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ABSTRACT

Deep understanding of electromagnetic signals is a prerequisite for electromag-
netic space intelligence applications. Electromagnetic signals, with their high
heterogeneity and prominent time-frequency dynamics, pose challenges for ex-
tracting representative features. Moreover, the scarcity of high-quality datasets
further hinders the performance of electromagnetic signal foundation models un-
der cross-task and cross-scenario conditions. To address these issues, we present a
pre-training pipeline for electromagnetic signals foundation model, featuring the
creation of a large-scale electromagnetic signal dataset and a foundation model to
extract generalizable representations across diverse signals. We curate EMdata-
81M, a high-quality electromagnetic signal dataset integrating 14 public and in-
house sources, which is cleaned, annotated, and formatted uniformly. EMdata-
81M comprises 81 million samples, covering 4 scene types, with signal lengths
ranging from 128 to 4,096. To enable efficient training of large-scale variable-
length data, we propose EMind, a foundation model tailored for electromagnetic
signals. Specifically, EMind leverages a low-redundancy length adaptive multi-
signal packing method and a hardware-aware adjustable dataset weighting strat-
egy, improving representative feature extraction and, in turn, enhancing perfor-
mance across downstream tasks. Extensive experiments demonstrate that EMind
achieves state-of-the-art in various tasks, including modulation classification, pa-
rameter regression, radio frequency fingerprinting, and interference recognition,
under full fine-tuning, strict train-test splits, and few-shot scenarios. It further at-
tains competitive results on generative tasks including blind source separation and
signal denoising. This highlights the effectiveness and scalability of our pipeline
in unified electromagnetic signal understanding. The dataset and evluation code
is available at: EMind.

1 INTRODUCTION

Living in a world surrounded by invisible yet ubiquitous electromagnetic (EM) signals, we encounter
rich information used in essential areas like communication, navigation, and security. Understand-
ing EM signals, encompassing wireless signal recognition, target parameter prediction, interference
identification and waveform denoising and reconstruction, underlies cornerstones of critical appli-
cations such as cognitive radio technology and integrated sensing and communication (ISAC).

Inspired by the breakthroughs in foundation models in computer vision Dosovitskiy et al. (2020) and
speech processing Radford et al. (2023), the study on EM signal foundation models has gained atten-
tion Hao et al. (2023); Zhang et al. (2023b). However, EM signals differ fundamentally from images,
videos, and audio. They exhibit more significant data distribution shifts than images, extreme spar-
sity compared to videos, and stronger non-stationary properties than audio. Moreover, EM signals
manifest not only diverse types with high heterogeneity but also prominent time-frequency dynam-
ics (see Figure 1 (a)). These characteristics hinder the direct transfer of existing models, requiring
the development of specialized foundation models for this modality. The development of EM signal
foundation models faces two major issues: (i) most EM signals come from from non-cooperative
scenarios with encrypted or undisclosed protocols, leading to fragmented and non-standardized data,
the difficulty of acquiring high-quality datasets impedes the sufficient training of foundation models;
(ii) existing datasets Chi et al. (2024) Chen et al. (2024) Chen et al. (2025) Zhou et al. (2025) lack
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(a) Visualization of signals (b) Comparison of EM signals pre-train datasets
Figure 1: (a) Challenge of processing EM signals, including heterogeneity and time-frequency dynamics. (b)
Comparison of EM signals pre-train datasets: the volume of EMdata-81M surpasses at least 5× compared to
existing datasets, encompassing a broader range of scene types from both public and in-house sources, and
covering a wider span of signal lengths.

diversity in scene types and signal lengths, with limited data scale, restricting the generalization of
learned representations.

In address this challenge, we first systematically integrated EM signal datasets from various scene
types, including communication, radar, radio frequency (RF), and interference. However, due to
multiple data sources, varying formats, and inconsistent annotations, we conducted cleaning and
standardized processing. All data are unified into raw IQ (In-Phase/Quadrature) format with param-
eters annotated, which leads to the creation of the largest known EM signal dataset, EMdata-81M,
containing 81 million signal samples. The dataset is designed to fully leverage the representation
learning potential of large-scale pretrain-finetune paradigms for EM signal applications. EMdata-
81M surpasses previous datasets Chi et al. (2024) Chen et al. (2024) Chen et al. (2025) Zhou et al.
(2025) by at least five times (see Figure 1 (b)), encompassing diverse requirements for downstream
tasks, including various transmitters and receivers, multiple signal types, and a wide range of signal
lengths and sampling rates.

Despite recent advances in EM signal foundation models Chen et al. (2025) Zhou et al. (2025), large-
scale pre-training remains hindered by heavy computational demands and slow convergence. In
particular, when scaling up to EMdata-81M, two key challenges emerge: (i) signal lengths vary dra-
matically from 128 to 4,096 samples (a 32× difference), complicating efficient training; and (ii) data
from diverse sources require control of weighting to ensure balanced and sufficient training. To han-
dle variable lengths, we adopt low-redundancy length adaptive multi-signal packing, aligning 128 to
4,096 sample signals per batch to reduce padding and ensure unbiased gradients. For dataset imbal-
ance, we employ hardware-aware adajustable dataset weighting strategy, down-weighting overfitted
datasets and up-weighting harder ones for balanced coverage and stable convergence in 80M-scale
training. Building on these techniques, we propose EMind, a foundation model tailored for EM
signals, the learned representations advance multiple downstream tasks including Automatic Mod-
ulation Classification (AMC), Radar Waveform Classification (RWC), Radar Parameter Estimation
(RPE), Wireless Interference Identification (WII), and Radio Frequency Fingerprinting Identifica-
tion (RFFI). More importantly, the representations empower generative models, benefiting intricate
reconstruction tasks like Blind Source Separation (BSS) and Signal Denoising (SD). The proposed
EMind demonstrates both the broad applicability of pre-training in EM tasks and the potential to ad-
vance EM intelligence from task-specific models toward general-purpose understanding (see Fig. 2).
In summary, this paper presents three main contributions:

• We construct EMdata-81M, the largest EM dataset to date, with 81 million samples cover-
ing diverse signal types, rich attribute labels, and variable sample lengths, all standardized
stored to provide a rubost basis for large-scale pre-training.

• We propose EMind, a foundation model specifically tailored for EM signals. The network
architecture of EMind is designed for the EM modality, employing low-redundancy length
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Figure 2: EMind: A foundation model for EM signals, capable of multitask learning and applicable across
diverse domains such as communication, navigation, and security.

adaptive multi-signal packing and hardware-aware adjustable dataset weighting strategy,
which ensures the acquisition of generalizable and transferable representations.

• EMind systematically validates the applicability of pretrain–finetune paradigm for EM sig-
nal tasks, markedly reducing reliance on task-specific designs and setting new SOTA re-
sults. Notably, EMind effectively extends to generative tasks like BSS and SD, empirically
showing that learned features retain their efficacy thus broadening the paradigm’s applica-
bility in the EM signal understanding.

2 PROBLEM FORMULATION AND CHALLENGES

EM signals are a special type of time-series data, typically transmitted through the wireless channel.
At the receiver, a real-valued signal x(t) with carrier frequency fc can be witten as,

x(t) = I(t) cos (2πfct)−Q(t) sin (2πfct) , (1)
where I(t) and Q(t) represent the in-phase and quadrature-phase components of the signal, respec-
tively. The baseband signal is discretized at a sampling rate fs and digitally downconverted (DDC),
yielding a discrete complex IQ signal, which is,

s[n] = I[n] + jQ[n], n = 0, 1, 2, . . . , N − 1. (2)
Here, N represents the length of the samples. As the complexity of the EM space continues to
increase, both the types and quantity of EM signals are rapidly growing. However, due to non-
negligible differences in signal features and task types, single-task models show poor generalization
and low training efficiency. Therefore, there is an urgent need for a foundation model capable of
learning generalizable representations for multiple downstream tasks. Nevertheless, developing such
an EM signal foundation model still faces the following challenges:

Challenge 1: Constructing a unified pre-training dataset for EM signals. Current EM signal
datasets face several bottlenecks. Simulation data coarsely model complex real-world conditions,
limiting their ability to replicate realistic EM environments. Self-collected data are scarce due to
non-cooperative sources and encrypted or undisclosed protocols, resulting in missing key infor-
mation and few labelable samples. Open-source datasets are limited in size and diversity, with
inconsistent metadata and file formats, making cross-dataset integration costly. Hence, obtaining
diverse, large-scale, high-quality pre-training dataset for EM signals remains challenging, forming
a key bottleneck for foundation model development in this area.

Challenge 2: Developing an effective foundation model toward EM signals. EM signals are
highly diverse, with heterogeneous characteristics and propagation traits, and include both long-
term sequences and short bursts, each requiring different training preferences. Therefore, designing
a network architecture that accounts for the physical properties of EM signals while effectively
extracting their universal features, has become the core challenge in building EM foundation models.
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3 DATASET CURATION
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Figure 3: Pipeline of EM pre-train dataset cosntruction. Our pipeline comprises 3 stages all led by experts:
Source Screening, Dataset Formulation, and Quality Control.

Table 1: Details of EMdata-81M. Bold denotes self-constructed datasets.
SIGNAL SIGNAL SAMPLING DATA* NUMBER OF

DATASET NAME TRANSMITTER RECEIVER TYPE LENGTH RATE SOURCE SAMPLES
EM-Comm a USRP X310 - Category 14 modulated signals, 1,024 20 MHz Real-world 2,747,000

SNR: -20∼18db
HisarMod2019.1 Tekbıyık et al. (2019) - - Category 26 modulated signals, 1,024 1 MHz Simulation 780,000

SNR: -20∼18db
Panoradio HF Scholl (2019) - - Category 18 modulated signals, 2,048 6 kHz Simulation 172,800

SNR: -10∼25d
RadarCommDataset Jagannath & Jagannath (2021) a USRP N210 USRP N210 Category 6 modulated signals, 128 10 MHz Real-world 860,361

Category 8 signal types, &Simulation
SNR: -20∼18db

EM-RadarParaIQSim - - Category 2 radar types, 320/384 10/12 MHz Simulation 300,000
Category 3 parameters, 400/480

SNR: 6∼12db
EM-Radar - - 10 radar emitters, 1,024 5 MHz Simulation 327,680

including 5 radar waveforms,
and 3 radar system parameters

SNR: -10∼20db
WiSig Hanna et al. (2022) 174 WiFi Emitter 41 USRP B210/N210/X310 IEEE802.11a/g 256 25 MHz Real-world 18,243,630
Northeastern RF Al-Shawabka et al. (2020) 20 USRP devices - IEEE802.11a/g 288 20 MHz Real-world 17,930,880
POWDER Reus-Muns et al. (2020) 4 USRP X310 USRP B210 5G, WiFi, LTE 512 5/7.68 MHz Real-world 1,044,472
Transmitter Classification Morin et al. (2019) 21 USRP devices USRP N2932 IEEE 802.15.4 600 5 MHz Real-world 11,928,835
LoRa RF Datasets Elmaghbub & Hamdaoui (2021) 25 Pycom devices USRP B210 LoRa 4,096 1 MHz Real-world 13,498,730
Mono Receiver Liu et al. (2020) Over 140 civil aircrafts USRP B210 ADS-B 974 8 MHz Real-world 30,367
DroneRFa Yu et al. (2024) 24 categories of UAVs USRP Communication RF 1,024 100 MHz Real-world 13,132,770
EM-Infer-Radar-v2 - - Category 12 radar interference types 2,048 20 MHz Simulation 120,000

ISR: 30∼60db
TOTAL 81,117,525

Table 2: Main statistics of EMdata-
81M.

STATISTIC NUMBER OF SAMPLES
Task type
- Communication 3,699,800
- Radar 1,488,041
- RF 75,809,684
- Interference 120,000

Attributes
- Modulation 4,560,161
- Radar Waveform 627,680
- Signal-to-Noise Ratio (SNR) 5,218,208
- Interference class 120,000
- Interference-to-Signal Ratio (ISR) 120,000
- Band width 327,680
- Pulse repetition interval (PRI) 627,680
- Pulse width 627,680
- Device id 75,809,684
- Transmission id 17,930,880

Signal Length
- 128 860,361
- 256 18,243,630
- 288 17,930,880
- 320 75,000
- 384 75,000
- 400 75,000
- 480 75,000
- 512 1,044,472
- 600 11,928,835
- 974 30,367
- 1,024 16,987,450
- 2,048 292,800
- 3,840 12,399
- 4,096 13,498,730

As show in Figure 3, we integrate multi-source datasets from
communications, radar, RF, and interference, all stored in
raw IQ format. To ensure quality for large-scale pretrain-
ing, the data is rigorously cleaned, annotated by experts, and
converted to an n×2 Parquet format. Data quality is fur-
ther verified via random sampling and visual inspection. The
above mentioned process yields the largest known EM sig-
nal dataset, EMdata-81M. Source Screening. We construct
EMdata-81M for a diversity in signal types and tasks, ensur-
ing comprehensive and effective training data. It integrates
14 datasets, combining public sources with self-collected data
to fill gaps. As shown in Table 1, EMdata-81M covers var-
ious devices, scene types, and signal lengths from 128 to
4,096 with sampling rates of 6 kHz–100 MHz. Public datasets
contribute 77,622,845 samples, while 4 self-collected datasets
(bolded, prefixed EM-) add 3,494,680, all rigorously selected
and pre-processed. In total, EMdata-81M contains 81,117,525
samples, making it the largest known EM signal pre-training
dataset. Expert Annotations. For annotation, public datasets
use publisher-provided labels; simulation datasets generate la-
bels automatically from predefined modulations and parameters; self-collected datasets derive la-
bels from recorded information such as device type, distance, frequency, modulation, and sig-
nal strength. Quality Control. A quality control process ensures data integrity and task rele-
vance. IQ samples are randomly checked, parameters printed, and waveforms plotted; anomalies
in padding, format, or content are flagged and corrected by experts, maintaining dataset reliability.

Table 3: Comparison of pre-train datasets.
PRRE-TRAIN DATASET SOURCE INCLUDE SIGNAL SCENE NUMBER OF
DATASET VOLUMN SELF-CONSTRUCTED LENGTH TYPE SAMPLES
RF-Diffusion Chi et al. (2024) 2 ✓ 512 RF 33 k

communication
ACSF-TMAE Chen et al. (2024) 4 × 128 & 3,000 & RF 1 million

RadioLLM Chen et al. (2025) 4 × 128 & 1,024 communication 4 million

communication 8-10 million∗+
SpectrumFM Zhou et al. (2025) 3 ✓ 128 & RF 25 GB†

communication & radar
& RF

EMdata-81M 14 ✓ 128∼4096 & interference 81 million
* In Zhou et al. (2025), the pre-training data volume for TechRec is estimated according to https://github.com/JaronFontaine/
Technology-Recognition-dataset-of-real-life-LTE-WiFi-and-DVB-T?tab=readme-ov-file

† 25GB is a self-collected dataset without length unspecified.

Analysis.EMdata-81M stands out in scene
types, signal lengths, and dataset scale,
covering 4 scene types, 29 modulation
types, 9 radar waveforms, and 12 in-
terference classes, with details provided
in the appendix. i) Diversity of task
types. EMdata-81M includes various
scene types, such as communication,
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radar, interference, and wireless RF datasets, covering protocols and devices from WiFi, LoRa to
ADS-B, UAV, and more. ii) Comprehensive annotations. We provide detailed attribute annota-
tions including modulation for communication signals, waveform, pulse width, and pulse repetition
period for radar, device ID and bandwidth for RF, and interference type and ISR for interference. All
samples include sampling rate (kHz–MHz) and SNR (if available). iii) Length of Samples. EMdata-
81M contains samples ranging from 128 to 4,096 in length, enabling training across a wider range.
In contrast, existing pretraining datasets typically cover a single scenario or a few fixed lengths
(Table 3). The diversity in signal lengths allows the model to better handle complex signals and
improves real-world generalization, with detailed signal length statistics shown in Table 2.

4 EMIND: ELECTROMAGNETIC SIGNAL FOUNDATION MODEL

Encoder Decoder

Signal Packing
patchify
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Recontruction Loss
Adjustable Dataset Weighting

(a) Large-scale self-supervised pre-training

variable-length signals
(b) Low-Redundancy Length Adaptive Multi-Signal Packing
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...... w[n]

packing
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(c) Advance on multiple downstream tasks

Radar Parameter Estimation
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Radio Frequency Fingerprint Identification

Blind Source Separation

Signal Denoising

Figure 4: Overview of EMind. (a) Large-scale self-supervised pre-training with adjustable dataset weight-
ing. (b) Low-redundancy length adaptive multi-signal packing and per-sample masking. (c) Adapt to multiple
downstream tasks with arbitrary-length signal inference.

To handle the large variation in signal lengths, we propose a packing method that concatenates IQ
samples of different lengths into long sequences, enabling low-redundancy multi-length training
and inference with arbitrary lengths (Fig. 4(b), Sec. 4.1). To mitigate training imbalance in large-
scale diverse datasets, we introduce a hardware-aware framework that adjusts sampling weights,
by up-weighting difficult datasets and down-weighting easier ones for stable and balanced training
(Fig. 4(a), Sec. 4.2). Building on these techniques and a Transformer encoder-decoder, we adopt a
masked autoencoder (MAE) for large-scale multi-scenario pretraining. For downstream fine-tuning,
the shared backbone supports multiple downstream tasks (Fig. 4(c)). The proposed EMind demon-
strates strong cross-domain generalization, achieving high-quality multi-task EM signal modeling.

4.1 LOW-REDUNDANCY LENGTH ADAPTIVE MULTI-SIGNAL PACKING

Figure 5: Multiple signal samples are dynamically packed into fixed-length
sequences, followed by per-sample masking strategy.

To enable efficient train-
ing by supporting multiple
length samples and mini-
mizing redundancy, we pro-
pose a length adaptive multi-
signal packing method. The
training data come from dif-
ferent datasets with sample
lengths that vary dramati-
cally, ranging from 128 to
4,096, spanning a 32-times
difference. In such a highly
non-uniform length distri-
bution, traditional padding
methods introduce excessive
zero padding, leading to increased memory usage and computational overhead. To address this is-
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sue, we design a dynamic packing mechanism that uses a predefined sequence length as the packing
capacity, filling samples in sequential order. When the remaining capacity is insufficient to ac-
commodate a new sample, a new sequence is initiated. The specific process is shown in Figure 5.
The signal packing strategy alleviates computational redundancy and memory bottlenecks, enabling
efficient training on large-scale datasets.

After packing, each sequence contains multiple signals of varying lengths, with ambagious sam-
ple boundaries. If the entire sequence is masked directly, the masking ratios of different samples
within the sequence differ significantly. For example, shorter samples may be completely masked,
while longer samples may be insufficiently masked, making precise sample-level masking difficult.
To ensure the model distinguishes each signal, the boundary index of each sample is recorded for
independent random masking. Traditional loop-based masking controls apply masks to individual
samples, but the computational complexity largely increases, reducing the efficiency of sequence
packing. To this end, we propose an innovative mask control mechanism based on vectorized op-
erations, eliminating the need for explicit loops. Specifically, for a signal sample of length l, we
normalize its sample point positions to an equidistant coordinate set in the interval [0,1], represented
as [0, 1

l−1 ,
2

l−1 , . . . , 1]. Using this standardized position marker, we randomly shuffle the order of
the sample points to select a fixed ratio of valid patches according to the masking ratio. Therefore,
regardless of the signal length, the masked data of each sample is uniform and the masking ratio
remains accurate, thus avoiding masking ratio fluctuations.

4.2 HARDWARE-AWARE ADJUSTABLE DATASET WEIGHTING

An adjustable dataset sampling weight strategy is employed to tackle with the issue of inconsistent
convergence speeds across different datasets during training. Based on empirical prior knowledge,
the sampling weight for datasets that are difficult to learn is raised to enhance the model’s abil-
ity to learn from these datasets, while for datasets that are easier to learn or prone to performance
degradation, the sampling frequency is reduced to mitigate the risk of overfitting. To control the sam-
pling weights of different datasets, we develop a hardware-aware training framework based on the
producer-consumer mechanism, achieving accurate ratio control and sample packing coordination.
The framework is maintained by CPU, which manages a unified buffer for data loading, preprocess-
ing, and cache management, and employs streaming scheduling to allow GPU to alternately perform
data input and model computation. Within the buffer, we implement a memory-mapped sequential
access strategy, allocating independent pointers for each dataset and adjusting the pointer movement
speed according to the preset ratio, ensuring real-time balanced data input and training of multi-
level training samples. Detailed pretraining sampling weights for each dataset are provided in the
Appendix.

5 EXPERIMENTS

This section provides a brief overview of the pretraining setup, downstream task configurations, and
experimental results. Additional data details, model implementation details, more experiments, and
visualization results are provided in the appendix.

Table 4: Downstream Multi-task Dataset
TASK CLASS ATTRIBUTE RANGE SIGNAL SAMPLING DATA

DATASET TYPE* NO. LENGTH RATE SOURCE
RML2016.10A O’shea & West (2016) AMC (Cls.) 11 SNR −20 ∼ 18 dB 128 1 MHz -
RML2016.10B O’shea & West (2016) AMC (Cls.) 10 SNR −20 ∼ 18 dB 128 1 MHz -
RML2016.04C O’Shea et al. (2016) AMC (Cls.) 11 SNR −20 ∼ 18 dB 128 1 MHz -
RML2018.01A O’Shea et al. (2018) AMC (Cls.) 24 SNR −20 ∼ 30 dB 1,024 1 MHz -
ADS-B Ya et al. (2022) RFFI (Cls.) 198 - 3,000 50 MHz -

RadChar Huang et al. (2023)

RWC (Cls.) 5 SNR −20 ∼ 20 dB

512 3.2 MHz -RPE (Reg.)
PULSE NMUBER 2 ∼ 6

PULSE WIDTH 10 ∼ 16µs
PRI† 17 ∼ 23µs

PULSE TIME DELAY 1 ∼ 10µs

EM-AIS RFFI (Cls.) 112 - 3,840 156.25 MHz Real-world
EM-Infer-Comm WII (Cls.) 9 SIR −20 ∼ 20 dB 1,024 20 MHz Simulation
EM-Infer-Radar WII (Cls.) 12 SIR −20 ∼ 20 dB 1,024 20 MHz Simulation
EM-Radar-Mix BSS (Rec.) - SNR 12 dB 1,024 5 MHz Simulation
EM-Signal-Denoise SD (Rec.) - SNR −3 ∼ 20 dB 1,024 20 MHz Simulation
* AMC represents Automatic Modulation Classification; RWC refers to Radar Waveform Classification; RPE stands for Radar Parameter Estimation; WII denotes Wireless

Interference Identification, RFFI indicates Radio Frequency Fingerprint Identification; SD refers to Signal Denoising; and BSS denotes Blind Source Separation.
† PRI denotes for pulse repetition interval.

5.1 MAIN RESULTS

The core feature of foundation models lies in their generalization to diverse downstream tasks.
Thereby, we select downstream datasets independent of the pre-training data and evaluated them
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on classification, regression, and reconstruction tasks, as shown in Table 4 (self-constructed datasets
are denoted with the EM- prefix). We included rich evaluation metrics for different tasks: Overall
Accuracy (OA) for classification, Mean Absolute Error (MAE) for regression, Mean Squared Error
(MSE), Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), Signal-to-Artifacts
Ratio (SAR), and Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) for blind source separation,
and MSE also for denoising. Few-shot classification further introduces Cohen’s Kappa Coefficient
(Kappa). Detailed metric descriptions are provided in the appendix.

5.1.1 CLASSIFICATION

Table 5: Classification results compared with State-of-the-art. BOLD indicates the best performance.
TASK AMC RFFI WII

METHOD RML2016.10A* RML2016.10B* RML2016.04C* RML2018.01A ADS-B EM-AIS EM-Infer-Comm EM-Infer-Radar
ResNet He et al. (2016) 50.04 54.88 55.97 43.06 84.51 42.02 76.79 71.64

MCNet Huynh-The et al. (2020) 53.52 59.22 59.57 - - - - -
CNN2 O’Shea et al. (2018) 53.25 57.14 59.45 - - - - -
GRU2 Hong et al. (2017) 58.80 64.11 63.13 - - - - -
DAE Ke & Vikalo (2021) 58.97 61.46 55.91 - - - - -

CGDNN Njoku et al. (2021) 56.57 58.26 60.34 - - - - -
Transformer Vaswani et al. (2017) 59.27 63.10 65.41 59.45 78.77 39.12 80.44 77.05

MSNet Zhang et al. (2021) 58.33 63.49 63.66 - - - - -
AMC Net Zhang et al. (2023a) 59.10 63.38 63.01 - - - - -
SpectrumFM Zhou et al. (2025) 63.72 65.35 73.37 - - - - -

EMind 62.51 65.45 74.34 63.83 99.87 57.07 83.11 79.19
* As stated in the scikit-learn documentation (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html), weighted recall is equiva-

lent to accuracy in single-label multiclass settings. Therefore, we treat the recall reported in Zhou et al. (2025) as overall accuracy (OA) for RML2016.10A, RML2016.10B, and RML2016.04C.

Figure 6: Performance comparison in terms of accuracy
at varying SNRs.

Figure 7: Confusion matrices highlights the per-
formance across various modulations.

Automatic Modulation Classification (AMC), Radio Frequency Fingerprint Identifica-
tion (RFFI) and Wireless Interference Identification (WII).In the classification task, the
train/test split for RML2016.10A O’shea & West (2016), RML2016.10B O’shea & West (2016),
RML2016.04C O’Shea et al. (2016), and RML2018.01A O’Shea et al. (2018) follows SpectrumFM
Zhou et al. (2025) for fair comparison; ADS-B, EM-Infer-Comm, and EM-Infer-Radar use a more
strict 1:9 split; and for EM-AIS, a 5:5 split is used to ensure that all classes are covered in the train-
ing set. The classification results in Table 5 show that our model outperforms others in AMC, RFFI
and WII. Figure 6 compares EMind with other methods on the RML four datasets accross SNRs.
Figure 7 displays the confusion matrix of EMind on these datasets, highlighting its classification
performance across modulation categories and potential misclassification areas.
Table 6: Classification results for different methods
under the 1:9 dataset split. BOLD indicates the best
performance, and italics indicate the second best.

METHOD RML2016.10A* RML2016.10B* RML2016.04C* RML2018.01A

ResNet He et al. (2016) 43.14 51.17 47.76 40.39
Transformer Vaswani et al. (2017) 43.98 53.13 48.49 52.93

EMind 49.51 57.51 54.37 55.39
EMind-large 50.81 58.27 55.89 57.54

Table 7: Few-shot classification results for AMC
(RML2016.10A) and RWC (RadChar) tasks.

RML2016.10A RadChar
50 shot 100 shot 10 shot 50 shot 100 shot

METHOD OA(%) Kappa OA(%) Kappa OA(%) Kappa OA(%) Kappa OA(%) Kappa

ResNet 38.97 32.87 42.01 36.21 71.94 64.93 79.89 74.86 80.97 76.21
Transformer 38.40 32.25 39.81 33.79 64.27 55.37 76.42 70.52 79.21 74.01

EMind 48.38 42.85 50.10 45.12 78.37 72.97 81.94 77.43 83.14 78.93

Challenge data split setup.Inspired by remote sensing research Wang et al. (2025), we adopt an
extreme 1:9 train/test split to valid the generalization ability of the proposed EMind, and intro-
duces EMind-Large (details in appendix) as a comparison. Table 6 shows that, on the four RML
datasets, EMind-Large achieves the best overall performance, setting new records for most metrics,
and EMind-base is the second best.
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Few-shot.Two representative datasets, RML2016.10A O’shea & West (2016) for AMC and Rad-
Char Huang et al. (2023) for RWC, are used for few-shot experiments. As shown in Table 7, EMind
outperforms all methods in every few-shot setting. Notably, the test datasets are strictly separated
from the pretraining datasets, highlighting the model’s real-world generalization capability. Espe-
cially, in the 10-shot setting, RadChar Huang et al. (2023) still achieved competitive performance
with 78.37%.
Table 8: Multi-task of RWC and RPE on RadChar Huang et al. (2023). BOLD indicates the best performance.
Lower MAE indicating better regression performance, while higher accuracy reflects better classification.

MAE (µs) ACCURACY (%)
Pulse Number Pulse Width Pulse Repetition Interval (PRI) Pulse Time Delay Radar Waverfrom

METHODS -10db 0db 10db all† -10db 0db 10db all -10db 0db 10db all -10db 0db 10db all -10db 0db 10db all

CNN1D 0.729, 0.193, 0.085 - 1.413, 0.560, 0.340 - 0.999, 0.330, 0.209 - 1.349, 0.385, 0.206 - 75.7, 99.8, 100 -
CNN2D 0.793, 0.174, 0.090 - 1.466, 0.801, 0.505 - 1.054, 0.420, 0.299 - 1.729, 0.638, 0.443 - 67.3, 98.3, 99.8 -

IQST-S Huang et al. (2023) 0.733, 0.294, 0.251 - 1.282, 0.628, 0.364 - 0.816, 0.273, 0.192 - 1.229, 0.415, 0.277 - 79.2, 99.9, 100 -
IQST-L Huang et al. (2023) 0.752, 0.195, 0.124 - 1.253, 0.579, 0.334 - 0.799, 0.286, 0.225 - 1.253, 0.379, 0.233 - 79.1, 99.8, 100 -

EMind 0.330, 0.006, 0.005, 0.114 0.797, 0.197, 0.080, 0.305 0.463, 0.109, 0.085, 0.221 0.708, 0.149, 0.092, 0.323 86.65, 100, 100, 88.49
† -10 dB, 0 dB, and 10 dB denote results at specific SNR respectively, all denotes results evaluated across all SNR [-20:20] dB.

5.1.2 PARAMETERS REGRESSION

Table 9: Performance Comparison of BSS on EM-
Radar-Mix. For SDR, SIR, SAR, and SI-SDR,
higher is better; for MSE, lower is better.

Setting SDR SIR SAR SI-SDR MSE

Linear prob 4.85 10.73 6.92 -5.88 -13.85
Fine-tune 5.74 11.60 7.83 -3.85 -15.32

For regression task, we achieve multiple parameters
regression by extending the regression head into a
multi-output structure, and support joint training of
regressions and classification. Experiments on the
RadChar Huang et al. (2023) dataset involve classi-
fying radar waveforms and predicting four parame-
ters, which are pulse count, pulse width, pulse repe-
tition interval, and pulse time delay (configurations in Table 4). The train/val/test split is 70:15:15
for fair comparison with Huang et al. (2023). Experimental results in Table 8 show the proposed
EMind substantially outperforms the current SOTA iacross all classification and regression metrics.

5.1.3 BLIND SOURCE SEPARATION (BSS) AND SIGNAL DENOISE (SD)

(a) BSS (b) SD
Figure 8: Performance comparison of fine-tune and linear prob on BSS over EM-Radar-Mix and SD over EM-
Signal-Denoise.

BSS is a highly challenging inverse problem in complex EM environments, aiming to recover origi-
nal, mutually independent source signals from observed mixtures without prior knowledge of source
characteristics or mixing processes. Only noisy IQ signals from an unknown number of sources
through unknown channels are observed, so both the source count and ground-truth signals are
unavailable during training. The problem is ill-posed, lacking a unique solution without additional
assumptions, and highly sensitive to small input perturbations. Due to the lack of high-quality public
datasets, we constructed EM-Radar-Mix (details in the appendix) for BSS with up to two sources.
Following the audio BSS Eval toolbox Vincent et al. (2006), we use multiple metrics, and add a
signal-specific metric SI-SDR. As shown in Table 9 and Fig. 8a, results for fine-tuning and linear
probing demonstrate EMind’s superiority in both quantitative performance and training convergence
for BSS. Visualization results and more details are found in the appendix.

We also introduce the self-collected dataset EM-Signal-Denoise (see appendix) to evaluate the SD
task under the BSS framework, separating clean signals from noise. The framework takes noisy
signal as input without supervision of denoised data. Fig. 8b shows MSE curves for linear probing
and fine-tuning; visualizations and details are in the appendix.

5.2 ABALATION STUDY

To validate the efficacy of EMind, we conducted ablation studies on the packing strategy, mask
method, mask ratio, and max sequence length. We selected two representative tasks, AMC on
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RML2016.10B O’shea & West (2016) and WII on EM-Infer-Comm, for full fine-tuning and linear
probing experiments. All ablation experiments were performed under a more stringent 1:9 training-
to-testing ratio.

Packing Strategy.Multi-signal packing strategy greatly improved the efficiency of training on large-
scale EM data. We conducted an ablation study on the strategy of using or not using packing, and
the results are shown in Table 10.
Table 10: Training efficiency comparison of packing
strategies.

Train Steps Samples per Seq. Data Throughput/Minute

w/o Packing 208,334 1 169.82k
w/ Packing (Ours) 47,350 4.4 739.95

Table 11: Ablation study of masking method.
Fine-tune Linear-prob

Mask Method RML2016.10B EM-Infer-Comm RML2016.10B EM-Infer-Comm

Per-sequence 56.40 81.64 38.75 54.25
Per-sample (Ours) 57.51 83.11 44.50 58.07

Mask Method.We conducted the ablation study on masking methods, comparing per-sample mask-
ing and per-sequence masking. The strictly controlled per-sample masking ensured that the mask
ratio was precisely enforced, leading to better performance, as shown in Table 11.

Mask Ratio.The ablation study on mask ratios shows that 75% mask ratio achieves the best perfor-
mance, which is adopted in our proposed EMind, as presented in Table 12.

Table 12: Ablation study of masking ratio.
Fine-tune Linear-prob

Mask ratio RML2016.10B EM-Infer-Comm RML2016.10B EM-Infer-Comm

20% 52.98 79.77 40.56 56.72
50% 54.42 81.16 43.23 55.46

75% (Ours) 57.51 83.11 44.50 58.07
90% 53.88 80.85 42.99 55.85

Table 13: Ablation study of max sequence length.
Fine-tune Linear-prob

Max Seq. Length RML2016.10B EM-Infer-Comm RML2016.10B EM-Infer-Comm

2048 56.94 81.87 40.30 56.05
6000 (Ours) 57.51 83.11 44.50 58.07

9000 56.51 81.34 39.93 56.92

Max Sequence Length.We further conducted an ablation study on the setting of max sequence
length, using 2,048, 6,000, and 9,000. The results show that the length of 6,000 outperforms the
others, as shown in Table 13.

6 RELATED WORKS

Electromagnetic signal Datasets.While scalable, simulated data may lack real-world fidelity
(Zhang et al., 2019; Guler et al., 2025). Thus, recent work incorporates real-world samples: Aboul-
fotouh et al. (2025) pre-trained on RF spectrograms and WiFi/5G CSI from diverse locations, and
Zhou et al. (2025) compiled a dataset from public sources (RML2018.01A) and practical scenarios
(O’Shea et al., 2018; Fontaine et al., 2019). Despite the trend toward more realistic data, exist-
ing datasets often lack the diversity and scale needed to improve FMs’ generalization (Aboulfotouh
et al., 2025).

Electromagnetic signal Foundation Models.The design of EM foundation models is crucial for
capturing complex correlations in wireless data, with many adopting Transformer-based architec-
tures inspired by advances in NLP and CV (Awais et al., 2025; Han et al., 2024; Hong et al., 2023;
Vaswani et al., 2017; Yang et al., 2025; Guler et al., 2025). For instance, Yang et al. (2025) modeled
spatial, temporal, and frequency correlations with Transformers, while Aboulfotouh et al. (2025)
employed ViTs, and Zhou et al. (2025) proposed a CNN–self-attention hybrid. Beyond architecture,
diverse pre-training strategies have been explored: masked signal modeling (Aboulfotouh et al.,
2025; Guler et al., 2025), sometimes enhanced with contrastive learning (Guler et al., 2025), and
hybrid objectives such as masked reconstruction with next-slot prediction (Zhou et al., 2025). How-
ever, these methods are often designed for specific data formats, limiting efficiency across heteroge-
neous datasets.

7 CONCLUSION

In this paper, we propose a new pre-training pipeline for EM signals, including a large-scale dataset
and a specialized IQ-based architecture. We build EMdata-81M, a raw IQ dataset for large-scale pre-
training, offering broader scale, richer scenarios, and more diverse signals with fine-grained physi-
cal attributes relevant to downstream tasks. Benchmarking EMdata-81M with our foundation model
EMind demonstrates clear advantages in EM signal understanding. Experiments show that EMind
improves modulation classification, parameter regression, blind source separation, and denoising,
while its features generalize well across tasks. Future work will focus on refining training strategies
and standardizing EM signal attributes to further boost generalization and accuracy.
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