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Abstract

Without accurate transcription of numerical data in scientific documents, a scientist
cannot draw accurate conclusions. Unfortunately, the process of copying numerical
data from one paper to another is prone to human error. In this paper, we propose to
meet this challenge through the novel task of automatic table verification (AutoTV),
in which the objective is to verify the accuracy of numerical data in tables by
cross-referencing cited sources. To support this task, we propose a new benchmark,
arXiVeri, which comprises tabular data drawn from open-access academic papers
on arXiv. We introduce metrics to evaluate the performance of a table verifier in
two key areas: (i) table matching, which aims to identify the source table in a cited
document that corresponds to a target table, and (ii) cell matching, which aims to
locate shared cells between a target and source table and identify their row and
column indices accurately. By leveraging the flexible capabilities of modern large
language models (LLMs), we propose simple baselines for table verification. Our
findings highlight the complexity of this task, even for state-of-the-art LLMs like
OpenAI’s GPT-4. The code and benchmark is made publicly available.1

1 Introduction
Many areas of scientific research employ numerical data to analyse, summarise and communicate
findings. When a researcher proposes a new framework, model or algorithm, it is often informative to
compare their contribution with prior work by comparing performance metrics. These performance
metrics are typically collated in tables that are interleaved with the body of text contained within
scientific manuscripts. In practice, to enable the comparison, it is common for the researcher to
manually copy performance metrics from the original manuscript into their own manuscript. While
pragmatic, this copying process is susceptible to human error. When errors are introduced, the
conclusions drawn from the comparisons are also affected. Given the importance of transferring
such data correctly, there is a need for mechanisms that ensure its fidelity, but such tooling is not yet
available. In short, we lack a “spell checker” for manually copied scientific data.

On first sight, the problem appears simple—after all, verifying that two numbers are equal is not a
mathematically complicated task. However, in practice, it is beset with technical difficulties. Tables in
the scientific literature are designed to be readable for a human audience rather than machine parsers.
As such, they can vary significantly in layout, design, naming convention and manuscript location.
The same numerical data may itself be reported at different levels of precision, using percentages,
fractions or decimals and in absolute or relative metrics.

To meet these challenges we propose the task of automatic table verification—authenticating the
numerical data encapsulated in tables by cross-verifying the referred sources. Specifically, we tackle
this task with Large Language Models (LLMs) inspired by their strong performance in many text-
based processing tasks [33, 31, 28, 18, 6, 19, 30, 21, 4, 22]. To facilitate evaluation of this task and
address the incumbent challenges, we introduce arXiVeri, a succinct benchmark composed of tabular
1Code and benchmark are available at https://github.com/caml-lab/research/tree/main/arxiveri
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Figure 1: (Left) Table matching: given a target table from one paper and a list of source tables
from another paper cited in the target table, the verifier needs to identify the source table containing
numeric data, specifically floating point numbers, that supports the data presented in the target table.
(Right) Cell matching: given a target table and a source table, the verifier needs to identify and locate
cells that hold the same semantic content in both tables, subsequently outputting the respective row
and column indices of these matching cells in each table. The cells that are emphasised in red depict
the instances of hard negative cases. Best viewed in colour.

data extracted from open-access academic papers on arXiv. We further propose evaluation metrics
for gauging the efficacy of the verification system in two key dimensions: table matching and cell
matching. The former involves identifying the equivalent source table in a cited document for a given
target table, while the latter aims to pair shared cells between a target and source table, and accurately
identify their respective indices (see Fig. 1). Our experimental findings underscore the complexity
inherent to the task (with frontier models such as GPT-4 [18] struggling in many cases), indicating
that there is considerable room for further research progress.

Our contributions can be summarised as follows: (i) We introduce a new and challenging task
called Automatic Table Verification (AutoTV), paving the way for advancements in automatic data
verification in scientific documents; (ii) To stimulate further research in the AutoTV field, we
introduce a benchmark dataset named arXiVeri, comprised of 3.8K target-source cell pairs and 158
target-source table pairs, sourced from publicly accessible papers on arXiv; (iii) To facilitate the
assessment of AutoTV, we define a set of evaluation metrics for table matching and cell matching
sub-tasks. In addition, we provide baselines to underpin future comparisons. (iv) Finally, we conduct
a range of ablation studies to evaluate the key components of our approach which bring noticeable
performance gains.

2 Related work
Our work is connected to large language models (LLMs) for scientific research, table detection and
table structure recognition, and automating human labour with LLMs, which we describe next.

Large language models for scientific research. LLMs have been adapted for scientific research
through various avenues, such as utilising models pretrained on scientific text to enhance performance
in scientific NLP tasks [2, 29]. There are also notable advances in the biomedical sector, where
specialised LLMs pretrained on biomedical text have demonstrated considerable improvements [25].
Additionally, the compilation of extensive academic paper corpora equipped with metadata and
structured full text is proving to be an invaluable resource for academic research and text mining [16].
Alongside these advancements, there are investigations into the consequences of model scaling in
scientific applications, evaluating the relationship between model size and performance [11]. Our
research further develops this field by presenting a new challenge: automatic table verification
in scientific documents, highlighting the essential role of data accuracy and integrity via cross-
referencing cited sources.

Tasks for tables in a single document. Recent advancements in table-related tasks have pri-
marily focused on detecting tables within documents and understanding their structure within a
single document. Early efforts developed practical algorithms for detecting tables in heterogeneous
documents [24], which later evolved with the incorporation of deep learning, specifically using
Convolutional Neural Networks (CNNs), to enhance detection in PDF documents by combining
visual features with non-visual information [10]. Subsequent research introduced end-to-end deep
learning systems capable of not only detecting tables but also recognising their structure in document
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images, without the need for metadata or heuristics [23]. Later work tackled both table detection
and structure recognition simultaneously [20]. Prior work has also explored dataset construction for
table extraction from unstructured documents [26]. However, the central theme of these works has
remained the detection and structural understanding of tables within a single document. In contrast,
we focus on table verification across documents.

Task automation with LLMs. LLMs have significantly impacted various automation tasks. For
instance, Codex [5], an LLM fine-tuned on code from GitHub, exhibits proficient Python code
generation capabilities, automating a task typically requiring human expertise. In the domain of data
annotation, traditionally a labour-intensive task, LLMs like ChatGPT have demonstrated the potential
to outperform human crowd-workers in speed, accuracy, and cost-effectiveness [8]. More recently,
experiments have been conducted with GPT-4 to assess its ability to assist with Neural Architecture
Search (NAS) [34] and interpreting neurons [3]. Our work also targets automation, offering a novel
application of LLMs to automate the intricate task of table verification in scientific documents.

3 Automatic Table Verification
In this section, we define the proposed task of automatic table verification (Sec. 3.1) and metrics to
evaluate the performance of a verifier on this task (Sec. 3.2). Then we describe our approach to tackle
AutoTV (Sec. 3.3).

3.1 Task definition
The high-level objective of Automatic Table Verification (AutoTV) is to confirm that a document,
referenced in a table (termed the target table) within a separate document, contains a corroborative
table (termed the source table) which supports the cited information. When such a source table exists,
AutoTV aims to identify matching cells between the source and target tables.

Our focus is particularly on instances within academic papers, where precise referencing of numeric
data (e.g., floating point numbers) in tables is vital for comparative analysis. We observe that such
in-table citations in academic literature occur for various reasons, including: attributing a specific
approach to its original paper and quoting numerical data from an experimental result. The primary
focus of table verification is the latter case, where a verifier is tasked with solving two sub-tasks
(see Fig. 1): (i) Table matching: detecting a table in the cited document that matches a table in the
referring document and if no such table exists, stating that there is no match; (ii) Cell matching:
identifying correspondences between cells with a floating point number in the source and target
tables that share the same semantic meaning. This implies not only identical numeric values, but also
similar meanings as suggested by their respective table headers. The process includes pinpointing the
location of such cells by providing their respective row and column indices in each table.

We note that these sub-tasks pose distinct challenges. First, there may not be a source table that
matches the target table (e.g., the table citation may simply attribute to another document rather
than quoting numbers). Second, multiple cells within a table (e.g., source table) can share the same
numeric value, making it ambiguous how to pair those cells with ones in another table (e.g., target
table). Third, a table can have a complex structure, with a single cell spanning across multiple rows
and/or columns or featuring multiple headers, making it difficult to identify cell locations.

3.2 Evaluation metrics
To quantitatively measure performance of a verifier on AutoTV, we define four metrics including
table matching accuracy for table matching, cell matching recall, cell matching precision, and F-1
score for cell matching as follows.

Table matching accuracy evaluates the verifier’s ability to accurately identify a source table that
matches a given target table, or to determine that no such source table exists in the cited document.
Formally, given a set of all target tables Tt, a target table t ∈ Tt with a set of Nt in-table references
Rt = {ri|1 ≤ i ≤ Nt}, a set of candidate source tables Ts;ri from a cited document ri, and a
verifier Φ(·, prompt; θ), the table detection accuracy (Acc.) is defined as:

Acc. =

∑
t∈Tt

∑
ri∈Rt

δ[sri;t = ŝri;t]

|Tt|
, ŝri;t = Φ(t, Ts;ri , prompt; θ) (1)

where δ[·], ŝri;t and sri;t denote the Kronecker delta function, the detected source table and the
ground-truth source table in the cited document which matches the given target table t, respectively.
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Target-source cell matching
Input a target table (target_table), a source table (source_table)

System You are a helpful assistant.
User Compare the following target and source tables and identify cells

that contain floating point numbers with the same meaning present in
both tables. Return the matched cells in a Python dictionary with the
following format:

{
(target_table_row_index, target_table_column_index):
(source_table_row_index, source_table_column_index),
...

}
Use 0-based indexing, including headers, rowspan, and colspan at-
tributes. Locate as many matching cell pairs as possible. If no matches
are found, return an empty dictionary ({}).
The target table and its caption: {target_table}
The source table and its caption: {source_table}

GPT-4 Answer

Table 1: Text prompt used for the cell matching task. We apply a regular expression to the answer
string of the model to ensure the final result follows the specified Python dictionary format.

Cell matching recall quantifies the percentage of target-source cell matches that are accurately
identified (i.e., true positives) among a ground-truth set of cell matches across a source table and a
target table. Let us denote the ground-truth set of Nri;t paired cells between a target table t and a
source table sri;t in a cited document ri as Cri;t = {(ct, cri;t)j |1 ≤ j ≤ Nri;t} and a set of N̂ri;t

detected cell matches as Ĉri;t = {(ĉt, ĉri;t)j |1 ≤ j ≤ N̂ri;t} where ct and cri;t represent the row and
column indices of a cell in the target and source tables, resp. Then, the cell matching recall (Recall)
is defined as:

Recall =

∑
t∈Tt

∑
ri∈Rt

|Cri;t ∩ Ĉri;t|∑
t∈Tt

∑
ri∈Rt

|Cri;t|
, Ĉri;t = Φ(t, sri;t, prompt; θ) (2)

Cell matching precision measures how many target-source cell pairs are true positives among all
the detected target-source cell pairs. Using the same notation as above, the cell matching precision
(Prec.) is defined as:

Prec. =

∑
t∈Tt

∑
ri∈Rt

|Cri;t ∩ Ĉri;t|∑
t∈Tt

∑
ri∈Rt

|Ĉri;t|
, Ĉri;t = Φ(t, sri;t, prompt; θ) (3)

F1 score is a harmonic mean of the cell matching recall and precision to encapsulate both the
measures in a single metric:

F1 score = 2
Prec.×Recall

Prec.+Recall
(4)

Remark. All four metrics have a fixed range of [0, 1], with higher values being better. The text
prompt, denoted by prompt, provided to the verifier may vary with the task, i.e., table matching and
cell matching.

3.3 Baseline methods
To tackle AutoTV, we propose baseline approaches for table matching and cell matching as follows.
Table matching. We utilise a text embedding model (e.g., OpenAI’s text-embedding-ada-
002) to embed a target table alongside a set of candidate source tables from a document cited in
the target table, including their respective captions. It is worth mentioning that the tables are in
HTML format by default which we extract during the data collection process (detailed in Sec. 4.1).
Subsequently, we rank the candidate tables based on their cosine similarities with the target table in
the embedding space, selecting the one with the highest similarity score that also shares at least one
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Figure 2: Data collection pipeline for the arXiVeri benchmark. Top: We randomly select open-
access papers under the CC-BY license from arXiv and extract tables with in-table references (i.e.
target tables) from an HTML5 version of the selected papers. Then, we repeat the process to retrieve
the cited papers and their tables. Bottom left: To identify a candidate source table, which supports a
target table, we pick one which has the most cells which are shared with the target table. Bottom
right: Given the target and the candidate source table, we manually pair the common cells between
them. If no paired cells are identified, we conclude that the candidate source table is a false positive
and the source paper does not contain any matching source table for the target table. See the text for
the details. Best viewed in colour.

floating point number with the target table. As the final step, we label the prediction as “no match
found” if the chosen table’s similarity score falls below a specified threshold.

In addition, we consider weighting each candidate table based on the number of floating point
numbers that it shares with the target table before ranking them with their cosine similarity. In
essence, we multiply the similarity score for a candidate table by a weight, which is determined by
the number of floating-point numbers shared with the target table. Specifically, we sort the candidate
tables based on the number of shared floats and assign each table with a weight between 0 and 1
according to their rank such that the table with the most shared floats is assigned with 1. These
weights are evenly distributed with intervals of 1 divided by the count of candidate tables that share at
least one floating point number with the target table. For tables that do not share any floating points,
we assign a weight of 0. We show the effect of the weighting in Sec. 5.2.

Importantly, in all cases, floating point numbers are normalised to account for potential unit differences
between the source and target tables.
Cell matching. We employ GPT-4 to extract matches between target-source cells containing a
floating point number present in both target and source tables. As detailed in Sec. 3.2, each match
is depicted as a pair of row and column indices for a cell in the target table and its corresponding
cell in the source table. To facilitate this, we direct GPT-4 to generate a string representing a Python
dictionary where keys denote cell indices in the target table and values represent indices in the source
table as shown in Tab. 1. We then extract this dictionary using a regular expression that conforms to
a specified dictionary pattern. For cell matching, we experiment with different types of commonly
used table formats including HTML, CSV, or Markdown and show the effect of the table format
in Sec. 5.2.

4 arXiVeri benchmark

Here, we introduce a benchmark composed of academic papers from arXiv, termed arXiVeri, for
measuring performance of a verifier on the proposed AutoTV task. We first detail the data collection
process (Sec. 4.1) and provide statistics of the arXiVeri benchmark (Sec. 4.2).
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4.1 Data collection
As shown in Fig. 2, our data collection process is composed of three steps: (i) target and source paper
retrieval, (ii) target-source table matching, and (iii) manual cell paring, as detailed next.
Target and source paper retrieval. We begin by collecting recent arXiv papers published in
2022 under the CC-BY license, using the open-source arXiv API.2 We specifically focus on papers
categorised as cs.CV, which had the highest number of submissions on arXiv in 2022. We extract
tables along with their captions from each paper’s HTML5 format using ar5iv,3 which enables us
to isolate tables from other elements such as main text by accessing the appropriate HTML tags
(e.g., <table>). Subsequently, we employ an Elasticsearch-based arXiv search system to retrieve
papers cited in each table (termed the source papers) with their title available in the "References"
section of the referring paper (termed the target paper). As the title of a cited paper in the References
section is often presented with irrelevant information (e.g., a url to a code) for the search system, we
utilise GPT-3.5-turbo to extract the title from the whole reference information of a cited paper.
Importantly, to increase the benchmark’s complexity, we omit the cited paper if it does not contain a
table sharing at least one cell value with the target table, or if it does not contain more than one table.
Target-source table matching. Given a table in a target paper (i.e., the target table) and a source
paper which is cited in the target table, we select a table among the set of tables extracted from the
source paper (using the same method described above) that supports the target table (i.e., the source
table). Specifically, we choose a table that has the highest number of shared floating-point numbers
with the target table to be the candidate source table. By iterating through all the references in a
target table, we identify a corresponding candidate source table in each cited paper.

It is important to note that a target paper can have multiple tables referring to the same source paper,
resulting in several potential table matchings between the target and source papers. In such cases,
we choose the matching with the highest number of overlapping floating-point numbers per one
target-source paper pair to increase the diversity of papers in the arXiVeri benchmark.
Manual cell pairing. In the final step of the collection process, we manually match cells that
are commonly found in both target and candidate source tables. To determine a correct cell pair,
we compare two cells from the tables and mark them as a match if they meet all of the following
conditions:

(i) Both cells must represent the same value with an identical meaning, as indicated by their
respective row and column headers.

(ii) Each cell must not contain more than one floating-point number for different metrics,
avoiding the use of delimiters such as a comma (‘,’) or a slash (‘/’).

(iii) If both cells have the same number of significant digits and the same unit, they must be
exactly identical; for example, ‘12.3’ and ‘12.4’ would be treated as an incorrect pair.

The first condition ensures that matched cells have the same meaning as well as value, as determined
by their row and column headers. The second condition aims to remove ambiguity during the
evaluation step by avoiding cases where a single cell with multiple values is mapped to several cells
in another table. The third condition accounts for potential discrepancies in rounding methods or
mistakes, requiring matched cells to have the exact values given the same significant digits. If no
such cell pairs are found between the target and candidate source tables, we regard the table pair does
not have a source table from the source paper for the target table. On the other hand, if there is at
least one cell pair, we treat the candidate source table as the source table (for the target table).
Post-processing. To ensure that the models used in our experiments can process each table and its
caption as input, we filter out tables whose token length, including their captions, exceeds 3,072, as
estimated by a tokeniser (i.e., tiktoken4)

4.2 Statistics
We annotate a total of 3.8K cell pairs from 158 target-source table pairs, involving 110 different
target papers and 158 distinct source papers. As illustrated in Fig. 3, we make three observations: (i)
source papers contain an average of 4.6 tables, with three being the most frequent number of tables in
a source paper; (ii) on average, there are 19.5 cell pairs between a target and a source table with the
minimum and maximum number of cell pairs being 1 and 84, resp.; (iii) the dimensions of tables
in the dataset exhibit a considerable range, with the smallest table measuring 4 by 5 and the largest
reaching 20 by 19. On average, tables tend to fall around the size of 15.9 by 8.0.
2https://github.com/lukasschwab/arxiv.py
3https://ar5iv.labs.arxiv.org
4https://github.com/openai/tiktoken
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Figure 3: Data statistics of the arXiVeri dataset. Left: A histogram illustrating the count distribution
of tables within source papers. Middle: A histogram representing 3.8K of shared cells between target
and source tables. Right: A distribution plot of table dimensions (rows and columns), with colour
indicating table size, and the average dimensions marked in red. Best viewed in colour.

5 Experiments
In this section, we first provide implementation details in Sec. 5.1 and conduct ablation studies
in Sec. 5.2 to investigate each component of our approach for the proposed AutoTV task.

5.1 Implementation details
For the task of table matching, we employ four different text embedding models. These include
OpenAI’s text-embedding-ada-002 which has an output dimension of 1536, as well as three
models from Cohere: embed-multilingual-v2.0, embed-english-v2.0, and embed-
english-light-v2.0, with respective output dimensions of 768, 4096, and 1024. For the cell
matching task, we employ the gpt-4-0314 model with a maximum length of 8,192 tokens and set
the temperature parameter τ to 0, unless specified otherwise. To further minimize variability in the
model’s performance, we report the average score obtained by running each model three times across
our experiments.

5.2 Ablation study
Effect of text embedding models on table matching. To investigate the influence of selecting
different text embedding models, we evaluate four different models, as depicted in Tab. 2 (left).
Alongside, we measure the performance of two baseline strategies: (i) “random”, which selects a
table from a candidate set of source tables, including “no match”, and (ii) “overlap”, which chooses a
table that shares the most floating point numbers with the target table. As can be seen, each of the
four embedding models significantly outperforms the baseline strategies by a margin of 12.7-15.8%.
Among them, the embed-english-light-v2.0 model from Cohere demonstrates the best
performance.
Effect of weighting on table matching. As described in Sec. 3.3, we further refine our approach by
weighting each candidate table based on the number of shared floating point numbers with the target
table. Tab. 2 (right) illustrates the impact of this weighting mechanism on the performance of each
embedding model. Notably, implementing this weighting strategy improves performance across all
four embedding models, underscoring its effectiveness.

Effect of table format and providing cell indices. In the cell matching task, we explore three
different table formats—HTML, CSV, and Markdown—for feeding tables to GPT-4. We posit that to
enable the model to accurately identify a cell’s location, providing explicit row and column indices
for each cell could be beneficial. To verify this hypothesis, we also assess performance of the model
when row and column indices are explicitly specified on the left and top of a table, resp.
From our results in Tab. 3 (left), we can see that the choice of format significantly influences the
model’s performance with the HTML format yielding the best performance in the absence of cell
indices. We conjecture that this is because the HTML format contains more distinctive delimiters
such as <tr> and <td> for table rows and table columns compared to CSV or Markdown where the
model has to infer a cell location by counting a line break character and a comma (‘,’), which can
appear in other parts of the input than the actual table (e.g., text prompt and caption). Indeed, when
cell indices are provided with an input table, we can observe that both of the CSV and Markdown
formats have significant boost in all of the Recall, Prec., and F1 metrics, outperforming the HTML
format. Examples of each format are provided in the supplementary materials.
Effect of temperature. In addition, we experiment with the temperature parameter in GPT-4, which
modulates the randomness of the model’s output. High values (nearing 1) introduce diversity, while
low values (tending towards 0) enhance deterministic behavior. As shown in Tab. 3 (right), we
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Figure 4: A qualitative example of our approach for the cell matching task. Cells marked in
green denote accurate correspondences, while those highlighted in orange indicate mismatches.

method Inc. dim. Acc.

random - - 13.7
overlap - - 27.2

text-embedding-ada-002 OpenAI 1536 41.1
embed-multilingual-v2.0 Cohere 768 39.9
embed-english-v2.0 Cohere 4096 42.4
embed-english-light-v2.0 Cohere 1024 43.0

method weighting Acc.

text-embedding-ada-002 ✗ 36.1
text-embedding-ada-002 ✓ 41.1 (+5.0)

embed-multilingual-v2.0 ✗ 34.2
embed-multilingual-v2.0 ✓ 39.9 (+5.7)

embed-english-v2.0 ✗ 39.9
embed-english-v2.0 ✓ 42.4 (+2.5)

embed-english-light-v2.0 ✗ 38.6
embed-english-light-v2.0 ✓ 43.0 (+4.4)

Table 2: Ablation studies on the table matching task. Left: we examine the impact of employing
different text embedding models. We also offer random and overlap baselines denoted in grey (see
the text for details). Right: we investigate the influence of implementing our proposed weighting
function on the predictions generated by each embedding model.

format cell index Recall Prec. F1 score

HTML - 30.8 22.8 26.2
CSV ✗ 21.2 16.2 18.4
Markdown ✗ 18.1 13.5 15.4

CSV ✓ 48.1 (+26.9) 45.8 (+29.6) 46.9 (+28.5)
Markdown ✓ 49.4 (+31.3) 47.1 (+33.6) 48.2 (+32.8)

τ Recall Prec. F1 score

0.0 49.4 47.1 48.2
0.25 50.7 46.8 48.7
0.50 49.0 46.8 47.9
0.75 46.0 44.2 45.0
1.0 48.5 52.3 50.3

Table 3: Ablation studies on the cell matching task. Left: the impact of various input table formats,
namely HTML, CSV, and Markdown and the influence of supplying cell indices for each table in the
CSV and Markdown formats. Right: the effect of the temperature parameter for GPT-4 (using the
Markdown format tables).
test temperatures of {0, 0.25, 0.5, 0.75, 1.0}, and find the optimal performance at a setting of 1.0,
favouring diversity.
Qualitative example. In Fig. 4, we visualise GPT-4’s predictions for the cell matching task. As
can be noted, the model can map semantically identical cells despite unit differences in the target
and source tables whereas it also predicts incorrect mappings between cells that represent different
meanings (i.e., different metrics and methods). More examples are shown in the supplementary
materials.
6 Conclusion
In this paper we address the critical task of ensuring numerical data accuracy in academic documents
by introducing a novel task—automatic table verification—leveraging the capabilities of large
language models. For this, we presented arXiVeri, a benchmark comprising tabular data from arXiv
papers, and proposed metrics for evaluating verification performance. Despite the sophistication of
advanced models like GPT-4, our findings underline the inherent complexity of the task, underscoring
the necessity for further research in this field.
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Appendices
In this supplementary material, we first describe the limitations (Sec. A) and broader impacts (Sec. B)
of our work. Next, we provide additional statistics for the arXiVeri dataset in Sec. C and show
examples of tables in different formats in Sec. D. Then we describe details of the prompts used for
our ablation study in Sec. E and provide additional examples of predictions made by GPT-4 on the
cell matching task in Sec. F. Lastly, we visualise an actual case where we find human errors in the
process of quoting numeric data between tables in Sec. G.

A Limitations
We acknowledge several limitations to our approach. First, our task of automatic table verification
currently only processes tables in text formats like HTML, CSV, or Markdown. This means our
approach may not be suitable for table data embedded within images or PDF files, which are common
formats in many documents. Second, the data collection pipeline for our arXiVeri benchmark is
specifically designed to operate with arXiv papers that can be successfully transformed from PDF to
HTML format via ar5iv. While this conversion allows us to cleanly extract tables with appropriate
tags (e.g., <table>), this process may exclude certain papers if the conversion is unsuccessful,
which could limit the diversity of table types included in the benchmark and potentially introduce a
selection bias. Third, while the benchmark includes data from academic papers on arXiv, it may not
fully encapsulate the variety of tables encountered across different domains. This could restrict the
generality of our dataset. Future work should aim to extend our data collection pipeline to cater to
a broader range of table sources. Lastly, we have limited insight into the GPT-4 inference process
via OpenAI’s API, and it is unclear if our encoded text is pre-processed or the model’s output is
post-processed. This can potentially affect the reproducibility of the experiments.

B Broader impacts
The automatic table verification proposed in this work has potential utility for many domains. In
scientific research, it can reduce human error in data transcription and thus prevent such errors
from influencing the interpretation of empirical data. In industries such as finance, healthcare, and
engineering, it can ensure data accuracy, preventing costly mistakes.

Turning to negative impacts, the deployment of table verification (particularly while it remains far
from perfect) may produce an elevated risk of over-reliance on the technology (with fewer “sanity
checks” performed by researchers). More broadly, task automation may contribute to potential job
displacement.

Finally, we note that care must be taken to mitigate privacy risks when deploying table verification
across sensitive documents.
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Figure 5: Additional statistics for the arXiVeri bechmark.

C Additional statistics

Here, we provide further details of statistics for the proposed benchmark, arXiVeri. In Fig. 5, we
display the histogram of source paper counts per target table (left) and the distribution of matched
cell locations in tables (right). We observe that (i) most target tables have a single source paper which
is retrieved through the data collection pipeline (as decribed in Sec. 4 of the main paper) with the
maximum number of source papers being 4; (ii) the locations of paired cells range from 1 to 33 for
row indices, and from 1 to 20 for column indices, with an average cell location of approximately 7.3
and 4.9, respectively. Note that this is due to the fact that the average dimensions of the tables in the
arXiVeri benchmark is 15.9 by 8.0, causing the average location of matching cells to fall short of the
average dimensions of the tables.
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Figure 6: Examples of three different table formats used in our ablation study. From top to
bottom, the original table from [7], and the HTML, CSV, and Markdown formats are shown.

D Examples of table formats

In Fig. 6, we display examples of three table formats considered in our ablation study: HTML,
CSV, and Markdown. In the case of CSV and Markdown formats, table headers are reformatted to
accommodate cells spanning multiple columns in the original table by repeating the cell value (i.e.,
TGIF, MSRVTT, and LSMDC).
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Target-source cell matching
Input a target table (target_table), a source table (source_table)

System You are a helpful assistant.
User Compare the following target and source tables and identify cells

that contain floating point numbers with the same meaning present in
both tables. Return the matched cells in a Python dictionary with the
following format:

{
(target_table_row_index, target_table_column_index):
(source_table_row_index, source_table_column_index),
...

}
Use 0-based indexing. Locate as many matching cell pairs as possible.
If no matches are found, return an empty dictionary ({}).
The target table and its caption: {target_table}
The source table and its caption: {source_table}

GPT-4 Answer

Table 4: Text prompt used for CSV and Markdown format tables on the cell matching task.

Target-source cell matching
Input a target table (target_table), a source table (source_table)

System You are a helpful assistant.
User Compare the following target and source tables and identify cells

that contain floating point numbers with the same meaning present in
both tables. Return the matched cells in a Python dictionary with the
following format:

{
(target_table_row_index, target_table_column_index):
(source_table_row_index, source_table_column_index),
...

}
Use the row and column indices provided on the leftmost column and
the topmost row of the tables, respectively. These indices are numerical
and serve as identifiers to specify the location of each cell within the
table. The row index is listed vertically along the left side of the table,
while the column index is listed horizontally at the top. If no matches
are found, return an empty dictionary ({}).
The target table and its caption: {target_table}
The source table and its caption: {source_table}

GPT-4 Answer

Table 5: Text prompt used for CSV and Markdown format tables with cell indices (on the cell
matching task).

E Prompts for cell matching

While the prompt shown in Sec. 3.3 of the main paper is used for tables in the HTML format, a
slightly different prompt shown in Tab. 4 is utilised for the CSV and Markdown formats due to the
absence of HTML attributes such as colspan (refer to Fig. 6 to see the differences between these
table formats). For the case where we provide cell indices along with the tables, we employ the
prompt as shown in Tab. 5.
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Figure 7: Two successful examples of cell matching predicted by GPT-4. Even though there exist
cells in both the target and source tables with identical values but different meanings as indicated
by their respective table headers (marked in red), the model appropriately pairs only those cells that
share both meaning and value. In both cases, the target tables are located on the left and the source
tables on the right. The shaded area in the top left table denote cells that have been omitted for visual
clarity. The tables are from [32, 1, 27, 13]. Best viewed in colour.

F More qualitative examples

In Fig. 7, we present examples of successful applications of GPT-4 for cell matching, while Fig. 8
showcases two typical instances where GPT-4 failed to correctly perform the task. As observed in the
successful cases, the model adeptly pairs cells from the target and source tables based on the shared
meaning and value of the cells, even in the presence of hard negatives (i.e., cells highlighted in red)
that exhibit the same value but differ in meaning.

In the failure cases, we observe that GPT-4 often matches cells based solely on their meanings, as
defined by their respective table headers, despite the fact that the actual cell values between the pair
differ. Another frequent type of error involves the model inaccurately locating cell indices.
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Figure 8: Two common failure cases for cell matching are shown. Green and orange arrows denote
correct and incorrect cell matchings. Top: while GPT-4 paired the cells based on the meanings of
the cells defined by their table headers, it failed to verify whether the cells also share the same value.
Bottom: GPT-4 incorrectly positioned the cell indices in the target table (upper table) by shifting the
matched cells one position to the right. The tables are from [9, 12, 14, 15].
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Figure 9: A practical example of a human error occurring during the process of transferring
numerical data from one table to another. Although the numbers from the source table [35] are
accurately copied and pasted into the target table [17] while maintaining their original order (indicated
in green), the sequence of the column headers in the target table has been altered (highlighted in red).

G Examples of human errors in transferring numeric data

Here, we visualise a practical example where we find human errors in the process of quoting numbers
from a table to another. In Fig. 9, we note that the target table contains the numbers from the source
table while keeping their order whereas the sequence of column headers is changed. We emphasise
that our intention is not to cast blame on the authors of the target paper, but merely to highlight that
such errors can inadvertently occur due to human oversight. This highlights the need for automatic
table verification tools.
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