∗,I(Zk)
∥∥; // Thm. 3.6

end
end

end
p = softmax(v1(C), . . . , vc(C))

Algorithm 2: PHCM correlation MLR

Input : correlation matrix C ∈ Cor+(n) and number of classes c.
Parameters : Poincaré MLR weights {zk ∈ RN}ck=1 and biases {γk ∈ R}ck=1, where

N = n(n−1)/2.
Output : class probabilities p ∈ Rc.

{pj}n−1
j=1 ← Ψ ◦ Chol(C) ; // map to PPn−1 by Eq. (13)

x← β-concat
(
{pj}n−1

j=1

)
; // Poincaré β-concat in Eq. (66)

p← Poincaré MLR (x; {zk, γk}ck=1) ; // Poincaré MLR in Eq. (64)

FPHA (Garcia-Hernando et al., 2018).5 It includes 1,175 skeleton-based first-person hand gesture
videos of 45 different categories with 600 clips for training and 575 for testing. Each frame contains
the 3D coordinates of 21 hand joints.

NTU1206 (Liu et al., 2019). This data set contains 114,480 sequences in 120 action classes. We use
mutual actions and adopt the cross-setup protocol (Liu et al., 2019).

For the HDM05 and FPHA datasets, we preprocess each sequence using the code7 provided by
Vemulapalli et al. (2014) to normalize body part lengths and ensure invariance to scale and view. For
NTU120, we follow Chen et al. (2021) to preprocess the data.

I.3 INPUT DATA

I.3.1 SPD INPUT IN SPD NETWORKS

For GyroLE, GyroAI, GyroLC, and GyroSPD++, inputs are similar to our CorNets, except that inputs
are the SPD covariance matrices. For other SPD baselines, such as SPDNet, SPDNetBN, LieBN,

5https://github.com/guiggh/hand_pose_action
6https://github.com/shahroudy/NTURGB-D
7https://ravitejav.weebly.com/kbac.html
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Algorithm 3: Log-Euclidean correlation FC layer

Input : input correlation C ∈ Cor+(n), output size m, and Log-Euclidean metric
g ∈ {EC,LEC,OL,LS}.

Parameters : FC parameters {Zij ∈ Hol(n), γij ∈ R} with valid index pairs (i, j) as in Tab. 12.
Output : output correlation Y ∈ Cor+(m).

switch g do
case EC do

Y ← Cor ◦Chol−1
(
V EC + Im

)
; // V EC: Eqs. (7) and (9)

end
case LEC do

Y ← Cor ◦Chol−1 ◦ exp
(
V LEC

)
; // V LEC: Eqs. (7) and (10)

end
case OL do

Y ← Exp◦
(
V OL

)
; // V OL: Eqs. (7) and (11)

end
case LS do

Y ← Cor ◦ exp
(
V LS

)
; // V LS: Eqs. (7) and (12)

end
end

Algorithm 4: PHCM correlation FC layer

Input : input correlation C ∈ Cor+(n) and output size m.
Parameters : Poincaré FC weights {zk ∈ RN}dk=1 and biases {γk ∈ R}dk=1, where

N = n(n−1)/2 and d = m(m−1)/2.
Output : output correlation Y ∈ Cor+(m).

{pj}n−1
j=1 ← Ψ ◦ Chol(C) ; // map to PPn−1 by Eq. (13)

x← β-concat
(
{pj}n−1

j=1

)
; // Poincaré β-concat in Eq. (66)

y ← Poincaré FC
(
x; {zk, γk}dk=1

)
; // Eq. (65)

{qj}m−1
j=1 ← β-split(y) ; // Poincaré β-split, inverse of Eq. (66)

Y ← (Ψ ◦ Chol)−1
(
{qj}m−1

j=1

)
; // the inverse of Eq. (13)

MLR, and RResNet, each sequence is represented by a global covariance matrix as their original
papers (Huang & Van Gool, 2017; Brooks et al., 2019; Chen et al., 2024b;a; Katsman et al., 2024).
The sizes of the covariance matrices are 20 × 20, 93 × 93, 63 × 63, and 150 × 150 on the Radar,
HDM05, FPHA, and NTU120 datasets, respectively.

I.3.2 GRASSMANNIAN INPUT IN GRASSMANNIAN NETWORKS

For GrNet, GyroGr, and GyroGr-Scaling baselines, each sequence is represented by an 8-channel
Grassmannian tensor as their original papers (Huang et al., 2018; Nguyen & Yang, 2023). The sizes
of the Grassmannian matrices are 8× 20× 8, 8× 93× 10, 8× 63× 10 and 8× 150× 10 on the
Radar, HDM05, FPHA, and NTU120 datasets, respectively.

I.3.3 CORRELATION INPUT IN CORNETS

For the input of our CorNets, we first follow Wang et al. (2024); Nguyen et al. (2024) to model each
sample into a multi-channel SPD tensor. Then, each SPD matrix is transformed to their correlation
matrix by

Cor : Sn++ ∋ Σ 7−→ C = D(Σ)−
1
2ΣD(Σ)−

1
2 ∈ Cor+(n). (85)

The following introduces the SPD modeling.
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For the HDM05 and FPHA datasets, we follow Nguyen (2022, Sec. 4.1.3) to model each skeleton
sequence into a multi-channel covariance tensor [c, n, n]. Specifically, we first identify the closest
left (right) neighbor of every joint based on their distance to the hip (wrist) joint, and then combine
the 3D coordinates of each joint and those of its left (right) neighbor to create a feature vector for the
joint. For a given frame t, we compute its Gaussian embedding (Lovrić et al., 2000):

Yt = (detΣt)
− 1

n+1

[
Σt + µt (µt)

T
µt

(µt)
T

1

]
, (86)

where µt and Σt are the mean vector and covariance matrix computed from the set of feature vectors
within the frame. The lower part of matrix log (Yt) is flattened to obtain a vector ṽt. All vectors ṽt
within a time window [t, t+ c− 1], where c is determined from a temporal pyramid representation of
the sequence (the number of temporal pyramids is set to 2 in our experiments), are used to compute a
covariance matrix as

Σ̃t =
1

c

t+c−1∑

i=t

(ṽi − vt) (ṽi − vt)T , (87)

where vt = 1
c

∑t+c−1
i=t ṽi. The resulting {Σ̃t} are the covariance matrices that we need. On the

FPHA dataset, we generate the covariance based on three sets of neighbors: left, right, and vertical
(bottom) neighbors.

For the Radar dataset, we follow Wang et al. (2024) to use the temporal convolution followed by a
covariance pooling layer to obtain a multi-channel covariance tensor of shape [c, 20, 20].

After preprocessing, the input correlation tensor shapes are [7, 20, 20], [3, 28, 28], [9, 28, 28] and
[6, 28, 28] on the Radar, HDM05, FPHA, and NTU120 datasets, respectively.

I.4 IMPLEMENTATION DETAILS

Table 13: Hyer-parameters in CorNets

Dataset Model Optimizer lr wd Matrix Power Converged Epoch

Radar

CorNet-ECM ADAM 1e−2 N/A 1.5 50
CorNet-LECM ADAM 1e−2 N/A -0.25 50
CorNet-OLM ADAM 1e−2 N/A -0.25 50
CorNet-LSM ADAM 1e−2 N/A 0.75 50

CorNet-PHCM ADAM 1e−2 N/A 0.75 50

HDM05

CorNet-ECM ADAM 1e−3 1e−3 0.125 100
CorNet-LECM ADAM 1e−4 1e−3 0.5 150
CorNet-OLM SGD 5e−2 1e−3 0.25 200
CorNet-LSM ADAM 1e−3 N/A -0.75 50

CorNet-PHCM ADAM 1e−2 N/A -0.25 50

FPHA

CorNet-ECM ADAM 5e−3 N/A -0.25 150
CorNet-LECM ADAM 5e−4 1e−4 -0.5 150
CorNet-OLM ADAM 1e−4 N/A -1 50
CorNet-LSM ADAM 1e−3 N/A -1 50

CorNet-PHCM ADAM 1e−3 1e−4 -0.5 150

NTU120

CorNet-ECM SGD 1e−2 N/A 0.25 50
CorNet-LECM SGD 1e−2 N/A 0.25 50
CorNet-OLM SGD 5e−3 N/A 0.25 50
CorNet-LSM SGD 1e−3 N/A 0.25 50

CorNet-PHCM ADAM 1e−3 N/A 0.25 50

SPD baselines. We follow the official Pytorch code of SPDNetBN8 to implement SPDNet and
SPDNetBN. For LieBN9, we focus on the instantiation under Log-Cholesky Metric (LCM) (Lin,
2019), while for RResNet10, we implement the ones induced by Affine-Invariant Metric (AIM)

8https://proceedings.neurips.cc/paper_files/paper/2019/file/
6e69ebbfad976d4637bb4b39de261bf7-Supplemental.zip

9https://github.com/GitZH-Chen/LieBN
10https://github.com/CUAI/Riemannian-Residual-Neural-Networks
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(Pennec et al., 2006) and Log-Euclidean Metric (LEM) (Arsigny et al., 2005). For SPD MLR11, we
implement the one based on LCM. Due to the lack of official code, Gyro-based models are carefully
reimplemented from their original papers. Following Nguyen et al. (2024), GyroSPD++ combines an
AIM-based convolution with an LEM-based MLR.

Grassmannian baselines. Since GrNet is officially implemented by Matlab, we carefully re-
implemented it using PyTorch. Additionally, as both GryroGr and GryroGr-Scaling do not release
official code, we re-implemented them based on the original paper (Nguyen & Yang, 2023). For all
Grassmannian comparative methods, we use SGD (Robbins & Monro, 1951) with a learning rate of
5e−2.

CorNets. On all three datasets, we employ a single convolutional kernel for global convolution,
i.e., applying a global receptive field across the channel dimension. The output dimensions of the
correlation convolutional layer are 8 × 8, 26 × 26, 26 × 26, and 11 × 11 for the Radar, HDM05,
FPHA, and NTU120 datasets, respectively.

We primarily use the Adam (Kingma, 2015) and SGD (Robbins & Monro, 1951) optimizers. Inspired
by the deformation effect on the latent SPD geometries by the matrix power over the SPD manifold
(Chen et al., 2024d, Fig. 1), we apply the matrix power before correlation modeling (Cor(·)) as
activation. In particular, when the data are centered at zero and power is −1, Cor(Σ−1) corresponds
to the partial correlation matrix of the covariance matrix Σ (Thanwerdas, 2024, Lem. 1.6). The batch
size is set to 30, and training is capped at 200 epochs, although most cases converge in fewer than
150 epochs. Due to the different correlation geometries, the hyperparameters vary for CorNets under
different geometries. Tab. 13 summarize all the hyperparameters.

Extra computational details for OLM and LSM layers. For the MLR, FC, and convolutional layers
induced by OLM and LSM, the key computations involve Exp◦ and Log⋆, which depend on the
calculations of D and D⋆. In our experiments, we empirically observe that iterating until convergence
is more effective for D, whereas a single step of Newton’s method generally performs best for D⋆.
Accordingly, we set D to iterate until convergence, leveraging Prop. F.1 for accurate backpropagation.
For D⋆, we adopt a single iteration in Newton’s method and use automatic differentiation (autograd)
through this single step for backpropagation.

I.5 ANALYSIS OF COVARIANCE VERSUS CORRELATION

In this section, we analyze when and why correlation matrices provide stronger representations
than covariance matrices. App. I.5.1 quantifies the variability of diagonal variances via per-sample
coefficients of variation, and App. I.5.2 compares the magnitudes of diagonal and off-diagonal entries
via their ratios. These analyses lead to two insights: (1) large variability and magnitude of diagonal
elements can act as nuisance noise for SPD networks by overshadowing informative off-diagonal
correlations; (2) under such cases, correlation representations that normalize variances and emphasize
pairwise correlations tend to be more effective, which is especially evident on HDM05.

I.5.1 COEFFICIENT OF VARIATION OF DIAGONAL VARIANCES

This section investigates why CorNets yield substantially larger gains over SPD networks on HDM05
compared to FPHA.

Setup. For each covariance matrix Σ ∈ Sn++ we extract the diagonal vector

v = (Σ11, . . . ,ΣNN ). (88)

We compute the coefficient of variation of v as

CV =
std(v)

mean(v) + ε
, (89)

where ε = 10−8 ensures numerical stability. As shown in App. I.3.3, each sequence is modeled as a
c-channel tensor of covariance matrices. The above procedure yields one coefficient of variation per
channel for each sample. We visualize their empirical distributions per channel.

11https://github.com/GitZH-Chen/SPDMLR

31

https://github.com/GitZH-Chen/SPDMLR


1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Coefficient of Variation

0

10

20

30

40

50

60

Co
un

t

Channel 0

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Coefficient of Variation

Co
un

t

Channel 1

1.0 1.5 2.0 2.5
Coefficient of Variation

Co
un

t

Channel 2

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Coefficient of Variation

0

10

20

30

40

50

60

Co
un

t

Channel 3

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Coefficient of Variation

Co
un

t

Channel 4

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Coefficient of Variation

Co
un

t

Channel 5

0.75 1.00 1.25 1.50 1.75 2.00 2.25
Coefficient of Variation

0

10

20

30

40

50

60

Co
un

t

Channel 6

0.75 1.00 1.25 1.50 1.75 2.00 2.25
Coefficient of Variation

Co
un

t

Channel 7

1.0 1.5 2.0 2.5
Coefficient of Variation

Co
un

t

Channel 8

Figure 6: Distribution of per-sample coefficients of variation of diagonal variances on FPHA. Higher
values indicate stronger diagonal variability, which could causes nuisance noise.
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Figure 7: Distribution of per-sample coefficients of variation of diagonal variances on HDM05.
Higher values indicate stronger diagonal variability, which could causes nuisance noise.

Analysis. Figs. 6 and 7 show that the coefficients of variation w.r.t. diagonal variance are large
on both datasets. On FPHA, most values fall between 0.8 and 2.0. On HDM05, they are even
larger, typically between 1.0 and 3.0. Such large fluctuations indicate that diagonal variances change
substantially and could bring nuisance noise for SPD networks. In contrast, correlation matrices
allows CorNets to focus on pairwise relationships. This explains the consistent improvements over
SPD networks and the larger gains on HDM05.

I.5.2 RATIO OF DIAGONAL TO OFF-DIAGONAL ENTRIES IN COVARIANCE FEATURES

This section further examines why CorNets achieve larger gains over SPD networks on HDM05 than
on FPHA. We analyze the ratio of diagonal to off-diagonal entries in covariance matrices on FPHA
and HDM05, to quantify how strongly variance terms overshadow pairwise correlations.

Setup. For each covariance matrix Σ ∈ Sn++ we compute the mean magnitude of diagonal entries

D =
1

N

N∑

i=1

|Σii|, (90)
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Figure 8: Distribution of ratios of diagonal to off-diagonal entries on FPHA.
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Figure 9: Distribution of ratios of diagonal to off-diagonal entries on HDM05.

and the mean magnitude of off-diagonal entries

O =
1

N(N − 1)

∑

i ̸=j

|Σij |. (91)

We then form the sample-wise ratio

R =
D

O
, (92)

which measures how much larger the diagonal amplitudes are compared to the off-diagonal correla-
tions. Each sample yields one ratio per channel, and we visualize the empirical distributions of these
ratios on FPHA and HDM05.

Analysis. Figs. 8 and 9 show that both datasets have ratios well above one. On FPHA, most
ratios lie between 1.7 and 3.0, indicating that diagonal amplitudes are noticeably larger than off-
diagonal correlations. HDM05 exhibits even larger ratios, typically between 2.0 and 6.0, with
many above 3.0. These statistics indicate that covariance representations on both datasets are
strongly dominated by diagonal entries, with more pronounced dominance on HDM05. When
diagonal terms dominate, SPD networks trained on covariance inputs tend to overemphasize variances
and underexploit informative pairwise correlations. Correlation matrices normalize variances and
highlight off-diagonal interactions, which explains why CorNets outperform SPD baselines on both
datasets and why the improvement is substantially larger on HDM05.

I.6 NORMALIZED COVARIANCE VS. CORRELATION
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Table 14: SPD networks with or without normalized SPD inputs

Manifold Method Radar HDM05 FPHA

Sn++

SPDNet 93.25 ± 1.10 64.57 ± 0.61 85.59 ± 0.72
SPDNet-EigN 86.91 ± 0.57 66.62 ± 0.73 84.90 ± 0.62

SPDNetBN 94.85 ± 0.99 71.28 ± 0.79 89.33 ± 0.49
SPDNetBN-EigN 89.25 ± 1.19 71.59 ± 0.68 88.47 ± 0.39

SPDResNet 95.89 ± 0.86 70.12 ± 2.45 85.07 ± 0.99
SPDResNet-EigN 92.61 ± 0.96 71.02 ± 0.91 84.53 ± 0.46

SPDNetLieBN 94.80 ± 0.71 71.78 ± 0.44 86.33 ± 0.43
SPDNetLieBN-EigN 88.91 ± 1.21 70.61 ± 1.04 83.73 ± 0.65

SPDNetMLR 95.64 ± 0.83 65.90 ± 0.93 85.67 ± 0.69
SPDNetMLR-EigN 89.41 ± 0.58 66.89 ± 0.63 83.63 ± 1.09

GyroAI 96.29 ± 0.48 72.34 ± 1.06 89.60 ± 0.37
GyroAI-EigN 91.36 ± 0.80 72.64 ± 0.70 89.90 ± 0.31

GyroSPD++ 95.20 ± 0.88 69.82 ± 1.79 89.50 ± 0.37
GyroSPD++-EigN 90.83 ± 1.09 66.92 ± 0.28 84.29 ± 0.14

Cor+(n)

CorNet-ECM 97.71 ± 0.61 81.35 ± 1.27 92.17 ± 0.49
CorNet-LECM 98.40 ± 0.70 78.05 ± 1.14 91.17 ± 0.32
CorNet-OLM 97.57 ± 0.76 81.46 ± 0.61 91.63 ± 0.12
CorNet-LSM 96.24 ± 1.48 74.89 ± 1.07 83.43 ± 0.65

CorNet-PHCM 96.56 ± 0.86 82.26 ± 0.92 90.03 ± 0.63

Setup. We evaluate SPD-based baselines by covariance inputs normalized by their largest eigenvalue.
Given a covariance matrix Σ, we get the normalized SPD input Σ̂ = Σ/λmax(Σ) and feed it
into existing SPD networks. This variant is denoted by “-EigN”. We report results on the Radar,
HDM05, and FPHA datasets for representative SPD models: SPDNet, SPDNetBN, SPDResNet,
SPDNetLieBN, SPDNetMLR, GyroAI, and GyroSPD++. Here, SPDResNet is implemented under
the LEM, while SPDNetLieBN follows the LCM.

Results. Tab. 14 summarizes the results. On HDM05, eigenvalue normalization has only a marginal
effect and the normalized variants achieve accuracy comparable to their unnormalized counterparts.
On FPHA and, in particular, on Radar, normalization usually reduces accuracy. The behavior of
GyroSPD++ is especially informative. GyroSPD++ and CorNet share similar architecture, consisting
of one convolution followed by a MLR layer. However, GyroSPD++-EigN performs worse than
GyroSPD++ on all three datasets, while CorNet with correlation inputs achieves clear improvements
over GyroSPD++. These phenomena can be explained by two factors.

1. Redundancy. The raw samples on HDM05 and FPHA have already undergone centering,
scaling, and normalization before covariance modeling. Dividing by λmax(Σ) therefore
introduces little additional control over scale, which explains the marginal effect on HDM05.

2. Scaled covariance versus correlation. Since EigN is equivalent to uniformly rescaling
the raw samples before covariance computation, the normalized covariance matrices re-
main covariances and do not encode new statistical information. Moreover, forcing the
largest eigenvalue to 1 can remove potentially informative differences in overall energy
across samples, which aligns with the degradation observed for EigN variants, especially
GyroSPD++-EigN. In contrast, correlation normalization uses a different scaling factor for
each pair of variables,

Corij =
Σij√
ΣiiΣjj

, (93)

producing standardized correlation coefficients. Therefore, global eigenvalue scaling is
statistically distinct from correlation normalization and fails to capture the benefits of explicit
correlation modeling.
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I.7 ABLATIONS ON ACTIVATIONS.

Table 15: Comparison of CorNet with or without activations.

Metric Activation Radar HDM05 FPHA

ECM
ReLU 97.41 ± 0.25 81.23 ± 0.46 89.80 ± 0.58
None 97.71 ± 0.61 81.35 ± 1.27 92.17 ± 0.49

LECM
ReLU 97.23 ± 0.67 77.51 ± 1.02 91.00 ± 0.15
None 98.40 ± 0.70 78.05 ± 1.14 91.17 ± 0.32

OLM
ReLU 97.52 ± 0.47 81.86 ± 0.65 91.47 ± 0.19
None 97.57 ± 0.76 81.46 ± 0.61 91.63 ± 0.12

LSM
ReLU 95.60 ± 0.97 N/A N/A
None 96.24 ± 1.48 74.89 ± 1.07 83.43 ± 0.65

PHCM
ReLU 96.40 ± 0.25 77.32 ± 1.56 88.63 ± 0.22
None 96.56 ± 0.86 82.26 ± 0.92 90.03 ± 0.63

In the main experiments, we follow HNN++ (Shimizu et al., 2021) and GyroSPD++ (Nguyen et al.,
2024), and do not use explicit activations, as the manifold itself introduces nonlinearity. We further
conduct an ablation on activations. Following Ganea et al. (2018, Sec. 3.2), we define activations in the
tangent space at the identity, i.e., ExpI ◦δ◦LogI for four Log-Euclidean metrics, and Exp0 ◦δ◦Log0
for PHCM in the β-concatenated Poincaré vector, where δ is ReLU (Glorot et al., 2011). Specifically,
we insert a ReLU after the correlation convolution. As shown in Tab. 15, adding activations generally
yields no benefits and can even degrade performance. The variant without activation consistently
achieves higher or comparable accuracy, except CorNet-OLM for HDM05. Moreover, CorNet-LSM
with activation fails to converge on HDM05 and FPHA. These results suggest that CorNet already
provides sufficient nonlinearity, rendering additional activations redundant.

I.8 SCALABILITY OF CORRELATION METRICS

Table 16: Average runtime (s) of a single forward pass in CorNet under different metrics and input
dimensions. The top two efficient metrics in each row are highlighted in red and blue, respectively.

Dim ECM LECM OLM LSM PHCM

30 0.0004 0.0018 0.0012 0.0019 0.0131
50 0.0004 0.0027 0.0318 0.0334 0.0211

100 0.0008 0.0054 0.0764 0.0781 0.0413
150 0.0015 0.0100 0.1247 0.1267 0.2284
200 0.0025 0.0197 0.1906 0.1938 0.3320
250 0.0037 0.0345 0.2352 0.2379 0.4414
300 0.0053 0.0733 0.3434 0.3454 0.5732
400 0.0092 0.1796 0.5163 0.5261 0.4807
500 0.0143 0.3076 0.6907 0.6961 0.5693
600 0.0206 0.5983 0.9331 0.9484 0.7923
700 0.0289 1.0961 1.2432 1.2575 1.0417
800 0.039 1.8689 1.6658 1.6815 1.3387
900 0.0535 2.9886 2.2156 2.2303 1.7324
1000 0.0706 3.7259 2.539 2.5783 1.229

We evaluate the computational efficiency of correlation metrics across increasing input dimensions
using CorNet with one correlation FC layer followed by one correlation MLR layer. Each input
correlation matrix of size [n, n] is mapped to [20, 20] by the FC layer and then classified into 10
classes by the MLR layer. For each 30 ≤ n ≤ 1000, we randomly generate 30 correlation matrices
and record the average runtime of a single forward pass. As implied by Tab. 8, the runtime is governed
by two factors: the co-domain computation (Euclidean or hyperbolic) and the complexity of the
diffeomorphism. The results are summarized in Tab. 16. We have the following findings.
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• ECM is consistently the most efficient metric, benefiting from both a Euclidean co-domain
and the simplest diffeomorphism.

• At low dimensions (n ≤ 400), the ordering is

ECM < LECM < OLM ≈ LSM < PHCM.

Here, co-domain operations dominate, and PHCM is slowest due to costly hyperbolic
computations.

• At high dimensions (n ≥ 700), the ordering changes to

ECM < PHCM < OLM ≈ LSM < LECM.

Here, diffeomorphisms dominate: ECM and PHCM scale better thanks to relatively
lightweight Cholesky decomposition, while OLM and LSM slow down due to matrix
logarithm/exponentiation. LECM is the slowest, as its log ◦Θ requires two nested matrix
functions.

I.9 ADDITIONAL DETAILS ON VISUALIZATION

We provide additional interpretations on Figs. 2 and 5 by first describing how SPD and correlation
matrices are visualized, then explaining the construction of Fig. 2, and finally clarifying how the
decision hyperplanes in Fig. 5 are obtained.

I.9.1 VISUALIZATION OF LOW-DIMENSIONAL SPD AND CORRELATION MATRICES.

Any 2× 2 covariance matrix in S2++ can be written as

Σ =

(
a b
b d

)
, a > 0, d > 0, ad− b2 > 0. (94)

Embedding Σ into R3 via the map Σ 7→ (a, b, d) identifies S2++ with the interior of the quadratic
cone {

(a, b, d) ∈ R3 | a > 0, d > 0, ad− b2 > 0
}
, (95)

which is an open cone in R3.

For 2× 2 correlation matrices, any C ∈ Cor+(2) has the form

C =

(
1 r
r 1

)
, r ∈ (−1, 1). (96)

Thus, Cor+(2) is one dimensional. Embedding C into R3 as (1, r, 1) yields a line segment inside the
cone corresponding to S2++.

For 3 × 3 correlation matrices, any C ∈ Cor+(3) is parameterized by its off-diagonal entries
(r12, r13, r23):

C =

(
1 r12 r13
r12 1 r23
r13 r23 1

)
. (97)

Embedding C into R3 via C 7→ (r12, r13, r23) produces an open elliptope in R3. This is the
representation of Cor+(3) used in Fig. 5, where each point in the elliptope corresponds to one 3× 3
correlation matrix.

I.9.2 CONSTRUCTION OF FIG. 2.

Given a covariance matrix Σ ∈ Sn++, its correlation matrix is defined in Sec. 2 as

C = Cor(Σ) = D(Σ)−1/2ΣD(Σ)−1/2. (98)

This map normalizes the diagonal entries and thus many covariance matrices share the same correla-
tion. To see this explicitly in the 2× 2 case, fix a correlation matrix

C =

(
1 r
r 1

)
, r ∈ (−1, 1), (99)

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

and consider any positive diagonal matrix

D = diag(λ1, λ2), λ1 > 0, λ2 > 0. (100)

The corresponding covariance matrix

Σ = DCD =

(
λ21 λ1λ2r

λ1λ2r λ22

)
(101)

satisfies Cor(Σ) = C. Since λ1 and λ2 can take any positive values, there are infinitely many
Σ ∈ S2++ that map to the same correlation C. When embedded into R3 as (a, b, d), these Σ form
a two-dimensional surface lying inside the cone corresponding to S2++. Fig. 2 visualizes this one-
to-many relationship by plotting several such surfaces for different correlations, together with their
corresponding points on the correlation manifold.

I.9.3 CONSTRUCTION OF FIG. 5.

For ECM, LECM, OLM, and LSM, the decision hyperplane in the correlation MLR is the Riemannian
hyperplane in Eq. (62) specialized toM = Cor+(n):

HA,P =
{
X ∈ Cor+(n) | ⟨LogP (X), A⟩P = 0

}
, P ∈ Cor+(n), A ∈ TPCor+(n). (102)

In Fig. 5, we focus on Cor+(3) and visualize it as the open elliptope in R3 via the embedding

C ∈ Cor+(3) 7−→ (C21, C31, C32) ∈ R3. (103)

Given a Log-Euclidean metric and parameters (A,P ), each correlation matrix C is first mapped to
the tangent space at P by LogP (C), and we evaluate the linear form ⟨LogP (C), A⟩P . The set of
points in the elliptope where this scalar equals zero corresponds to the decision hyperplane HA,P and
is plotted as the separating surface.

For PHCM, the margin hyperplane is defined in the β-concatenated Poincaré embedding. Let Ψ◦Chol
be the diffeomorphism in Eq. (13) that maps C ∈ Cor+(n) to the poly-Poincaré space PPn−1, and
let β-concatenation be the Poincaré operation in Eq. (66). We define

x̃(X) = β-concat
(
Ψ ◦ Chol(X)

)
∈ PN , N =

n(n− 1)

2
, (104)

and the PHCM hyperplane

Ha,p =
{
X ∈ Cor+(n) |

〈
Logp(x̃(X)), a

〉
p
= 0
}
, p ∈ PN , a ∈ TpPN . (105)

Here PN =
{
x ∈ RN | ∥x∥2 < 1

}
is the N -dimensional Poincaré ball. In Fig. 5, we first map each

correlation matrix C ∈ Cor+(3) to x̃(C) ∈ PN , apply the Poincaré logarithm Logp at a reference
point p, and then visualize the zero level set of the linear form

〈
Logp(x̃(C)), a

〉
p

as the PHCM
decision hyperplane.

I.10 HARDWARE

On the HDM05 and FPHA datasets, SPDNet, RResNet, SPDNetBN, SPDNetLieBN, and MLR
require SVD operations on relatively large matrices, which are more efficiently executed on a CPU.
As a result, these methods are implemented on a CPU, whereas all other cases are executed on a
single A6000 GPU.

J PROOFS

J.1 PROOF OF THM. 3.1

We first prove a lemma for MLRs on general isometric manifolds, of which this theorem is a specific
case. Notably, the result and proof can be readily extended to the case where Rm is endowed with an
arbitrary inner product.
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Lemma J.1 (Isometric Riemannian MLRs). Givenm-dimensional Riemannian manifolds
(
M̃, gM̃

)

and
(
M, gM

)
with a Riemannian isometry ϕ : M̃ →M, their origins are E ∈ M̃ and ϕ(E) ∈M.

The Riemannian MLR over M̃ for the input X ∈M of each class k = 1, · · · , C can be calculated
by the one overM:

vM̃k (X;Zk, γk) = vMk (ϕ(X);ϕ∗,E(Zk), γk), (106)

with γk ∈ R, Zk ∈ TEM̃ ∼= Rm, and ϕ∗,E : TEM̃ → Tϕ(E)M as the differential map. Here, vM̃k
and vMk are the specific realizations of Eq. (3) over M̃ andM, respectively.

Proof. We omit the subscript k in Ak and Pk for simplicity. We denote Γ̃, L̃og, ⟨·, ·⟩P , ∥·∥P ,
d̃(X, H̃A,P ), H̃A,P as the parallel transport along the geodesic, Riemannian logarithm, Riemannian
metric, the induced norm, margin distance and hyperplane over M̃, while the counterparts overM
are denoted as Γ, Log, ⟨·, ·⟩ϕ(P ), ∥·∥ϕ(P ), d, and H , respectively.

From the isometry, we have

∥A∥P = ∥ϕ∗,P (A)∥ϕ(P ) , (107)
〈
L̃ogP (X), A

〉
P
=
〈
Logϕ(P )(ϕ(X)), ϕ∗,P (A)

〉
ϕ(P )

. (108)

The above equations imply
ϕ
(
H̃A,P

)
= Hϕ∗,P (A),ϕ(P ). (109)

DenotingH = Hϕ∗,P (A),ϕ(P ), we have the following for the margin distance

d̃(X, H̃A,P )) = inf
Q∈H̃A,P

d̃(X,Q)

(1)
= inf

Q∈H̃A,P

d(ϕ(X), ϕ(Q))

(2)
= inf

R∈H
d(ϕ(X), R)

(3)
= d(ϕ(X),H).

(110)

The above comes from the following.

(1) Isometry.

(2) Eq. (109).

(3) Definition of margin distance.

Combining the above, we have

vM̃(X;P,A)

= sign(⟨A, L̃ogP (X)⟩P )∥A∥P d̃(X, H̃A,P )

= sign

(〈
Logϕ(P )(ϕ(X)), ϕ∗,P (A)

〉
ϕ(P )

)
∥ϕ∗,P (A)∥ϕ(P ) d(X,Hϕ∗,P (A),ϕ(P ))

= vM (ϕ(X);ϕ(P ), ϕ∗,P (A)) .

(111)

Finally, let us further consider trivialization. By isometry, we have the following:

A = Γ̃E→P (Z)

= ϕ−1
∗,P
(
Γϕ(E)→ϕ(P )(ϕ∗,E(Z))

)
,

(112)

P = ẼxpE(γ[Z])

= ϕ−1
(
Expϕ(E)(γ[ϕ∗,E(Z)])

)
.

(113)
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Then, we have

ϕ∗,P (A) = Γϕ(E)→ϕ(P )(ϕ∗,E(Z)), (114)

ϕ(P ) = Expϕ(E)(γ[ϕ∗,E(Z)]). (115)

Putting the above two equations into Eq. (111), we have

vM̃(X;Z, γ) = vM̃(X;P,A)

= vM (ϕ(X);ϕ(P ), ϕ∗,P (A))

= vM
(
ϕ(X); Expϕ(E)(γ[ϕ∗,E(Z)]),Γϕ(E)→ϕ(P )(ϕ∗,E(Z))

)

= vMk (ϕ(X);ϕ∗,E(Zk), γk).

(116)

Thm. 3.1 is a special case of Lem. J.1 and can be readily proven accordingly.

Proof of Thm. 3.1. MLR: In Euclidean space Rm, simple computations show that Eq. (3) becomes
Eq. (2), where the latter is equal to ⟨ak, x− pk⟩. Based on Lem. J.1, we have

vk(X;Zk, γk) = vR
m

k (ϕ(X);ϕ∗,E(Zk), γk),

= ⟨ϕ(X)− γk[ϕ∗,E(Zk)], ϕ∗,E(Zk)⟩
= ⟨ϕ(X), ϕ∗,E(Zk)⟩ − γk ∥ϕ∗,E(Zk)∥ ,

(117)

Margin hyperplane: In Euclidean space Rm, the Riemannian margin hyperplane becomes the
Euclidean one, which is parameterized by ⟨ak, x− pk⟩ = 0. Together with Eq. (117), the results can
be easily obtained.

J.2 PROOF OF PROP. 3.2

Proof. First, we have the following:

Θ(I) = I, (118)
Chol(I) = I, (119)

log∗,I(V ) = V, ∀V ∈ Hol(n), (120)

log∗,I(V ) = V, ∀V ∈ LT0(n), (121)

D⋆(I) = I. (122)

Putting the above into Eqs. (25), (29) and (44), one can directly get the result w.r.t. ECM, LECM,
and OLM. For LSM, based Eq. (48), we have

Log⋆∗,I(V ) = log∗,Σ

(
∆V∆+

1

2

(
V 0Σ+ ΣV 0

))

(1)
= V +

1

2

(
V 0 + V 0

)

(2)
= V − diag (V 1) .

(123)

The above comes from the following.

(1) Σ = ∆ = I

(2)
V 0 = −2 diag

(
(In +Σ)

−1
∆V∆1

)

= −diag (V 1)
(124)
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J.3 PROOF OF THM. 3.6

Denote 0n and 0m as the n× n and m×m zero matrices. Let dn = n(n−1)
2 and dm = m(m−1)

2 be
the manifold dimensions of Cor+(n) and Cor+(m), respectively. We have the following general
results.

Lemma J.2. Let
(
Cor+(n), gn

)
be isometric to Rdn by the diffeomorphism ϕ : Cor+(n) → Rdn ,

and
(
Cor+(m), gm

)
be isometric to Rdm by the diffeomorphism ϕ : Cor+(m) → Rdm . The

diffeomorphism satisfies In = (ϕ)−1(0n) and Im = (ϕ)−1(0m). The correlation FC layer F :
Cor+(n)→ Cor+(m) for the input X ∈ Cor+(n) is

Y = (ϕ)−1

(
dm∑

i=1

vi(X)ei

)
, (125)

where {ei}dm
i=1 is the canonical orthonormal basis over Rdm with ei = (δik)

dm

k=1 for each i. Here,
{vi(X)}dm

i=1 is given by Thm. 3.1: vi(X) = ⟨ϕ(X), ϕ∗,In(Zi)⟩ − γi ∥ϕ∗,In(Zi)∥, with Zi ∈ Rdn

and γi ∈ R as the FC parameters.

Proof of Lem. J.2. For simplicity, we use I and 0 for the identity and zero matrices. Let {Ok =

ϕ−1
∗,I(ek)}dm

i=1. Then {Ok}dm
i=1 is an orthonormal basis over TICor+(m).

The LHS of Eq. (8) is

sign (⟨LogI(Y ), Ok⟩I) d(Y,HOk,I) d(Y,HOk,I)

(1)
= sign

(〈
(ϕ∗,I)

−1ϕ(Y ), Ok

〉
I

)
d(Y,HOk,I)

(2)
= sign (⟨ϕ(Y ), ek⟩) d(Y,HOk,I)

(3)
= sign (⟨ϕ(Y ), ek⟩) d(ϕ(Y ), Hek,0)

= (ϕ(Y ))k ,

(126)

where (1-2) come from the isometry, and (3) comes from Eq. (110).

The RHS of Eq. (8) can be implied by Thm. 3.1.

Lem. J.2 can be naturally extended to the cases where the inner products of Rdn and Rdm are not
canonical.

Lemma J.3. Following all the notation in Lem. J.2, we further assume that the inner productsQn(·, ·)
over Rdn and Qm(·, ·) over Rdm are not necessarily canonical. In addition, f : (Rdm , Qm(·, ·))→
(Rdm , ⟨·, ·⟩) is a linear isometry to the canonical inner product. Then, we have

Y = ϕ−1 ◦ f−1

(
dm∑

i=1

vi(X)f−1(ei)

)
, (127)

vi(X) = Qn (ϕ(X), ϕ∗,In(Zi))− γi ∥ϕ∗,In(Zi)∥Q
n

, (128)

where ∥·∥Q
n

is the norm induced by Qn.

Proof of Lem. J.3. First, we denote

ψm = f ◦ ϕ :
(
Cor+(m), gm

)
→ (Rdm , ⟨·, ·⟩). (129)

Note that the differential of any linear map between vector spaces is itself. The rest of the proof is
identical to that of Lem. J.2.

Now, we present the proof of Thm. 3.6.
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Figure 10: Illustration of the Euclidean spaces LT0(m),Hol(m) and Row0(m), where ⋆ can be
obtained by symmetry.

Proof of Thm. 3.6. As ECM, LECM, OLM, and LSM are pullback metrics from Euclidean spaces,
we resort to Lem. J.2 and its extension Lem. J.3. Denoting the zero matrix as 0, we have the following:

ϕEC(In) = log ◦Θ(In) = 0 ∈ LT0(n), (130)
Log◦(In) = 0 ∈ Hol(n), (131)
Log⋆(In) = 0 ∈ Row0(n). (132)

Therefore, the identity matrix is indeed the origin defined in Lem. J.2.

Recalling Lem. J.2, the prototype space is the vector space with the standard vector inner product.
Obviously, LT0(m), Hol(m), and Row0(m) are linearly isomorphic to Rm(m−1)/2. As shown in
Fig. 10, each L ∈ LT0(m) can be identified with a vector of its lower triangular part. Besides,
LT0(m) with the canonical matrix inner product is identified with R

m(m−1)
2 with standard vector

inner product. Therefore, the basis over LT0(n) corresponding to the canonical orthonormal basis
over Rm(m−1)/2 is

(LT0(m), ⟨·, ·⟩) : ULT0(m)
ij = Eij , 1 ≤ j < i ≤ m, (133)

where Eij ∈ Rm×m is the standard basis matrix, with the (k, l)-th element defined as

(Eij)kl =

{
1 if k = i and l = j,

0 otherwise.
(134)

Without loss of generality, we identify (LT0(m), ⟨·, ·⟩) with (R
m(m−1)

2 , ⟨·, ·⟩), and refer to
{Eij}1≤j<i≤m as the canonical orthonormal basis.

However, {Eij} is neither a canonical orthonormal basis nor even orthonormal for Hol(m) and
Row0(m) under the standard matrix inner product. According to Lem. J.3, we only need to find the
linear isometry that maps these two spaces into (LT0(m), ⟨·, ·⟩). By Fig. 10, we have the following
linear isometries to pull back these two inner products to the standard ones over LT0(m):

fHol(m)→LT0(m) :(Hol(m), ⟨·, ·⟩)→ (LT0(m), ⟨·, ·⟩),
Hol(m) ∋ H 7−→

√
2 ⌊H⌋ ∈ LT0(m),

fRow0(m)→LT0(m) :(Row0(m), ⟨·, ·⟩)→ (LT0(m), ⟨·, ·⟩),
Row0(m) ∋ R 7−→

√
6
⌊
R̃
⌋
+
√
3D(R̃) ∈ LT0(m),

(135)

where R̃ ∈ Sm−1 is the leading principal submatrix of order m − 1 of R. The bases
f−1
Hol(m)→LT0(m)

({Eij}) and f−1
Row0(m)→LT0(m)

({Eij}) are as follows:

(Hol(m), ⟨·, ·⟩) : UHol(m)
ij =

Eij + Eji√
2

, 1 ≤ j < i ≤ m (136)

(Row0(m), ⟨·, ·⟩) : URow0(m)
ij =

{
Eii−Ein−Eni√

3
, if 1 ≤ i < m

Eij+Eji−Eni−Ein−Enj−Ejn√
6

, if 1 ≤ j < i < m
(137)

Putting the required diffeomorphisms and vgij in Thm. 3.3 into Lem. J.3 for ECM, LECM, OLM, and
LSM, the corresponding FC layers can be readily obtained.
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J.4 PROOF OF PROP. 4.1

Proof. First, we review the isometries between the open hemisphere and hyperboloid (Thanwerdas &
Pennec, 2022b, Eqs. (4.1-4.2)), and the one between Poincaré ball and hyperboloid (Skopek et al.,
2020, Sec. 2.1):

ψHSn→Hn : (x1, . . . , xn+1)
⊤ ∈ HSn 7−→ 1

xn+1
(x1, . . . , xn, 1)

⊤ ∈ Hn, (138)

ψHn→HSn : (y1, . . . , yn+1)
⊤ ∈ Hn 7−→ 1

yn+1
(y1, . . . , yn, 1)

⊤ ∈ HSn, (139)

ψHn→Pn :
(
xT , xn+1

)⊤ ∈ Hn 7−→ x

1 + xn+1
∈ Pn, (140)

ψPn→Hn : y ∈ Pn 7−→
(

2yT

1− ∥y∥2 ,
1 + ∥y∥2
1− ∥y∥2

)T

=
1

1− ∥y∥2
(

2y
1 + ∥y∥2

)
∈ Hn. (141)

For any (x⊤, xn+1)
⊤ ∈ HSn and y ∈ Pn, we have

ψHSn→Pn

((
x

xn+1

))
= ψHn→Pn ◦ ψHSn→Hn

((
x

xn+1

))

= ψHn→Pn

(
1

xn+1

(
x
1

))

=
x

xn+1

1

1 + 1
xn+1

=
x

1 + xn+1

(142)

ψPn→HSn (y) = ψHn→HSn ◦ ψPn→Hn (y)

= ψPn→Hn

(
1

1− ∥y∥2
(

2y
1 + ∥y∥2

))

=
1

1 + ∥y∥2
(

2y

1− ∥y∥2
) (143)

J.5 PROOF OF PROP. F.1

Proof. We denote D = D(H). By Eq. (46), we have

dY = dD + dH

dD = −diag
((
H0
)−1 D

(
exp∗,Y (dH)

)
1
)
.

(144)

Following Ionescu et al. (2015), we denote the inner product ⟨·, ·⟩ as · : · for simplicity. By the
invariance of differential and properties of trace (Ionescu et al., 2015, Eqs. 67-72), we have the
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following:

∂l

∂Y
: dY =

∂l

∂Y
: dD +

∂l

∂Y
: dH

=
∂l

∂Y
: −diag

(
(H0)−1D

(
exp∗,Y (dH)

)
1
)
+

∂l

∂Y
: dH

(1)
= tr

(
−Dv

(
∂l

∂Y

)T

(H0)−1D
(
exp∗,Y (dH)

)
1

)
+

∂l

∂Y
: dH

(2)
= tr

(
−
[
1Dv

(
∂l

∂Y

)T

(H0)−1

]
D
(
exp∗,Y (dH)

)
)

+
∂l

∂Y
: dH

= −(H0)−1Dv

(
∂l

∂Y

)
1T : D

(
exp∗,Y (dH)

)
+

∂l

∂Y
: dH

= −D
(
(H0)−1Dv

(
∂l

∂Y

)
1T

)
: exp∗,Y (dH) +

∂l

∂Y
: dH

(3)
=

[
∂l

∂Y
− exp∗,Y

(
D
(
(H0)−1Dv

(
∂l

∂Y

)
1T

))]
: dH

(4)
= off

[
∂l

∂Y
− exp∗,Y

(
D
(
(H0)−1Dv

(
∂l

∂Y

)
1T

))]
: dH

(145)

The above comes from the following.

(1)

A : diag(b) = Dv(A) : b, ∀A ∈ Rn×n, b ∈ Rn, (146)

a : b = a⊤b = tr(a⊤b), ∀a, b ∈ Rn. (147)

(2) Cyclic property of the trace for matrices A,B, and C of compatible dimensions:
tr(ABC) = tr(CAB).

(3) For any A ∈ Rn×n and S ∈ Sn, by the properties of trace, we have

A : exp∗,Y (S) = A : U
(
L⊙

(
U⊤SU

))
U⊤

= U
(
L⊙ U⊤AU

)
U⊤ : S

= exp∗,Y (A) : S.

(148)

(4) H has zero diagonal elements.

The invariance of the first-order differential gives

∂l

∂Y
: dY =

∂l

∂H
: dH. (149)

By the last equation in Eq. (145), we can differentiate ∂l
∂C .

J.6 PROOF OF PROP. F.2

Proof. Denoting Σ = f(C) = D⋆(C)CD⋆(C) : Cor+(n)→ Row+
1 (n), we have

Log⋆∗,C = log∗,Σ ◦f∗,C . (150)

Combining with the differential of Log⋆ shown in Eq. (48), we have the following differential
equation:

dΣ = ∆dC∆−
(
V 0Σ+ ΣV 0

)
, (151)
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with V 0 = diag
(
(In +Σ)

−1
∆dC∆1

)
. Similar with Prop. F.1, we have the following:

∂l

∂Σ
: dΣ =

∂l

∂Σ
:
(
∆dC∆−

(
V 0Σ+ ΣV 0

))

=

(
∆
∂l

∂Σ
∆

)
: dC − ∂l

∂Σ
:
(
V 0Σ+ ΣV 0

)

=

(
∆
∂l

∂Σ
∆

)
: dC −

(
∂l

∂Σ
Σ+ Σ

∂l

∂Σ

)
: diag

(
(In +Σ)

−1
∆dC∆1

)

=

(
∆
∂l

∂Σ
∆

)
: dC −Dv

(
∂l

∂Σ
Σ+ Σ

∂l

∂Σ

)
:
(
(In +Σ)

−1
∆dC∆1

)

=

(
∆
∂l

∂Σ
∆

)
: dC − tr

(
ṽ⊤ (In +Σ)

−1
∆dC∆1

)

=

(
∆
∂l

∂Σ
∆

)
: dC − tr

(
∆1ṽ⊤ (In +Σ)

−1
∆dC

)

=

(
∆
∂l

∂Σ
∆

)
: dC −

(
∆(In +Σ)

−1
ṽ1⊤∆

)
: dC

=

(
∆
∂l

∂Σ
∆−∆(In +Σ)

−1
ṽ1⊤∆

)
: dC

=

(
∆

(
∂l

∂Σ
− (I +Σ)−1ṽ1⊤

)
∆

)
: dC.

(152)

By imposing symmetrization, we can obtain the results.

J.7 PROOF OF THM. G.1

As β-splitting is the inverse of β-concatenation (Shimizu et al., 2021), we only need to show the case
w.r.t. β-concatenation. Besides, it suffices to prove the 2D case, which is shown in the following
lemma.
Lemma J.4. Given xij ∈ Pnj with {i ∈ 1, . . . , Ni} and {1, . . . , Nj}, applying the β-concatenation
sequentially 2 times in the order j → i is equivalent to a single β-concatenation along all indices
simultaneously.

Proof. Denoting d = nj ×Nj and vij = Log0(xij), we have the following

Exp0

(
concatNi

i=1

(
βNi×dβ

−1
d concat

Nj

j=1

(
βdβ

−1
nj
vij)
)))

= Exp0

(
concat

i=Ni,j=Nj

i=1,j=1

(
βNi×dβ

−1
d βdβ

−1
nj
vij)
))

= Exp0

(
concat

i=Ni,j=Nj

i=1,j=1

(
βNi×dβ

−1
nj
vij)
))

.

(153)

The last line implies the claim.

A special case of the above lemma is where all nj are identical.
Corollary J.5. Given xij ∈ Pn with {i ∈ 1, . . . , Ni} and {1, . . . , Nj}, applying the β-concatenation
sequentially 2 times in the order j → i is equivalent to a single β-concatenation along all indices
simultaneously.

Thm. G.1 can be obtained by Lem. J.4 and Cor. J.5.
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