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ABSTRACT

We propose a new method, Adversarial In-Context Learning (adv-ICL), to opti-
mize prompt for in-context learning (ICL) by employing one LLM as a generator,
another as a discriminator, and a third as a prompt modifier. As in traditional adver-
sarial learning, adv-ICL is implemented as a two player game between the generator
and discriminator, where the generator tries to generate realistic enough output to
fool the discriminator. In each round, given an input prefixed by task instructions
and several exemplars, the generator produces an output. The discriminator is
then tasked with classifying the generator input-output pair as model-generated or
real data. Based on the discriminator loss, the prompt modifier proposes possible
edits to the generator and discriminator prompts, and the edits that most improve
the adversarial loss are selected. We show that adv-ICL results in significant im-
provements over state-of-the-art prompt optimization techniques for both open and
closed-source models on 11 generation and classification tasks including summa-
rization, arithmetic reasoning, machine translation, data-to-text generation, and the
MMLU and big-bench hard benchmarks. In addition, because our method uses
pre-trained models and updates only prompts rather than model parameters, it is
computationally efficient, easy to extend to any LLM and task, and effective in low
resource settings.

1 INTRODUCTION

Generative Adversarial Networks (GANs) and adversarial learning (Goodfellow et al.,[2014) have
driven significant progress across a range of domains, including image generation (Goodfellow et al.|
2014;|Radford et al., 2015} |Arjovsky et al.,[2017), domain adaptation (Ganin et al., 2016}, Tzeng et al.,
2017; I Xie et al.,|2017; \Louppe et al., 2017), and enhancing model robustness (Szegedy et al., 2013}
Biggio et al., 2013 |Carlini & Wagner, [2017; [Madry et al.| 2018)). At its core, adversarial learning
frames training as a minimax game between a generator and a discriminator. The generator aims
to generate output realistic enough that the discriminator classifies it as real (i.e., not generated),
while the discriminator aims to differentiate between generator output and training data samples as
accurately as possible. After each round, the parameters of both models are updated based on an
adversarial loss, and the process is repeated. As the generator improves, the discriminator improves
alongside it, finding “weak spots" in generator output that may go undiscovered in a non-adversarial
setup, resulting in better outputs from the generator.

Though adversarial learning has been effective in other domains, the traditional adversarial learning
setup requires updating model parameters, which is highly impractical for pretraining large language
models (LLMs) due to data and compute constraints. Particularly for novel tasks where data is
often scarce, it is desirable to have methods that can improve model performance using limited
data. In this work, we solve this problem by applying adversarial learning to in-context learning
(ICL) (Radford et al., [2019; Brown et al., |2020; |(Chowdhery et al., [2022; Touvron et al.l [2023aj
Beltagy et al., [2022} [Liu et al., |2023), keeping model parameters fixed and instead updating the
prompts given to each model in an adversarial manner. This alleviates requirements on compute and
data, while still improving model performance. We refer to our method as Adversarial In-Context
Learning (adv-ICL).

adv-ICL uses an adversarial objective and three main modules (as shown in Figure[I)) to optimize the
prompt for a given task. Each module consists of an LLM powered by a specific prompt. The first
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Figure 1: adv-ICL sets up a minimax game between two players: a Generator and a Discriminator, both of which
are LLMs powered by few-shot prompts. The generator’s inputs are examples without labeled outputs while the
discriminator’s inputs are examples coming from the generator and chosen ground truth. The generator’s role is
to produce the response, whereas the discriminator’s goal is to differentiate between the ground truth and the
generated answers. Both are updated using a standard adversarial objective by adjusting their respective prompts.
This process is aided by another LLM, thePrompt Modifier, which updates prompts through a repeated sampling
and selection procedure based on the adversarial loss.

module is a generator (), which is tasked with generating realistic, task appropriate output given a
task instruction and an input. The second is a discriminator (D) which has the goal of classifying
inputs as real or produced by G. Finally, there is a prompt modifier M which is responsible for
updating the prompts to G and D. As in typical adversarial learning, the learning objective is set up
as a minimax game between G and D. In each round, G produces an output based on an input and
a prompt consisting of a task instruction and several example inputs and outputs. D then classifies
the pair constructed of the original input and G’s output as generated or real. Finally, M produces a
number of possible updates to G and D’s prompts, the updates that most improve the adversarial loss
from D’s classification are selected, and the procedure repeats.

We evaluate adv-ICL on 13 tasks using various open and closed-source LLMs, finding that adv-ICL
outperforms other state-of-the-art prompt optimization techniques by large margins across different
model configurations and tasks. For instance, we improve the accuracy of ChatGPT
from 71.0% to 74.0% on MMLU (Hendrycks et al.l[2021)), 79.9% to 82.3% on GSM8K
[2021), and 72.1% to 74.0% on BBH (Suzgun et al., 2022)). Importantly, adv-ICL requires very few
iterations and training samples to achieve this, boosting performance significantly after only five
training rounds using twenty training points. Finally, adv-ICL is also easy to implement, encouraging
its use in real-world applications.

2 ADVERSARIAL IN-CONTEXT LEARNING

2.1 BACKGROUND: IN-CONTEXT LEARNING

With the scaling of model sizes (Brown et al.} [2020; [Chowdhery et al., 2022} [Touvron et al., 20234}
2023)), Large Language Models (LLMs) have demonstrated strong capabilities in solving

downstream tasks through conditioning only on an input prompt containing a few demonstrations
(ak.a., few-shot prompting). This paradigm is known as prompt-based learning or in-context learning
(ICL) (Radford et al., 2019} Beltagy et al} 2022} [Liu et al,[2023). ICL simplifies the process of
adapting a general-purpose LLM to cater to a specific task without having to do feature engineering
or model training.

Formally, given a specific task, let the LLM generator be represented by G;. Gy is driven by a
prompt U = (I¢ 2§, 4¢, .- ,xf, y,?), where 1€ is the task instruction, x& is a sample input,
and y¢ is the corresponding sample output. The generator’s output for a new input , then, is
determined by the instruction and the exemplars in U, making the choice of U crucial in determining
the downstream performance of Gy (Deng et al 2022} [Pryzant et al.] [2023).
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2.2 ADVERSARIAL TRAINING OBJECTIVE

adv-ICL optimizes the generator’s prompt using an adversarial approach, inspired by GANs (Good+
fellow et al.l2014)—-in particular cGAN (Mirza & Osinderol 2014) and BiGAN (Donahue et al.,
2016) where the discriminator deals with the conditional distribution and joint distribution of an
input and output. As in GAN:S, it is essential to optimize both the discriminator and generator in the
adv-ICL framework concurrently, to make sure that they reach a desired optimal state. Concretely, to
assess the output of our generator, Gy, we employ a discriminator, Dy, which attempts to classify
Gy ’s output as real or generated.

Similar to Gy7, Dy is an LLM driven by a prompt V = (IP 2P yP 2P ... ,x,a y,’?, z,?), where
IP is a task instruction, 22 is a sample input, y” the corresponding output, and z7 a label of real or
generated representing whether yiD is a generated example or a real data sample. Dy utilizes a loss
function J inspired by GANs, formally defined as follows:

T(DV,Go) = Eayropunea 108 (Dv (@) + Eanpni, Jog (1= Dy (2,Gul@)) ()

where pgqtq 1S the distribution of real data. Note that, in this case, the discriminator is designed for
the binary decision problem of determining whether the input is generated or real. In our prompt,
we represent the choices as two options: (A) real or (B) generated. As a result, we can evaluate the
classification probability based on the generation probability of option (A), where Dy (x,y) = 1
indicates a real sample. Therefore, in order for Gy to improve its performance, its goal is for Dy to
mis-classify its outputs as real as often as possible (i.e. minimizing 7). In contrast, Dy ’s objective is
to increase J, indicating improved classification ability. Formally, this adversarial training objective
can be expressed as the following minimax game:

mUinm“;mxj(DV,GU) 2)

Since the discriminator is powered by a large language model with enough capacity, the optimal
solution for this minimax objective indicates that the generator’s output, when paired with its input,
becomes indistinguishable from the real.

Algorithm 1 Adversarial In-Context Learning Optimization

IHPUt: U= (IG,I‘?,y?, T 7kavy]§)’ V= (ID’xlele’ ZP? e 7x]?aykD»ZD)-
Input: Generator G, Discriminator Dy, Prompt Modifier M.
Input: #training iterations 7, #samples used per iteration m, #new sampled prompts 7.

1: for T training iterations do

2:  Sample m data points from the set of limited samples to compute J (G, Dy, m).
// Optimize the instruction IP for Dy
Generate r new instructions {I;, Is,...,I,,} from IP using the prompt modifier M.
Substitute I, to V Vn € {1,2,...,7} to compute the loss J,,(Gy, Dy, m), and select the
largest J;.
6. Update I” by I; if J; > J.
7. // Optimize the demonstrations (zP,yP,2P) Vi for Dy
8: fori € range(k) do
9.
0

oohw

Generate 7 new (1, Yi1, 2i1)se-s(Tir, Yirs 2ir)) from (xP yP, 2P) using M.
Substitute (X, Yin, zin) to V Vn € {1,2,...,r} to compute the loss J;,,(Gy, Dy, m), and
select the largest Jj,.

11: Update (aziD,yzp,ziD) by (5, iz, 2i) if Jjm > J.

12:  end for

13: // Similarly optimize U for Gy so that J(Gy,Dy,m) decreases.
14:

15: end for

Output: The optimized prompt U for the Generator Gy.
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2.3 ADVERSARIAL IN-CONTEXT LEARNING OPTIMIZATION

Whereas GANs optimize model parameters using backpropogation, adv-ICL does not update the
parameters of Gy and Dy directly, but instead updates their prompts in each iteration of the game.
This requires a number of differences in our optimization process. First, we consider a setting where
we have access only to model outputs and generation probabilities, making it impossible to use
backpropogation as our method for updating U and V. Therefore, we employ a third LLM to serve
as the prompt modifier, M. Given a prompt’s task instruction I or demonstration (x,y) as input,
M generates r possible variations on it. The adversarial loss is recomputed for each variation by
substituting the variation into the original prompt, and the output that improves the adversarial loss
the most is returned as the modification, following |Gonen et al.| (2022).

We refer to our optimization algorithm as Adversarial In-Context Learning Optimization, which can
been seen in pseudocode form in Algorithm [T] The entire process is as follows: Given the initial
generator prompt U, and discriminator prompt V', we run 7’ training iterations. At each iteration,
we first sample m pairs of data points from our training samples to compute the adversarial training
loss J(Gu, Dy, m). We then optimize the loss by using M to modify both the task instruction and
demonstration portions of the prompts for the discriminator and generator.

2.4 THEORETICAL ANALYSIS

In this section, we theoretically analyze whether such a minimax objective in the form of in-context
learning can achieve the desired equilibrium as in the original GAN scenario. We assume access to
models with infinite capacities powering the discriminator D, generator G, and prompt modifier M
and that in each iteration, we sample a sufficient number of prompts from M to update both G and D.
Let pgqtq be the distribution of the training data, and p, be of the generated data from G.

Considering a language model M which can be D or GG performing a corresponding task 7% and
evaluated by a metric F';, we further assume that:

1. M is powerful enough to modify the initial prompt of M for T}, covering all possible
prompt variants performing the task 77 .

2. M is a powerful enough language model that there exists a prompt P of 7" for M that given
‘P, M can achieve the globally optimal result on E; for the task 7.

3. There exists a prompt sampled by M that maximizes M on E; globally on 7.

With the above assumptions, we prove the following results.

Proposition 1. (Motivated by|Goodfellow et al.|(2014)) If G and D have enough capacity, and at
each training step, the discriminator is allowed to reach its optimum D* given G, and pg is updated
so as to improve the criterion

T(D*,G) = By ypya 108 (D*(2,9)) + Eurpy,, log (1= D" (2, G(x))) 3)
then pg converges 10 pPqaia-

The full proof of the proposition [T] can be found in Appendix [A-I] Our conclusion is that with
strong enough D, G, M, the framework adv-ICL converges. In practice, convergence in adversarial
training is a complex and challenging problem. For example, there is no universally applicable stop
criterion for training GANs. Previous studies often rely on the number of iterations as a stop criterion
(Goodfellow et al.l 2014} [Radford et al., 2013)), as the standard adversarial loss function alone is
inadequate for determining when to stop GAN training (Salimans et al, 2016). However, despite
these challenges, our approach demonstrates significant improvements even with just a few training
iterations and samples, showcasing its effectiveness, which we have extensively examined.

2.5 IMPLEMENTATION DETAILS

Zero-shot Prompt Modification We leverage the capability of LLMs to follow human instructions
to generate 7 variations of a given task instruction/demonstration. Specifically, we use three prompt
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@ Prompt Modifier

Generate 5 variations of the following example to make them more representative...

@’Prompt Modifier

Generate 5 variations of the following instruction while keeping the semantic meaning...
Example: Input: Barny_Cakes | dishVariation | Chocolate\nBarny_Cakes | protein | 1.8

Task instruction: You will be given one or more triples. The second part of each triple g\nBarny_Cakes | carbohydrate | 18.0 g\nBarny_Cakes | fat | 4.8 g

shows the relation between the first and the third element. Your task is to write a simple Output: Barny cakes, which can be chocolate flavoured, contain 1.8 of protein, 4.8g of fat and 18g of
and short piece of text (sentence(s)) that describes the triples in natural language. carbohydrates.

Output: Improved Example:

| )
1. Input: Barny_Cakes | dishVariation | ChocolatenBarny_Cakes | protein | 1.8 g\nBarny_Cakes |
[ 1. For each triple you are given, write a simple sentence in natural language that carbohydrate | 18.0 g\nBarny_Cakes | fat [4.8 g

describes the relation between the first and third element... Output: Chocolate flavoured Barny cakes contain 1.8g of protein, 4.8g of fat and 18g of carbohydrates. .

@’Prompt Modifier

Generate 5 variations of the following multiple-choice question and the answer to make them more representative...

Example: Input: "k digits are to be chosen at random (with repetitions allowed) from {0, 1, 2,3, 4, 5,6, 7, 8, 9}. What is the probability that 0 will not be chosen?"
Output: [ "(9/10)°k", "(1/10)°k", "(k-1)/k", "1/10" ]
Improved Example:

1

1. Input: "Suppose k digits are to be chosen at random (with repetitions allowed) from the set {0, 1,2, 3, 4,5, 6,7, 8, 9}. What is the probability that 0 will not be among the chosen digits?"
Output: A) (9/10)*k B) (1/10)*k C) (10-k)/10 D) 1 - (1/10)k...

Figure 2: Examples of how the prompt modifier generates new prompts U for Gy including new task instructions
and new data examples. The full prompts used are presented in Appendix[A.3]

templates, one for generating instructions, one for generating open-ended question-answer pairs, and
one for multiple-choice question pairs. We present each of them with one example with incomplete
output in Figure

Hyperparameter Selection As shown in Algorithm I} our proposed algorithm involves three main
hyperparameters: the number of training iterations 7°, the number of data points used per iteration m,
and the number of new versions sampled for each instruction/demonstration r. We fix r to be five. It
is worth noting the larger r is, the more expense is required, and the more likely improvements are
gained. For T and m, our analysis in Section [3.3]proves that given a discriminator and a generator,
selecting suitable combinations of 7" and m is critical for obtaining strong performance. Therefore,
we use a simple hyperparameter search method to select a good combination. First, we collect a small
set S of samples from the validation set of 3 representative tasks from all tasks. Next, we run the
grid search algorithm for 7' € {1,3,5} and m € {1,2,5,10}, 12 experiments in total. Finally, we
compute the performance of adv-ICL on S and select the best combination as the values of 7" and m
for our algorithm. We outline how we construct S in Section [3.1]

3 EXPERIMENTATION

3.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on a total of 13 NLP tasks in four main categories: generation,
classification, reasoning, and challenging NLP evaluation suites to verify the effectiveness of adv-
ICL. For generation, we select XSUM (Narayan et al. [2018) and CNN/Daily Mail (CNN for
short) (Nallapati et al.| 2016) as our text summarization benchmarks; WebNLG (Gardent et al.| [2017)
and E2E NLG (Novikova et al., [2017) as our data-to-text generation datasets; and LIRO (RO —
EN) (Dumitrescu et al.,[2021) and TED Talks (IT— JA) (Ye et al., 2018)) as our machine translation
benchmarks. In the classification category, we use YELP-5 (Zhang et al.,[2015), COPA (Roemmele
et al.l 2011 and WSC (Levesque et al., 2012). For reasoning tasks, GSM8K (Cobbe et al.|[2021) and
SVAMP (Patel et al., [2021])) are chosen as arithmetic reasoning benchmarks. Finally, we also evaluate
our method on two challenging evaluation suites: MMLU (Hendrycks et al.,|2021)) and BIG-bench
Hard (BBH) (Suzgun et al.,[2022)). Due to computational and budget limitations, except for GSM8K
and SVAMP, each benchmark is evaluated on a maximum of 1,000 test samples randomly chosen
from the test set. In our preliminary experiments, we found that the empirical results on the sampled
test set is aligned with performance on the whole test set. The exact number of testing samples for
each task is presented in Appendix[A.3]

One of the main advantages of in-context learning is that it is able to generalize to new tasks with
limited training examples, as may be the case for novel tasks. To make our method applicable in
such settings, we use 20 labeled samples for training adv-ICL. For our baseline methods, we assume
access to at most 100 labeled data samples for each benchmark except BBH, similar to previous



Under review as a conference paper at ICLR 2024

prompt optimization works (Xu et al.,[2022; |Pryzant et al., 2023). For BBH, we assume access to
three chain-of-thought data samples per task.

Backbone Models We test state-of-the-art open and closed-source LLMs as our backbone models.
For the open-sourced models, we use Vicuna-13B v1.5 (Zheng et al.,[2023)) — an open-source chat
model fine-tuned on top of LLaMa 2 (Touvron et al., 2023b)) via instruction fine-tuning. For our
closed-source models, we use text-davinci-002 and ChatGPT (gpt-3.5-turbo-0613) (OpenAl, 2022),
which are built on top of GPT-3 (Brown et al.,2020). For each backbone model except ChatGPT, we
use the same model for the generator, discriminator, and prompt modifier in the adv-ICL setup. Since
ChatGPT does not provide the probabilities of its generated tokens, which is required for computing
the adversarial loss, we employ fext-davinci-002 as the discriminator when ChatGPT is the generator
and the prompt modifier.

Baselines We compare adv-ICL with five baselines: (i) Simple prompting (Few-shot) that is
typically used. We use Chain-of-Thought (CoT) (Wei et al|2022)) for reasoning tasks; (ii) Utilizing
ROUGE-L score (Lin,[2004) (ROUGE-L) as the criteria to optimize the instruction and demonstrations
for each task on a small sampled labeled set; (iii) Similarly, using Perplexity (Perplexity) as the
criteria following |Gonen et al.|(2022); (iv) Genetic Prompt Search (GPS) (Xu et al.| 2022), a genetic
optimization method based on the log-logits or accuracy; (v) Automatic Prompt Optimization (APO)
(Pryzant et al.| 2023), which uses data to generate text “gradients” evaluating the current prompt,
and then utilize them to signal the models to edit the prompt in the opposite semantic direction. (vi)
Automatic Prompt Engineer (APE) (Zhou et al.| 2022), which automatically generates instructions
and selects via evaluation scores

We make sure that all methods use a similar number of labeled samples, while the exact number of
training samples depends on the design of specific algorithms. For GPS and APO, we sample 32
and 50 labeled data examples for validation, following (Xu et al.l |2022; |Pryzant et al., 2023). For
ROUGE-L and Perplexity, we sample 80 data examples for validation. For YELP, WSC, GSM8K,
SVAMP, where the benchmarks do not have enough labeled examples, we sample from their limited
training set instead. Additionally, APO requires additional training data for error samples. For fair
comparisons, we use the same training data with adv-ICL. More implementation details for baselines
are presented in Appendix

Prompt Initialization We follow prior works to employ a set of initialized prompts. For MMLU
and BBH, we employ the open-sourced prompts that come with the original papers. For GSM8K
and SVAMP, we follow the chain-of-thought paper Wei et al.| (2022) which employs human-written
prompts. For the remaining benchmarks, we utilize prompts from Super-Naturallnstructions (Wang
et al.| 2022), in which instructions and demonstrations are chosen by domain experts. All the initial
prompts are also used for our baseline few-shot experiments. The exact number of shots used for
each benchmark is presented in Appendix[A.3]

Evaluation Metrics For the generation tasks, we evaluate the performance of the frameworks by
ROUGE-L score (Lin, [2004), following |Wang et al.|(2022)). For classification tasks, we use accuracy
as the evaluation metric. For MMLU and BBH, we follow Hendrycks et al.| (2021)); [Suzgun et al.
(2022) and report the averaged performance among tasks.

Hyperparameters To select a set of appropriate hyperparameters for adv-ICL, we use one repre-
sentative task in each category. Specifically, we use WebNPL for generation, GSM8K for reasoning,
and MMLU for classification. The selected hyperparameters are then used for all the tasks. We test
the performance of our method on a sampled validation set for these three tasks, refer to this set as S
(Section . We use 80 data samples from WebNPL and 80 data samples of GSMSKEI For MMLU,
16,16, 17,19 samples from the validation sets of abstract_algebra, business_ethics,
econometrics, formal_logic are selected respectively, resulting in 228 samples in S.

After hyperparameter selection, we set number of training iterations 7" to 3 and number of training
samples per iteration m to 5 for all the tasks except BBH. For BBH, we set 7' = 3, m = 3 given that

'As APE only polishes task instruction, we compare APE with Adv-ICL on GSM8K, MMLU and WebNLG.
2GSMS8K does not come with a validation set, so we sample from the training set instead.
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we only have 3 samples in the training set. In each iteration, the prompt modifier samples 7 = 5 new
prompts. We discuss the details of hyperparameter search in Section[3.3]

3.2 MAIN RESULTS

We present the main empirical results on a set of classification, generation and reasoning tasks in
Table[I, MMLU in Table[2] and BBH in Figure

Models  Method | Summarization Data-to-Text Translation Classification Reasoning
\ XSUM CNN WebNLG E2ENLG LIRO TED Talks \ YELP Review COPA WwSC \ GSMSK  SVAMP
g Few-shot 255 20.8 60.8 47.1 78.3 37.7 71.1 879 67.7 47.3 70.0
< ROUGE-L 25.8 21.1 61.1 475 77.6 38.2 70.6 87.8 66.9 47.1 69.8
E Perplexity 26.2 214 62.2 493 8.5 39.0 70.9 88.6 67.3 475 70.4
z GPS 27.1 21.5 61.9 49.1 78.8 39.4 71.3 87.4 67.1 48.1 70.5
b APO 26.8 22.1 62.3 49.2 789 40.2 71.1 88.8 68.3 46.9 69.3
§ adv-ICL 30.913.8  23471.3  65473.1 50.811.5 81.212.3 42.111.9 744 13.1 922134 73.815.5 | 50.812.7 725712.0
- Few-shot 18.9 16.4 52.5 353 72.1 32.6 71.0 71.8 54.4 40.7 45.1
- ROUGE-L 18.9 16.6 52.7 35.2 72.6 329 70.9 76.7 54.1 40.4 44.8
: Perplexity 19.1 16.9 52.8 35.0 72.7 33.0 71.0 719 54.7 414 46.2
§ GPS 19.7 16.9 53.0 359 73.2 33.0 71.3 78.2 55.0 41.7 45.7
B APO 19.5 17.1 53.7 36.3 73.1 329 70.2 78.3 54.4 414 46.3
adv-ICL 211714 193122 59.375.6 41.915.6  73.410.2 35.212.2 73.612.3 81.673.3 58.213.2 | 43.913.2 48.413.3
Few-shot 252 21.3 60.9 48.3 78.8 41.7 69.8 94.4 69.8 79.4 793
E ROUGE-L 25.1 212 60.7 48.6 8.5 413 68.2 93.7 69.1 8.7 78.9
G} Perplexity 249 209 61.8 48.6 78.9 41.8 68.8 91.3 66.9 755 78.1
:é GPS 26.6 215 61.5 489 789 42.0 70.0 94.6 69.8 794 80.0
O APO 27.1 22.1 61.5 493 794 423 70.3 94.8 70.1 799 79.7
adv-ICL 28211.1 225104  63.671.8 51.111.8 80.411.0 43.210.9 71.970.6 95.811.0 71.911.8 | 823124 811711

Table 1: Main experimental results on generation, classification and reasoning tasks. Details of the selected
few-shot prompts and the baselines are described in Section@

Generation Tasks ~ As shown in Table [T} adv-ICL significantly outperforms all the baseline methods
across all backbone models, achieving 2.3%, 2.9%, 1.2% absolute improvements on average for text-
davinci-002, Vicuna and ChatGPT respectively. We observe that adv-ICL achieves most significant
improvements on Summarization and Data-to-Text tasks. Specifically, for text-davinci-002, adv-ICL
outperforms the best baseline by 3.8% on XSUM and 3.1% on the WebNLG data-to-text task. For
Vicuna v1.5, adv-ICL achieves an improvement of 5.6% on the two data-to-text generation tasks
WebNLG and E2E NLG. For ChatGPT, we achieve an improvement of 3.0% on XSUM and 2.8%
on the E2E NLG generation task when compared to the vanilla few-shot baseline where no prompt
optimization is applied. When compared to other prompt optimization methods, we hypothesize that
the smaller but respectable improvements on ChatGPT may be due to the misalignment between the
backbone models of the generator and the discriminator. However, given that ChatGPT is the most
widely used LLM, undergoing constant upgrades to better serve millions of people daily, it should be
expected that improving ChatGPT is more difficult.

Classification Tasks For classification tasks, adv-ICL also brings significant improvements over
all the SOTA prompt optimization techniques across all the models with 4.0%, 2.9%, 0.8% absolute
improvements on average respectively. Specifically, the most significant performance improvement
is obtained with the text-davinci-002 backbone. The 2.9% improvements on Vicuna also
illustrates the effectiveness of our proposed method on open-sourced models. The improvements of
the three backbone models on the three classification tasks are relatively balanced.

Reasoning Tasks For reasoning tasks, we observe a 2.7% and 2.0% absolute improvement on
GSMS8K and SVAMP, with text-davinci-002. Likewise, significant gains are observed with ChatGPT,
achieving a 2.4% increase on GSMS8K and a 1.1% boost on SVAMP. In the case of Vicuna, it
achieves 3.2% absolute improvement on GSM8K and 3.3% absolute improvement on SVAMP.
The effectiveness of adv-ICL for reasoning tasks, particularly when coupled with CoT prompting,
where the prompt includes detailed intermediate reasoning steps, demonstrates its ability to optimize
complex prompts. This hints at potential for applying adv-ICL to more advanced prompting methods.
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Figure 3: Results on selected tasks from BBH with Figure 4: Ablation study on ChatGPT with adv-ICL in
ChatGPT using 5-shot Chain-of-Thought prompting. which we only update the task instruction or demon-
We achieve an average accuracy of 70.6% while the strations.

baseline method achieves an average of 68.2%. Full

results can be found in Appendix [A3]

Models Method  Humanity STEM Scocial Sciences Others Avg
Few-shot 55.8 38.7 63.3 61.5 54.6
ROUGE-L 55.5 39.5 63.7 61.1 55.0
Perplexity 55.2 39.5 64.1 61.9 55.2
Vicuna v1.5 GPS 56.9 40.4 64.1 62.3 55.9
APO 57.2 40.0 63.7 62.7 55.9
adv-ICL 589 11.7 44.113.7 64.8 10.7 64.5171.8 58.112.2
Few-shot 73.9 57.5 79.2 73.5 71.0
ROUGE-L 74.2 56.7 78.4 73.9 70.8
Perplexity 74.8 56.3 79.6 71.2 70.5
ChatGPT GPS 74.6 57.9 80.0 74.3 1.7
APO 75.6 58.3 80.7 73.9 72.1
adv-ICL 76.711.1 61.313.0 82.3 11.6 75.8 1T1.5 74.011.9

Table 2: Results of ChatGPT using 5-shot prompts on MMLU.

MMLU & BBH We summarize the results on MMLU in Table 2] We improve the average
performance from 69.8% to 73.1%, achieving performance improvements on 51 subjects out of 57
subjects with ChatGPT. For BBH, as shown in Figure [3] adv-ICL achieves an accuracy of 70.6%
where the baseline method achieves an accuracy of 68.2% with ChatGPT and chain-of-thought
prompting. The detailed results on MMLU and BBH are in Appendix [A.5]

Note that for BBH, only three data examples are provided with the dataset. Consequently, we use
the same three examples as the initial data for both the generator and discriminator. Additionally,
these 3 examples are the only real data examples utilized when estimating the objective. Despite this,
we achieve substantial improvements on this task. This demonstrates the broad applicability of our
method. In real-world scenarios, where the number of training examples is relatively limited, our
approach can still be effectively applied.

3.3 FURTHER STUDIES

In this section, we examine several design choices of adv-ICL. We further discuss the necessity of the
discriminator in Appendix [A-4] as well as an extended set of analyses in Appendix [A23]

Optimizing task instruction / demonstration only As instruction and demonstration data are both
widely used in prompts, we examine the importance of optimizing these two components separately.
We use ChatGPT in these experiments and compare our method with another prompt optimization



Under review as a conference paper at ICLR 2024

m\T T=1 T=3 T=5 m\T T=1 T=3 T=5

m= 61.3/78.8/42.6 63.8/80.0/47.1 62.5/80.0/48.5 m=1 525/40.0/50.0 53.8/43.8/559 53.8/425/544

m=3 625/81.3/456 650/81.3/529 62.5/76.3/50.0 m=3 550/425/485 60.0/43.8/544 57.5/450/51.5

m=5 638/825/544 663/825/559 63.8/77.5/544 m=>5 550/41.4/485 61.3/450/544 57.5/42.5/51.5

m=10 60.0/80.0/51.5 625/81.3/51.5 63.8/78.8/47.1 m=10 53.8/42.5/529 550/425/50.0 55.0/41.3/45.6
(a) ChatGPT (G) & text-davinci-002 (D). (b) Vicuna (G) & Vicuna (D).

Table 3: Ablation studies on number of iterations 7" and number of samples used per iteration m. The results are
ROUGE-L / Acc / Acc scores on WebNLG / GSM8K / MMLU.

method, APE (Zhou et al.,[2023)), on three tasks: WebNLG, GSM8K (with CoT) and MMLU. The
results are shown in Figure

First, we see that updating the instruction only, or the demonstrations only makes the model perform
suboptimally. Second, optimizing demonstrations are more effective than optimizing instructions
for WebNLG and MMLU while the situation is the opposite on GSM8k. We hypothesize that this is
because generated reasoning chains can contain errors and the correctness of the generated answers
with respect to the generated questions is critical for the model’s performance (Min et al.,2022). That
said, adv-ICL still achieves significant performance improvements in both cases for GSM8k.

Human evaluation of prompt modifier performance The capability of the prompt modifier to fol-
low human instructions to update the prompts is crucial for our proposed method. In our experiments,
text-davinci-002, ChatGPT, and Vicuna are used in the zero-shot prompting manner (Figure [2). To
evaluate their capabilities in modifying the prompts following the instructions, we hire three annota-
tors per backbone model to manually rate 100 generated cases (30 instructions, 70 demonstrations)
as Satisfied / Unsatisfied. Since a human annotator could not tell if an instruction or
demonstration would lead to better results, we ask annotators to label a case as Sat i sfied when the
sampled instruction / demonstration is semantically similar to the original one, and Unsatisfied
otherwise. We observe that three models achieved strong Satisfied rates with 88%, 91%, and
83% for text-davinci-002, ChatGPT, and Vicuna respectively. The Unsatisfied cases are mostly
observed from sampling the demonstrations. More detailed results are available in Appendix [A.5]

Ablation studies on number of iterations 7" and data samples m  As discussed in Section [3.1]
we perform hyperparameter search with three datasets including WebNLG, GSM8k and MMLU.
We conduct the experiments with two ChatGPT and Vicuna as the backbone models. As shown
in Table [3] we observe the best performance achieved with 7" = 3 and m = 5 for both settings.
This demonstrates that our method works effectively without requiring many training iterations and
data samples. We further provide our explanations regarding training with too many iterations 7" or
samples m might harm the performance of the models in .

3.4 QUALITATIVE ANALYSIS

To intuitively understand how the optimization goes, we show how prompts change over iterations
in Figure 5] for data-to-text generation task WebNLG. The prompt modifier significantly alters the
generator’s prompt. In two iterations, it initially simplifies the instruction and then adds a more
specific requirement. The demonstrations are either replaced with a completely new one or are
refined.
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Initial

You will be given one or more triples. The second part
of each triple shows the relation between the first and
the third element. For each triple, your task is to write
a simple and short piece of text (sentence(s)) that
describes the relation between the first and third
element in natural language.

Input: Amsterdam_Airport_Schiphol | runwayName |
"09/27 'Buitenveldertbaan’”

Output: The runway name of Amsterdam Airport
Schiphol is 09/27 Buitenveldertbaan.

Input: Barny_Cakes | dishVariation | Chocolate
Barny_Cakes | protein | 1.8 g

Barny_Cakes | carbohydrate | 18.0 g

Barny Cakes | fat 4.8 g

Output: Barny cakes, which can be chocolate
flavoured, contain 1.8g of protein, 4.8g of fat and 18g
of carbohydrates.

First Iteration

For each triple you are given, write a simple
sentence in natural language that describes the
relation between the first and third element.

Input: The_Netherlands | capital | "Amsterdam"

Output: The capital of The Netherlands is
Amsterdam.

Input: Barny_Cakes | dishVariation | Chocolate
Barny_Cakes | protein | 1.8 g

Barny_Cakes | carbohydrate | 18.0 g

Barny Cakes | fat|4.8 g

Output: Chocolate flavoured Barny cakes
contain 1.8g of protein, 4.8g of fat and 18g of
carbohydrates.

Second Iteration

For each triple you are given, write a
simple sentence in natural language that
describes the relation between the first and
third element. Make sure to use the correct
grammar for each sentence.

Input: Barny_Cakes | dishVariation |
Chocolate

Barny_Cakes | protein | 1.8 g
Barny_Cakes | carbohydrate | 18.0 g
Barny_Cakes | fat [ 4.8 g

Output: Chocolate flavoured Barny cakes
contain 1.8g of protein, 18g of
carbohydrates, and 4.8g of fat.

Figure 5: Optimization for the prompt on the data-to-text task WebNLG.

4 RELATED WORK

Adversarial Training Adversarial training has been widely used in image generation (Goodfellow
et al.| [2014; Radford et al., 2015} |Arjovsky et al., 2017)), domain adaptation (Ganin et al., 2016} Tzeng
et al.l 2017} [Xie et al., [2017; [Louppe et al.,[2017), and improving model robustness (Szegedy et al.,
2013} Biggio et al., 2013} |Carlini & Wagner], 2017; Madry et al.| 2018). However, previous work
shows that it often harms the generalization of models (Raghunathan et al.,[2019; Min et al., 2021)).
In NLP, there is an increasing interest in adversarial training; however, most of the current research
primarily examines its effect on generalization (Cheng et al.l 2019; Wang et al., 2019; Jiang et al.,
2020), and finetuning the models (Jin et al., 2020; [Liu et al.| [2020), which is impractical for recent
gigantic language models. In contrast, adv-ICL targets to optimize the prompts and demonstrates
strong generalization under different conditions.

Prompt Optimization The emergence of in-context learning (Radford et al., 2019; Brown et al.|
2020; (Chowdhery et al., 2022} Touvron et al., 2023a;|OpenAl, |2023)) has sparked interest in prompt
optimization (PO) techniques (Qin & Eisner, |2021; Deng et al., 2022} |[Lu et al., [2022; Xu et al., |2022;
Pryzant et al., 2023} |Yang et al.}2023)), which can lead to substantial performance gained for LLMs.
Previous PO works can be cast into two different types of prompts: (1) continuous prompts; and (2)
discrete textual prompts. Some notable works optimizing continuous prompts such as (Qin & Eisner,
2021} |Liu et al., 2021} [Lester et al.l 2021). However, as model sizes increase, this approach becomes
more computationally expensive. In the context of very large language models, recently, |Xu et al.
(2022) propose a gradient-free prompt optimization method called Genetic Prompt Search (GPS) by
iteratively generating prompts and selecting the top-K ones in each iteration. In addition, Pryzant
et al.[(2023)) introduce Automatic Prompt Optimization (APO) leveraging text “gradients” to evaluate
the current prompt, and then using them to modify the prompt in the opposite semantic direction. In
this work, we compare adv-ICL with GPS and APO. We notice other prompt optimization techniques
such as Automatic Prompt Engineer (Zhou et al.| [2023) optimizing only the task instructions, which
is also compared with a variant of adv-ICL. There are also RL-based prompt optimization baselines
such as (Deng et al., [2022; Lu et al., 2022). However, we exclude RL-based methods from our
comparison because they involve training additional MLPs and lack a universal reward.

5 CONCLUSION

In this work, we introduce adv-ICL, an adversarial training framework for in-context learning using
large language models. Our method has demonstrated empirical success across a diverse range of
tasks and outperforms previous SOTA prompt optimization methods significantly. Requiring only
limited data samples and a very small number of training iterations, adv-ICL holds promise for
implementation in a wide array of real-world applications.
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A APPENDIX

A.1 THEORETICAL PROOFS OF THE CONVERGENCE

In this section, we theoretically analyze whether such a minimax objective in the form of in-context
learning can achieve the desired equilibrium as in the original GAN scenario. We assume access to
models with infinite capacities powering the discriminator D, generator G, and prompt modifier M
and that in each iteration, we sample a sufficient number of prompts from M to update both G and D.
Let pgqiq be the distribution of the training data, and p, be the distribution of the generated data from

Considering a language model M which can be D or G performing a corresponding task 7% and
evaluated by a metric E';, we further assume that:

1. M is powerful enough to modify the initial prompt of M for T}, covering all possible
prompt variants performing the task 77 .

2. M is a powerful enough language model that there exists a prompt P of T" for M that given
‘P, M can achieve the globally optimal result on F; for the task 7.

3. There exists a prompt sampled by M that maximizes M on E; globally on 7.

The assumption 3 is a result of assumptions 1, and 2, and the assumption about our access to infinite
capacities language models. Indeed, given M, from assumption 2, there exists a globally optimized
prompt P of T} for it such that it can achieve the globally optimal state on E; for the task 7.
Furthermore, since M is powerful enough in modifying the initial prompt (ass. 1), plus M samples a
sufficiently large number of prompts for each iteration (ass. 2), M can generate P with a non-zero
probability, which conclude the assumption 3.

With the above assumptions, we prove the following results.
Proposition 2. (Goodfellow et all [2014) For G fixed, the optimal discriminator D can be described

in a closed form, denoted as D*.

Proof for Proposition 2] adapted from (Goodfellow et al.| 2014). For a fixed G, the training objec-
tive for the discriminator D is maximizing the adversarial loss 7 (D, G) (Equation )

T(D,G) = Evyrpsnia 108 (D(@:1)) + Eanpa,, log (1= D(@,G(a))
= B y~paara 108 (D(;v, y)) + Eg y~p, log (1 — D(x, y))

= [ Pdata()log D(%y)) dz + /wpg(w) log (1 — D(x,y)) dx

x

“

_ /lpdm(x) log D(z,y) 4 pg(x)log (1 —D(x’y)) de

The function y = alog(z) + blog(1 — x) for (a,b) € R%and(a,b) # {0,0} achieves its maximum

in [0, 1] at . Therefore, D*(x) has a closed form, which is D*(z) #%.

O

Proposition 3. For each training iteration, for a fixed G, the optimal discriminator D* can be
achieved.

Proof for Proposition[3] From assumption 3, at each training iteration, by fixing G and taking the
adversarial loss function 7 (D, G) as E1, there exists a prompt sampled by M that maximizes D on
E globally, which constitutes to D*. O

Proposition 4. (Motivated by|Goodfellow et al|(2014)) If G and D have enough capacity, and at
each training step, the discriminator is allowed to reach its optimum D* given G, and p, is updated
so as to improve the criterion
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T(D*,G) = By ypea 108 (D" (2,9)) + By, Yo (1= D (2,G(2)) s)
then py converges 10 Pqata-

Proof for Proposition] At each training step, from proposition[3] the optimal D* can be achieved
via editing its input prompt by M. Considering the loss function 7 (D*, G) as a function in p,, then
J(D*,G) is convex in py. Since G is powerful enough that there exists a prompt P sampled by M
such that G can achieve the globally optimal loss J (assumption 2), with an optimal D*, we can
obtain the corresponding best G. Furthermore, 7(D*, G) is convex in pg, plus the global optimal
of G can be obtained, with a sufficiently large enough number of prompts sampled and training
iterations, p, converges to Pqqta- O

In practice, it is impossible that 1, 2, 3 assumptions could be achieved, plus our approach is based
on GAN, which is theoretically known to lack guaranteed convergence, our proposed framework
naturally does not guarantee convergence either. Convergence in GANS is a complex and challenging
problem, and there is no universally applicable stop criterion for training GANs. Previous studies often
rely on the number of iterations as a stop criterion (Goodfellow et al.,[2014; Radford et al.,[2015), as
the standard adversarial loss function alone is inadequate for determining when to stop GAN training
(Salimans et al.l 2016). However, despite these challenges, our approach demonstrates significant
improvements even with just a few training iterations and samples, showcasing its effectiveness,
which we have extensively examined.

A.2 BASELINE IMPLEMENTATION

In this section, we present our implementation details for the baselines. First, among the benchmarks
we used, the following datasets do not have any validation set with sizes larger than or equal to 80:
YELP, WSC, GSMS8K, SVAPM. Therefore, we randomly sample 100 data cases from their training
sets, to create their validation sets.

Each baseline requires a development set to decide which prompt(s) is/are the best at each optimization
iteration. For GPS and APO, we sample 32 and 50 data samples respectively from the validation set
of each benchmark, following Xu et al.| (2022); Pryzant et al.|(2023). For ROUGE-L and Perplexity,
we sample 80 data samples, also from each validation set. Additionally, among the baselines, only
APO requires training data for error messages. For a fair comparison with adv-ICL, we use the same
training data samples with adv-ICL as training data for APO.

¢ ROUGE-L & Perplexity (Gonen et al., 2022) For these baselines, we utilize ROUGE-L
(Linl [2004) or Perplexity |Gonen et al.| (2022) as the measurement to optimize the input in-
struction and demonstrations sequentially. For the instruction, we sample 15 new instructions
by paraphrasing following the template: ’'Write for me 15 paraphrases of the
{initial_instruction}:’. We then select the version which achieves the best result on
S as the final instruction. Similarly, for each demonstration, we use the template ' Write 15
paraphrases for the following example. Keep the format as Input:
and Output:. End the answer by So the answer is:’ to sample 15 versions
of the original demonstrations, and select the best one on S sequentially until all the demonstrations
are optimized. We sample 15 versions for comparisons because our proposed adv-ICL also samples a
maximum of 15 versions for the instruction and each demonstration.

o GPS (Xu et al., 2022) We run GPS (Xu et al.,[2022) on 3 iterations to optimize the instruction
and each demonstration sequentially. Denote the original instruction/demonstration to be optimized
as O. In the initial step, given the original human-written O, we paraphrase it into 10 versions
using 'Write for me 10 paraphrases of the {initial_instruction}:’ for
instruction, and 'Write 10 paraphrases for the following example. Keep
the format as Input: and Output:. End the answer with <END>. So
the answer is:’ for demonstration. We then select the top-5 generated O to pass to the first
iteration. At each iteration, for each O in the current top—5 Os, we sample 5 new Os by Sentence
Continuation strategy (Schick & Schiitze, 2021) via using the backbone LLM itself, and select the
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top—5 Os among 25 Os to the next iteration. Finally, the best-performing O on S is selected as the
output instruction/demonstration of the method. It is worth noting that in the original paper from |[Xu
et al.| (2022), top—k with k& = 25 was used. However, in our reimplementation, we use k£ = 5 so that
it can be relatively fair to compare GPS with our method (we use » = 5) and other baselines. The
template for sampling new prompts via the Sentence Continuation strategy that we used is exactly the
same as |Xu et al.[(2022) provided.

e APO (Pryzant et al., 2023) Since our setting assumes that we have access to limited training
data samples, we reimplemented a simplified version of the original APO in which the selection
step (Pryzant et al.,[2023) only be called once, and the samples that we used to train adv-ICL are
returned. For simplicity, we call the original instruction/demonstration as O. We run APO to optimize
the instruction and each demonstration sequentially in a given prompt. Given an initial O, and the
error samples, we use the backbone LLM to generate feedback consisting of 5 comments as the text
"gradient". Integrating this gradient as feedback, we ask the LLM to generate 10 prompt samples.
We further utilize the backbone LLM to generate 5 paraphrase versions of the original O, resulting
in a total of 15 new Os. Finally, we select the best O evaluated on S. All the prompt templates for
generating gradients, integrating feedback, and generating paraphrased prompts are adopted from
Pryzant et al.| (2023). For selecting error samples, in the original implementation, Pryzant et al.
(2023) compared the generated answer with the ground-truth answer, and the error samples are the
ones that have the generated answer different from the ground-truth answers. This is applicable
for classification and numerical question-answering tasks, but not the text generation tasks such as
summarization, this strategy of selecting error samples is not suitable. Therefore, for summarization,
data-to-text, and translation tasks, we select one sample that the current prompt brings the lowest
ROUGE-L score as the sole error sample.

o APE (Zhou et al., 2023) For APE, we adopt the implementation on the GitHulﬂ from |Zhou et al.
(2023). We limit the number of instructions sampled to 15 to have fair comparisons with adv-ICL.
For the training samples for each task, we use the same samples that we train adv-ICL for APE.

A.3 SUPPLEMENTARY EXPERIMENT DETAILS

In this section, we provide more details used in the experiments.

Number of demonstrations for few-shot experiments Number of demonstrations for few-shot
experiments of all datasets is listed in Table[d] For generation tasks and classification tasks, We follow
the expert-written prompts from Super-Naturallnstruction (Wang et al., 2022). For reasoning tasks,
MMLU and BBH, we follow the standard prompts that they propose in their paper or open-source
code.

| Summarization Data-to-Text Translation Classification R ing Evaluation Suits
\ XSUM CNN WebNLG E2ENLG RO —EN IT—JA \ YELP Review COPA WSC \ GSMS8K SVAMP \ MMLU BBH
#shots | 3 2 3 2 3 3 |3 3 3 |s 5 |'s 3

Table 4: Number of shots used for few-shot experiments.

Test set Statistics As mentioned in the main paper, we sample a subset of the test set for efficient
evaluation. In Table[5] we show the exact numbers of testing samples we used for each task.

| Summarization Data-to-Text Translation Classification Reasoning
\ XSUM CNN WebNLG E2ENLG RO —EN IT—JA \ YELP Review COPA WSC \ GSMSK SVAMP
#test samples \ 1000 950 1000 1000 1000 1000 \ 1000 496 285 \ 1319 1000

Table 5: Test set statistics.

Prompt Modifier prompts Here, we also provide the prompt used in the prompt modifier. The
prompt is as follows:

3https://github.com/keirp/automatic_prompt_engineer/tree/main
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* Modifying instructions: Generate 5 variations of the following
instruction while keeping the semantic meaning. Keep the
generated instructions as declarative. Wrap each with
<START> and <END>..

* Modifying open-ended QA pairs: Generate 5 variations of the following
example to make them more representative. Keep the format
as Input: and Output:. Wrap each with <START> and <END>..

* Modifying MCQ pairs: Generate 5 variations of the following
multiple-choice question and the answer to make them more
representative. Keep the format as multiple-choice question
and the answer. Keep the format as Input: and Output:.
Wrap each with <START> and <END>..

Extended experimental details For OpenAl API models, ChatGPT (gpt-3.5-turbo-0613) with chat
completion mode and text-davinci-002 with text completion mode were called at temperature 0.6.
For open-source baselines, Vicuna v1.5 13B was used with a window size of 1024. We use Nucleus
Sampling |Holtzman et al.|(2020) as our decoding strategy for all the models with a p value of 0.9.

A.4 WHY THE DISCRIMINATOR WORKS?

We further conduct experiments (Table[6) to verify whether the prompt modifier module work as
expected. Specifically, we remove the discriminator and only employ a prompt modifier to repeatedly
optimize the prompt.

| WebNLG RO —EN YELP GSMSK

Vicuna 13B 52.5 72.1 71.0 40.7
adv-ICL w.o. discriminator 50.1 71.4 72.1 40.2
adv-ICL 59.3 73.4 73.6 439
ChatGPT 60.9 78.8 69.8 79.4
adv-ICL w.o. discriminator 61.2 77.4 64.5 71.6
adv-ICL 63.6 80.4 71.9 82.3

Table 6: Experimental results with Vicuna and ChatGPT with adv-ICL when being removed the discriminator.

In most cases, removing the discriminator and relying solely on the prompt modifier under Vicuna
and ChatGPT leads to a decline in performance. This observation highlights the importance of the
discriminator and adversarial loss in the optimization process.

A.5 EXTENDED EXPERIMENTS

Reliability of the results We rerun our experiments with adv-ICL three times on WebNLG, RO —
EN, YELP, GSM8K. The results are presented in Table

| WebNLG RO — EN YELP GSMS8K

Vicuna 13B | 59.3/59.2/59.5 73.4/74.1/73.2  73.6/73.6/73.5 43.9/44.3/44.1
ChatGPT 63.6/63.5/63.8  80.4/80.6/80.6  71.9/71.8/71.9  82.3/82.5/82.2

Table 7: Our experimental results with adv-ICL on three different runs.

The results clearly demonstrate that adv-ICL consistently delivers stable outcomes, thereby highlight-
ing its reliability in faithfully reproducing our experimental findings.

Providing more feedback to the prompt modifier We conducted an experiment that involved
integrating the most successful prompts from previous iterations as feedback for the next iteration. In
this process, we utilized previous best-performing prompts, namely Py, P, ..., Py, as inputs to the
prompt constructor module in order to generate the (k + 1)-th prompt, denoted as { P, ..., Py }. The
template for optimizing task instruction is shown as follows, similar to the prompt for optimizing
demonstrations.
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Diversify the task instruction to be clearer. Keep the task
instruction as declarative.

Task instruction: Py

Improved task instruction: P

Task instruction: P,_;
Improved task instruction: Py
Task instruction: P

Improved task instruction:

We applied the method to four representative tasks WebNLG, RO — EN, YELP, GSM8K using both
Vicuna and ChatGPT models. The obtained results for are illustrated in Table[8]

| WebNLG RO —EN YELP GSMSK

Vicuna 13B 52.5 72.1 71.0 40.7
adv-ICL (prompt modifier with history) 56.9 74.0 74.2 422
adv-ICL 593 73.4 73.6 43.9
ChatGPT 60.9 78.8 69.8 79.4
adv-ICL (prompt modifier with history) 62.1 79.8 72.1 80.9
adv-ICL 63.6 80.4 71.9 823

Table 8: Experimental results with Vicuna and ChatGPT with the feedback to the prompt modifier.

In the case of Vicuna, incorporating additional feedback into the prompt modifier proves effective
for tasks such as translation and classification. However, this approach falls short when applied to
data-to-text and reasoning tasks. On the other hand, for ChatGPT, augmenting the prompt modifier
with more feedback does not yield improved performance. This can be attributed to ChatGPT’s strong
zero-shot prompt capabilities, which outshine its ability to perform effectively with few-shot prompts.

Ablation studies on number of generated samples » We investigate whether generating fewer
/ more samples in each prompt modification would affect the model’s performance. Due to the
limited resources, we only conducted the experiment on the WebNLG and GSM8k dataset, with
r € {1,3,5,10,20}. The results are shown in Figure @ We observe that increasing r lead to
comparable results.

Why might too many iterations 7" or samples m harm the performance of the models? We
observed this phenomenon in the experiments and were also curious about it. We hypothesize that
first, training with too many iterations can cause the model to be overfitting to the task, leading to
worse performance on the test samples. Second, adv-ICL, a specialized form of in-context learning,
plays a crucial role in enhancing the performance of LLMs by enabling them to learn from the
training examples and generate improved prompts. While in-context learning holds great promise,
it is essential to acknowledge that increasing the number of training examples does not necessarily
guarantee better performance. As demonstrated by [Min et al[ (2022), a critical threshold exists for the
number of training examples, and surpassing this threshold leads to a decline in performance. Thus,
in our specific settings, augmenting the training examples did not yield better results.

Given its inherent complexity and non-deterministic nature, we have put forward a hyper-parameter
tuning approach, presented in Table 3] aimed at determining these hyper-parameters for new configu-
ration settings.

Prompt Modifier temperature Lastly, we examine the influence of the generation temperature for
the prompt modifier. Ideally, the prompt modifier should have enough diversity to generate potential
improvements for the prompts of both the generator and discriminator. Intuitively, this means we
should not use greedy decoding with a temperature of O for the prompt modifier. As demonstrated
in Figure[7] a temperature of 0.6 works well, providing a sufficiently large search space while still
generating high-quality prompts.
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Figure 6: Ablation study on the number of sampled Figure 7: Ablation study on temperature of the prompt

prompt 7.

Initial

You are given a review about a place. You need to
provide a rating from "1 star" to "5 stars" for this place.

Input: Although I did enjoy the food here, I was
completely unimpressed (and slightly annoyed) by
the overpriced margaritas. I ordered a platinum
which contained \"fresh\" juice. It tasted like it had
sprite in it, so I thought surely she gave me the
wrong one. It turns out that \"fresh juice\" is really

modifier.

First Iteration

— Please rate this place from 1 to 5 stars.

Input: T was really disappointed with my
experience here. The food was okay, but the
service was terrible and the prices were way
too high. I ordered a margarita and it tasted

like it had sprite in it. When I asked the server
about it, she said that "fresh juice" is really just

Second Iteration

Please rate this place on a scale of 1 to
—
5 stars.

Input: I was really disappointed with
the food here. The margaritas were

margarita mix on tap from the same gun as the —  margarita mix on tap. I asked for something .

. . X B overpriced and not very good.
sprite. I asked for something fresh to replace the fresh to replace the horrible margarita and

. . . . . A . Output: 2 stars

horrible margarita and received a rocks glass with received a rocks glass with just muddled lime
just muddled lime and a salted rim. I'm not sure it and a salted rim. I'm not sure it even contained
contained any tequila. Horrible! It's not that hard any tequila. Horrible! It's not that hard to make
to make a fresh margarita! a fresh margarita.
Output: 2 stars Output: 2 stars
Input: The food here is okay but the
owner/cashier/cook/busser/host is extremely ride and Input: The food here is pretty good, but the
has no idea what service or sanitation is at all! After service could use some improvement. I had to Input: The food here is pretty good, but
touching the register he begins to hand toss the salad ~ — wait a long time for my food, and the waitress — the service could be better.

with his unwashed hands.... Not only over price but
not clean either!
Output: 1 star

was pretty rude.
Output: 3 stars

Output: 3 stars

Figure 8: Qualitative analysis on the classification task Yelp.

Prompt Modifier performance inspection Here we present the detailed results of human eval-
uation on generated instructions and demonstrations respectively. Details are shown in Table [0
text-davinci-002 and ChatGPT achieve similar performance with the zero-shot prompt modifier, while
Vicuna performs a little bit worse but also achieves an acceptable correctness (> 80).

Model 30 instructions 70 demonstrations Overall
text-davinci-002 93.3 85.7 88.0
Vicuna v1.5 90.0 80.0 83.0
ChatGPT 96.7 88.6 91.0

Table 9: Human evaluation results for each specific type of modifications.

More qualitative analysis Here, we also show an additional case of qualitative analysis on Yelp.
As shown in |8} the optimization follows a similar pattern with that on the data-to-text task.

Detailed results on MMLU In Figure[9] we show the detailed results on MMLU with ChatGPT.
As shown in the graph, adv-ICL achieves significant improvements on most tasks.
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Figure 9: Results on MMLU using ChatGPT, where the y-axis begins at 25%, representing the baseline of
random choices.

Detailed results on BBH 1In Figure[T0] we show the full results of ChatGPT on BIG-Bench Hard
using 5-shot Chain-of-Thought prompting. The baseline achieves an average of 68.2% accuracy
while adv-ICL reaches an average of accuracy of 70.6% and never performs worse than the baseline.

[ Few Shot

word-sorting 1 Adv-ICL
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Figure 10: Full results on BBH using ChatGPT and 5-shot CoT prompting.
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