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ABSTRACT

Representations on the Symmetric Positive Definite (SPD) manifold have garnered
significant attention across different applications. In contrast, the manifold of full-
rank correlation matrices, a normalized alternative to SPD matrices, remains largely
underexplored. This paper introduces Riemannian networks over the correlation
manifold, leveraging five recently developed correlation geometries. We system-
atically extend Multinomial Logistic Regression (MLR), Fully Connected (FC),
and convolutional layers to these geometries. Additionally, we present methods for
accurate backpropagation for two correlation geometries. Experiments comparing
our approach against existing SPD and Grassmannian networks demonstrate its
effectiveness.

1 INTRODUCTION

Covariance matrices in the Symmetric Positive Definite (SPD) manifold have achieved significant
success in various applications, with many deep network architectures adapted to leverage their
Riemannian geometries (Huang & Van Gool,|[2017; Brooks et al.,[2019; |Chakraborty et al., [2020;
Cruceru et al., 2021} |Pan et al.,[2022; |[Kobler et al.,2022;|Wang et al.,[2023; |Chen et al., 2023} Katsman
et al.,|2024; Li et al., 2025} [Pouliquen et al.| |2025; [Wang et al.,{2025). In contrast, correlation matrices,
despite serving as statistically compact alternatives to covariance matrices (Archakov & Hansen,
2024), remain unexplored in deep learning.

Only recently have Riemannian structures been developed for correlation matrices. [David & Gu
(2019)) identified full-rank correlation matrices as a quotient manifold of the SPD manifold, referred
to as the correlation manifold. However, this quotient geometry does not guarantee uniqueness or
closed forms of the Riemannian logarithm and Fréchet mean (Thanwerdas & Pennec) |2022b| Sec.
1.1). To close this gap, Thanwerdas & Pennec| (2022b) proposed three theoretically and computation-
ally convenient geometries: Euclidean—Cholesky Metric (ECM), Log-Euclidean—Cholesky Metric
(LECM), and Poly-Hyperbolic-Cholesky Metric (PHCM). Thanwerdas| (2024) further introduced
two efficient permutation-invariant metrics: Off-Log Metric (OLM) and Log-Scaled Metric (LSM).
These Riemannian structures provide promising foundations for intrinsically extending Euclidean
deep learning to the correlation manifold.

On the other hand, several fundamental layers in Euclidean deep learning, such as Multinomial
Logistics Regression (MLR), Fully Connected (FC), and convolutional layers, have been extended to
different manifolds by leveraging their rich Riemannian or algebraic structures (Huang & Van Gool,
2017; |[Huang et al., 2017} 2018}; |Ganea et al., 2018} (Chakraborty et al., 2020; |Chen et al., [2022;
Shimizu et al.| 2021; Bdeir et al.l 2024; (Chen et al.| |2024d; Nguyen et al., 2024} 2025). For the SPD
manifold, these layers have been extended into the SPD manifold based on bilinear mapping (Huang
& Van Gool, 2017), weighted Fréchet mean (Chakraborty et al.,|2020)), gyrovector spaces (Nguyen &
Yang| 2023; Nguyen et al.,2024)), Riemannian geometry (Chen et al.| 2024a3d)), and invariant metric
over the symmetric space (Nguyen et al., [2025), respectively.

Inspired by these advancements, we develop MLR, FC, and convolutional layers for correla-
tion manifolds in a geometrically intrinsic manner. We begin by systematically introducing
four types of correlation-based MLR, FC, and convolutional layers, corresponding to ECM,
LECM, OLM, and LSM, respectively. Besides, we discuss backpropagation through Rieman-
nian computations over the correlation manifold, with novel approaches for accurate backprop-
agation under OLM and LSM. As the above four metrics have zero curvature, our next focus
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Table 1: Correspondence between Euclidean and correlation-based layers. For convolution, kernel-
based FC refers to applying convolution kernel to a receptive field, which is an FC transformation.

Space ‘ Euclidean R™ ‘ Correlation Cor™ (n)
c-class MLR | f:R" 3 z +— p = Softmax(Ax + b) € R® f:Cort(n)>Cw+pecRe
FC layer F:R'>z—y=Az+beR™ F:Cort(n)>CwY € Cort(m)
Convolution Kernel-based FC in each receptive field Kernel-based correlation FC in each receptive field
Geometry Euclidean ECM, LECM, OLM, LSM and PHCM

is to build correlation layers under the geometry of a non-zero curvature. We target PHCM, in-
duced by the product of multiple hyperbolic spaces (Thanwerdas & Pennecl 2022b, Thm. 4.4).
By adapting existing Poincaré-based hyperbolic

Sec.32

MLR, FC, and convolutional layers designed ECM B saelton MLK Constaion Networke
for a single Poincaré ball (Ganea et al., 2018; mow || =31 ewsowomuio || "I (TR
Shimizu et al., 2021, we construct their coun- oum st T— M, o
terparts on the correlation manifold. With these Lsw LRI e —
basic layers, we can construct Correlation Net- i E ki over

works (CorNets) under different geometries.

The effectiveness is validated by experiments

comparing our approach against existing SPD  Figure 1: Overview of our theoretical derivation.
and Grassmannian baselines.

Tab. [I] summarizes the correspondence between Euclidean and our correlation layers, and Fig. [I]
illustrates the overview of our theoretical derivation. Due to page limits, all the proofs are presented
in App.{J] In summary, our main contributions are as follows:

1. We systematically extend MLR, FC, and convolutional layers to the correlation manifold under
five geometries: four with zero curvature and one with non-zero curvature. The developed layers
enable flexible variation of the latent geometry under a consistent network architecture, allowing
for straightforward comparisons across different correlation geometries.

. We develop accurate backpropagation of Riemannian computations under OLM and LSM.

. We conduct experiments against existing SPD and Grassmannian networks to demonstrate the
effectiveness of correlation embeddings and networks.

W N

2 FULL-RANK CORRELATION GEOMETRIES

Notations. For Euclidean spaces, we denote (-, -) as the standard inner product over R™ or R"*™,
with ||-|| as the induced norms, i.e., Lo-norm for vectors and Frobenius norm for matrices. The zero
vector and matrix are collectively denoted by 0. A Riemannian manifold (M, ¢g) endowed with
the Riemannian metric g is abbreviated as M. We denote Logp, Expp, and (-,-) p = gp(-,-) as
the Riemannian logarithm, exponentiation, and inner product at P € M, respectively. The parallel
transport along the geodesic from P € M to ) € M is denoted by I'p_, g, and the geodesic distance
by d(+,-). A summary of notations is provided in App. @

We briefly review five recently developed geometries on full-rank
correlation matrices, with details provided in App.|[C] Given a co-
variance matrix 2, its correlation matrix is defined as

C = Cor(%) = D(X)~7/2ED(X) "2, (1)

where D(-) extracts the diagonal of 3. The set of n x n full-rank
correlation matrices, denoted Cor™ (n), forms a Riemannian man-
ifold (David & Gu, [2019, Thm. 1). As illustrated in Fig. 2] each
correlation corresponds to a surface in the SPD manifold. Recent
advances introduced five convenient Riemannian metrics: Euclidean— . .
Cholesky Metric (ECM), Log-Euclidean—Cholesky Metric (LECM), relation and SPD matrices.
Poly-Hyperbolic-Cholesky Metric (PHCM) (Thanwerdas & Pennec, Bl?Ck stars .denote 2. x 2 corre-
2022b)), and the permutation-invariant Off-Log Metric (OLM) and lation matrices, while the red,
Log-Scaled Metric (LSM) (Thanwerdas, [2024])). All five are pullback green, and' blue dots de:note
metrics isometric to simpler prototype spaces: PHCM is derived corresponding SPD matrices.

Figure 2: Illustration of cor-
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from the product of hyperbolic spaces, while the other four are isometric to Euclidean spaces. We
first review the associated prototype spaces before discussing each metric in detail.

. LT! (n): BEuclidean space of n x n lower triangular matrices with unit diagonals.
* LT"(n): Euclidean space of n x n lower triangular matrices with null diagonals.

* Hol(n): Euclidean space of n x n symmetric matrices with null diagonals. The tangent
space T Cor™ (n) at C € Cor™ (n) can be identified with Hol(n).

* Rowg(n): Euclidean space of n x n symmetric matrices with null row sum.

* L£™: Manifold of n x n lower triangular matrices with positive diagonals and unit row
Lo-norm.

©=D"'(Chol(-)) Chol(-)

ECM is derived from LT'(n) by Cor™t(n) LT!(n), where ©(C) =
©—1=Cor o Chol~*

D(Chol(C))~* Chol( C% for any C' € Cor™t(n). Here, Chol(C) is the Cholesky decomposition
C= Chol ) Chol(C) " and D(-) returns a diagonal matrix consisting of the input diagonals. As

LT'(n) =1 + LTO( ), ECM is essentially induced from the Euclidean space of LT (n).

Proposition 2.1 (ECM). Let ¢¥C(C) = |©(C) |, where | -| returns a strictly lower triangular matrix.
ECM over Cor™ (n) is the pullback metric from the Euclidean space LT (n) by ¢FC.

log 0©

LECM is defined by further pulling back ECM: Cor™ (n) LT%(n),

(log 0©)~1=Cor o Chol~! o exp
where log(-) : LT!(n) — LT%(n) is the matrix logarithm with the matrix exponentiation exp(-) as
its inverse. Due to the nilpotency of LT%(n), the matrix logarithm over LT"(n) and exponentiation
over LT (n) do not require eigendecomposition, as detailed in App.

. . . . . . + Log®=offolog
OLM is derived from a permutation invariant inner product over Hol(n) by Cor™ (n) —/—/—

Exp°®
Hol(n). For any symmetric hollow matrix H € Hol(n), the operator D(H ) returns a unique diagonal
matrix, such that Exp°(-) : Hol(n) > H + exp(D(H) + H) € Cor™(n) is a diffeomorphism. As
shown by|Archakov & Hansen| (2021} Sec. 5), D(H) can be computed by the following exponentially
converging algorithm: Dy, = Dy, — log(D(exp(Dy, + H))), with Dy = 0 as the zero matrix.

LSM is derived from a permutation invariant inner product over Rowg(n) by
Cort(n) =———
Exp*=Cor o exp

positive diagonal matrix D*(C) such that Log*(-) : Cor™(n) > C + log(D*(C)CD*(C)) €
Rowo( ) is a diffeomorphism. As shown by Thanwerdas| (2024, Sec. 3.5), D*(C) corresponds to

Log*

Row(n). For any correlation matrix C' € Cor™ (n), there exists a unique

the unique zero of f : x € R} —— Cz — -, with R} as the n-dimensional positive vectors and
% = (%1, s ) This could be solved by damped Newton’s method.

PHCM is defined by the product of hyperbolic open hemispheres via Cholesky decomposi-
tion. Denoting L. = Chol(C) for any correlation matrix C' € Cor™*(n), the k-th row of L is
(Lk1s-- -, L o—1, Lk, 0,...,0) with Ly, > 0, which belongs to the hyperbolic space of open
hemrsphere HSH L ={z e R*||[|z]| =1 and z;, > 0}. Therefore L" is identified with the product

of n — 1 open hemispheres, denoted as PHS" ! = []""_, HSZ Here, since L;; = 1 and HS? =
are trivial, they are omitted from the product. PHCM is then defined by the pullback of the Cholesky
decomposition from PHS" 1.

The Riemannian operators under all five metrics, including the Riemannian logarithm, exponentiation,
geodesic, and parallel transport, have closed-form expressions, which are reviewed in App. E} Except
for D and D*, all computations involved can be backpropagated by existing techniques. Although the
gradients of D and D* can be approximately backpropagated by PyTorch’s autograd through their
iterative algorithms, we propose accurate alternatives in App.

Remark 2.2. The Euclidean inner products in the prototype spaces of ECM, LECM, LSM, and OLM
are assumed to be standard. For Cor+(n) with n < 3, the invariance of OLM and LSM is nuanced
and discussed in Rmk. and App. However, this paper focuses on n > 3.
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3 LOG-EUCLIDEAN CORRELATION LAYERS

Since ECM, LECM, OLM, and LSM are derived via diffeomorphisms from Euclidean spaces, they
are collectively termed Log-Euclidean metrics (Thanwerdas|, |2024). This motivates the principled
development of Multinomial Logistics Regression (MLR), Fully Connected (FC), and convolutional
layers under these four geometries. We begin by briefly revisiting the reformulation of MLR, followed
by the introduction of correlation-based MLRs, FC layers, and convolutional layers.

3.1 REVISITING MULTINOMIAL LOGISTIC REGRESSION

As shown by [Lebanon & Lafferty| (2004, Sec. 5), the Euclidean MLR, Softmax(Ax + b), computing
the multinomial probability of each class k € {1, ..., C} for the input feature vector 2z € R™ can be
reformulated as the distances from x to the margin hyperplanes describing the classes:

ply = k| z) ocexp (vi(x)), with v (z) = sign({ax, = — pi))llarl| d(z, Hap py), ()

where ay,pr € R™, and H,, ,, = {x € R™ : (ay,z — px) = 0} is a margin hyperplane, with
d(z, Hq, p, ) as the margin distance to the hyperplane. Recently, |Chen et al.| (2024d) generalized this
formulation to general manifolds. Given an m-dimensional manifold M, the MLR is defined as

p(y =k | X) ocexp (vi (X)), with vk (X) = sign((Ax, LOng (X)) )l Akl P, A(X, Hay,py),  (3)
d(X,Ha,.p.)) = inf  d(X,Q), with Ha, p, ={X € M : <LOng(X)’Ak>P =0}, @
QEH A, Py, k

where X € M is the manifold-valued input and H 4,  p, is a Riemannian hyperplane, while P, € M
and A, € Tp, M for 1 < k < C are parameters. The key challenge is the optimization problem
in Eq. @) To circumvent this problem, |Chen et al.| (2024d, Sec. 3.2) relaxed it via Riemannian
trigonometry. Unlike their method, this paper directly solves Eq. (4) to more faithfully respect the
different correlation geometries. In addition, to avoid over-parameterization (Shimizu et al.| 2021}
Sec. 3.1), we set P, = Expg(Vi[Zx]) and Ay, = Tp_p, (Zi), with [Z;] = uZZTlE as the unit
direction vector of Z;,. Here, F is the origi of M, while v, € Rand Z; € TgM = R™ are the
MLR parameters. Under this trivialization, each hyperplane H 4, p, is denoted as Hz, ., . We adopt
from |Lezcano Casadol|(2019) the term trivialization, which refers to optimizing manifold-valued
parameters via the exponential map. App.[D.I|presents a more detailed review of MLR.

3.2 LOG-EUCLIDEAN CORRELATION MLRS

As all Log-Euclidean metrics are isometric to the Euclidean ones, we can solve the associated MLRs
defined by Eqs. (3) and (@) in a principled manner.

Theorem 3.1. Given m-dimensional manifold (/\/l, gM) isometric to the standard Euclidean
space R™ by the diffeomorphism ¢ : M — R™. Denoting E = ¢~1(0) with O as the zero
vector, each vy (X) and margin hyperplane Hy, ., in the C-class Riemannian MLR are vi(X) =
(D(X), 04 6(Zr)) — i |O,6(Z1)|| and Hz, ~, = {X € M : vp(X) = 0}, respectively. Here,
Zy € TEM Z R™ and v, € R for 1 < k < C are MLR parameters, while ¢, is the differential.

Simple computations show that
ECM: ¢¥C(I) = 0; LECM: logo©(I) = 0; OLM: Log®(I) = 0; LSM: Log*(I) = 0. (5)

Therefore, we define the origin of the correlation manifold under four Log-Euclidean metrics as the
identity matrix. Besides, Thm. [3.1|suggests that Log-Euclidean MLRs can be obtained modulo the
calculation of diffeomorphisms and their differentials at the identity matrix I.

Proposition 3.2 (Differentials). [[|]] For any tangent vector V € TrCor™ (n) = Hol(n), the differen-
tials of %€, log 0O, Log®, and Log* at the identity matrix I are

25(V)=V], (logo®). (V) = [V], Logi ;(V) =V, Log ;(V) =V —diag(V1), (6)

where diag : R" — Diag(n) returns a diagonal matrix, and 1 = (1,--- ,1)T € R™,

!The origin is a predefined point on the manifold. For the correlation, we define the identity matrix as the
origin and will explain the reason later.
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Putting Prop. [3.2)into Thm. 3.1} we obtain correlation MLRs under four Log-Euclidean.

Theorem 3.3 (Log-Euclidean MLRs). Given C € Cor™ (n), vi(C) in the correlation MLRs under
four Log-Euclidean metrics are

vk (C) = (18(O)], 1 Zk]) = w I Zelll, ok™C(C) = (log 0O(C), [ Zk]) — || Ze]I,
vk (C) = (Log”(C), Zu) = w1 Zell, vk (C) = (Log™(C), Log?,;(Zr)) — v |[Log? 1(Zw)]|
where Zj, € Hol(n) and v;;, € R are parameters for the k-th class.

)

3.3 LOG-EUCLIDEAN CORRELATION FULLY CONNECTED AND CONVOLUTIONAL LAYERS

In order to build correlation FC and convolutional layers, we first reformulate the Euclidean FC layer.

The Euclidean FC layer is defined as y = Ax + b with A € R™*"™ and b € R™. It can be expressed
element-wise as yr, = vi(x) = (ag, x — pg) with ag, pr € R™ and (pk, ar) = bg. |Shimizu et al.
(2021}, Sec. 3.2) reformulated the Euclidean FC layer as an operation that transforms the input z € R"
by v () in the Euclidean MLR and treats the k-th output coordinates y, as the signed distance from
the hyperplane containing the origin and orthogonal to the k-th axis of the output space R™. Based on
this, they proposed the Poincaré FC layer between Poincaré balls. We generalize this reformulation
into the correlation manifolds.

Definition 3.4 (Correlation FC layers). Given a metric g, the correlation FC layer F : Cor™ (n) >
X Y € Cor™ (m) returns the output Y by solving the following d = m(m—1)/2 equations:

sign ((Log;(Y), Ox) ) d(Y, Ho, 1) = vk (X5 Zk, k), 1<k <d, (®)
where T is the identity matrix, d is the dimension of Cor™ (m), {O }¢_, is an orthonormal basis over
T;Cor™ (m), d(-,-) is the margin distance to the hyperplane Hop, 7, and vi\/ is defined by Eq. (3) for
Cor™ (n). The FC parameters are {Zj, € Hol(n)}¢_, and {, € R}¢_,.
Remark 3.5. App. [E.I]details how Def. 3.4 extends the SPD, Poincaré, and Euclidean FC layers.

Although Def. is implicitly defined by d equations, the FC layers under four Log-Euclidean
geometries can be derived with explicit expressions in a principled manner. Analogous to Thm.[3.1} a
corresponding result for the FC layer is presented in Lem. which brings Log-Euclidean FC layers.
Theorem 3.6 (Log-Euclidean FC layers). Given an input correlation C' € Cor™ (n), the correla-
tion FC layers F(-) : Cor™ (n) — Cor™ (m) under different Log-Euclidean metrics are

EC 0> i
ECM:Y = Coro Chol ™! (VEC + Im) L LT(m) 5 V¢ = { % ©), #i>j )
0, otherwise
LEC i > i
LECM: Y = Coro Chol ™! o exp (VLEC) LT(m) 5 vEEe = {vu (©), #i>g (10)
J
0, otherwise
vwOk () . .
oL oL vroo i
OLM: Y = Fxp® (VO)  Hol(m) > V¥ = { yOr  jpi (11
0, otherwise
vy (O)/ e, ifm>i>j>1
it (©)]y3, ifm>i>1
LSM:Y = Cor o exp (VLS) ,Rowg(m) 3 Viljs =V, ifi<j (12)
e Vi ifi=m,1<j<m
Pl ST VES, fi=g=m

Each v}; with g € {EC,LEC, OL, LS} is defined by Eq. (7) with parameters of Z;; € Hol(n) and
vij € R. Each (i, j) index is defined as: For v;EjC, UiLjEC, and vinL,
and i > j; For vleS, the indices arei,5 =1,--- ;m —landi > j.

the indices arei,j =1,---,m

Euclidean convolution. As shown by Shimizu et al.| (2021, Sec. 3.4), the Euclidean convolution
takes the FC transformation on each receptive field. Given a c-channel concatenated feature vector
x € (R™)¢ in a receptive field, the k-th output of this receptive field can be described as an affine
transformation, y, = (ag,x) — bi. Therefore, the correlation convolution can be defined by the
correlation FC layer within each receptive field.
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Correlation convolution. The c-channel cor-

relation matrices {C; € Cor™(n)}¢_, withina resessesces - o e
receptive field are first concatenated into C' € 1 C* € Cor™(m) MO ) f &2 € Cor*(m)

. 1 1 . b or'(m
(Cor™(n))¢. For each convolution kernel, C rpiin i £
is then fed into a correlation FC layerE] Fig. + i (5 e Corr i)
illustrates the above process. (C_c Cor (n) (o ) 2

7777777777777777 & Cle Cor™ (m)
Input 3-Ch: 1 . N .

4 POLY_ HYPERB OLIC _ C HOLES KY Col:lrl:lalion I\:I’::;eices FC Transformation on Each Receptive Field
LAYERS Figure 3: Illustration of the Log-Euclidean 1D

convolution with two kernels. The 3-channel input
are first split into two receptive fields along the
channel dimension. In each receptive field, two
kernels are applied to the product space.

As discussed in Sec. E], the space L", consist-
ing of the Cholesky factors of Cor™(n), can
be identified with the product of n — 1 open

hemispheres, PHS" ! = H?;ll HS'. As shown by (Cannon et al.| (1997, Sec. 7), there are
five isometric models over the hyperbolic space. A widely used model is the Poincaré ball

Py = {a: eR™| H:c||2 < —1/K}, where the MLR, FC, and convolutional layers have already

been well studied (Ganea et al., 2018} [Shimizu et al., [2021). In the following, we focus on the
canonical Poincaré ball (K = —1), denoted as P". We first identify the correlation manifold with

the poly-Poincaré space PP" ! = H;:ll IP?, the product of n — 1 Poincaré balls. Then, we develop
correlation layers from the layers on a single Poincaré space.

4.1 CORRELATION GEOMETRY VIA POINCARE BALLS

Proposition 4.1 (Isometries). [J]] The open hemisphere HS™ is isometric to the Poincaré ball
2y .

P" by Yusnspe (77, 2001) ") = T and Yenonse (y) = 1+|1y|z( 1— [y ) with

(7, 2,11)" € HS® C R" x Rt and y € P* C R™.

Prop. 4. 1|indicates that Cor™ (n) can be identified with PP"~! = []"_' P/ via the diffeomorphism:

1 0 o 0
It Lo i 0 Wy (h1)
Chol 21 22 T
¥ o Chol : C — . . . . — (13)
: : ’ ’ W, _1(h,—
Lnl Ln2 e Lnn 1( 1)

with C' € Cor™(n), hi_1 = (Li1,--- , L) T € HS' ™!, and U; = tpygi_,pi. As different hyperbolic
models are isometric, the induced geometry is still called PHCM. This identification motivates us to
construct the correlation layers using the corresponding layers over Poincaré spaces.

4.2 REVISITING POINCARE LAYERS

The Poincaré MLR (Ganea et al., |2018}; |Shimizu et al., [2021) and FC layers on Poincaré spaces
(Shimizu et al., 2021) follow the same logic as Sec. [3.1|and Def. [3.4] respectively. Their closed-form
expressions are reviewed in App.

The Poincaré convolutional layer shares a logic similar to the correlation convolution, except it uses
[-concatenation to concatenate the Poincaré vectors in each receptive field (Shimizu et al., [2021]
Secs. 3.3-3.4), which can stabilize the norm of the Poincaré vector. The Poincaré S-concatenation
generalizes the Euclidean concatenation via the scaled concatenation in the tangent space. Given

inputs {z; € P}, it is defined as Expg (B, (85 vy - ,ﬁ;ﬁvﬁ))T € P, where v; =
Logg(z;) and n = va:l n;. Here, f3,,, and j3,, are defined by the beta function 3, = B (%/2, 1/2).
The inverse is called the Poincaré -split. The Poincaré convolution is: (1) S-concatenating the
multi-channel feature in a given receptive field; and (2) performing the Poincaré FC transformation.

>Thm. naturally support product geometries, which are detailed in App. |E.2
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Input c-Channel

“holesky Factors
Correlation Matrices Cholesky Factors

1 0 - 0
Ly L 0
Lin Lo -+ L
~ T (n

Classification

C°eCor*(n)  L°=Chol(C*) € LT*(n) y €eRC

Identifying the Correlation Manifold with the Poly-Poincaré Space MLR Classification

Figure 4: Illustration of the PHCM convolution and MLR. The multi-channel input correlation matri-
ces are denoted as {C"}§_; . For the convolutional layer, the illustration focuses on the transformation
within a receptive field and assumes a single-channel output.

4.3 BUILDING POLY-HYPERBOLIC-CHOLESKY LAYERS

PHCM MLR. The input multi-channel correlation matrices, C = {C" € Cor (n)}$_q, are first
mapped into poly-Poincaré spaces as = {z' = W o Chol(C?) € PP"'}¢_,. The resulting
Poincaré vectors are then /3-concatenated into a single Poincaré vector x € PN, where N = cw.
This concatenated vector is subsequently fed into the Poincaré MLR for classification.

PHCM convolutional and FC layer. The convolutional layer follows a logic similar to Log-
Euclidean convolution. The multi-channel correlation matrices within a receptive field C = {C? €

Cor™ (n)}¢_, are first mapped to a 3-concatenated Poincaré vector z € PV as the PHCM MLR,
which is then fed into the Poincaré FC layer for dimensionality transformation. This produces a

vector 7 € PM, with M = k@ which is then split using 3-split. Subsequently, applying
Chol ™! oW~ reconstructs new k x m x m correlation matrices. When the input is a single correlation
matrix, it is reduced to the FC correlation layer.

Fig.Hillustrates the PHCM convolutional and MLR layers. However, there is an underlying amblgulty
in the above discussion. To clarify, we write each z* € PP"™ Yinwasai = ={pteP, .. pi_, €
P}, which gives & = {p} € P’ H:H:Tf ! Therefore, we can either concatenate twice by i — j
or once along both ¢ and j. A similar issue arises with 3-split. However, we show the equivalence of
the above two orders in App. |G} Therefore, we always conduct S-operation simultaneously along
both ¢ and j

5 EXPERIMENTS

We construct Riemannian networks on the correlation manifold, termed CorNets, using the proposed
convolutional and MLR layers. Following previous work (Huang & Van Gool, 2017; |Brooks et al.,
2019; |Chen et al.| 2024b)), we evaluate our approach on the Radar dataset (Brooks et al.| [2019) for
radar signal classification, along with the HDMOS5 (Miiller et al.,|2007), FPHA (Garcia-Hernando
et al.,[2018) and NTU120 (Liu et al.,|2019) datasets for human action recognition. More details are
provided in App.[ll

Implementation. We denote CorNet-Metric as the CorNet composed of correlation convolution and
MLR layers under a specified metric. In line with Nguyen et al.[(2024), each CorNet consists of one
correlation convolutional layer followed by a correlation MLR layer, trained with cross-entropy loss.
Following /Wang et al.| (2024); Nguyen et al.|(2024)), each raw feature is modeled as a multi-channel
[¢,m,n] SPD tensor. Since matrix power effectively activates SPD matrices by deforming their
geometry (Thanwerdas & Pennec| [2022a}; |Chen et al.| 2024bjd; 2025), we first apply a matrix power,
and then convert the result to correlation matrices as the input of CorNet. Due to trivialization, all
parameters lie in Euclidean space and are optimized by standard Euclidean optimizers. We compare
CorNets against representative Grassmannian and SPD networks, including GrNet (Huang et al.|
2018)), GyroGr (Nguyen & Yang, 2023), GyroGr-Scaling (Nguyen & Yang, [2023)), SPDNet (Huang
& Van Gool,[2017), SPDNetBN (Brooks et al.,2019), RResNet (Kingmal, 2015)), LieBN (Chen et al.}
2024b)), SPD MLR (Chen et al.,|2024d)), Gyro (Nguyen & Yang, [2023)), and GyroSPD++(Nguyen
et al.,[2024])). Please refer to App. for more details.
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Table 2: Five-fold results and training time per epoch on four datasets. The top 3 results are
highlighted with red, blue, and cyan. * denotes reproduced results due to missing official code.

| | Radar | HDMO5 | FPHA | NTU120
Manifold | Method | Mean+STD ~ Time | MeantSTD  Time | MeantSTD  Time | Mean+STD  Time
GrNet (Huang et al.|[2018) 9048 +£0.76  1.39 | 63.19 +0.70 1.64 8531090 0.70 | 57.59+0.22 50.97
Grassmann GyroGr* (Nguyen & Yang![2023) 90.64 £0.57 1.38 | 58.32+1.23 2.48 79.62+049 0.70 | 53.76 £0.18 136.96
GyroGr-Scaling™ (Nguyen & Yang|[2023) | 88.88+1.52 1.63 | 39.75+0.93 3.52 58.62+1.66 1.03 | 43.90+0.23 338.01
SPDNet (Huang & Van Gool!2017) 9325+ 1.10 0.66 | 64.57 +0.61 0.50 8559+0.72 028 | 51.25+£0.36 12.77
SPDNetBN (Brooks et al.[[2019} 94.85+0.99 1.25 | 71.28+0.79  0.94 89.33+049 058 | 5435+043 19.78

SPDResNet-AIM (Katsman et al.[[2024) | 95.71 £0.37 0.96 | 64.95+0.82 1.23 86.63+£0.55 0.69 | 57.33+0.35 23.84
SPDResNet-LEM (Katsman et al.||2024} | 95.89+0.86 0.77 | 70.12+2.45  0.55 85.07+0.99 030 | 61.34+£2.02 13.00
SPDNetLieBN-AIM (Chen et al.|[2024b) | 95.47+£0.90 1.21 | 71.83 +0.69 1.15 90.39+0.66 097 | 5820046 31.10

SPD SPDNetLieBN-LCM (Chen et al.|[2024b) | 94.80£0.71  1.10 | 71.78 £ 0.44 1.11 86.33+043 059 | 57.96+043 22.06
SPDNetMLR (Chen et al.[[2024d) 94.59£082 0.66 | 6590+£093 546 | 8560+043 0.88 | 58.59+0.13 22.48

GyroLE* (Nguyen & Yangl[2023) 9624024 0.79 | 73.17+£037 286 | 90.73£0.92 159 | 59.29+042 22.08

GyroLC* (Nguyen & Yang|[2023) 93.60+ 131 0.66 | 67.53+0.85 1.49 | 76.10£0.63 0.78 | 59.29+0.42 14.14

GyroAI* (Nguyen & Yang!2023) 96.29+£048 099 | 72.34+£1.06 22.80 | 89.60+0.37 12.62 | 6221+£0.29 98.31

GyroSPD++" (Nguyen et al.|[2024) 9520+£0.88 5.09 | 69.82+1.79 103.57 | 89.50£0.37 66.35 | 61.57+0.30 216.46
CorNet-ECM 97.71£0.61 1.01 | 81.35+1.27 0.60 | 92.17+£0.49 0.50 | 65.04+0.14 12.06

CorNet-LECM 98.40£0.70 1.12 | 78.05+1.14 0.64 | 91.17+0.32 0.54 | 65.03£0.10 12.68

Correlation CorNet-OLM 97.57+0.76 135 | 8146+ 0.61 093 | 91.63£0.12 0.79 | 64.41+0.23 16.07
CorNet-LSM 96.24£1.48 150 | 74.89+1.07 098 | 8343+0.65 0.83 | 60.69+0.85 16.28

CorNet-PHCM 96.56 £ 0.86 2.37 | 82.26 +0.92 1.10 | 90.03+£0.63 0.77 | 60.01 £0.22 16.92

Table 3: Ablations on mixed geometries. Each row shows the metric used for Convolution (Conv),
and each column is the metric for MLR. The diagonal entries indicate configurations where both
layers use the same metric. The best result in each row is highlighted in red.

Dataset | HDMO05 | FPHA
Conv MLR ECM LECM OLM LSM PHCM ‘ ECM LECM OLM LSM PHCM
ECM 81.35+1.27 7338+0.34 80.11%0.77 7854+043 80.80+0.54 92.17+0.49 9150+021 91.67+0.28 87.37+1.14 91.97+0.24
LECM 6649 +1.13 7805+1.14 79.21+1.23 73.61+£099 5837+224 | 87.90+£0.57 91.17+0.32 9025+0.25 89.63+0.31 86.09 +0.98
OLM 77.82+048 76.56+0.89 81.46+0.61 80.77+081 77.39+1.29 | 92.17+0.58 92.27+0.78 91.63+0.12 89.90+0.67 91.83+0.15
LSM 68.83+1.19 7041+£157 6756+1.52 74.89+1.07 7269+356 | 7897+280 75.10+1.15 8225+3.38 83.43+0.65 7897+497
PPC 81.16 £0.40 80.05+0.45 81.96+0.51 78.28+0.64 82.26+0.92 | 8830+0.81 79.80+0.69 87.37+£0.72 86.63+0.27  90.03 £ 0.63

Main results. Tab. 2]reports the five-fold results comparing our CorNets against existing SPD and
Grassmannian baselines. We summarize the key observations below. (1) Effectiveness: CorNets
consistently outperform both SPD and Grassmannian networks. Specifically, CorNets surpass the
classic SPDNet by 5.15%, 17.69%, 6.58%, and 13.84% on four datasets, respectively, and outperform
the best Grassmannian networks by 7.76%, 19.07%, 6.86%, and 7.45%. Despite not using batch
normalization or residual blocks, CorNets achieve superior performance compared to SPDNetBN,
SPDNetLieBN, and RResNet. Notably, although CorNets share the same architecture as GyroSPD++
(one SPD convolutional layer followed by one SPD MLR), CorNets exhibit better performance.
These results highlight the effectiveness of correlation embedding and our method for constructing
correlation networks. (2) Optimal metric: The optimal metric for CorNets varies across datasets,
indicating that the choice of geometry is a critical hyperparameter in Riemannian networks. Our
framework enables seamless switching among five correlation geometries in a consistent architecture,
demonstrating the adaptability of our approach to different tasks. (3) Efficiency: CorNets achieve
efficiency comparable to or better than several baseline methods. The most efficient CorNet variant is
based on ECM, owing to the simplest computations of ECM. Although GyroSPD++ uses the same
architecture, CorNets achieve significantly greater efficiency, attributed to the heavy computational
cost of the AIM-based computations in GyroSPD++ and the lightweight Riemannian computations
on the correlation manifold. Particularly, on the largest NTU120 datasets, CorNet-ECM and CorNet-
LECM are the top two most efficient ones.

Ablations on mixed geometries. Our main experiments use the same metric for convolution and
MLR. To evaluate mixed geometries, we assign different metrics to the two layers. Tab. [3|reports
five-fold results on HDMO5 and FPHA. Overall, consistent metrics yield the best accuracy, with the
exception of LECM-OLM on HDMO05 and OLM-LECM on FPHA.

Visualization. Fig. 5] shows that different metrics  Table 4: SPD vs. correlation on SPDNet.
induce visibly distinct curved hyperplanes.

Input |  Radar HDMO05 FPHA
SPD ‘ 93.25+1.10 64.57+0.61 85.59 +0.72
Correlation ‘ 89.49 +0.67 66.81+0.73 83.37+0.40

Potential and necessity. Although correlation matri-
ces are still SPD, naively treating them as SPD inputs
and feeding them into existing SPD networks fails
to leverage their intrinsic geometric structures. To
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ECM Hyperplane LECM Hyperplane OLM Hyperplane LSM Hyperplane PHCM Hyperplane

[ =N

Figure 5: Illustration of the decision hyperplanes in the correlation MLRs under five different
geometries. The 3 x 3 correlation manifold can be embedded as an open elliptope in R3, by
visualizing the strictly lower triangular part of each C' € Cor™(3). The black dots denote the
boundary. The PHCM hyperplane is defined by the one in the 3-concatenated Poincaré space.

Table 5: Comparison of SPDMLR-Trivlz on raw covariances against CorMLR on raw correlations on
all three datasets. The input matrix dimensions are 93 x 93, 63 x 63, and 20 x 20, respectively.

SPDMLR-Trivlz CorMLR

\
Dataset | Measurement | ™ gy LCM AIM | ECM LECM OLM LSM PHCM
Acc 95.47+0.66 9555+0.35 9487+0.87 | 89.47+093 87.41+023 8579+0.83 91.63+032 83.33+1.29
Radar | Fit Time (s/epoch) 0.65 0.63 0.99 0.56 0.62 0.78 0.68 0.74
Acc 54312 1.65 45.12£1.05 5246244 | 65.57+0.62 64.44+0.63 62.86+0.65 64.01£092 62.78+0.85
HDMOS | Fit Time (s/epoch) 3.24 538 260.67 3.18 3.87 3.39 3.57 273
Acc 84.13+ 1.14  76.62+0.43 8325+0.59 | 8537 +0.16 8524+0.22 84.67+027 80.17+0.15 73.67+0.32
FPHA | Fit Time (s/epoch) 0.51 0.52 18.96 0.51 0.64 0.8 0.81 0.45

illustrate this, we use the classic SPDNet (Huang & Van Gool,|2017) but replace its covariance inputs
with correlation matrices. The five-fold average results in Tab. 4] reveal two key insights: (1) on
the HDMOS5 dataset, correlation inputs lead to improved performance, suggesting that correlation
embeddings can serve as compact and effective alternatives to covariance representations; and (2) on
the other two datasets, the performance degrades, indicating that ignoring the specific geometry of
correlation matrices can be detrimental. These findings highlight both the promise and the necessity
of designing networks respecting the unique geometry of the correlation manifold.

Ablations on correlation embeddings. To further evaluate the effectiveness of correlation embed-
dings, we compare the performance of directly classifying raw covariance matrices using SPDMLR
(Chen et al.l 2024d, Thm. 4.2) with that of classifying corresponding raw correlation matrices
using correlation MLR (CorMLR). The original SPDMLR requires an SPD matrix parameter and a
symmetric matrix parameter for each class, which causes heavy Riemannian computations. For a fair
comparison, we also implement similar trivialization as Sec. @ for the SPD parameters involved in
SPDMLR, which will greatly improve the efficiency. The resulting MLR is denoted as SPDMLR-
Trivlz. We implement SPDMLR-Trivlz under LEM, LCM, and AIM, respectively. Tab. [5| presents
the 5-fold average results on all three datasets. CorMLR performs better than SPDMLR-Trivlz
on HDMOS and FPHA. Although CorMLR performs worse on Radar, we emphasize that these
comparisons are conducted on a single MLR layer, which fails to fully uncover the potential of
correlation matrices. When integrated into a full network (our CorNet), correlation-based modeling
consistently outperforms all SPD-based networks. Besides, SPDMLR under AIM is much slower
than others, especially on HDMO5, due to its complex computations. In contrast, CorMLR, especially
under ECM and PHCM, offers competitive or superior efficiency relative to SPDMLR-Trivlz.

Covariance vs. correlation. Tabs. 2] and [5] show that correlation embeddings achieve relatively
larger gains than covariance based SPD models on the HDMOS5 dataset. As detailed in Apps.
and [[.5.2] covariance embeddings on HDMO5 exhibit large coefficients of variation for diagonal
variances and diagonal magnitudes that are much larger than the off-diagonal entries. In such cases,
covariance-based SPD representations can introduce nuisance noise and make it harder for the model
to exploit informative off-diagonal correlations. In contrast, correlation normalization rebalances
diagonal and off-diagonal contributions and encourages the network to focus on vibrant pairwise
correlations. This behavior is consistent with the strong gains of correlation embeddings on HDMO05
and suggests that correlation modeling is particularly beneficial when covariance representations are
dominated by large and highly variable diagonal components.

Normalized covariance vs. correlation. As correlation matrices can be viewed as normalized
covariance matrices, a natural idea is to normalize covariance by a scalar, such as its largest eigenvalue.
As discussed in App.[[.6] feeding SPD networks with covariance matrices scaled by their largest
eigenvalue leads to only marginal changes and could degrade performance. These results indicate
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that simple scalar scaling does not reproduce the benefits of correlation normalization. This can be
explained from a statistical perspective. Since dividing a covariance matrix by a scalar is equivalent
to uniformly rescaling raw samples before covariance computation, the normalized inputs remain
covariance matrices. In contrast, correlation normalization rescales each pair of variables by their
own standard deviations and produces standardized correlation coefficients, which is statistically
distinct from scalar normalization.

Activations. Following HNN++ (Shimizu et al.| [2021)) and GyroSPD++ (Nguyen et al., 2024),
CorNet omits explicit activations because the correlation manifold already introduces nonlinearity. In
App. we further study the effects of the activation function. Following |Ganea et al.[|(2018], Sec.
3.2), we implement the activation via the tangent space. The results indicate that activation offers no
benefit and can even degrade performance.

Scalability. We evaluate the efficiency of CorNet under different metrics across dimensions from
30 x 30 to 1000 x 1000. As shown in App. ECM is consistently the most efficient. At high
dimensions, PHCM becomes the second most efficient due to its relatively simple diffeomorphism,
whereas LECM is the slowest among LSM, OLM, and LECM due to its costly log o® mapping.

6 CONCLUSION

This paper systematically extends the FC, convolutional, and MLR layers to the correlation manifold
under five newly developed Riemannian geometries. By preserving intrinsic correlation structures and
enabling flexible variation of latent geometry within a unified network architecture, our framework
highlights the distinct advantages of correlation manifolds beyond SPD and Grassmannian alternatives.
In addition, we propose accurate backpropagation schemes for OLM and LSM. Extensive experi-
ments demonstrate the effectiveness, adaptability, efficiency, and scalability of our approach. These
foundational layers open the door to constructing richer architectures on the correlation manifold,
including RNNs, transformers, and residual networks.

REPRODUCIBILITY STATEMENT

All theoretical results are presented with clear assumptions, and complete proofs are provided in
App. [I] Details of the datasets and preprocessing are given in App.[[.3] Implementation details,
including network architectures, optimization strategies, and hyperparameters, are described in
App. The code will be made available upon acceptance.
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Table 6: Summary of notation. All numbers and operators are assumed to be real.

Notation Explanation
(M, g) or M Riemannian manifold
FE or Epm Origin of the manifold M
TpM Tangent space at P € M
{0k}, Orthonormal basis over the m-dimensional TpM
gp(-y)or (-, p Riemannian metric at P € M
II-1lp Norm induced by (-, ) p on Tp.M
Logp Riemannian logarithmic map at P
Expp Riemannian exponential map at P
~v(t; P, Q) Geodesic connecting P, ) € M
I'p_q Riemannian parallel transportation along the geodesic connecting P and )
H,p,orHyp Margin hyperplane
fepr Differential map of the smooth map f at P € M
v (X) v (X) in Riemannian MLR (Eq. ) for X € M
F:N—=>M Riemannian FC layer from N to M, defined by Eq.
R, R"&R™ =™ Euclidean spaces of real scalars, n-dimensional real vectors, and n x n matrices
Diag(n) Euclidean space of n x n diagonal matrices
Diag™ (n) Manifold of n x n positive diagonal matrices
S" Euclidean space of n x n symmetric matrices
Hol(n) Euclidean space of n x n symmetric matrices with null diagonals
Rowg(n) Euclidean space of n x n symmetric matrices with null row sum
J Manifold of n x n SPD matrices
Row{ (n) Manifold of n x n SPD matrices with unit row sum.
Cor™(n) Manifold of n x n full rank correlation matrices
LT(n) Euclidean space of n x n lower triangular matrices
LT (n) Euclidean space of n x n lower triangular matrices with unit diagonals
LT (n) Euclidean space of n x n lower triangular matrices with null diagonals
LT"(n) Cholesky manifold of n x n lower triangular matrices with positive diagonals
L Manifold of n x n lower triangular matrices with positive diagonals and unit row norm
PHS™ ! Product space of n — 1 open hemispheres
PPt Product space of n — 1 Poincaré balls
(&Il Canonical Euclidean inner product and norm

¢, .>(04,13,’Y) & (-, _>(04-57()
log, exp, & Chol

Permutation-invariant inner product over Hol(n) & Rowg(n)
Matrix logarithm, exponentiation, Cholesky decomposition

[ Returns the strictly lower triangular matrix of a square matrix
BEC(+) #FC(C) = |©(C)| the isometry w.r.t. ECM
D(+) Returns a diagonal matrix with diagonals from a square matrix
diag(+) Returns a diagonal matrix from an input vector
Dv(-) Returns a vector of diagonal elements from a square matrix
()1 (S)g = S] + §D(S) for any square matrix S
© Hadamard product
Cor Cor: ¥ € 87, — D(X)~/2ED(X)~"2 € Cort(n)
(S} 0 : C € Cor™(n) — D(Chol(C))~! Chol(C) € LT*(n)
off Returns a matrix in Hol(n) consisting of off-diagonal elements
Log® & Exp° Off-log and its inverse
Log* & Exp* Log-scaled and its inverse
Torl, &0 Identity matrix & Zero matrix or vector
1 Vector with all 1 entities
P2 General Poincaré ball, P}, = {z eRrR" | |z|* < —%} (K <0)
P (Canonical) Poincaré ball, P" = P"
HS™ Open hemisphere, HS™ = {z eR"™! | ||z|| = 1land z11 > O}
H" Hyperboloid, H" = {z € R™1 | [lo][7 = ~1} with [l2][} = X0, o2 — o2,
Vasn e Isometries between HS™ and P™
Ppn s Hgn

LIST OF ACRONYMS

ECM
LECM
LSM
OLM
PHCM

CorNets

FC

Euclidean—Cholesky Metric
Log-Euclidean—Cholesky Metric
Log-Scaled Metric

Off-Log Metric
Poly-Hyperbolic-Cholesky Metric

Correlation Networks
Fully Connected
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MLR Multinomial Logistics Regression

AIM Affine-Invariant Metric
LCM Log-Cholesky Metric |23}
LEM Log-Euclidean Metric 23]
SPD Symmetric Positive Definite

A USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used primarily for language polishing and text editing. In
limited cases, they also assisted in translating certain mathematical formulations into PyTorch code.
All generated outputs were carefully reviewed and, where necessary, corrected by the authors. The
authors take full responsibility for the final content of this paper.

B NOTATION

Tab. [6| summarizes all the notation used in this paper for better clarity.

C FULL-RANK CORRELATION GEOMETRIES

This section follows all the notation in Tab. @ As ECM, LECM, OLM, and LSM are pullback metrics
from Euclidean spaces by diffeomorphisms, they are collectively called Log-Euclidean metrics
(Thanwerdas), 2024). As all five metrics are pullback metrics, the Riemannian operators can be
directly derived by the properties of Riemannian isometries (Chen et al.,[2024cl App. A.2), without
computing Christoffel symbols or solving ODEs.

C.1 PULLBACK METRICS

As all five involved Riemannian metrics on the correlation manifold are pullback metrics, we first
review pullback metrics. The idea of pullback is ubiquitous in differential geometry and can be
considered as a natural extension of the bijection in the set theory.

Definition C.1 (Pullback Metrics (Leel [2018))). Suppose M1, My are smooth manifolds, g is a
Riemannian metric on My, and f : M; — M3 is a diffeomorphism. Then the pullback of ¢ by f is
defined point-wisely,

(f* 9 (VW) = g5) (frp (V) frp (W), (14)

where f, ,(-) is the differential map of f at p € My, and VW € T, M;. f*g is a Riemannian
metric on M, called the pullback metric of g by f. Here, f is also called a Riemannian isometry.

Although pullback metrics can also be defined by smooth maps (Leel |2018]), this paper focuses on
diffeomorphisms.

C.2 SYMMETRIC MATRIX FUNCTIONS

This subsection reviews the eigenvalue function over symmetric matrices. For more in-depth discus-
sions, please refer to|Bhatia| (2009, Ch. 2.7.13) or Bhatia (2013} Ch. V.3).

We denote S™ as the Euclidean space of n X n real symmetric matrices, and S, as the SPD manifold

of n x n SPD matrices. Let I be an open interval of R and f : I — R be a smooth function. The
smooth map induced by f for any symmetric matrix .S with all eigenvalues in [ is defined as

f:Sr——Uf(X)UT €8, with S = USU " as the eigendecomposition. (15)
Its differential is known as the Daleckii-Krein formula:

fos(V)=U (Lo (U'VU))UT, VWes", (16)
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Table 8: Riemannian metrics on the correlation manifold with the associated isometric prototype
spaces and diffeomorphisms.

Metric Prototype space Diffeomorphisms Properties

ECM 6 : C e Cort(n) — D(Chol(C))~* Chol(C) € LT (n)
(Thanwerdas & Pennec|2022b) ©~! = CoroChol™* : LT!(n) — Cor™ (n)

LT (n) = LT(n) + I Null curvature

LECM 0 log 0® : Cor™ (n) — LT (n) )
(Thanwerdas & Pennec|[2022b} LT(n) (log 08)~! = Cor o Chol " o exp : LT(n) —» Cor™ (n) Null curvature
OLM Hol(n) Log® : C € Cor™(n) — off o log(C) € Hol(n) Permutation-invariance
(Thanwerdas|[2024) (Lng")*l = Exp°: H € Hol(n) — exp(D(H) + H) € Cor*(n) Null curvature
LSM Rowo(n) Log* : C € Cor" (n) — log(D*(C)CD*(C)) € Rowg(n) Permutation-invariance
(Thanwerdas|[2024) 0 (Log*)’l = Exp” : R € Rowg(n) — Cor(exp(R)) € Cor*(n) Null curvature
PHCM PHS-1 Chol : Cor™(n) — £" = PHS" ! Nonpositive
(Thanwerdas & Pennec||2022b) Chol™' : £ =~ PHS" ! —3 Cor™ (n) sectional curvature
floi)—f(o;) :
e — if o; [
g= o 1P (17)
1'(6:), otherwise

where L is called the Loewner matrix with the (4, j)-th element defined as Eq. , and © denotes
the Hadamard product. Two special cases are the matrix logarithm: log : ST, — S™ and its inverse,
the matrix exponentiation exp : S™ — S% .

C.3 GEOMETRIES OF THE CORRELATION MANIFOLD

Following the notation in Tab. [f] this subsection is a more detailed discussion of Sec.[2]in the main
paper. The involved five geometries on the correlation matrices can be classified into two classes:
(1) non-permutation-invariant metrics, including ECM, LECM, and PHCM; and (2) permutation-
invariant metrics, including OLM and LSM. Tab. 8] summarizes the diffeomorphisms and prototype
spaces discussed in Sec. 2]

C.3.1 NON-PERMUTATION-INVARIANT METRICS

The non-permutation-invariant metrics (Thanwerdas & Pennecl|[2022b)), namely ECM, LECM, and
PHCM, are defined by pullback:

©=D""'(Chol(-)) Chol(-)

ECM: Cor™ (n) LT'(n) = I, + LT(n), (18)

©—1=Cor o Chol !

log 0©®
LECM: Cor™ (n) -

LT (n), (19)

(log 0©)~1=Cor o Chol~! o exp

n—1
PHCM: Cor™ (n) ——=— £" =~ PHS" " := [ {HS", a;g"'}, (20)
Chol—1 i1

where each «; > 0 is the positive weight. In the following, we first review the associated maps in
ECM and LECM, followed by a discussion of PHCM.

ECM and LECM. For any C € Cor®(n), V € TcCort(n) = Hol(n), K € LT'(n) and
X, ¢ € LT%(n), the involved maps and their differentials in ECM and LECM are

0(C)=D(L)'L, (21)
O (K)=D(KKT) * KKTD(KKT) ?, (22)

n=l/ 1\k—1
log(K) = ; % (K —I,)", (23)

n—1 1

exp(§) = 2 & (24)
0..c(V)=06(0) (L‘1VL‘T)% — %D (L'vL=T)e(c), (25)
(©uc) (€)= (LET —OD (LET))D(L) + D(L) (ELT — D (LET) C), (26)
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Table 9: Riemannian operators under the non-permutation-invariant log-Euclidean Metrics. Here,
C,C’" € Cor™ (n) are correlation matrices and V, W € TCor™ (n) = Hol(n) are tangent vectors.
Although the inner product (-, -) could be any Euclidean inner product, this paper focuses on the
canonical one.

Operation ECM LECM
go(V.W) 0.,¢(V),0..c(W)) {(log 90)...c(V), (log 0®). ¢ (W)
Expg (V) 0710 (C) +6.c (V) (log0®) - ! (log 0© (C) + (log 0®) ¢ (V)
Log(C") 9;}—)(0) (e[ -6e() (log o@)* logOO o) (logo® (C") —log 0O (C))
vt C,C"Y 07 (1 -1)6(0)+t0(C") (loge®)~!((1 —1t)logo® (C) + tlogoB (C))
d(c.c) 16(C) —O(C)] [[log O9( log o0 ()]
Fréchet mean o-! <% Zle () (C’,)) (log 0®)~ < i1 logo® (C; ))
Curvature 0
Toser(V) (©:.0) ' (B:c (V) ((log 0©)..cr) ((logo@)*,c( )
= (-)F! k-1 k-1
log, (6 = Y — [(K - L) e+ re(k - 1), e
k=1
n—1 1
exp,x(€) =D o (X E+ X 2N 4+ exT), (28)
k=1
(log 0®),c(V) =log, o(c) (Os,c(V)), (29)
Chol, c(V)=L(L7'VL™T),, (30)
(Chol, o)™ (Z2)=LZ" + ZL", VZ € T, LT (n) = LT(n). (31)

where L is the Cholesky factor of C' and I, is the n x n identity matrix. Due to the nilpotency of
LT (n), the matrix logarithm over LT" (n) and exponentiation over LT"(n) are free from eigende-
composition. With the above equations, Tab. [0 summarizes the Riemannian operators under ECM
and LECM.

PHCM. It is the pullback metric by the Cholesky decomposition from the product space
H::ll{HSi, a;g"5"}, where each a; denotes positive weights and g"" denotes the metric ten-

sor over HS'. Particularly, the PHCM with all weights equal to 1 is called the canonical PHCM.
Without loss of generality, we focus on the canonical PHCM. The closed-form expressions of the
Riemannian operations under PHCM are a bit heavy as they are obtained by the product metric.

Given C € Cor™(n) and L = Chol(C) € £", we denote ¥ = ¢! x - x ¢~ 1 : £ — [['-' HS
with each 1)? as
(L) = (Lit1,15 - Lit1,i41) € HSY, (32)

where L;+1 = (Liy1.1,- -+, Li+1,i+1,0,...,0) is the (i + 1)-th row of L. The Riemannian operators

under PHCM can be obtained using the product geometry and HS? geometry. Following the notation
in Tab. [9] the Riemannian metrics, logarithm, exponentiation, and geodesic (distance) under the
canonical PHCM are

2
gc(V,V) = H]D)(L)’IL (L*VL*T) , (33)

1
2

Expe(V) = (Chol) ™ (47" (Explf¥{1) (1 (Chol. c(V))), -+, Explfis 1 ("~ (Chol..c(V))))) )
(34

Loge(C”) = (Chol) & (w7 (Loglifis, (W' (L)), -+, Loglii a1y (" (L)) (35)

16,0 = (Chol) " (w7 (4 (51 (0,0 (C), - AT T THCD)), 66

2

= nZl arccosh (— <1/)i(L), zpi(L/)>£) , 37)
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where L = Chol(C) € L™, L' = Chol(C") € L™, and Log™", Exp™ and "' are the
counterparts over HS*, which have closed-form expressions (Thanwerdas & Pennec| 2022b}, Thm.
4.2). Here, ||-|| » is the norm induced by Lorentz inner product:

n
Hx||2£ = fo —a2,.,, VYxeR". (38)
i=1

Remark C.2. The Riemannian structure of HS™ is defined by the pullback metric from the hyperboloid
model. All the Riemannian operators over HS™ have closed-form expressions (Thanwerdas & Pennec|
2022bl, Thm. 4.2).

C.3.2 PERMUTATION-INVARIANT METRICS

Let &™ be the group of permutation matrices P, = [&; ()] by permutation o, and D* (n) =

1<ig<n
{diag ((¢1,...,&n)),& € {—1,1}"} be the group of diagonal matrices with coefficients in {—1, 1}.
Thanwerdas| (2024, Thm. 1.1) showed that the largest congruence action on full-rank correlation

matrices is the action of signed permutation matrices:
*x:(A,C) € &%(n) x Cor™(n) — ACA" € Cort(n), 39)

with &% (n) = D*(n)&™. Based on this finding, Thanwerdas| (2024) proposed two permutation-
invariant metrics, namely OLM and LSM, by pulling back permutation-invariant inner products via
the following permutation-equivariant diffeomorphisms:

Log®=offolog
—_— N\

Cor™(n) Hol(n), (40)
Exp°®
Cor™(n) o Rowg(n), 41)
Exp*=Cor o exp
Exp° : Hol(n) > H — exp(D(H) + H), (42)
Log* : Cor™(n) > C + log(D*(C)CD*(C)) € Rowg(n). (43)

where log(-) and exp(+) are symmetric matrix logarithm and exponentiation. The involved D and
D* can be formally expressed as D : Hol(n) — Diag(n) and D* : Cor™(n) — Diag™ (n), where
Diag(n) denotes the Euclidean space of n x n diagonal matrices, and Diag™ (n) is a submanifold of
Diag(n), consisting of positive diagonal matrices.

The differentials of Log® and Log”* and their inverses can be calculated by the differential of
symmetric matrix logarithm and exponentiation (Thanwerdas| 2024, Thms. 2.4 and 4.1). Given
C € Cor™(n), tangent vector V € TCor™ (n) = Hol(n), H,W € Hol(n),and S = H +D(H) =
UAU, the differential of Log® and its inverse Exp® are

Log? (V) = off (log, «(V)), (44)

Exp; (W) = exp, ¢ (W + Di g(W)), (45)

D, (W) = — diag ((HO)’1 D (exp, (W) 1) , (46)

Sty 3 Hy =Y PyPiP,PiLjk, (47)
7.k

where L is the Loewner matrix of exp, g, and 1 is the vector of all 1 entities. Here, log, and exp,

can be calculated using the Daleckii-Krein formula of the symmetric matrix, while diag(-) : R” —
Diag(n) returns a diagonal matrix from an input vector. Further denoting X, Y € Rowg(n) and
¥ = D*(C)CD*(C), the differentials of Log™ and its inverse Exp* are

Logl (V) =log, s (AVA + % (V'S + EVO)) , (48)
Exp; x(Y) = A7 [exp*,xm — 5 (A7 (exp. x (V) B4 3D (exp, x (V) A7) | A7 49)

with A = D(X)'/? and V° = —2diag ((In +u)7! AVAI).
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Table 10: Riemannian geometries under the permutation-invariant log-Euclidean Metrics.

Operation OLM LSM

o o a,fB, * * a,d,
9o (V,W) (Log? o(V), Log? ¢ (W)) " (Log! o(V), Log? ¢ (W)@
Expe (V) Exp® (Log® (C) + Log? ¢ (V) Exp” (Log” (C) + LogZ ¢ (V)
Logc(C") EXDP} Loge (0 (Log® (C') — Log® (C)) EXP} 1og+(c) (Log™ (C') — Log™ (C))

~(t; C,C") Exp® ((1 —t) Log® (C') 4+ t Log® (C")) Exp® ((1 —t) Log™ (C) + t Log™ (C"))

o o B, * ,0,
d(c, ¢ [Log® (C) — Log® (C)||“* |ILog™ (C) — Log* (C")]|**
Fréchet mean Exp® (% Zle Log® (CZ)) Exp* (% Zle Log* (Cl))
Curvature 0 0
o 71 (e} 71 *
Fc-»C’(V) (LOg*,C’) (Log*’c (V)) (Log:,c”) (LOBQ*,C (V))
Permutation-invariance
Properties Singed-permutation-invariance (8 = v = 0) Permutation-invariance

Inverse-consistency

As both Log} and Log; are permutation-equivariant (Thanwerdasl, 2024), permutation-invariant
metrics over the correlation manifold can be induced by permutation-invariant inner products over
Hol(n) and Rowq(n), respectively. The following two theorems review such inner products.

Theorem C.3 (Permutation-invariant inner products on Hol(n) (Thanwerdas, 2022)). Supposing
n > 4, permutation-invariant inner products on Hol(n) are:

(X1, Xo) P = qtr(X1X,) + B Sum (X1 X5) + v Sum(X;) Sum(Xs), VX1, X, € Hol(n),

(50
witha >0, 2a+ (n—2)8 >0, and oo+ (n — 1)(8 + ny) > 0. For n = 3, permutation-invariant
inner products have the same form with o = 0:

(X1, X)) @A) = BSum(X, X,) + v Sum(X,) Sum(Xs), with 8> 0and B+ 3y > 0. (51)
For n = 2, they have the same form with o« = 8 = 0:
(X1, Xo) P = 5 Sum(X,) Sum(X,),  withy > 0. (52)

Theorem C.4 (Permutation-invariant inner products on Rowg(n) (Thanwerdas, [2024)). Forn > 4,
permutation-invariant inner products on Rowg(n) are

(¥1,Y2) 0 = atr(Y1Y2) + 8 tr(D(Y1)D(Y2)) + Ctr(Y) tr(Ya), WY1, Ys € Rowo(n), (53)
witha > 0, na+(n—2)§ > 0, and na+ (n—1)(6+n¢) > 0. Forn = 3, the permutation-invariant
inner products have the same form with o = 0. For n. = 2, they have the same form with o = § = 0.

As shown by [Thanwerdas| (2022)), OLM is further invariant to signed-permutation under 8 = v = 0,

where the associated (-, ->(°"O’O) is reduced to the scaled canonical Euclidean inner product:

WV, WY @00 — o (VWY YV, W € Hol(n). (54)

(@87 and <.7.>(0t757C)

In the main paper, we assume that (-, -) are the canonical Euclidean inner

product.

Lastly, we briefly review inverse-consistency, a property exclusive to LSM. The cor-inversion is
defined as Z : Cor*(n) > C + Cor (C~') € Cor"(n) (Thanwerdas, 2024, Def. 1.4). It

corresponds to the matrix inversion inv : %, 3 ¥ yle ST ., as represented on the following
commuting diagram:

Sty ——— Siy
cor| Jcor (55)
Cort(n) —£— Cor*(n)
As shown by [Thanwerdas| (2024, Thm. 1.7), LSM enjoys inverse-consistency:
Log*(Z(C)) = —Log*(C), VC € Cor™(n). (56)

Tab. [0l summarizes the Riemannian structures of OLM and LSM.
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Remark C.5. We make the following remarks w.r.t. OLM and LSM.

1. Invariance and dimension: Thms. and [C.4]implies that when n < 3, the canonical
inner products over Hol(n) and Rowg(n), as well as the induced OLM and LSM, are no
longer invariant metrics. However, our main paper focuses on cases where n > 3.

2. Dand D*: D is also well-defined over S™, a surjective map D : S™ — Diag(n). In this
way, Exp® : 8" — Cor™(n) is no longer bijective (Thanwerdas, 2024, Thm. 2.1). Similarly,
D~ is well defined over S, , a surjective map D* : S, — Diag™ (n). Consequently,
Log* : 8 — Rowg(n) is no longer bijective (Thanwerdas, [2024, Thm. 3.5).

D REVISITING PREVIOUS LAYERS

D.1 REVISITING MULTINOMIAL LOGISTIC REGRESSION

We briefly review the Euclidean Multinomial Logistic Regression (MLR) and its Riemannian ex-
tensions (Lebanon & Laffertyl 2004; |Ganea et al., |2018; Nguyen & Yang, 2023} Nguyen et al.|
2024; Bdeir et al., 2024} |Chen et al.} 2024a:d). Given C classes, the Euclidean MLR computes the
multinomial probability of each class k € {1,...,C} for the input feature vector x € R™:

ply =k | x) x exp (vi(x)), (57)
with v (x) = (ag,x)—by and by € R, aj, € R™.|Lebanon & Lafferty| (2004} Sec. 5) first reformulated
vk (x) by the margin distance to the hyperplane:

v (x) = sign({ar, x — pr))l|ar||d(z, Ha, p,.), (58)
Heoy pp = {z € R : (a, 2 — px) = 0}, (59)

where (ax, pr) = by, and H,, ,, is a margin hyperplane. Based on the above reformulation, |Ganea
et al.[(2018); Nguyen & Yang (2023); [Bdeir et al.| (2024); Chen et al.| (2024a:d)) generalized the MLR
to different manifolds. Given a manifold-valued input X € M, the MLR (Chen et al., [2024d)) over
M is defined as

p(y =k | X) o< exp (vi (X)), (60)
vp(X) = sign((A, Logp, (9)) P ) |4kl . (S, Ha,,p,), (61)
Hy, p, ={S € M:(Logp,(S5), Ak>Pk =0}, (62)
d(S,Ha,,p.)) = o irif . d(s, Q), (63)

with P, € M and A, € Tp, M. [Shimizu et al.| (2021}, Sec. 3.1) demonstrates that P, and Ay, in
the hyperbolic Poincaré MLR can be optimized using a Euclidean vector at the tangent space at the
zero vector along with a biasing scalar. Inspired by this, this paper sets P, = Expg(vx[Zx]) and
A = Tg_p,(Zy). Here, E is the origin of the m-dimensional manifold M, while v, € R and
7y € TgM = R™ are the MLR parameters.

Following the nomenclature by [Chen et al.| (2024d), Eq. (62) and Eq. is called the Riemannian
hyperplane and Riemannian margin distance to the hyperplane, respectively. Obviously, solving the
optimization problem in Eq. is the most challenging part. To circumvent this problem, (Chen et al.
(2024d, Sec. 3.2) relaxed it via Riemannian trigonometry and approximately solved this problem.
Unlike their method, this paper precisely solves Eq. (63 under different metrics in the correlation
manifold.

D.2 REVISITING POINCARE LAYERS

Let PR = {x eR™ | |z|* < 71/1(} be the Poincaré ball (KX < 0). The Poincaré MLR (Ganea

et al., [2018}; [Shimizu et al., 2021) and FC layers on Poincaré spaces (Shimizu et al., 2021) follow the
same logic as Sec. [3.1]and Def. respectively.
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The Poincaré MLR was first proposed by |Ganea et al.|(2018)), then simplified by |Shimizu et al.| (2021}
Eq. 6). Given x € P7,, the Poincaré MLR is

p(y =k | z) ocexp (vx(2))
v () = M asinh (x\f( | K|z, [z1]) cosh(2+/| K |yk) — ()\f — 1) sinh(2 |K\7k)) ,

VIE]

where AKX = 2 (1—|K|||z||?)~" is the conformal factor, and [2;] = . Here, 2, € R™ and 7, € R

(64)

are parameters. Note that limx o v (z) = 4({ag, x) — bi).

Based on the Poincaré MLR, |[Shimizu et al| (2021, Eq. 7) proposed the Poincaré FC layer F () :
Py — PR, which is

w
= , wy, = |K|~Y?sinh Klug(x) ), 65
rawieny <SR (VIKToe() (65)

where, z = {2, € R"};", and v = {y; € R},., are the FC parameters.

The Poincaré convolutional layer is defined by the Poincaré S-concatenation and FC layer. Poincaré
[B-concatenation is defined as the scaled concatenation via the tangent space, which generalizes the
Euclidean concatenation. Given inputs {z; € P}~ ., it is defined as

Expo (B (Blv] -+ Bitvy)) | € Py, (66)

where v; = Logg(z;) and n = va:l n,;. Here, f3,,, and 3,, are defined by the beta function, i.e.,
Ba = B (2/2,1/2). The inverse is called the Poincaré 3-split. The Poincaré convolution is then defined
as: (1) B-concatenating the multi-channel feature in a given receptive field; and (2) performing the
Poincaré FC layer.

In the main paper, we focus on the unit Poincaré ball P with K = —1.

E DISCUSSION ON CORRELATION FC LAYER

E.1 CONNECTIONS AMONG FC LAYERS: CORRELATION, SPD, POINCARE, AND EUCLIDEAN

We clarify the correspondence between our FC formulation in Eq. (8) and previous FC layers.

E.1.1 SPD MANIFOLD

Nguyen et al. (2024} Props. 3.4-3.6) introduced three SPD FC layers based on the gyrovector spaces
under Log-Euclidean Metric (LEM), Log-Cholesky Metric (LCM), and Affine-Invariant Metric
(AIM), respectively. These gyro SPD FC layers share the same definition as Eq. (8), except that their
signed distance and vy, are defined by gyrovector spaces.

Furthermore, Nguyen et al.| (2024, Eq. 4) proposed SPD FC layers grounded in invariant metrics over
the symmetric space of the SPD manifold. These layers also align with the formulation of Eq. (§),
except that their signed distance and vy, are defined by the Busemann function.

E.1.2 POINCARE BALL

We show that Poincaré FC layer F(-) : P} — P} in Eq. is also defined as our correlation FC
layer in Def. [3.4]

We define the zero vector 0 € [P% as the Poincaré origin, as it is the identity element of the Poincaré
gyrovector space (Ganea et al., 2018). Obviously, {ej }7, is the orthogonal basis over TP, where
ex = (dix);,. Corresponding to Eq. , we have

sign((LogO (y)a €k> d(y7 Hek,O) = Vg ('T) (67)
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Compared with Eq. (56) by Shimizu et al.|(2021]), we only need to show the LHS. The sign can be
calculated as

sign((Logg (y), ex)o) ) sign (4 <tanh_1 (\/ 7K||yH) \/%”yl,ek>>
@ . (68)
= sign ((y, ex))

— sign ().

The above comes from the following.
K_ _ 2 _ — -1 /— ]
) Ag = TR = 2 and Logg(y) = tanh™" (V=K]|ly||) Nk
(2) tanh™*(a) > 0, <= a > 0.
Therefore, the LHS of Eq. is simplified as

sign((Logg (), ex) d(y, He,, 0) = sign (yx) d(y, He, 0)
) sign (yx) 71 sinh™* (2 K|yk>
V—K 1+ Kly||?
@ 1 . _1<2\/—Kyk)
sinh —— |-
1+ K|yl

(69)

The above comes from the following.
(1) Thm. 5 by |Ganea et al.|(2018).
(2) 14 K||y||> > 0 by definition and sign(a) sinh ™" (|a|) = sinh™*(a), Va € R.
The last equation in Eq. is the LHS of Eq. (56) in|Shimizu et al.|(2021), indicating the equality.

E.1.3 EUCLIDEAN SPACE

We show that the Euclidean FC layer F(-) : R" 5 ¢ — y = Az + b € R™ can also be defined as
our correlation FC layer in Def.

In Euclidean space R™, the zero vector 0 € R™ is the origin, and {ey }[, is the orthogonal basis over
ToR™ =2 R™. Then, the RHS of Eq. (8) becomes

Uk(l") = (x — Dk, ak> (70)

—
~—

= (&, z) = vk |2 -

where (1) comes from Expq (vx[2x]) = vk [2k] and To_p, (2) = 2. The above takes the form of
<$, ak> + by.

On the other hand, the LHS of Eq. (8) becomes

. 1) .
sign((Logo(y), ex)) d(y, Hep0) = sign(yx) d(y, Hey o)

@
= Yk-

(71)

The above comes from the following.

(1) Logy(y) = y and (y, ex) = .
) d(y, He, o) = Kesll — 1y, ).

llexl

E.2 LOG-EUCLIDEAN LAYERS UNDER PRODUCT GEOMETRY

We first review some basic facts of the product geometry, and then discuss the Log-Euclidean
correlation MLR and FC layer under the product geometry.
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Product of correlation. Given a manifold (M, g), the n-fold product is (M", g) = [/, (M, g).
Each point and tangent vector over M" are

MPSP=(PeM, - P,eM), (72)
TpM"* 3V = (V1 eTp M, -V, ETP,LM). (73)
The product metric is
(VW) p =Y (Vi Wa)p,, VV,W € TpM". (74)
i=1

Correlation MLR. Following Thm. the MLR layer for the input X = {X; € Cor™ (n)}5—; €
(Cor™(n))c s

—

o(X) LX), 6ur(Z1)) — 1 |60 (Z1)]

©2) — (75)
= Z'Uj(X§ Zkjs Vrj)s
j=1
where I = {I,--- ,I}. Here, we use a separate -y, for the k-th component space. The above comes
from the following.
(1) Thm.[31}
2) Zy = (Z1 € Tp,Cor™(n), -+, Zin € Tp,Cor™(n)), [Z4] = {HZZ;C%HI’ ’HZZkﬁ}

Correlation FC layer. Following Lem. and Eq. , the FC layer F(-) : (Cort(n))® —
Cor™ (m) for the input X is

dy cC
Y =¢ " | D0 (X5 Zijovig)e: | (76)
i=1 j=1
where Z;; € Hol(n) and v;; € R.
Eq. implies that F(-) : (Cor™(n))¢ — Cor™ (m) differs from F(-) : Cor™(n) — Cor™(m)
only in v;;, where the former is a summation. For example, considering the FC layer F(-) :
(Cor™(n))¢ — Cor™ (m) under ECM, its v;; for the input C = {C; € Cor™t(n)}¢_, is

vi;(C) =Y PG (Ch, Ziji, Yigh): (77)
k=1
where Z,;, € Hol(n) and ;;; € R, fori,j=1,--- ;mwithi > j,and1 < k <ec.

F BACKPROPAGATION OVER CORRELATION GEOMETRIES

Except for D and D*, all computations involved in the five metrics can be backpropagated using
existing techniques or PyTorch’s auto-differentiation. Three kinds of matrix computations need to be
discussed: 1) matrix logarithm and exponentiation; 2) Cholesky decomposition; 3) D and D*.

Matrix logarithm and exponentiation: The symmetric matrix exp and log, i.e., log : ST, — S"
and exp : 8™ — S, , can be backpropagated using the Daleckii-Krein formula (Brooks et al., 2019}
Eq. 13).

Cholesky decomposition: The backpropagation of the Cholesky decomposition has been well studied
by Murray|(2016)). In addition, as shown by |Chen et al.| (2024bl App. F), the one in Murray|(2016)
yields a similar gradient to the one generated by the autograd of torch.linalg.cholesky.

D and D*: Their gradients can be backpropagated either approximately by the ones of their iterative
algorithms or accurately by our following two propositions.
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Proposition F.1 (Gradients w.r.t. D). [[]] Let I(-) be the loss function and Y = D(H) + H :
Hol(n) — S™ for any symmetric hollow matrzx H where 8™ is the Euclidean space of n X n

symmetric matrices. Let Y = UAUT be the eigendecomposition with (01, -+ ,0p) as eigenvalues.
Given the succeeding gradient 38—1[/, the output gradient % is

ol ol o
3 off (87 — €XP, y (D <(HO) Dv <3Y) ! ))) 7 o

with Si+ > Hzol = Zj,k UijUikUlleij,k and
{W if 3 # O

Lix =
» exp’(d;), otherwise

(79)
Here, D(-) : R"*™ — Diag(n) extracts the diagonal matrix, while Dv(-) : R™*™ — R" returns a
vector of diagonal elements. Besides, off () subtracts the diagonal matrix from a matrix, and exp, y
is the differential of the symmetric matrix exponential:

exp,y(V)=U (Lo (UTVU))UT, (80)

where © denotes the Hadamard product and L is called Loewner matrix, with the (j, k)-th element

defined as Eq. (T9).

Proposition F.2 (Gradients w.r.t. D*). [J] Followmg the notation in Prop.[F1| we further denote
¥ = D*(C)CD*(C) : Cort(n) — Row (n), where ROW1 (n) is the manifold ofn x n SPD

matrices with unit row sum. Given the succeeding gradient 2. ﬁ, the output gradient -2 ac is

ol ol
=A I+%)~ o1’ A 81
ac (az (T+2)" )sym> ’ e
where A\ = ]D(Z)l/z, v =Dv (Z% + %Z), 1 is the identity matrix, and 1 € R"™ is the vector with
all entities as 1. Here, (A),,, = #.

G ORDER-INVARIANCE OF BETA OPERATIONS

Theorem G.1 (Order-invariance). [@ Given multichannel data x;, .. ;, € P"n with i; €
{1,...,N;}, applying the -concatenation sequentially n times in the order i, — --- — iy is
equivalent to a single [(-concatenation along all indices simultaneously. Similarly, B-splitting
x € PV into multichannel data x;, . ;, € P"in withi; € {1,...,N;} and n;, H?:1 N; =N
under the sequential order i1 — - -+ — 1., is identical to the one under a single 3-split to generate
all indices simultaneously.

H SUMMARY OF CORRELATION FC AND MLR LAYERS
Tab. [[T] summarizes the c-class correlation MLR layers, while Algs. %and %provide the detailed

algorithm. Tab.[T2]summarizes our correlation FC layers, while Algs. [3|and {4 provide the detailed
algorithm.

I ADDITIONAL DETAILS AND EXPERIMENTS

I.1 BASIC LAYERS IN SPDNET

SPDNet (Huang & Van Gool, 2017) is the most classic SPD neural network. SPDNet mimics the
conventional densely connected feedforward network, consisting of three basic building blocks:

BiMap layer: S¥ = W*S*=1W* T with W* semi-orthogonal, (82)
ReEig layer: S¥ = UF ! max(SF~1, eI, ) UF 1T, with §5—1 5% gh-igh—1h=1T = (83)
LogEig layer: S* = log(S*~1). (84)

where max() is element-wise maximization and log is the matrix logarithm. BiMap and ReEig mimic
transformation and non-linear activation, where the input and output are both SPD matrices. LogEig
maps SPD matrices into the tangent space at the identity matrix for classification.
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Table 11: Summary of vy, (C) in c-class correlation MLR layers, where k denotes the k-th class and
C € Cor™(n) is the input correlation matrix.

Metric Expression Parameters

ECM (0@ 12k ]) = w ILZx ]l {Z), € Hol(n), m € R},
LECM (logo®(C), [ Z]) — e 1123 ]l {2y, € Hol(n), v € R}7_,
OLM (Log®(C), Zk) — i 1 2kl {Zk € Hol(n), % € R},
LSM  (Log*(C),Logk ;(Zk)) — vk ||Logk 1 (Zk)|| {2k € Hol(n),y € R}f_,

b
n(n—1)

PHCM ¥ o Chol — f-concat — Poincaré vy, () {zk ER Tz |y € R}k
=1

Table 12: Summary of correlation FC layers, F : Cor*(n) 3 C'+ Y € Cor™ (m). Each v; with
g € {EC,LEC, OL, LS} is defined by Tab.

Metric Expression Parameters Refs

Y = CoroChol™! (VEC 4 1,,)
ECM VEC _ {v{?}.c((]), i> 3, {Zij € Hol(n),vi; € Rhigjci<m Thm. 3.6
ij = ’

0, otherwise

Y = CoroChol ! oexp (VLEC)
LECM VLEC _ uBC(0), 1>, {Zi; € Hol(n),vij € Rli<jci<m Thm.[3.6
K 0, otherwise

Y = Exp°® (VOF)
vHO)va, 0>
OLM o i ) {Z;; € Hol(n),vi; € R}1<jci< Thm.|[3.6
Vvi]' b= Vj('i)Lv 1<, Y N s
0, otherwise

Y = Coroexp (VLS)
v (C)/ /6, m>i>j>1,
uS(O)/v3, m>i>1,
vis = v, i<
—Ye v, i=m,1<j<m,
i NI VS, i=j=m
¥ o Chol — S-concat — Poincaré FC
B-split — (¥ o Chol)~!

LSM {Zi; € Hol(n),7ij € Rhij<icm—1 Thm.|3.6

o m(m—1)/2
PHCM {zk eR™S eR}k Egs. 13}, (65) and (66
=1

Remark 1.1. All three basic layers in SPDNet are designed for the SPD manifold. Although correlation
is still SPD, it has its own geometries. Therefore, applying SPD networks, such as SPDNet, to
correlation inputs might bring suboptimal performance, which motivates us to develop correlation
networks based on correlation geometries.

1.2 DATASETS

The following introduces the details of each dataset.

Radar (Brooks et al., 2019)E| It consists of 3,000 synthetic radar signals equally distributed in 3
classes.

HDMO0S (Miiller et al., 2007)E| It consists of 2,343 skeleton-based motion capture sequences
executed by different actors. Each frame consists of 3D coordinates of 31 joints. We remove the
under-represented clips, trimming the dataset down to 2,326 instances scattered throughout 122
classes. We randomly select 50% of the samples from each category for training and the remaining
50% for testing.

*https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
*nttps://resources.mpi-inf.mpg.de/HDM05/
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Algorithm 1: Log-Euclidean correlation MLR

Input : correlation matrix C' € Cor™ (n), number of classes ¢, and Log-Euclidean metric
g € {EC,LEC, OL,LS}.

Parameters : class weights {Z;, € Hol(n)}}_, and class biases {y, € R}{_;.

Output : class probabilities p € R®.

// In practice, the following is efficiently implemented as
tensor operations in PyTorch rather than a for-loop.
for £ <+ 1tocdo

switch g do
case EC do
IR CEIREAREATEAT /7 Tom.
en
case LEC do
| ok(C) = (loge®(C), [ Zk]) — I Zk]; // Thm.
end
case OL do
| ok(C) = (Log®(C), Zk) — v 1 Zk; // Thm.
end
case LS do
| wuk(C) + (Log*(C),Logk ;(Zk)) — i ||Logy 1 (Zi)||: // Thm.
end
end
end
p = softmax(vy (C), ..., v.(C))
Algorithm 2: PHCM correlation MLR
Input : correlation matrix C' € Cor™ (n) and number of classes c.
Parameters : Poincaré MLR weights {z;, € RV }¢_, and biases {7, € R}{_,, where
N =n(n-1)/3,
Output : class probabilities p € R€.
{p}1=) = Wo Chol(C) ; // map to PP"' by Eq. (13)
x < [3-concat ({pJ }:11) ; // Poincaré [-concat in Eq. ()
p < Poincaré MLR (z; {2k, Ve }5_1) 3 // Poincaré MLR in Eq. (64)

FPHA (Garcia-Hernando et al., 2018)E| It includes 1,175 skeleton-based first-person hand gesture
videos of 45 different categories with 600 clips for training and 575 for testing. Each frame contains
the 3D coordinates of 21 hand joints.

NTUIZ(ﬂ (Liu et al.,|2019). This data set contains 114,480 sequences in 120 action classes. We use
mutual actions and adopt the cross-setup protocol (Liu et al.,[2019).

For the HDMO5 and FPHA datasets, we preprocess each sequence using the codeﬂ provided by
Vemulapalli et al.[(2014) to normalize body part lengths and ensure invariance to scale and view. For
NTU120, we follow Chen et al.| (2021)) to preprocess the data.

1.3 INPUT DATA

1.3.1 SPD INPUT IN SPD NETWORKS

For GyroLE, GyroAl, GyroLC, and GyroSPD++, inputs are similar to our CorNets, except that inputs
are the SPD covariance matrices. For other SPD baselines, such as SPDNet, SPDNetBN, LieBN,

Shttps://github.com/guiggh/hand_pose_action
®https://github.com/shahroudy/NTURGB-D
"nttps://ravitejav.weebly.com/kbac.html
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Algorithm 3: Log-Euclidean correlation FC layer

Input : input correlation C' € Cor™ (n), output size m, and Log-Euclidean metric

g € {EC,LEC, OL,LS}.
Parameters : FC parameters {Z;; € Hol(n),~;; € R} with valid index pairs (i, ) as in Tab. [12}
Output : output correlation Y € Cor™ (m).

switch g do
case EC do
| Y « CoroChol™ (VEC 1 1,,) ; // VEC: Egs. (7) and (9)
end
case LEC do
‘ Y « CoroChol™* o exp (VLEC) ; // VIEC. Egs. () and ()
end
case OL do
| Y« Exp® (VOF); // VO Egs. (7 ana (1)
end
case LS do
‘ Y < Coroexp (VLS) ; // VES: Egs. () and ()
end
end

Algorithm 4: PHCM correlation FC layer

Input : input correlation C' € Cor™ (n) and output size m.

Parameters : Poincaré FC weights {z;, € R" }¢_, and biases {vx € R}¢_,, where
N = n(n=1)/3 and d = m(m-1)/a.

Output : output correlation Y € Cor™ (m).

{p;}1=] < ¥ o Chol(C); // map to PP"' by Eq. (13)
x < f-concat ({p; }:11) ; // Poincaré f-concat in Eq. ()
y + Poincaré FC (z; {1, v, }{_1) // Eq. (65)
{qj};’;1 <« B-split(y) ; // Poincaré f-split, inverse of Eqg. ()
Y« (Vo Chol)_1 ({qj ;-'51) ; // the inverse of Eqg. ()

MLR, and RResNet, each sequence is represented by a global covariance matrix as their original
papers (Huang & Van Gool, 2017; Brooks et al.,[2019; (Chen et al., |2024bja; | Katsman et al., |[2024).
The sizes of the covariance matrices are 20 x 20, 93 x 93, 63 x 63, and 150 x 150 on the Radar,
HDMO5, FPHA, and NTU120 datasets, respectively.

1.3.2 GRASSMANNIAN INPUT IN GRASSMANNIAN NETWORKS

For GrNet, GyroGr, and GyroGr-Scaling baselines, each sequence is represented by an 8-channel
Grassmannian tensor as their original papers (Huang et al., ) 2018}; [Nguyen & Yang} 2023)). The sizes
of the Grassmannian matrices are 8 X 20 X 8, 8 x 93 x 10, 8 x 63 x 10 and 8 x 150 x 10 on the
Radar, HDMOS, FPHA, and NTU120 datasets, respectively.

1.3.3 CORRELATION INPUT IN CORNETS

For the input of our CorNets, we first follow [Wang et al.| (2024)); Nguyen et al.|(2024) to model each
sample into a multi-channel SPD tensor. Then, each SPD matrix is transformed to their correlation
matrix by

Cor: 8", 3%+ C =D(T) 2XD(X)" 2 € Cor™ (n). (85)

The following introduces the SPD modeling.
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For the HDMO5 and FPHA datasets, we follow [Nguyen| (2022, Sec. 4.1.3) to model each skeleton
sequence into a multi-channel covariance tensor [c, n, n]. Specifically, we first identify the closest
left (right) neighbor of every joint based on their distance to the hip (wrist) joint, and then combine
the 3D coordinates of each joint and those of its left (right) neighbor to create a feature vector for the
joint. For a given frame ¢, we compute its Gaussian embedding (Lovric et al., [2000):
T
Y;; _ (detEt)fﬁ |: Et‘i‘/fftg_',ut) Mt , (86)
(p1t) 1

where p; and 3, are the mean vector and covariance matrix computed from the set of feature vectors
within the frame. The lower part of matrix log (Y;) is flattened to obtain a vector ¥;. All vectors ¥;
within a time window [¢, ¢ 4+ ¢ — 1], where ¢ is determined from a temporal pyramid representation of
the sequence (the number of temporal pyramids is set to 2 in our experiments), are used to compute a

covariance matrix as
1 t+c—1

Se=2= Y (i —7) (i —w)" (87)

c “
1=t

where 7, = 1 Site ~!%;. The resulting {3} are the covariance matrices that we need. On the
FPHA dataset, we generate the covariance based on three sets of neighbors: left, right, and vertical

(bottom) neighbors.

For the Radar dataset, we follow Wang et al.|(2024)) to use the temporal convolution followed by a
covariance pooling layer to obtain a multi-channel covariance tensor of shape [c, 20, 20].

After preprocessing, the input correlation tensor shapes are [7, 20, 20], [3, 28, 28], [9, 28, 28] and
[6, 28, 28] on the Radar, HDMO5, FPHA, and NTU120 datasets, respectively.

1.4 IMPLEMENTATION DETAILS

Table 13: Hyer-parameters in CorNets

Dataset | Model | Optimizer Ir wd  Matrix Power Converged Epoch
CorNet-ECM ADAM  1le 2 N/A 1.5 50
CorNet-LECM | ADAM  1le™2 N/A -0.25 50
Radar CorNet-OLM ADAM  1le”2 N/A -0.25 50
CorNet-LSM | ADAM  le™? N/A 0.75 50
CorNet-PHCM | ADAM  1le™?2 N/A 0.75 50
CorNet-ECM ADAM  le™3 1e73 0.125 100
CorNet-LECM ADAM le™* le™3 0.5 150
HDMO05 | CorNet-OLM SGD 5¢72  le~3 0.25 200
CorNet-LSM ADAM  le™® N/A -0.75 50
CorNet-PHCM | ADAM  1le™? N/A -0.25 50
CorNet-ECM ADAM  5¢73  N/A -0.25 150
CorNet-LECM | ADAM  5¢% 1le™* -0.5 150
FPHA CorNet-OLM ADAM  le™* N/A -1 50
CorNet-LSM ADAM  le™® N/A -1 50
CorNet-PHCM | ADAM  le™3 le™* -0.5 150
CorNet-ECM SGD le=?2  N/A 0.25 50
CorNet-LECM SGD le™2  N/A 0.25 50
NTU120 | CorNet-OLM SGD 5¢73  N/A 0.25 50
CorNet-LSM SGD le™® N/A 0.25 50
CorNet-PHCM | ADAM  le™3 N/A 0.25 50

SPD baselines. We follow the official Pytorch code of SPDNetBl\ﬂ to implement SPDNet and
SPDNetBN. For LieBNﬂ we focus on the instantiation under Log-Cholesky Metric (LCM) (Lin,
2019)), while for RResNelFEl, we implement the ones induced by Affine-Invariant Metric (AIM)

8htt]os ://proceedings.neurips.cc/paper_files/paper/2019/file/
6e69ebbfad976d4637bb4b39de261lbf7-Supplemental.zip

https://github.com/GitZH-Chen/LieBN

Uhttps://github.com/CUAI/Riemannian-Residual-Neural-Networks
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(Pennec et al.,[2006) and Log-Euclidean Metric (LEM) (Arsigny et al.,|2005). For SPD MLRE[, we
implement the one based on LCM. Due to the lack of official code, Gyro-based models are carefully
reimplemented from their original papers. Following Nguyen et al.|(2024), GyroSPD++ combines an
AlIM-based convolution with an LEM-based MLR.

Grassmannian baselines. Since GrNet is officially implemented by Matlab, we carefully re-
implemented it using PyTorch. Additionally, as both GryroGr and GryroGr-Scaling do not release
official code, we re-implemented them based on the original paper (Nguyen & Yang| 2023)). For all
Graszsmannian comparative methods, we use SGD (Robbins & Monro, |1951)) with a learning rate of
e “.

CorNets. On all three datasets, we employ a single convolutional kernel for global convolution,
i.e., applying a global receptive field across the channel dimension. The output dimensions of the
correlation convolutional layer are 8 x 8, 26 x 26, 26 x 26, and 11 x 11 for the Radar, HDMO5,
FPHA, and NTU120 datasets, respectively.

We primarily use the Adam (Kingmal 2015) and SGD (Robbins & Monro| |1951)) optimizers. Inspired
by the deformation effect on the latent SPD geometries by the matrix power over the SPD manifold
(Chen et al.,|2024d, Fig. 1), we apply the matrix power before correlation modeling (Cor(-)) as
activation. In particular, when the data are centered at zero and power is —1, Cor(¥ 1) corresponds
to the partial correlation matrix of the covariance matrix 3 (Thanwerdas| [2024, Lem. 1.6). The batch
size is set to 30, and training is capped at 200 epochs, although most cases converge in fewer than
150 epochs. Due to the different correlation geometries, the hyperparameters vary for CorNets under
different geometries. Tab. [[3] summarize all the hyperparameters.

Extra computational details for OLM and LSM layers. For the MLR, FC, and convolutional layers
induced by OLM and LSM, the key computations involve Exp® and Log*, which depend on the
calculations of D and D*. In our experiments, we empirically observe that iterating until convergence
is more effective for D, whereas a single step of Newton’s method generally performs best for D*.
Accordingly, we set D to iterate until convergence, leveraging Prop. [F]for accurate backpropagation.
For D*, we adopt a single iteration in Newton’s method and use automatic differentiation (autograd)
through this single step for backpropagation.

1.5 ANALYSIS OF COVARIANCE VERSUS CORRELATION

In this section, we analyze when and why correlation matrices provide stronger representations
than covariance matrices. App.[[.5.1|quantifies the variability of diagonal variances via per-sample
coefficients of variation, and Ap compares the magnitudes of diagonal and off-diagonal entries
via their ratios. These analyses lead to two insights: (1) large variability and magnitude of diagonal
elements can act as nuisance noise for SPD networks by overshadowing informative off-diagonal
correlations; (2) under such cases, correlation representations that normalize variances and emphasize
pairwise correlations tend to be more effective, which is especially evident on HDMOS5.

1.5.1 COEFFICIENT OF VARIATION OF DIAGONAL VARIANCES

This section investigates why CorNets yield substantially larger gains over SPD networks on HDMO5
compared to FPHA.

Setup. For each covariance matrix ¥ € S? | we extract the diagonal vector
v = (211,...,21\/']\]). (88)
We compute the coefficient of variation of v as

~ std(v)
OV = ean(0) 7 7 9)

where ¢ = 10~® ensures numerical stability. As shown in App.[1.3.3] each sequence is modeled as a
c-channel tensor of covariance matrices. The above procedure yields one coefficient of variation per
channel for each sample. We visualize their empirical distributions per channel.

"https://github.com/GitZH-Chen/SPDMLR
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Figure 6: Distribution of per-sample coefficients of variation of diagonal variances on FPHA. Higher
values indicate stronger diagonal variability, which could causes nuisance noise.
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Figure 7: Distribution of per-sample coefficients of variation of diagonal variances on HDMOS5.
Higher values indicate stronger diagonal variability, which could causes nuisance noise.

Analysis. Figs. [6] and [7] show that the coefficients of variation w.r.t. diagonal variance are large
on both datasets. On FPHA, most values fall between 0.8 and 2.0. On HDMOS, they are even
larger, typically between 1.0 and 3.0. Such large fluctuations indicate that diagonal variances change
substantially and could bring nuisance noise for SPD networks. In contrast, correlation matrices

allows CorNets to focus on pairwise relationships. This explains the consistent improvements over
SPD networks and the larger gains on HDMOS.

1.5.2 RATIO OF DIAGONAL TO OFF-DIAGONAL ENTRIES IN COVARIANCE FEATURES

This section further examines why CorNets achieve larger gains over SPD networks on HDMOS than
on FPHA. We analyze the ratio of diagonal to off-diagonal entries in covariance matrices on FPHA
and HDMOS, to quantify how strongly variance terms overshadow pairwise correlations.

Setup. For each covariance matrix ¥ € ST we compute the mean magnitude of diagonal entries
1
Dzﬁg\zm (90)
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Figure 8: Distribution of ratios of diagonal to off-diagonal entries on FPHA.
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Figure 9: Distribution of ratios of diagonal to off-diagonal entries on HDMOS5.

and the mean magnitude of off-diagonal entries

1
O=——7— il 91
i#]
We then form the sample-wise ratio
D
R=— 92
0’ 92)

which measures how much larger the diagonal amplitudes are compared to the off-diagonal correla-
tions. Each sample yields one ratio per channel, and we visualize the empirical distributions of these
ratios on FPHA and HDMOS.

Analysis. Figs. [§] and [9] show that both datasets have ratios well above one. On FPHA, most
ratios lie between 1.7 and 3.0, indicating that diagonal amplitudes are noticeably larger than off-
diagonal correlations. HDMOS5 exhibits even larger ratios, typically between 2.0 and 6.0, with
many above 3.0. These statistics indicate that covariance representations on both datasets are
strongly dominated by diagonal entries, with more pronounced dominance on HDMO05. When
diagonal terms dominate, SPD networks trained on covariance inputs tend to overemphasize variances
and underexploit informative pairwise correlations. Correlation matrices normalize variances and
highlight off-diagonal interactions, which explains why CorNets outperform SPD baselines on both
datasets and why the improvement is substantially larger on HDMOS.

1.6 NORMALIZED COVARIANCE VS. CORRELATION
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Table 14: SPD networks with or without normalized SPD inputs

Manifold | Method \ Radar HDMO05 FPHA
SPDNet 93.25+1.10 64.57+0.61 85.59+0.72
SPDNet-EigN 86.91 £0.57 66.62+0.73 84.90+0.62
SPDNetBN 94.85+0.99 71.28+0.79 89.33+0.49
SPDNetBN-EigN 89.25+1.19 71.59+0.68 88.47+0.39
SPDResNet 95.89+0.86 70.12+2.45 85.07+0.99
Sn SPDResNet-EigN 92.61 £0.96 71.02+091 84.53+0.46
A SPDNetLieBN 9480+0.71 71.78+0.44 86.33+043
SPDNetLieBN-EigN | 88.91 +1.21 70.61 £1.04 83.73 £0.65
SPDNetMLR 95.64 +0.83 65.90+093 85.67+0.69
SPDNetMLR-EigN 89.41 £0.58 66.89+0.63 83.63+1.09
GyroAl 96.29 +0.48 72.34+1.06 89.60+0.37
GyroAl-EigN 91.36 £ 0.80 72.64+0.70 89.90+0.31
GyroSPD++ 9520+ 0.88 69.82+1.79 89.50+0.37
GyroSPD++-EigN 90.83+1.09 66.92+0.28 84.29+0.14
CorNet-ECM 9771 £0.61 81.35+1.27 9217 +0.49
CorNet-LECM 98.40 +0.70 78.05+1.14 91.17+0.32
Cor™ (n) CorNet-OLM 97.57+0.76 81.46+0.61 91.63+0.12
CorNet-LSM 9624 +1.48 74.89+1.07 83.43+0.65
CorNet-PHCM 96.56 £ 0.86 82.26 +0.92 90.03 +£0.63

Setup. We evaluate SPD-based baselines by covariance inputs normalized by their largest eigenvalue.

Given a covariance matrix ¥, we get the normalized SPD input ¥ = X/Ap.x(2) and feed it
into existing SPD networks. This variant is denoted by “-EigN”. We report results on the Radar,
HDMO5, and FPHA datasets for representative SPD models: SPDNet, SPDNetBN, SPDResNet,
SPDNetLieBN, SPDNetMLR, GyroAl, and GyroSPD++. Here, SPDResNet is implemented under
the LEM, while SPDNetLieBN follows the LCM.

Results. Tab. T[4 summarizes the results. On HDMOS5, eigenvalue normalization has only a marginal
effect and the normalized variants achieve accuracy comparable to their unnormalized counterparts.
On FPHA and, in particular, on Radar, normalization usually reduces accuracy. The behavior of
GyroSPD++ is especially informative. GyroSPD++ and CorNet share similar architecture, consisting
of one convolution followed by a MLR layer. However, GyroSPD++-EigN performs worse than
GyroSPD++ on all three datasets, while CorNet with correlation inputs achieves clear improvements
over GyroSPD++. These phenomena can be explained by two factors.

1. Redundancy. The raw samples on HDMO5 and FPHA have already undergone centering,
scaling, and normalization before covariance modeling. Dividing by A\pax(2) therefore
introduces little additional control over scale, which explains the marginal effect on HDMOS.

2. Scaled covariance versus correlation. Since EigN is equivalent to uniformly rescaling
the raw samples before covariance computation, the normalized covariance matrices re-
main covariances and do not encode new statistical information. Moreover, forcing the
largest eigenvalue to 1 can remove potentially informative differences in overall energy
across samples, which aligns with the degradation observed for EigN variants, especially
GyroSPD++-EigN. In contrast, correlation normalization uses a different scaling factor for
each pair of variables,

producing standardized correlation coefficients. Therefore, global eigenvalue scaling is

statistically distinct from correlation normalization and fails to capture the benefits of explicit
correlation modeling.

COI‘U = (93)
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1.7 ABLATIONS ON ACTIVATIONS.

Table 15: Comparison of CorNet with or without activations.

Metric \ Activation \ Radar HDMO05 FPHA
ReLU 97.41+0.25 | 81.23+0.46 89.80 +0.58
ECM None 9771+ 0.61 | 81.35+1.27 92.17 +0.49
ReLU 97.23+0.67 | 7751£1.02 91.00+0.15
LECM None 98.40 +0.70 | 78.05+1.14 91.17 +0.32
ReLU 97.52+0.47 | 81.86+0.65 91.47+0.19
OLM None 97.57+0.76 | 81.46+0.61 91.63 +0.12
ReLU 95.60 + 0.97 N/A N/A
LSM None 96.24 + 1.48 | 74.89 +1.07 83.43 +0.65
ReLU 96.40+0.25 | 77.32+1.56 88.63+0.22
PHCM None 96.56 + 0.86 | 82.26+0.92 90.03 + 0.63

In the main experiments, we follow HNN++ (Shimizu et al.,2021) and GyroSPD++ (Nguyen et al.|
2024])), and do not use explicit activations, as the manifold itself introduces nonlinearity. We further
conduct an ablation on activations. Following|Ganea et al.|(2018| Sec. 3.2), we define activations in the
tangent space at the identity, i.e., Exp; od o Log; for four Log-Euclidean metrics, and Expg od o Logy
for PHCM in the B-concatenated Poincaré vector, where 9 is ReLU (Glorot et al.,2011)). Specifically,
we insert a ReLU after the correlation convolution. As shown in Tab. [I5] adding activations generally
yields no benefits and can even degrade performance. The variant without activation consistently
achieves higher or comparable accuracy, except CorNet-OLM for HDMO05. Moreover, CorNet-LSM
with activation fails to converge on HDMOS5 and FPHA. These results suggest that CorNet already
provides sufficient nonlinearity, rendering additional activations redundant.

1.8 SCALABILITY OF CORRELATION METRICS

Table 16: Average runtime (s) of a single forward pass in CorNet under different metrics and input
dimensions. The top two efficient metrics in each row are highlighted in red and blue, respectively.

Dim | ECM LECM OLM LSM PHCM
30 | 0.0004 0.0018 0.0012 0.0019 0.0131
50 | 0.0004 0.0027 0.0318 0.0334 0.0211
100 | 0.0008 0.0054 0.0764 0.0781 0.0413
150 | 0.0015 0.0100 0.1247 0.1267 0.2284
200 | 0.0025 0.0197 0.1906 0.1938 0.3320
250 | 0.0037  0.0345 0.2352 0.2379 0.4414
300 | 0.0053 0.0733 0.3434 0.3454 0.5732
400 | 0.0092 0.1796 0.5163 0.5261 0.4807
500 | 0.0143 0.3076 0.6907 0.6961 0.5693
600 | 0.0206 0.5983 0.9331 0.9484 0.7923
700 | 0.0289 1.0961 1.2432 1.2575 1.0417
800 0.039 1.8689 1.6658 1.6815 1.3387
900 | 0.0535 29886 2.2156 22303 1.7324
1000 | 0.0706  3.7259  2.539 25783  1.229

We evaluate the computational efficiency of correlation metrics across increasing input dimensions
using CorNet with one correlation FC layer followed by one correlation MLR layer. Each input
correlation matrix of size [n, n| is mapped to [20, 20] by the FC layer and then classified into 10
classes by the MLR layer. For each 30 < n < 1000, we randomly generate 30 correlation matrices
and record the average runtime of a single forward pass. As implied by Tab. ] the runtime is governed
by two factors: the co-domain computation (Euclidean or hyperbolic) and the complexity of the
diffeomorphism. The results are summarized in Tab.|[T6] We have the following findings.
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* ECM is consistently the most efficient metric, benefiting from both a Euclidean co-domain
and the simplest diffeomorphism.

* At low dimensions (n < 400), the ordering is
ECM < LECM < OLM ~ LSM < PHCM.

Here, co-domain operations dominate, and PHCM is slowest due to costly hyperbolic
computations.

* At high dimensions (n > 700), the ordering changes to
ECM < PHCM < OLM ~ LSM < LECM.

Here, diffeomorphisms dominate: ECM and PHCM scale better thanks to relatively
lightweight Cholesky decomposition, while OLM and LSM slow down due to matrix
logarithm/exponentiation. LECM is the slowest, as its log 0© requires two nested matrix
functions.

1.9 ADDITIONAL DETAILS ON VISUALIZATION

We provide additional interpretations on Figs. [2]and [f] by first describing how SPD and correlation
matrices are visualized, then explaining the construction of Fig. 2] and finally clarifying how the
decision hyperplanes in Fig. [5]are obtained.

1.9.1 VISUALIZATION OF LOW-DIMENSIONAL SPD AND CORRELATION MATRICES.

Any 2 x 2 covariance matrix in Sf_ . can be written as

2:(2 Z) a>0,d>0,ad—b>> 0. (94)

Embedding ¥ into R? via the map ¥ — (a, b, d) identifies Sf_ - with the interior of the quadratic
cone
{(a,b,d) eR*|a>0,d>0, ad—b* >0}, (95)

which is an open cone in R3.

For 2 x 2 correlation matrices, any C' € Cor™(2) has the form

O:<1 1’) re(—1,1). (96)

r

Thus, Cor™t(2) is one dimensional. Embedding C' into R as (1,, 1) yields a line segment inside the
cone corresponding to 842_ L

For 3 x 3 correlation matrices, any C' € Cor™(3) is parameterized by its off-diagonal entries

(r12,713,723):
1 rig 13
C=|rz2 1 ra]. CH)

i3 Tez 1
Embedding C into R? via C' — (r12,713,723) produces an open elliptope in R®. This is the

representation of Cor™ (3) used in Fig.|S| where each point in the elliptope corresponds to one 3 x 3
correlation matrix.

1.9.2 CONSTRUCTION OF FI1G.[2
Given a covariance matrix > € S_ﬁ T its correlation matrix is defined in Sec. |Z|as
C = Cor(2) = D(T)~7*2D(n)~ 2. (98)

This map normalizes the diagonal entries and thus many covariance matrices share the same correla-
tion. To see this explicitly in the 2 x 2 case, fix a correlation matrix

cz(}, 71") re(-1,1), (99)
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and consider any positive diagonal matrix

D= diag()\l,)\g), A1 >0, Ay > 0. (100)
The corresponding covariance matrix
o o )\% )\1 )\27“
X=DCD = <>\1)\27' A2 (101)

satisfies Cor(X) = C. Since Ay and A\, can take any positive values, there are infinitely many
Y e Si . that map to the same correlation C'. When embedded into R3 as (a, b, d), these ¥ form
a two-dimensional surface lying inside the cone corresponding to Sf_ .. Fig.[2| visualizes this one-
to-many relationship by plotting several such surfaces for different correlations, together with their
corresponding points on the correlation manifold.

1.9.3 CONSTRUCTION OF FIG.[3

For ECM, LECM, OLM, and LSM, the decision hyperplane in the correlation MLR is the Riemannian
hyperplane in Eq. specialized to M = Cor™ (n):

Hap={X € Cor"(n) | (Logp(X),A)p =0}, P e Cort(n), Ae TpCor™(n). (102)
In Fig. |5l we focus on Cor™(3) and visualize it as the open elliptope in R? via the embedding
Ce COI‘+(3) — (021,0317032) S R3. (103)

Given a Log-Euclidean metric and parameters (A, P), each correlation matrix C'is first mapped to
the tangent space at P by Log,(C), and we evaluate the linear form (Logp(C'), A) . The set of
points in the elliptope where this scalar equals zero corresponds to the decision hyperplane I 4 p and
is plotted as the separating surface.

For PHCM, the margin hyperplane is defined in the 3-concatenated Poincaré embedding. Let ¥ oChol
be the diffeomorphism in Eq. that maps C' € Cor ™ (n) to the poly-Poincaré space PP" ', and
let 3-concatenation be the Poincaré operation in Eq. (66). We define

#(X) = B-concat(¥ o Chol(X)) € PV, N w,

(104)
and the PHCM hyperplane

Hap = {X € Cor*(n) | (Log,(#(X)),a) = 0} . pePY aeT,PY. (105
Here PV = {r eRN | |z]® < 1} is the N-dimensional Poincaré ball. In Fig. we first map each

correlation matrix C' € Cor™ (3) to Z(C) € PV, apply the Poincaré logarithm Log,, at a reference
point p, and then visualize the zero level set of the linear form (Log,,(Z(C)), a>p as the PHCM
decision hyperplane.

1.10 HARDWARE

On the HDMO5 and FPHA datasets, SPDNet, RResNet, SPDNetBN, SPDNetLieBN, and MLR
require SVD operations on relatively large matrices, which are more efficiently executed on a CPU.
As a result, these methods are implemented on a CPU, whereas all other cases are executed on a
single A6000 GPU.

J PROOFS

J.1 PROOF OF THM.[3]]
We first prove a lemma for MLRs on general isometric manifolds, of which this theorem is a specific

case. Notably, the result and proof can be readily extended to the case where R™ is endowed with an
arbitrary inner product.
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Lemma J.1 (Isometric Riemannian MLRs). Given m-dimensional Riemannian manifolds (M , g/\7 )

and (/\/LgM) with a Riemannian isometry ¢ : M — M, their origins are E € M and o(E) € M.

The Riemannian MLR over Mfor the input X € M ofeachclassk =1,--- ,C can be calculated
by the one over M:

e (X5 Ziom) = vt (0(X); da B (Z1), 1), (106)
with v, € R, Zy € TEM = R™, and ¢« g : TEMV — Ty(pyM as the differential map. Here, v?’l
and v,?/‘ are the specific realizations of Eq. over M and M, respectively.

Proof. We omit the subscript k in A, and P, for simplicity. We denote T, Log, . ps

H P
d(X, H AP) H A,p as the parallel transport along the geodesic, Riemannian logarithm, Riemannian

metric, the induced norm, margin distance and hyperplane over M , while the counterparts over M
are denoted as I, Log, (-, ~>¢(P), ||'||¢(P), d, and H, respectively.

From the isometry, we have

[Allp = lléw,p (Al y(py » (107)
Logp(X),A) = (L X)), bu.p(A . 108
(Logp(X), 4) | = (Logy( (6(X)), 0p(4)) (108)
The above equations imply
¢ (HA,P> = Hy, p(a).0(P)- (109)

Denoting H = Hy, ,,(4),4(p), We have the following for the margin distance

d(X,Hap)) = inf d(X,Q)
QEH4 p

D d(6(X), 6(Q)
Qefiar (110)

2 inf d(¢(X). R)

—~
N2

The above comes from the following.

(1) Isometry.

(2) Eq. (TO9).

(3) Definition of margin distance.
Combining the above, we have
vM(X; P, A)
= sign((4, Logp (X)) p)|| All pd(X, Ha p)

(111)
—sign (Lot (00000 ()) ) 160 (A5 A Ho ity
= ™M ((X); ¢(P), 64, p(A)) .
Finally, let us further consider trivialization. By isometry, we have the following:
A=T Z
ror (2) (112)
= ¢, p (Lom—o(p)(9p(2)))
P = Expg(v]2))
(113)

=¢ ! (EXP¢(E)(’Y[¢*,E(Z)])) :
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Then, we have

¢w,p(A) = Ty(p)—op) (dx,6(2)), (114)
¢(P) = Expy(py (V[¢s,6(2)])- (115)

Putting the above two equations into Eq. (TITI)), we have

vM(X; Z,7) = vM(X; P, A)
= oM (3(X); $(P), $.p(A))
=M ($(X); Expy gy (V[¢s,0(Z )])af¢(E)—>¢(P)(¢*,E(Z))) (1o
= o (H(X); bu,2(Zk) s )
O

Thm. [3.1]is a special case of Lem. [l.I|and can be readily proven accordingly.

Proof of Thm.[3.1} MLR: In Euclidean space R™, simple computations show that Eq. (3) becomes
Eq. (2)), where the latter is equal to (aj,x — px). Based on Lem.[J.1| . we have
(X Ziy ) = vk (9(X): bu(Zi), 1)
= (3(X) = i[pw. 2(Z1)], Do 6(Z1)) (117)
= (0(X), x.2(Zk)) — Yk 19w, 2(Z1)]I,
Margin hyperplane: In Euclidean space R™, the Riemannian margin hyperplane becomes the

Euclidean one, which is parameterized by {(ay, x — pi) = 0. Together with Eq. (117), the results can
be easily obtained. O

J.2  PROOF OF PROP.

Proof. First, we have the following:

o) =1, (118)
Chol(I) = I, (119)
log, ;(V) =V, VV € Hol(n), (120)
log, (V) =V, VV eLIn), (121)
D*(I) = I. (122)

Putting the above into Eqgs. (23), and (#4), one can directly get the result w.r.t. ECM, LECM,
and OLM. For LSM, based Eq. , we have

Log:,I(V) =log, 5 (AVA + = (V'z + 2V0)>

Dy 42 (VO +V0) (123)

@y diag (V1).

The above comes from the following.
MHEx=A=1

)
VO = —2diag ((In +x) AVAl)

= —diag (V1)

(124)
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J.3 PROOF OF THM.

Denote 0,, and 0,,, as the n x n and m X m zero matrices. Let d,, = w and d,,, = m(m mim=1) pe
the manifold dimensions of Cor™ (n) and Cor™ (m), respectively. We have the following general
results.

Lemma J.2. Let (CorJr (n), g”) be isometric to R by the diffeomorphism ¢ : Cort(n) — R,
and (C0r+(m),gm) be isometric to R by the diffeomorphism ¢ : Cort(m) — Rim. The
diffeomorphism satisfies I,, = (¢)~1(0,) and I,, = (¢)~1(0,,). The correlation FC layer F :
Cor™(n) — Cor™*(m) for the input X € Cor™ (n) is

dm
! (Z vi(X)ei> : (125)
i=1

dm .
where {el T is the canonical orthonormal basis over Rm with e; = (0ir) ey for each 1. Here,

{0:(3) Y, is given by Thin. T} vi(X) = ($(X), 60 1.(Z0)) — 7 | bu.ro (Z0)

and v; € R as the FC parameters.

Proof of Lem.[J.2] For simplicity, we use I and O for the identity and zero matrices. Let {O), =
qb;}(ek)}‘iigl. Then {O},}?™ is an orthonormal basis over T;Cor " (m).

The LHS of Eq. (@) is
sign ((Log; (Y), Ox) ;) d(Y, Ho, 1) d(Y, Ho, 1)
9 sign (((64.1)"'6(Y), Ox),) d(Y, Ho, 1)

= blgn(< (Y), ex)) d(Y, Ho, 1) (126)
2 sign (($(Y), ex)) A($(Y), He, 0)
= (6(Y))y,
where (1-2) come from the isometry, and (3) comes from Eq. (TT0).
The RHS of Eq. (8) can be implied by Thm. 3.1} O

Lem. |J.2|can be naturally extended to the cases where the inner products of R% and R% are not
canonical.

Lemma J.3. Following all the notation in Lem. . we further assume that the inner products Q" (-, -)
over R4 and Q™ (-, -) over R% are not necessarily canonical. In addition, f : (R, Q™ (-,-)) —
(Rdm (.. .)) is a linear isometry to the canonical inner product. Then, we have

dnz
Y=¢"lof! (Z w(X)fl(ei)) : (127)
i=1
vi(X) = Q" (H(X), b1, (Z0)) = i 0w, (Z0)| D (128)
where ||- ||Qn is the norm induced by Q™.
Proof of Lem.[J.3] First, we denote
Y™ = fog: (Cort(m),g™) = (R, (-,)). (129)
Note that the differential of any linear map between vector spaces is itself. The rest of the proof is
identical to that of Lem. O

Now, we present the proof of Thm. 3.6
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0 0 o --- 0 0 * * * T11 * s *
o1 0 0 0 hoy 0 * * T21 722 T *
131 l32 0 0 h31 h32 0 * *
: * Tm—1,1 Tm—1,2 e *
Imi ln2 lmz --- 0 hmi hmz2  hms 0 - Z;:l Tii  — Z:Zl Ti2 v Zy;l Z:’Sl Tij
L € LT(m) H € Hol(m) R € Rowy(m)

Figure 10: Tllustration of the Euclidean spaces LT(m), Hol(1n) and Row (1), where % can be
obtained by symmetry.

Proof of Thm. As ECM, LECM, OLM, and LSM are pullback metrics from Euclidean spaces,
we resort to Lem. [J.2]and its extension Lem. [J.3] Denoting the zero matrix as 0, we have the following:

$¥C(1,,) = logoO(I,) = 0 € LT(n), (130)
Log’(I,) = 0 € Hol(n), (131)
Log*(I,,) = 0 € Rowg(n). (132)

Therefore, the identity matrix is indeed the origin defined in Lem.

Recalling Lem. the prototype space is the vector space with the standard vector inner product.
Obviously, LT?(m), Hol(m), and Rowg(m) are linearly isomorphic to R™™ /2, As shown in
Fig. each L € LT"(m) can be identified with a vector of its lower triangular part. Besides,

m(m—1)

LT°(m) with the canonical matrix inner product is identified with R with standard vector
inner product. Therefore, the basis over LTO(n) corresponding to the canonical orthonormal basis
over R™"™V/? ig

(LT(m), () UK ™ = B 1<j<i<m, (133)

)
where E;; € R™*™ is the standard basis matrix, with the (k, [)-th element defined as

1 ifk=diand! =j,

B 134
(Eij) {() otherwise. o

m(m—1)
2

Without loss of generality, we identify (LT°(m),(-,-)) with (R
{Eij }1<j<i<m as the canonical orthonormal basis.

,(,+)), and refer to

However, {E;;} is neither a canonical orthonormal basis nor even orthonormal for Hol(m) and
Rowg(m) under the standard matrix inner product. According to Lem. e only need to find the

linear isometry that maps these two spaces into (LT’(m), (-, -)). By Fig.|10, we have the following
linear isometries to pull back these two inner products to the standard ones over LT° (m):

FHtol(m)—sr10(m) :(Hol(m), (-, ) = (LT(m), (-, ),
Hol(m) > H — V2| H] € LT(m),
Frowo(m)—L10(m) :(Rowo(m), (-, ) = (LT°(m), (-,-)),
Rowo(m) > R — V6 {EJ +V3D(R) € LT (m),

(135)

wh<13re R € 8™ 1 is the lealding principal submatrix of order m — 1 of R. The bases
THto1(my— 170 (m) ({£i5}) and f;;owo(mHLTO(m)({Eij}) are as follows:

Ei; + By
Hol(m), (-,-)) : UMM = ZU D700 ) <5 cj<im 136
(Hol(m), (,-)) : Uy; 7 <j<i< (136)
E..—E. —FE. . . .
Qi in ni fl < 7 < m
. rrRowg(m) 3 ’ 1 =
(Rowo(m), (,-)) : Uy " = {EJ@(‘E;EE_EW—E? ifl<j<i<m (137

Putting the required diffeomorphisms and vfj in Thm. into Lem. for ECM, LECM, OLM, and
LSM, the corresponding FC layers can be readily obtained.

O
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J.4 PROOF OF Propr.[4.1]

Proof. First, we review the isometries between the open hemisphere and hyperboloid (Thanwerdas &
Pennec, [2022b, Egs. (4.1-4.2)), and the one between Poincaré ball and hyperboloid (Skopek et al.|
2020, Sec. 2.1):

¢%mﬁwzmh”w%HgTeH§u—+x (1,...,20,1)" € H", (138)
n+1
,(/}H"—)HS" : (yla"'7yn+1)-r eHn'—> y (yla"'7yna1)-r GHS", (139)
n+1
Yunpn + (27, @n41) | €HY > — € P (140)
) 1+$n+1 )
T
29" 1+y)? 1 2y
'(/)pn Hn yEPn’—> ( 5 = 2 EH” (14])
- L=yl 1 —[lyll? 1—[lyl> \ 1+l

Forany (z',z,41)" € HS" and y € P", we have

YHS™ P << x:H )> = YEn _spr O YHSHHR << x:H )>
e (1)
Tntl (142)

T 1

Tn+1 1 +
_r
1+ Tn+1

1
Tpt1

Ypruse (Y) = YEr—HS? © YpnEe (V)

= 1 2y

T UL+ (P (143)
~ i (o)

1+ yl? \ 1=yl

O
J.5 PROOF OF Prop.[E]]
Proof. We denote D = D(H). By Eq. (#6), we have
dY =dD +dH
- 144
dD = — diag ((HO) 'D (exp, y (dH)) 1) . (144)
Following [Tonescu et al|(2015)), we denote the inner product (-,-) as - : - for simplicity. By the

invariance of differential and properties of trace (lonescu et al., 2015, Egs. 67-72), we have the
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following:
ol ol ol
oy (WY =gy Pty A
= O diag ((HY)"'D (exp, y (dH)) 1) + 2L - dH
oY »Y Yy

W, <DV (a‘i’/) <H0>-1D(exp*,y<dH>)1> + gy i

@, ol _ ol
= < 1Dv (ay> (HH'| D (exp*yy(dH))> 5y 4H
(145)
- ol ol
= —(H") 'Dv (ay> 17 : D (exp, y (dH)) + aY dH
=-D( (H°) 'Dv o s exp, y(d )+
ol
? oy oo (o << ooy ) ))]
@ ol o
o [ 24— exp (0 (100w (2L)27)]
The above comes from the following.
ey
A : diag(b) =Dv(A4): b, VAeR"" beR", (146)
a:b=a'b=tr(a'b), Va,becR". (147)

(2) Cyclic property of the trace for matrices A, B, and C of compatible dimensions:

tr(ABC) = tr(CAB).
(3) Forany A € R™*™ and S € S§™, by the properties of trace, we have
Azexp,y(S)=A:U (Lo (UTSU))UT
=U(LoUTAU)UT : S (148)
—exp.y (4) 1 8.

(4) H has zero diagonal elements.

The invariance of the first-order differential gives

ol ol
oy 4V = 5 dH. (149)

By the last equation in Eq. (145), we can differentiate %

J.6 PROOF OF PROP.
Proof. Denoting & = f(C) = D*(C)CD*(C) : Cor'(n) — Row] (n), we have
Log} o = log, s ofs.c- (150)

Combining with the differential of Log* shown in Eq. , we have the following differential
equation:
d¥ = AdCA — (VS +3V?) (151)
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with V0 = diag ((In +)7! AdCAl). Similar with Prop. we have the following:

ol ol

ox LI% = o= (AdCA - (Vo2 +xv?))
_ ol . ﬁ . 0 0
- (AaEA) 0= 2 (s v
RS ol ay . 1
= (AazA) :dC — (azz + 232) : diag ((In + %) AdCAl)
AR ol ay\ -1
- (AaZA) . dC — Dv (622 + Eaz) : ((In +Y) Adcm)

ol g _1
= A—EA :dC — tr (v (I, + %) AdCAl) (152)
— ol . ol -1
- (AaEA) L dC — tr (Alv (I, + %) AdC)
- (A?A) L dC — (A (I + 2)—151TA) . dC
= AﬂA—A(I +2)'51TA ) s de
~Fox " Y '
“(a(2_ (I+%) 917 )A):dC
N 0% T
By imposing symmetrization, we can obtain the results. O

J.7 PROOF OF THM.

As [-splitting is the inverse of 3-concatenation (Shimizu et al.,2021)), we only need to show the case
w.r.t. S-concatenation. Besides, it suffices to prove the 2D case, which is shown in the following
lemma.

Lemma J4. Givenz;; € P with{i € 1,...,N;} and {1, ..., N;}, applying the [3-concatenation
sequentially 2 times in the order j — i is equivalent to a single 3-concatenation along all indices
simultaneously.

Proof. Denoting d = n; x N; and v;; = Log,(x;;), we have the following

v _ N, _
Exp, (concatf\ﬁl (5N,;xdﬂd 1corlcatj:J1 (ﬂdﬂnjlvij)>))

i=N;,j=N; - _
= Bxpy (concat; =177 (B, aBy BaBilvis)) ) (153)
i=N;,j=N; -
= Exp, (concati:17j11 : (ﬁNixdﬁnjlvij))) .
The last line implies the claim. O

A special case of the above lemma is where all n; are identical.

Corollary J.5. Givenx;; € PP with{i € 1,...,N;} and{1,..., N;}, applying the [3-concatenation
sequentially 2 times in the order j — i is equivalent to a single 3-concatenation along all indices
simultaneously.

Thm. [G.T|can be obtained by Lem. [J.4]and Cor.[J.5]
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