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ABSTRACT

There is an inescapable long-tailed class-imbalance issue in many real-world
classification problems. Existing long-tailed classification methods focus on the
single-domain setting, where all examples are drawn from the same distribution.
However, real-world scenarios often involve multiple domains with distinct imbal-
anced class distributions. We study this multi-domain long-tailed learning problem
and aim to produce a model that generalizes well across all classes and domains.
Towards that goal, we introduce TALLY, which produces invariant predictors by
balanced augmenting hidden representations over domains and classes. Built upon
a proposed selective balanced sampling strategy, TALLY achieves this by mixing
the semantic representation of one example with the domain-associated nuisances
of another, producing a new representation for use as data augmentation. To im-
prove the disentanglement of semantic representations, TALLY further utilizes a
domain-invariant class prototype that averages out domain-specific effects. We
evaluate TALLY on four long-tailed variants of classical domain generalization
benchmarks and two real-world imbalanced multi-domain datasets. The results
indicate that TALLY consistently outperforms other state-of-the-art methods in
both subpopulation shift and domain shift.

1 INTRODUCTION
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Figure 1: Illustration of imbalanced class
distributions across domains in iWildCam,
a wildlife recognition benchmark (Beery
et al., 2020). Both subpopulation shift and
domain shift settings are illustrated.

Deep classification models can struggle when the num-
ber of examples per class varies dramatically (Beery
et al., 2020; Zhang et al., 2021). This long-tailed setting
arises frequently in practice, such as wildlife recogni-
tion (Beery et al., 2020). Classifiers tend to be biased
towards majority classes and perform poorly on class-
balanced test distributions, i.e. when there is a shift
in the label distribution between training and test. Ex-
isting approaches address the long-tailed problem by
modifying the data sampling strategy (Chawla et al.,
2002; Zhang & Pfister, 2021), adjusting the loss func-
tion for different classses (Cao et al., 2019; Hong et al.,
2021), or augmenting minority classes (Chou et al.,
2020; Zhong et al., 2021). Unlike these works, which
focus on single-domain long-tailed learning, we study
multi-domain long-tailed learning, where each domain
has its own long-tailed distribution. Take wildlife recognition as an example (Figure 1): images
of wildlife are collected from various locations, and the distribution over species (classes) at each
location is typically imbalanced and the class distribution also varies between locations.

In multi-domain long-tailed classification, the classifiers need to handle distribution shift amidst class
imbalance. Here, we focus on two types of distribution shift: subpopulation shift and domain shift.
In subpopulation shift, we train a model on data from multiple domains and evaluate the model on
a test set with balanced domain-class pairs. In the wildlife recognition example, species are often
concentrated at only a few locations, creating a spurious correlation between the label (species) and
the domain (location). A machine learning model trained on the entire population may fail on the
test set when this correlation does not hold anymore. In domain shift, we expect the trained model
to generalize well to completely new test domains. For example, in wildlife recognition, we train a
model on data from a fixed set of training locations and then deploy the model to new test locations.
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Prior long-tailed classification methods work well in single-domain settings, but may perform poorly
when the test data is from underrepresented domains or novel domains. Meanwhile, invariant learning
approaches alleviate cross-domain performance gaps by learning representations or predictors that are
invariant across different domains (Arjovsky et al., 2019; Li et al., 2018). Yet, these approaches are
mostly evaluated in class-balanced settings, where models must be trained on plenty of examples from
each class even if augmentation strategies are applied (Yao et al., 2022) – see a detailed discussion in
Appendix B. With multi-domain long-tailed data, learning a class-unbiased domain-invariant model
is not trivial since the imbalance can exist within a domain or across domains. We aim to address
these challenges in this work, leading to a novel method named TALLY (mulTi-domAin Long-tailed
learning with baLanced representation reassemblY).

TALLY empowers augmentation to balance examples over domains and classes by decomposing
and reassembling example pairs, combining the class-relevant semantic information of one example
with the domain-associated nuisances of another Zhou et al. (2022). Specifically, TALLY first
decouples the representation of each example into semantic information and nuisances with instance
normalization. To further mitigate the effects of nuisances, we first average out domain information
over examples of the same class and construct class prototype representations. Each semantic
representation is then linearly interpolated with a corresponding class prototype, leading to the
prototype-enhanced semantic representation. The domain-associated factors are similarly interpolated
with class-agnostic domain factors to improve training stability and remove noise. Finally, TALLY
produces augmented representations to benefit the training process by reassembling the prototype-
enhanced semantic representation and domain-associated nuisances among examples. To further
achieve balanced augmentation, we propose a selective balanced sampling strategy to draw example
pairs for augmentation. Concretely, for each pair, the label of one example is uniformly sampled
from all classes and the domain of another example is uniformly sampled from all domains. In this
way, TALLY encourages the model to learn a class-unbiased invariant predictor.

In summary, our major contributions are: we investigate and formalize an important yet less explored
problem – multi-domain long-tailed learning, and propose an effective augmentation algorithm called
TALLY to simultaneously address the class-imbalance issue and learn domain-invariant predictors.
We empirically demonstrate the effectiveness of TALLY under subpopulation shift and domain shift.
We observe that TALLY outperforms both prior single-domain long-tailed learning and domain-
invariant learning approaches, with a 5.18% error decrease over all datasets. Furthermore, TALLY is
capable of capturing stronger invariant predictors compared with prior invariant learning approaches.

2 FORMULATIONS AND PRELIMINARIES

Long-Tailed Learning. In this paper, we investigate the setting where one predicts the class label
y ∈ C based on the input feature x ∈ X , where C = {1, . . . , C}. Given a machine learning model f
parameterized by parameter θ and a loss function ℓ, empirical risk minimization (ERM) trains such a
model by minimizing average loss over all training examples as

min
θ

E(x,y)∼P tr [ℓ(fθ(x), y)], (1)

which works well when the label distribution is approximately uniform. In long-tailed learning,
however, the label distribution is long-tailed, where a small proportion of classes have massive labels
and the rest of classes are associated with a few examples. Assume {(xi, yi)}Ni=1 is a training set
sampled from training distribution and the number of examples for each class is {n1, . . . , nC}, where∑C

c=1 nc = N . In long-tailed learning, all classes are sorted according to cardinality (i.e., n1 ≪ nC)
and the imbalance ratio ρ is defined as ρ = n1/nC > 1. Note that same definitions are used in the
test set {(xi, yi)}N

ts

i=1 . Under the class-imbalanced training distribution, vanilla ERM model tends to
perform poorly on minority classes, but we expect the model can perform consistently well on all
classes. Hence we typically assume the test distribution is class-balanced (i.e., ρts = 1).

Multi-Domain Imbalanced Learning. Multi-domain long-tailed learning is a natural extension
of classical long-tailed learning, where the overall data distribution is drawn from a set of domains
D = {1, . . . , D} and each domain d is associated with a class-imbalanced dataset {(xi, yi, d)}Nd

i=1

drawn from domain-specific distribution pd. Following (Albuquerque et al., 2019; Koh et al., 2021),
both training and test distribution can be formulated as a mixture distribution over domain space D,
i.e., P tr =

∑D
d=1 η

tr
d P tr

d and P ts =
∑D

d=1 η
ts
d P ts

d . The corresponding training and test domains are
Dtr = {d ∈ D|ηtr

d > 0} and Dts = {d ∈ D|ηts
d > 0}, respectively, where ηtrd and ηtsd represent the
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Figure 2: An illustration of TALLY. Left: the overall approach produces augmented representations
from a pair of examples xi and xj . At a chosen layer, it mixes their semantic and nuisance information
to create augmented representation s̃. Right: In detail, the augmentation step disentangles hidden
representations si and sj into separate semantic and nuisance factors. It interpolates these with
domain-invariant or class-invariant prototypes (respectively) for more robust disentanglement. Finally,
it combines the semantic information from si with the nuisance information from sj to create s̃i.

mixture probability. For each domain d, we define the number of training examples in each class as
{n1,d, . . . , nC,d}, sorted by cardinality. The imbalance ratio ρtr is extended to domain-level ratio as
ρtrd = nC,d/n1,d. During test time, we consider two kinds of test distributions, corresponding to two
categories of distribution shifts – subpopulation shift and domain shift. In subpopulation shift, the
test domains have been observed during training time, but the test distribution is class-balanced and
domain-balanced, i.e., Dts ⊆ Dtr and {ηts

d = 1/|Dts||∀d ∈ Dts}. In domain shift, the test domains are
disjoint from the training domains, i.e., Dtr ∩ Dts = ∅.

3 MULTI-DOMAIN LONG-TAILED LEARNING WITH BALANCED
REPRESENTATION REASSEMBLY

To improve robustness in multi-domain long-tailed learning, we would like method that can learn class-
unbiased domain-invariant representations. To accomplish this, we introduce TALLY to do balanced
augmentation over classes and domains. The key idea motivating TALLY is that every example can be
decomposed into class-relevant semantic information and domain-associated nuisances that should
be ignored by an ideal classifier. Here, following (Zhou et al., 2022), nuisances is defined as "class-
agnostic" transformations that apply similarly to all classes, such as image style and background
changes in image classification. As outlined in Figure 2, TALLY assumes that domain-associated
nuisance information can be transferred among examples. It leverages this to perform augmentation
by transferring domain-specific nuisance factors between classes with a novel selective balanced
sampling strategy. In practice, TALLY first disentangles examples into latent semantic and nuisance
factors. Then, we introduce a domain-agnostic prototype representation for each class in order
to eliminate the nuisance information, whereby the semantic representation of each example is
linearly interpolated with the corresponding prototype representation. Finally, TALLY reassembles
the semantic and nuisance factors of different examples to produce augmented representations.

3.1 REPRESENTATION DISENTANGLEMENT AND REASSEMBLY

As described above, TALLY reassembles augmented examples from pairs of examples by com-
bining the semantic representation of one with the domain-related nuisance factors of the other.
Motivated by style transfer (Huang & Belongie, 2017), we use instance normalization (Instan-
ceNorm (Ulyanov et al., 2016)) to perform the required disentanglement of semantic and nuisance
information. Concretely, given an example (x, y, d) we denote the hidden representation at layer
r as s = fr(x) ∈ RC×H×W , where C, H , and W denote channel, height, and width dimensions,
respectively. Ignoring affine parameters, InstanceNorm normalizes the example as:

z(s) = InstanceNorm(s) =
s− µ(s)

σ(s)
, where z(s), µ(s), σ(s) ∈ RC (2)
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where µ(·), σ(·) are the mean and standard deviation computed across the spatial dimensions of s:

µ(s) =
1

HW

H∑
h=1

W∑
w=1

s[:, h, w], σ(s) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(s[:, h, w]− µ(s))2. (3)

Following Huang & Belongie (2017), we treat the normalized example z(s) as the semantic represen-
tation, and regard µ(s) and σ(s) as the domain-associated nuisances. Notice that we adopt a warm
start strategy of running vanilla ERM for the first few epochs to ensure reliable disentanglement.

After decoupling representations, we produce an augmented representation from a pair of examples
(xi, yi, di) and (xj , yj , dj) by swapping semantic representations and domain-associated nuisances:

s̃ = σ(sj)

(
si − µ(si)

σ(si)

)
+ µ(sj), ỹ = yi. (4)

Since the semantic content of the augmented representation s̃ is from example (xi, yi, di), we label
our augmented example with ỹ = yi. By reassembling disentangled representations, we can augment
representations for minority domains or minority classes.

3.2 SELECTIVE BALANCED SAMPLING

I II III
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1/2
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83/84

13/141/14

1/84

Balanced Sampling

Selective
Balanced Sampling

Domain-Class Pair I. (Fan, Clipart) II. (Fan, Art) III. (Computer, Clipart)
Target Minority Group ✔

Source Group ✔ ✔ ✔

# of Training Example 1 13 83
ERM Acc (Test) 12.5% 75.0% 50.0%

Domain Information Transfer (Prob.)Class Information Transfer (Prob.)

Figure 3: Illustration of selective balanced
sampling. Transition probabilities between
different pairs are visualized. Detailed dis-
cussion is in Appendix A.1.

In the process of representation disentanglement and re-
assembly, finding a suitable strategy of sampling exam-
ples from the training distribution is crucial to solving
the domain-class imbalance problem. In single-domain
long-tailed learning, up-sampling examples from mi-
nority classes is a classical yet effective method. In
multi-domain long-tailed learning, the most straightfor-
ward extension is up-sampling examples from minority
domain-class groups, which is named balanced sam-
pling here. In practice, for each example (xi, yi, di),
the label yi and domain di are uniformly sampled a
joint uniform distribution over all domain-class combi-
nations, i.e., (yi, di) ∼ Uniform(C,D).

However, to transfer the knowledge between different
domain-class groups in TALLY, using such a sampling
strategy may overemphasize the importance of minority
domain-class groups. In Figure 3, we illustrate three domain-class groups from OfficeHome-LT,
which is a long-tailed variant of OfficeHome dataset (Venkateswara et al., 2017). To augment minority
groups (e.g., fan-clipart pair), balanced sampling tends to repeatedly draw examples from the same
minority group. We do not expect this because of two reasons: first, it limits the sample diversity
in knowledge transfer; second, as shown in Figure 3, minority groups typically perform worse than
majority groups, which may make the knowledge transfer less reliable. Hence, we propose a selective
balanced sampling strategy in TALLY. Concretely, for a pair of examples (xi, yi, di) and (xj , yj , dj),
the label yi of example i is uniformly sampled from all classes (yi ∼ Uniform(C)) and the domain dj
of example j is uniformly sampled from all domains (dj ∼ Uniform(D)). The illustration verifies that
selective balanced sampling has a higher chance of diversifying the sample selection in transferring
domain and class information.

3.3 PROTOTYPE-GUIDED INVARIANT LEARNING

Since the semantic representation z(s) (Eqn. 2) should contain only class-relevant information, it
should ideally be domain-invariant. However, per-instance statistics can be noisy and instance
normalization may not perfectly disentangle the semantic information from the domain-related
nuisances. To improve robustness, we can “average out” domain information over many examples of
the same class from different domains. However, merely averaging over examples would remove
the diversity that distinguishes different examples of the same class. We balance diversity and
domain-invariance by interpolating z(s) with the corresponding class prototype representation. We
define the class prototype representation rc as the average semantic representation over examples
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Algorithm 1 TALLY Training Process

Require: learning rates η; warm start epochs T0; prototype momentum γ; model fθ(·) with hidden
representation fr

θ (·) at layer r; Dataset Dtr = {(x, y, d)}
1: Initialize domain-agnostic prototypes {r(0)c }Cc=1 and class-agnostic statistics {(u(0)

d , v
(0)
d )}Dd=1

2: Train fθ with ERM for t < T0

3: for t = T0 to T do
4: yi ∼ Uniform(C), dj ∼ Uniform(D) ▷ Randomly sample domains and classes
5: (xi, yi, di) ∼ {Dtr|y = yi}, (xj , yj , dj) ∼ {Dtr|d = dj}
6: (si, sj)← (fr(xi), f

r(xj)) ▷ Compute hidden representations
7: z(si)← InstanceNorm(si) ▷ Disentangle semantic factor (Eqn. 2)
8: z′(si)← λcz(si) + (1− λc)r

(t)
c ▷ Enhance semantic factor (Eqn. 6)

9: (µ′(sj), σ
′(sj))← λd(µ(sj), σ(sj)) + (1− λd)(u

(t)
d , v

(t)
d ) ▷ Enhance nuisances (Eqn. 8)

10: (s̃′, ỹ′)← (σ′(sj)z
′(si) + µ′(sj), yi) ▷ Generate augmented example (Eqn. 9)

11: Optimize[ℓ(fL−r
θ (s̃′), ỹ′)] ▷ Train on augmented example (Eqn. 10)

12: Estimate the current prototypes and feature statistics {rc}Cc=1, {(ud, vd)}Dd=1

13: for c = 1 to C do
14: r

(t+1)
c ← γr

(t)
c + (1− γ)rc ▷ Update domain-agnostic prototypes

15: for d = 1 to D do
16: (u

(t+1)
d , v

(t+1)
d )← γ(u

(t)
d , v

(t)
d ) + (1− γ)(ud, vd) ▷ Update class-agnostic statistics

belonging to class c regardless of domain:

rc =
1

nc

nc∑
i=1

z(si) =
1

nc

nc∑
i=1

si − µ(si)

σ(si)
. (5)

For each example (x, y, d) with y = c, we obtain the prototype-enhanced semantic representation by
linearly interpolating z(s) with the corresponding class prototype rc:

z′(s) = λcz(s) + (1− λc)rc, (6)

where λc ∼ Beta(αc, αc) is the interpolation coefficient. By applying this class prototype-based
interpolation strategy, we are capable of capturing invariant knowledge and keeping the diversity of
instance-level semantic representation when swapping information.

We also desire that the disentangled µ(s) and σ(s) (Eqn. 2) contain only domain-related nuisance
information. However, for similar reasons as with z(s), they may still contain some class-related
semantic information which we would like to remove by “averaging out.” In this case, we remove
semantic information by averaging over examples from different classes within the same domain:

ud =
1

nd

nd∑
i=1

µ(si), vd =
1

nd

nd∑
i=1

σ(si), (7)

where nd represents the number of training examples in domain d. Then, for each example, we
linearly interpolate its domain-associated nuisances with the above class-agnostic nuisances as:

µ′(s) = λdµ(s) + (1− λd)ud, σ
′(s) = λdσ(s) + (1− λd)vd, (8)

where the interpolation ratio is λd ∼ Beta(αd, αd). In practice, we update the class prototype rc and
domain-agnostic nuisances ud and vd with momentum updating, where we denote the values of rc,
ud, vd at epoch t as r

(t)
c , u(t)

d and v
(t)
d , respectively.

By replacing the original semantic representation and domain-associated nuisances in Eqn. 4 with the
prototype-guided ones, we obtain the enhanced augmented representation as follows:

s̃′ = σ′(sj)z
′(si) + µ′(sj), ỹ

′ = yi. (9)

Finally, we replace the original training data with the augmented ones and reformulate the optimization
process in Eqn. 1 as:

min
θ

E(xi,yi),(xj ,yj)∼P tr [ℓ(fL−r
θ (s̃′), ỹ′)], (10)

where fL−r represents the post-layers after layer r. It is also worthwhile to point out that TALLY
can be incorporated into any kinds of class-imbalanced losses (e.g., Focal, LDAM). We summarize
the overall framework of TALLY in Algorithm 1.
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Table 1: Results of subpopulation shifts and domain shifts on synthetic data. Domain-class balanced
accuracy is reported. See full table with standard deviation in Appendix D.3. We bold the best
results and underline the second best results. OH-LT and DN-LT represent OfficeHome-LT and
DomainNet-LT, respectively.

Subpopulation Shift Domain Shift
VLCS-LT PACS-LT OH-LT DN-LT VLCS-LT PACS-LT OH-LT DN-LT

ERM 73.33% 90.40% 61.07% 44.33% 67.62% 76.27% 51.95% 33.21%

Focal 74.83% 90.44% 62.57% 47.35% 69.38% 75.29% 54.03% 35.23%
LDAM 73.83% 90.91% 63.57% 46.71% 69.41% 77.53% 53.60% 34.42%
CRT 73.83% 89.17% 61.92% 47.37% 65.67% 73.82% 53.62% 36.14%
MiSLAS 71.83% 90.99% 61.38% 49.15% 68.64% 77.94% 52.86% 36.18%
Remix 74.16% 90.83% 61.59% 47.56% 67.71% 75.25% 51.43% 35.14%
RIDE 74.33% 90.48% 63.27% 47.51% 69.29% 77.41% 53.75% 35.26%
PaCo 73.67% 91.31% 63.03% 48.26% 69.05% 76.79% 53.98% 35.76%

IRM 50.50% 65.24% 45.48% 35.57% 48.32% 52.60% 42.34% 28.19%
GroupDRO 72.50% 89.80% 59.79% 43.86% 69.18% 76.75% 51.12% 32.54%
CORAL 71.67% 88.22% 59.10% 43.92% 66.54% 75.62% 50.74% 33.44%
LISA 74.67% 90.08% 57.39% 43.17% 66.42% 74.47% 48.22% 34.99%
MixStyle 74.30% 91.55% 62.26% 43.59% 67.75% 79.78% 52.47% 33.71%
DDG 73.00% 89.60% 58.80% 44.46% 68.38% 75.97% 51.07% 33.94%
BODA 74.83% 91.03% 62.79% 47.61% 69.63% 78.81% 53.32% 35.85%

TALLY (ours) 76.83% 92.38% 67.00% 50.15% 70.60% 81.55% 55.69% 36.45%

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following questions: Q1: How does
TALLY perform relative to prior invariant learning and single-domain long-tailed learning approaches
under subpopulation shift and domain shift? Q2: Since it is straightforward to combine invariant
learning with imbalanced data strategies, how does TALLY compare with such combinations? Q3:
What affect does incorporating the prototype representation (Eqn. 9) have, in comparison with naive
representation swapping (Eqn. 4)? Q4: Can TALLY produce models with greater domain invariance?

We compare TALLY to two categories of algorithms. The first category includes single-domain
long-tailed learning methods such as Focal (Lin et al., 2017), LDAM (Cao et al., 2019), CRT (Kang
et al., 2020), MiSLAS (Zhong et al., 2021), RIDE (two experts) (Wang et al., 2020a), PaCo (Cui
et al., 2021), and Remix (Chou et al., 2020). The second category includes approaches for improving
robustness to distribution shift: IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2020),
LISA (Yao et al., 2022), MixStyle (Zhou et al., 2020b), DDG (Zhang et al., 2022), and BODA (Yang
et al., 2022), where BODA is a work studying multi-domain long-tailed learning by adding regularizer
on domain-class pairs. Follow Yang et al. (2022), we use a ResNet-50 for all algorithms, and detail the
baselines and evaluation metrics in Appendix C. All hyperparameters are selected via cross-validation.

4.1 EVALUATION ON LONG-TAILED VARIANTS OF DOMAIN GENERALIZATION BENCHMARKS

Datasets. Many standard domain-generalization benchmarks are not long-tailed, while standard
imbalanced-classification datasets tend to be in a single-domain. We curate four multi-domain
long-tailed datasets by modifying four existing domain-generalization benchmarks: VLCS (Fang
et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara et al., 2017), and DomainNet (Peng
et al., 2019). We modify the prior datasets by removing training examples so that each domain has a
long-tailed label distribution (overall imbalance ratio: 50) and call the resulting datasets VLCS-LT,
PACS-LT, OfficeHome-LT, and DomainNet-LT. See Appendix D.1 for more details.

Evaluation Protocol. We evaluate performance under both subpopulation shift and domain shift. In
subpopulation shift, the test set is balanced across both domains and classes, which means that each
domain-class pair contains the same number of test examples. In domain shift, we use the classical
domain generalization setting (Zhang et al., 2022). More specifically, we alternately use one domain
as the test domain, and the rest as the training domains. Results are averaged over all combinations.
Appendix D.1. detail the statistics and training class distribution for each multi-domain long-tailed
dataset. The hyperparameters αc and αd in the Beta distribution are set to 0.5 and the warm start
epoch T0 is set to 7. We list all hyperparameters in Appendix D.2.
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Results. The overall performance of TALLY and prior methods for tackling subpopulation shift is
reported in Table 1 (left). For subpopulation shift, we report the average performance over all domains
and the full results are presented in Table 6 of Appendix D.3. The following key observations can be
made according to Table 1 (left). We first observe that most single-domain re-weighting approaches
(e.g., Focal, LDAM) consistently outperform multi-domain learning approaches (e.g., GroupDRO,
CORAL) in most scenarios, indicating that imbalances in classes are probably more detrimental than
imbalances in domains. This observation is not surprising, since all domains are observed in during
training and testing in subpopluation shift problems. Even so, TALLY consistently outperforms
all methods with 7.29% error decreasing, verifying its effectiveness in improving the robustness to
subpopulation shifts. It is particularly noteworthy that TALLY shows superior performance compared
with BODA – an invariant learning approach to deal with multi-domain long-tailed learning. The
results indicate that designing regularizers that are suitable for datasets from diverse domains can be
challenging. Instead, balanced augmentation are capable of improving the robustness by transferring
domain nuisances between examples.
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Figure 4: Performance w.r.t. Class Size. We split
all classes into five levels. XL and XS represent
the largest and smallest classes, respectively.

In addition, Figure 4 shows performance bro-
ken down by class size for OfficeHome-LT and
DomainNet-LT, where we split all classes into
five levels according to their cardinality. We
compare TALLY with ERM, and four strongest
baselines (LDAM, CRT, MiSLAS, BODA). The
results show that TALLY’s performance improve-
ments arise from larger improvements on smaller
classes rather than performance improvements
across the board, hence indicating that it is partic-
ularly well-suited for class-imbalanced problems.

Results of Domain Shifts. Table 1 (right) shows the domain shift results. We first find that ERM
works relatively well compared to invariant learning approaches in most cases. This is expected
since we evaluate the performance on unseen domains and similar observations have been reported
from prior domain shift benchmarks (Koh et al., 2021). Second, single-domain long-tailed learning
methods boost the performance of ERM in most cases, showing that class-imbalance is still an
important issue in domain shift. Even so, as with the subpopulation shift setting, TALLY consistently
outperforms prior approaches, indicating its efficacy in enhancing robustness to domain shift. Finally,
we also provide the comparison on the standard version in Appendix G and TALLY also achieves
comparable results compared with state-of-the-art methods.

4.2 EVALUATION ON NATURALLY IMBALANCED MULTI-DOMAIN DATA

Table 2: Results of domain shifts on real-world
data. We report the full results in Appendix E.3

.
TerraInc iWildCam

Macro F1 Acc Macro F1 Acc

ERM 42.35% 54.81% 32.0% 69.0%

Focal 43.54% 56.62% 33.2% 74.7%
LDAM 44.29% 57.22% 32.7% 75.2%
CRT 43.09% 58.27% 32.5% 67.3%
MiSLAS 40.68% 52.96% 30.5% 59.8%
Remix 43.72% 58.40% 28.4% 65.8%
RIDE 44.03% 57.89% 32.8% 70.1%
PaCo 43.40% 57.35% 31.9% 72.6%

IRM 31.17% 49.27% 15.1% 59.8%
GroupDRO 42.22% 56.43% 23.9% 72.7%
CORAL 45.43% 58.10% 32.8% 73.3%
LISA 39.27% 54.92% 27.6% 64.9%
MixStyle 44.73% 57.55% 32.4% 74.9%
DDG 40.47% 53.61% 29.8% 69.7%
BODA 44.47% 57.52% 32.9% 70.5%

TALLY (ours) 46.23% 59.89% 34.4% 73.4%

Datasets and Evaluation Protocol. To further
evaluate TALLY and prior methods, we study two
multi-domain datasets that are naturally imbal-
anced: Terra Incognita (TerraInc) (Beery et al.,
2018) and iWildCam (Beery et al., 2020), both
of which aim to classify wildlife across differ-
ent camera traps. The examples are collected
from different camera traps (domains) and the
observed frequency of each species is naturally
uneven, leading to an imbalanced class distribu-
tion. More details of these datasets and class
distribution are described in Appendix E.1. Here,
we consider generalization to new camera traps,
i.e. to new domains. In TerraInc, the number of
training, validation and test domains are 10, 5, 5,
respectively. For iWildCam, we follow the same
training, validation, and test splits as used in the
WILDS benchmark (Koh et al., 2021). To bet-
ter capture performance on rare species, we use
macro F1 score as the primary evaluation metric
following Koh et al. (2021), but we also report
average accuracy. We list all hyperparameters in Appendix E.2.
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Results. We report the results over all test domains in Table 2. The conclusions are largely consistent
with the results from Sec. 4.1, where TALLY consistently improves the performance over all baselines
and enhances the robustness of multi-domain long-tailed learning. Additionally, data interpolation
based invariant learning approaches (e.g., LISA) hurt performance compared with ERM. This is not a
surprise because examples from large classes dominate the interpolation process, which essentially
exacerbate the class imbalance (See Appendix B for more discussion). The superiority of TALLY
over prior augmentation techniques is further evidence of the effectiveness of balanced augmentation.

4.3 CAN WE SIMPLY COMBINE INVARIANT LEARNING APPROACHES WITH LONG-TAILED
LEARNING TECHNIQUES?

OfficeHome-LT DomainNet-LT

Figure 5: Comparison between TALLY
and variants of two domain generalization
approaches (CORAL, MixStyle), where
we replace the losses of them with class
re-weighting or re-sampling ones. More
results are reported in Appendix F.3.

To further understand the performance gains of TALLY,
we investigate whether combining existing invariant
learning and long-tailed learning approaches can tackle
multi-domain long-tailed distribution shifts. Specifically,
we incorporate four up-weighting or up-sampling ap-
proaches (UW, Focal, LDAM, CRT) with two represen-
tative invariant learning methods (CORAL, MixStyle).
We report the relative improvement of each combina-
tion over the vanilla methods in Figure 6. Here, we use
Officehome-LT and DomainNet-LT to evaluate subpop-
ulation shift and TerraInc and iWildCam to evaluate do-
main shift (Appendix F.3) performance. We see that ap-
plying loss up-weighting or up-sampling approaches on
performant invariant learning approaches does improve
their performance, as evidenced by Figure 5. Nonethe-
less, the consistent improvements from TALLY indicates
the importance of considering domain-class pair information to achieve balanced augmentation.

4.4 ANALYSIS
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Figure 6: Analysis of prototype-guided invariant
learning. C Only and D Only represent only
using class prototype representation or class-
agnostic domain factors, respectively.

How do prototypes benefit invariant learning?
We analyze the effects of prototypes in alleviat-
ing domain-associated nuisances. Specifically, we
compare TALLY with three variants: (1) with-
out using any prototype information (None); (2)
only applying class prototype (C Only); (3) only
applying class-agnostic nuisances (D Only). We
report the results in Figure 6 (full results in Ap-
pendix F.4). We observe that adding class proto-
type does improve the performance. The class-
agnostics domain factors also benefits the perfor-
mance to some extent. In summary, TALLY out-
performs its variants, demonstrating the effective-
ness of prototype representation in mitigating domain-associated nuisances.

Table 3: Invariance Analysis of TALLY. OH-
LT and DN-LT represents Officehome-LT and
DomainNet-LT, respectively.

Model OH-LT DN-LT
Iacc ↓ Ikl ↓ Iacc ↓ Ikl ↓

ERM 46.35% 2.030 70.00% 4.852
MixStyle 44.42% 2.169 67.11% 5.661
CORAL 42.21% 1.248 66.79% 4.593
BODA 40.10% 2.052 65.15% 6.810

TALLY 39.52% 1.179 63.80% 3.956

Does TALLY lead to stronger domain invariance?
We analyze and compare the domain invariance of
classifiers trained by ERM, TALLY, and other in-
variant learning approaches. Following (Yang et al.,
2022; Yao et al., 2022), we measure the lack of do-
main invariance as the accuracy of domain prediction
(Iacc) and as the pairwise divergence of unscaled log-
its (Ikl). Specifically, for the accuracy of domain
prediction, we perform logistic regression on top of
the unscaled logits to predict the domain. For the pair-
wise divergence, we use kernel density estimation to
estimate the probability density function P (hc,d) of
logits from domain-class pair (c, d) and calculate the KL divergence of the distribution of logits
from different pairs. Formally, Ikl is defined as Ikl = 1

|C||D|2
∑

c∈C
∑

d′,d∈DKL(P (hc,d)|P (hc,d′)).
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We report the results of Officehome-LT and DomainNet-LT in Table 3. Smaller Iacc and Ikl values
indicate more invariant representations with respect to the labels. The results show that TALLY does
lead to greater domain-invariance compared to prior invariant learning approaches (e.g., BODA).

Table 4: Comparison between
sampling strategies.

OH-LT DN-LT

Balanced Sampling 65.03% 49.35%
TALLY(Selective) 67.00% 50.15%

TerraInc iWildCam

Balanced Sampling 44.79% 33.1%
TALLY(Selective) 46.23% 34.4%

Analysis of Sampling Strategies. Finally, we compare the pro-
posed selective balanced sampling in TALLY with domain-class
balanced sampling. As discussed in Sec. 3.2, for an example
pair (xi, yi, di) and (xi, yj , dj), selective balanced sampling gets
yi ∼ Uniform(C) and dj ∼ Uniform(D), while traditional bal-
anced sampling get (yi, di), (yj , dj) ∼ Uniform(C,D). The results
of subpopulation shifts in OfficeHome-LT, DomainNet-LT and of
domain shifts (Macro-F1) in TerraInc, iWildCam are reported in
Table 4 (see Appendix F.5 for full results), indicating the effectiveness of selective balanced sampling
in transferring knowledge over domains and classes.

5 RELATED WORK

Long-Tailed Learning. Training a well-performed machine learning model on class-imbalanced data
has been widely studied and a lot of approaches have been proposed, including over-sampling minority
classes or under-sampling majority classes (Chawla et al., 2002; Estabrooks et al., 2004; Kang et al.,
2020; Liu et al., 2008; Zhang & Pfister, 2021), adjusting loss functions or logits for different classes
during training (Cao et al., 2019; Cui et al., 2019; Hong et al., 2021; Jamal et al., 2020; Lin et al., 2017),
transferring knowledge from head classes to tail classes (Wang et al., 2017; Liu et al., 2020; Yin et al.,
2019; Zhou et al., 2022), directly augmenting tail classes (Chou et al., 2020; Kang et al., 2020; Zhong
et al., 2021), and ensembling models with different sampling or loss weighting strategies (Xiang
et al., 2020; Zhou et al., 2020a). Unlike single-domain imbalanced learning, Yang et al. (2022)
targets on the multi-domain imbalanced learning scenario by encouraging invariant representation
learning with a domain-class calibrated regularizer. However, BODA focuses on subpopulation shift
with the imbalanced distribution for each domain, while the overall distribution among all classes
are relatively balanced. TALLY instead studies more kinds of distribution shifts with conceptually
different direction to alleviate domain-associated nuisances via balanced augmentation. It relaxes the
explicit constraint on internal representations and leads to stronger empirical performance.

Domain Generalization and Out-of-Distribution Robustness. To improve out-of-distribution
robustness, one line of works aims to learn domain-invariant representations by 1) minimizing the
discrepancy of feature representations across all training domains (Li et al., 2018; Sun & Saenko,
2016; Tzeng et al., 2014; Zhou et al., 2020b); 2) leveraging domain augmentation methods to generate
more training domains and improve the consistency among domains (Shu et al., 2021; Wang et al.,
2020b; Xu et al., 2020; Yan et al., 2020; Yue et al., 2019; Zhou et al., 2020c); 3) disentangling
feature representations to semantic and domain-varying ones and minimizing the semantic differences
across training domains (Robey et al., 2021; Zhang et al., 2022). Another line of works focuses on
learning invariant predictors with regularizers, including minimizing the variances of risks across
domains (Krueger et al., 2021), encouraging a predictor that performs well over all domains (Ahuja
et al., 2021; Arjovsky et al., 2019; Guo et al., 2021; Khezeli et al., 2021). Apart from explicitly
involving regularizers, data augmentation is another promising approach for learning invariant
predictors (Yao et al., 2022; Zhou et al., 2020b). Unlike previous augmentation methods that require
sufficient training examples for each class to learn invariance (see detailed discussion in Appendix B),
TALLY tackles the class-imbalanced issue in domain generalization and employs a domain-balanced
augmentation strategy to learn class-unbiased invariant representation.

6 CONCLUSION

In this paper we investigate multi-domain imbalanced learning, a natural extension of classical single-
domain imbalanced learning. We propose a novel balanced augmentation algorithm called TALLY to
achieve robust imbalanced learning that can overcome distribution shifts. To generate more examples,
TALLY introduces a prototype enhanced disentanglement procedure for separating semantic and
nuisance information. TALLY then mixes the enhanced semantic and domain-associated nuisance
information among examples. The results on four synthetic and two real-world datasets demonstrate
its effectiveness over existing imbalanced classification and invariant learning techniques. In the
future, we plan to conduct theoretical studies to better understand how TALLY works.
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A ADDITIONAL INFORMATION FOR TALLY

A.1 ADDITIONAL DISCUSSION OF SELECTIVE BALANCED SAMPLING

In this section, we detail our explanation about Figure 3 and show why selective balanced sampling
is a better strategy in TALLY. In Figure 3, there are three domain-class groups: (Fan, Clipart), (Fan,
Art), (Computer, Clipart) and the number of examples for each group is 1, 13, 83, respectively. We
specifically focus on augmenting examples from the minority group (i.e., (Computer, Clipart) group).
In this case, the samples (xi, yi, di) and (xj , yj , dj) need to contain class semantic information (i.e.,
Fan) and domain information (i.e., Clipart) in the representation augmentation module, respectively.

The balanced sampling under the multi-domain long-tailed classification problem is to up-sample
examples from minority domain-class groups. Concretely, the label yi and domain di for each
example (xi, yi, di) are jointly sampled from Uniform(C,D). If we employ original balanced
sampling in the representation augmentation module of TALLY, then (yi, di) Uniform(C,D),
(yj , dj) Uniform(C,D). To augment the (Fan, Clipart) group, the class semantic information from
(xi, yi, di) has a 1/2 probability to be obtained from the original (Fan, Clipart) group, and a 1/2
probability to be obtained from the (Fan, Art) group. Similarly, the domain information has a 1/2
probability to be obtained from the original (Fan, Clipart) group, and a 1/2 probability to be obtained
from the (Computer, Clipart) group. Thus, examples from the minority group (i.e., Fan, Clipart) will
be repeatedly sampled during the augmentation process and this is what we do not expect.

Instead, for selective balanced sampling, the label yi of example i is uniformly sampled from all
classes (i.e., yi Uniform(C)), and the domain dj or example j is uniformly sampled from all domains
(i.e., di Uniform(D)). Thus, to augment the (Fan, Clipart) group, the class semantic information
from example (xi, yi, di) has a 1/14 probability to be obtained from the original (Fan, Clipart) group
and a 13/14 probability to be obtained from the (Fan, Art) group because we do not consider domain
information in sampling example (xi, yi, di). Similarly, for selective balanced sampling, the domain
information has a 1/84 probability to be obtained from the original (Fan, Clipart) group, and a 83/84
probability to be obtained from the (Computer, Clipart) group.

To sum up, using selective balanced sampling can provide more diverse and effective knowledge
transfer.

A.2 ALGORITHM OF THE TESTING STAGE OF TALLY

In this section, we summarize the testing stage of TALLY in Alg. 2. It is worthwhile to notice that the
representation augmentation module is only used during the training stage.

Algorithm 2 TALLY Testing Process

Require: model fθ∗(·) with learned parameter θ∗; Test Dataset Dts.
1: Feed all testing examples {(xi, yi, di)}n

ts

i=1 to model fθ∗(·) and get the predicted label of each
example (x, y, d) as ŷ = fθ∗(x)

2: Evaluate and report the performance based on the predicted values and the groundtruth.

B ADDITIONAL DISCUSSION OF RELATED WORKS

In this section, we provide an additional discussion of related works. Specifically, we would like
to point out why data interpolation-based domain generalization approaches (e.g., LISA (Yao et al.,
2022), mixup) can not benefit the performance when encountering the long-tailed distribution. Take
LISA as an example, we adopt intra-label LISA in this paper, which is more suitable for domain
shift as mentioned in (Yao et al., 2022). Intra-label LISA learns domain-invariant predictors by
interpolating examples with the same label but from different domains, which can probably aggravate
the label imbalance issue. We provide a simple example to explain why LISA changes the label
distribution. Assume we have two classes and two domains, the ratio of training examples between
four domain-class pairs in training set is: (y1, d1) : (y1, d2) : (y2, d1) : (y2, d1) = 100 : 200 : 80 : 5.
The label imbalance ratio is 300 : 85 = 3.52. To apply LISA, we can essentially have 100× 200 =
20000 example pairs in class 1 (y1), and 80× 5 = 400 example pairs in class 2 (y2), which roughly
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leads to a new label imbalance ratio 20000 : 400 = 50 > 3.52. The comparison between the number
of example pairs for interpolation can not precisely reflect the training label imbalance ratio in LISA,
but it shows that LISA changes the label distribution to some extent.

C ADDITIONAL DETAILS OF GENERAL EXPERIMENTAL SETUPS

C.1 DETAILED BASELINE DESCRIPTIONS

In this paper, we compare TALLY with two types of approaches: long-tailed classification methods
and invariant learning approaches. We detail these methods here:

Long-tailed Classification Methods. We compare TALLY with Focal Lin et al. (2017), LDAM Cao
et al. (2019), CRT Kang et al. (2020), MiSLAS Zhong et al. (2021), and Remix Chou et al. (2020).
Here, Focal and LDAM up-weight the loss for minority classes. CRT uses up-sampling strategy to
fine-tune the classifier. MiSLAS and Remix modify the vanilla mixup Zhang et al. (2018) and make
it suitable to long-tailed distribution.

Invariant Learning. We further compare TALLY with invariant learning approaches, i.e., IRM Ar-
jovsky et al. (2019), GroupDRO Sagawa et al. (2020), LISA Yao et al. (2022), MixStyle Zhou et al.
(2020b), DDG Zhang et al. (2022), and BODA Yang et al. (2022). IRM learns invariant predictors that
perform well across different domains. GroupDRO optimizes the worst-domain loss. LISA cancels
out domain-associated information by mixing examples with the same label but different domains.
MixStyle decomposes the feature representation into content information and style information. It
then mixes the style information and generates new examples. Unlike MixStyle, TALLY generates
examples of minority classes or domains, and uses prototypes to improve the model robustness, which
is more suitable for long-tailed multi-domain learning. DDG uses an extra network to disentangle
original examples and generate more. Finally, BODA is a concurrent work for long-tailed multi-
domain learning with an explicit regularizer. Unlike BODA, TALLY studies a conceptually different
direction to cancel out domain-associated nuisances by domain-class balanced augmentation, leading
to stronger empirical performance.

C.2 DETAILED EVALUATION METRICS

In this section, we detail our evaluation metrics. In synthetic data, to emphasize the performance on
minority classes and domains, we use domain-class balanced accuracy as the evaluation metric, where
the number of test examples is the same across every class within every test domain. In real-world
data, follow Koh et al. (2021), we use Macro F1 over all classes and average accuracy to evaluate the
performance, where the Macro F1 is served as the primary metric to emphasize the performance on
rare classes.

D ADDITIONAL RESULTS OF SYNTHETIC DATA

D.1 DETAILED DATASET DESCRIPTION

VLCS-LT contains examples from 4 different domains, including Caltech101, LabelMe, SUN09,
VOC2007. To create the long-tailed class distribution, we modify the original dataset by removing
training examples. The dataset contains 5 classes with 6,361 images of dimension (224, 224, 3). The
long-tailed training distribution is visualized in Figure 7a. In subpopulation shift, the number of
examples of each class per domain for validation and testing is 5, 10, respectively.

PACS-LT includes 3,097 images collected from 4 domains (Art painting, Cartoon, Photo, Sketch)
and 7 classes. Similar to VLCS-LT, we construct PACS-LT with long-tailed training distribution
illustrated in Figure 7b. The validation set size and test set size of each class per domain in
subpopulation shift are 15 and 30 respectively.

OfficeHome-LT is built upon the original OfficeHome dataset, including 3280 images of 65 classes
collected from four domains – Art, Clipart, Product, Real. The long-tailed training distribution is
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shown in Figure 7c and the number of examples for each class per domain in validation and test sets
are 4, 8, respectively.

DomainNet-LT. Similar to the other three datasets, DomainNet-LT covers 173,200 examples from
Sketch, Infograph, Painting, Quickdraw, Real, Clipart. There are 345 classes in DomainNet-LT.
In subpopulation shift, the number of examples of each class per domain is 3, 6, respectively. We
illustrate the long-tailed training distribution in Figure 7d.
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Figure 7: Long-tailed training distributions for all synthetic datasets. Here, the x-axis represents
sorted class indices.

D.2 DETAILED EXPERIMENTAL SETUPS AND HYPERPARAMETERS

In this section, we detail how we split the training and test set in synthetic datasets under both
subpopulation shifts and domain shifts. In subpopulation shift, the training distribution for each
domain is a long-tailed distribution and the test is domain-class balanced distribution, i.e., the number
of examples in each domain-class pair is the same. In terms of domain shifts in synthetic datasets,
following (Peng et al., 2019; Shi et al., 2021), we hold out one domain as the testing domain and use
the rest domains as training. All baselines and TALLY use the same evaluation protocol.

We list the hyperparameters in Table 5 for the above four synthetic datasets.

Table 5: Hyperparameters for experiments on synthetic data.

Hyperparameters VLCS-LT PACS-LT OfficeHome-LT DomainNet-LT

Learning Rate 1e-5 1e-5 3e-5 3e-5
Weight Decay 1e-6 1e-6 1e-6 1e-6
Batch Size 18 18 18 18
Epochs 15 15 15 15
Steps 200 500 500 1000
Warm Start Epochs 7 7 7 7
γ in feat. estimation 0.8 0.8 0.8 0.8
class prototype mixup parameter αc 0.2 0.5 0.5 0.5
domain prototype mixup parameter αd 0.2 0.5 0.5 0.5
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D.3 FULL RESULTS

The full results of subpopulation shift are reported in Table 6. In domain shift, we report the results
of each domain for VLCS-LT, PACS-LT, OfficeHome-LT and DomainNet-LT in Table 7, 8, 9, 10,
respectively. In the domain shift scenario of VLCS-LT, though TALLY only performs best in
VOC2007 (VLCS), the results of TALLY is relatively more stable compared to other approaches,
leading to the best averaged performance.

Table 6: Full results of subpopulation shifts on long-tailed variants of domain generalization bench-
marks. The standard deviation is computed across three seeds.

VLCS-LT PACS-LT OfficeHome-LT DomainNet-LT

Avg.

ERM 73.33 ± 0.76% 90.40 ± 0.88% 61.07 ± 0.73% 44.33 ± 0.14%

Focal 74.83 ± 0.29% 90.44 ± 0.06% 62.57 ± 0.50% 47.35 ± 0.09%
LDAM 73.83 ± 1.04% 90.91 ± 0.15% 63.57 ± 0.08% 46.71 ± 0.33%
CRT 73.83 ± 1.89% 89.17 ± 1.47% 61.92 ± 0.54% 47.37 ± 0.83%
MiSLAS 71.83 ± 1.25% 90.99 ± 0.90% 61.38 ± 0.19% 49.15 ± 0.69%
Remix 74.16 ± 0.76% 90.83 ± 0.77% 61.59 ± 0.44% 47.56 ± 0.25%
RIDE 74.33 ± 0.76% 90.48 ± 0.32% 63.27 ± 0.54% 47.51 ± 0.83%
PaCo 73.67 ± 0.28% 91.31 ± 0.58% 63.03 ± 0.92% 48.26 ± 0.22%

IRM 50.50 ± 8.18% 65.24 ± 7.57% 45.48 ± 4.30% 35.57 ± 5.76%
GroupDRO 72.50 ± 0.50% 89.80 ± 0.70% 59.79 ± 0.43% 43.86 ± 0.33%
CORAL 71.67 ± 0.28% 88.22 ± 0.67% 59.10 ± 0.20% 43.92 ± 0.36%
LISA 74.67 ± 0.76% 90.08 ± 0.45% 57.39 ± 0.59% 43.17 ± 0.53%
MixStyle 74.30 ± 1.04% 91.55 ± 0.25% 62.26 ± 0.22% 43.59 ± 0.57%
DDG 73.00 ± 1.63% 89.60 ± 0.40% 58.80 ± 0.57% 44.46 ± 0.06%
BODA 74.83 ± 1.84% 91.03 ± 0.31% 62.79 ± 0.45% 47.61 ± 0.04%

TALLY (ours) 76.83 ± 1.04% 92.38 ± 0.26% 67.00 ± 0.47% 50.15 ± 0.46%

Worst

ERM 52.67 ± 2.31% 83.81 ± 2.43% 54.48 ± 0.89% 25.36 ± 0.63%

Focal 52.67 ± 1.15% 84.44 ± 0.81% 56.41 ± 1.34% 27.68 ± 0.13%
LDAM 51.33 ± 2.31% 85.24 ± 1.03% 58.07 ± 0.82% 27.23 ± 0.26%
CRT 52.00 ± 0.00% 83.02 ± 1.12% 55.51 ± 0.79% 27.55 ± 0.49%
MiSLAS 52.00 ± 3.46% 86.03 ± 0.90% 52.82 ± 0.39% 29.42 ± 0.15%
Remix 51.33 ± 3.05% 86.98 ± 0.59% 53.85 ± 0.54% 28.13 ± 0.99%
RIDE 53.50 ± 2.31% 85.71 ± 0.82% 54.04 ± 0.28% 28.16 ± 0.60%
PaCo 53.83 ± 0.94% 87.14 ± 0.46% 56.15 ± 0.71% 27.36 ± 0.52%

IRM 32.63 ± 7.03% 59.38 ± 5.93% 40.58 ± 4.42% 20.48 ± 3.71%
GroupDRO 51.33 ± 1.15% 83.02 ± 0.59% 54.04 ± 0.30% 25.02 ± 0.73%
CORAL 49.33 ± 1.15% 81.59 ± 0.81% 53.53 ± 0.60% 24.50 ± 0.68%
LISA 53.33 ± 1.15% 83.01 ± 0.81% 49.04 ± 0.40% 24.05 ± 0.48%
MixStyle 54.00 ± 2.00% 86.98 ± 0.98% 55.19 ± 1.10% 22.65 ± 0.22%
DDG 51.33 ± 0.94% 82.70 ± 2.38% 51.99 ± 0.55% 24.35 ± 0.20%
BODA 54.00 ± 2.83% 85.08 ± 1.37% 55.70 ± 0.50% 26.94 ± 0.44%

TALLY (ours) 56.00 ± 2.00% 89.21 ± 0.22% 60.45 ± 0.09% 29.55 ± 0.19%

E ADDITIONAL RESULTS OF REAL-WORLD DATA

E.1 DETAILED DATASET DESCRIPTION

TerraInc. Building upon the original Terra Incognita Beery et al. (2018), we select images from 10
classes and split the entire dataset to training, validation and test domains, which includes images
from 38,042, 6,783, 7,303 camera traps, respectively.

iWildCam is a wildlife recognition datasets. It is a multi-class species classification, where the
training data are collected from 243 domains and the test data includes images from 164 domains.
We follow Koh et al. (2021) to split the data and construct training, validation and test sets.
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Table 7: Domain shift results on VLCS-LT.

Caltech101 LabelMe SUN09 VOC2007 Avg

ERM 92.39 ± 0.35% 47.74 ± 1.13% 59.79 ± 2.70% 70.55 ± 1.51% 67.62%

Focal 97.12 ± 1.06% 48.83 ± 0.38% 58.66 ± 2.31% 72.91 ± 1.51% 69.38%
LDAM 95.55 ± 1.65% 47.61 ± 1.12% 61.34 ± 3.02% 73.17 ± 1.33% 69.41%
CRT 92.39 ± 1.82% 47.74 ± 1.52% 55.10 ± 2.61% 67.45 ± 1.54% 65.67%
MiSLAS 95.24 ± 1.51% 47.00 ± 0.99% 56.03 ± 1.29% 76.28 ± 1.66% 68.64%
Remix 92.66 ± 1.42% 48.77 ± 1.31% 57.98 ± 2.62% 71.45 ± 0.87% 67.71%
RIDE 95.70 ± 1.24% 48.13 ± 0.58% 59.62 ± 1.53% 73.72 ± 1.19% 69.29%
PaCo 96.11 ± 0.98% 49.48 ± 1.01% 58.85 ± 2.04% 71.76 ± 1.52% 69.05%

IRM 74.10 ± 2.67% 37.07 ± 1.87% 34.33 ± 1.77% 47.78 ± 3.59% 48.32%
GroupDRO 93.79 ± 1.01% 49.63 ± 1.09% 62.25 ± 1.89% 71.06 ± 0.55% 69.18%
CORAL 93.94 ± 1.53% 48.29 ± 1.08% 56.12 ± 1.84% 67.82 ± 1.43% 66.54%
LISA 90.28 ± 0.68% 48.51 ± 1.58% 58.82 ± 2.41% 68.09 ± 1.53% 66.42%
MixStyle 96.58 ± 0.84% 48.15 ± 1.20% 58.82 ± 1.94% 68.09 ± 1.98% 67.75%
DDG 95.46 ± 1.19% 50.42 ± 1.45% 57.44 ± 2.07% 70.21 ± 1.33% 68.38%
BODA 95.60 ± 1.37% 51.42 ± 1.31% 59.93 ± 1.97% 71.57 ± 1.18% 69.63%

TALLY (ours) 95.22 ± 0.92% 50.07 ± 1.17% 60.13 ± 2.17% 76.98 ± 0.57% 70.60%

Table 8: Domain shift results on PACS-LT.

Art painting Cartoon Photo Sketch Avg

ERM 80.41 ± 1.21% 70.21 ± 1.14% 94.46 ± 0.19% 60.00 ± 5.04% 76.27%

Focal 80.92 ± 0.51% 69.58 ± 0.64% 93.81 ± 0.80% 56.83 ± 2.04% 75.29%
LDAM 81.82 ± 1.14% 71.64 ± 0.66% 95.34 ± 0.32% 61.30 ± 4.83% 77.53%
CRT 78.14 ± 0.99% 67.17 ± 0.73% 94.33 ± 0.78% 55.62 ± 6.57% 73.82%
MiSLAS 81.31 ± 0.49% 71.15 ± 0.28% 93.51 ± 1.40% 65.78 ± 2.13% 77.94%
Remix 82.79 ± 1.21% 69.10 ± 1.13% 92.09 ± 1.01% 57.00 ± 4.13% 75.25%
RIDE 81.57 ± 0.57% 71.64 ± 0.42% 94.69 ± 0.49% 61.74 ± 2.52% 77.41%
PaCo 80.86 ± 0.88% 71.29 ± 0.28% 95.45 ± 0.85% 59.55 ± 3.02% 76.79%

IRM 51.87 ± 4.93% 50.27 ± 5.77% 69.11 ± 4.43% 39.13 ± 9.65% 52.60%
GroupDRO 80.20 ± 0.57% 70.61 ± 1.41% 94.58 ± 0.90% 61.61 ± 1.48% 76.75%
CORAL 77.60 ± 0.79% 68.19 ± 0.73% 93.88 ± 0.40% 62.82 ± 2.67% 75.62%
LISA 81.09 ± 0.61% 65.68 ± 0.87% 94.40 ± 0.33% 56.69 ± 1.99% 74.47%
MixStyle 83.45 ± 0.90% 72.84 ± 0.59% 95.20 ± 0.49% 67.61 ± 0.83% 79.78%
DDG 79.67 ± 0.77% 68.30 ± 0.34% 94.72 ± 0.50% 61.20 ± 0.82% 75.97%
BODA 81.13 ± 0.59% 72.03 ± 0.65% 95.73 ± 0.56% 66.34 ± 1.55% 78.81%

TALLY (ours) 85.86 ± 0.40% 74.20 ± 0.30% 96.56 ± 0.20% 69.58 ± 0.62% 81.55%

E.2 DETAILED EXPERIMENTAL SETUPS AND HYPERPARAMETERS

In this section, we detail how we split the training and test set in real-world datasets with domain
shifts. Specifically, we follow Koh et al. (2021) and use the same split as they did for iWildCam,
where a bunch of locations is selected for testing and the rest ones are used for training. For Terrainc,
we adopt the same strategy to split training and test domains since Terrainc also focuses on wildlife
recognition and the data distribution is similar to iWildCam. All baselines and TALLY use the same
evaluation protocol.

We list the hyperparameters in Table 11 for both TerraInc and iWildCam datasets.

E.3 FULL RESULTS

The full results on Real-world Data are reported in Table 12.
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Table 9: Domain shift results on OfficeHome-LT.

Art Clipart Product Real Avg

ERM 45.20 ± 0.73% 41.94 ± 0.17% 59.21 ± 0.44% 61.44 ± 0.27% 51.95%

Focal 47.06 ± 0.24% 43.29 ± 0.71% 62.34 ± 0.16% 63.45 ± 0.19% 54.03%
LDAM 47.08 ± 0.37% 42.89 ± 0.18% 61.48 ± 0.55% 62.93 ± 0.24% 53.60%
CRT 47.17 ± 0.26% 42.62 ± 0.55% 61.37 ± 0.12% 63.31 ± 0.25% 53.62%
MiSLAS 45.22 ± 0.52% 41.36 ± 0.09% 62.28 ± 0.49% 62.56 ± 0.25% 52.86%
Remix 44.26 ± 0.49% 39.18 ± 0.34% 60.70 ± 0.28% 61.58 ± 0.42% 51.43%
RIDE 47.15 ± 0.38% 43.00 ± 0.49% 61.50 ± 0.19% 63.36 ± 0.13% 53.75 %
PaCo 48.06 ± 0.40% 42.61 ± 0.83% 62.26 ± 0.34% 62.98 ± 0.27% 53.98 %

IRM 33.55 ± 4.21% 34.34 ± 3.74% 49.54 ± 5.30% 51.95 ± 4.64% 42.34%
GroupDRO 44.62 ± 0.51% 41.84 ± 0.68% 58.40 ± 0.43% 59.63 ± 0.53% 51.12%
CORAL 43.93 ± 0.56% 42.71 ± 0.59% 56.91 ± 0.45% 59.40 ± 0.94% 50.74%
LISA 41.80 ± 0.36% 36.96 ± 0.45% 56.51 ± 0.16% 57.62 ± 0.39% 48.22%
MixStyle 45.11 ± 0.18% 45.52 ± 0.20% 58.32 ± 0.64% 60.92 ± 0.22% 52.47%
DDG 43.89 ± 0.39% 42.79 ± 0.91% 57.92 ± 0.15% 59.69 ± 0.30% 51.07%
BODA 47.08 ± 0.25% 44.38 ± 0.77% 59.58 ± 0.26% 62.25 ± 0.10% 53.32%

TALLY (ours) 49.79 ± 0.76% 44.22 ± 0.45% 63.02 ± 0.52% 65.71 ± 0.26% 55.69%

Table 10: Domain shift results on DomainNet-LT.

Sketch Infograph Painting Quickdraw Real Clipart Avg

ERM 39.22 ± 0.24% 18.96 ± 0.37% 34.71 ± 0.49% 10.70 ± 0.06% 50.87 ± 0.43% 44.83 ± 0.25% 33.21%

Focal 41.01 ± 0.61% 19.99 ± 0.14% 36.42 ± 0.45% 10.29 ± 0.23% 55.63 ± 0.56% 48.09 ± 0.72% 35.23%
LDAM 40.44 ± 0.26% 19.06 ± 0.20% 36.32 ± 0.52% 11.38 ± 0.29% 52.91 ± 0.52% 46.38 ± 0.44% 34.42%
CRT 40.78 ± 0.35% 20.41 ± 0.42% 39.01 ± 0.35% 11.41 ± 0.17% 55.26 ± 0.69% 50.00 ± 0.83% 36.14%
MiSLAS 41.34 ± 0.39% 19.89 ± 0.25% 39.85 ± 0.56% 11.00 ± 0.13% 55.50 ± 0.36% 49.49 ± 0.29% 36.18%
Remix 40.01 ± 0.51% 19.17 ± 0.46% 38.93 ± 0.32% 11.39 ± 0.20% 53.43 ± 0.60% 47.94 ± 0.71% 35.14%
RIDE 41.12 ± 0.57% 19.23 ± 0.34% 37.29 ± 0.44% 11.21 ± 0.35% 54.00 ± 0.63% 48.72 ± 0.30% 35.26%
PaCo 40.88 ± 0.25% 19.85 ± 0.21% 39.11 ± 0.18% 11.03 ± 0.51% 55.35 ± 0.77% 48.31 ± 0.18% 35.76%

IRM 34.65 ± 0.75% 15.41 ± 0.83% 28.18 ± 1.26% 7.69 ± 0.40% 40.83 ± 0.72% 42.36 ± 1.25% 28.19%
GroupDRO 38.47 ± 0.27% 18.63 ± 0.07% 34.23 ± 0.15% 10.26 ± 0.35% 50.80 ± 0.47% 42.85 ± 0.63% 32.54%
CORAL 39.42 ± 0.42% 19.30 ± 0.33% 35.15 ± 0.70% 10.61 ± 0.22% 51.05 ± 0.28% 45.15 ± 0.38% 33.44%
LISA 40.75 ± 0.46% 18.47 ± 0.14% 37.99 ± 0.19% 9.98 ± 0.09% 54.33 ± 0.49% 48.42 ± 0.42% 34.99%
MixStyle 40.99 ± 0.60% 18.64 ± 0.32% 35.86 ± 0.39% 11.03 ± 0.15% 50.26 ± 0.53% 45.49 ± 0.84% 33.71%
DDG 40.66 ± 0.58% 19.08 ± 0.34% 35.61 ± 0.63% 11.39 ± 0.29% 50.93 ± 0.41% 45.95 ± 0.47% 33.94%
BODA 41.95 ± 0.45% 20.65 ± 0.58% 37.98 ± 0.27% 11.02 ± 0.23% 55.22 ± 0.65% 48.26 ± 0.33% 35.85%

TALLY (ours) 42.66 ± 0.32% 19.26 ± 0.09% 40.49 ± 0.34% 11.15 ± 0.21% 54.79 ± 0.62% 50.36 ± 0.41% 36.45%

Table 12: Full Results of Domain Shifts on Real-world Data.

TerraInc iWildCam
Macro F1 Acc Macro F1 Acc

ERM 42.35 ± 1.25% 54.81 ±0.83% 32.0 ± 1.5% 69.0 ± 0.4%

Focal 43.54 ± 0.81% 56.62 ± 1.49% 33.2 ± 1.2% 74.7 ± 1.9%
LDAM 44.29 ± 1.41% 57.22 ± 0.92% 32.7 ± 0.9% 75.2 ± 2.0%
CRT 43.09 ± 0.79% 58.27 ± 1.35% 32.5 ± 1.8% 67.3 ± 1.3%
MiSLAS 40.68 ± 1.33% 52.96 ± 2.58% 30.5 ± 1.1% 59.8 ± 2.8%
Remix 43.72 ± 1.87% 58.40 ± 2.57% 28.4 ± 0.8% 65.8 ± 1.6%
RIDE 44.03 ± 1.42% 57.89 ± 1.46% 32.8 ± 0.5% 70.1 ± 1.9%
PaCo 43.40 ± 1.03% 57.35 ± 0.89% 31.9 ± 0.2% 72.6 ± 2.5%

IRM 31.17 ± 3.52% 49.27 ± 5.22% 15.1 ± 4.9% 59.8 ± 3.7%
GroupDRO 42.22 ± 0.87% 56.43 ± 1.63% 23.9 ± 2.1% 72.7 ± 2.0%
CORAL 45.43 ± 0.92% 58.10 ± 1.38% 32.8 ± 0.1% 73.3 ± 4.3%
LISA 39.27 ± 0.69% 54.92 ± 1.04% 27.6 ± 1.2% 64.9 ± 2.2%
MixStyle 44.73 ± 0.99% 57.55 ± 2.05% 32.4 ± 1.1% 74.9 ± 2.7%
DDG 40.47 ± 1.93% 53.61 ± 1.71% 29.8 ± 0.2% 69.7 ± 2.3%
BODA 44.47 ± 0.84% 57.52 ± 1.13% 32.9 ± 0.3% 70.5 ± 2.3%

TALLY (ours) 46.23 ± 0.56% 59.89 ± 1.32% 34.4 ± 0.4% 73.4 ± 1.8%
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Table 11: Hyperparameters for experiments on real-world data.

Hyperparameters TerraInc iWildCam

Learning Rate 3e-5 3e-5
Weight Decay 1e-6 0
Batch Size 18 16
Epochs 15 15
Steps 1000 1000
Warm Start Epochs 7 7
γ in feat. estimation 0.8 0.8
class prototype mixup parameter αc 0.5 0.5
domain prototype mixup parameter αd 0.5 0.5

F ADDITIONAL RESULTS OF ANALYSIS

In this section, we conduct two additional analysis to better understand how TALLY works. Then, we
provide additional results of the analysis in the main paper.

F.1 FINE-TUNING ERM ON BALANCED DATASETS

In this section, we conducted an additional experiment to compare TALLY with a simpler approach –
training ERM on a imbalanced dataset and finetuning it on the corresponding balanced dataset. Here,
we adopt three variants of balanced datasets for fine-tuning: (1) class-balanced dataset, where the
number of examples is the same across different classes; (2) domain-balanced dataset, where the
number of examples is the same across different domains; (3) domain-class balanced dataset, where
the number of examples is the same across each domain-class group. The results are reported in
Table 13, where the performance under subpopulation shift in OfficeHome-LT and DomainNet-LT
and the performance under domain shift in TerraInc and iWildCam are reported. According to the
results, we observe that TALLY still outperforms all variants of balanced finetuning, indicating its
effectiveness in addressing multi-domain long-tailed learning problem by augmenting disentangled
representations.

Table 13: Performance comparison between TALLY and balanced finetuning. FT means fine-tuning.
Here, worst performance means the class-balanced worst-domain accuracy.

Subpopulation shift OfficeHome-LT DomainNet-LT
Avg. Worst Avg. Worst

Class-balanced FT 63.41 ± 0.32% 58.41 ± 0.64% 47.23 ± 0.83% 27.65 ± 0.05%
Domain-balanced FT 61.19 ± 0.79% 54.29 ± 0.55% 44.32 ± 0.28% 24.37 ± 0.13%
Domain-class-balanced FT 62.84 ± 0.28% 57.88 ± 0.82% 47.07 ± 0.41% 27.16 ± 0.22%

TALLY 67.00 ± 0.47% 60.45 ± 0.09% 50.15 ± 0.46% 29.55 ± 0.19%

Domain shift TerraInc iWildCam
Macro F1 Acc Macro F1 Acc

Class-balanced FT 44.36 ± 0.45% 57.85 ± 1.91% 32.5 ± 0.3% 72.2 ± 2.1%
Domain-balanced FT 43.92 ± 0.77% 58.12 ± 0.73% 32.9 ± 0.8% 73.7 ± 0.7%
Domain-class-balanced FT 44.21 ± 0.31% 59.13 ± 1.24% 32.1 ± 0.5% 71.9 ± 1.8%

TALLY 46.23 ± 0.56% 59.89 ± 1.32% 34.4 ± 0.4% 73.4 ± 1.8%

F.2 COMPATIBILITY ANALYSIS OF TALLY

In this section, we analyze the compatibility of TALLY. Since TALLY only augmenting disentangled
representations during the training stage, we can easily incorporate TALLY with other long-tailed
learning approaches. Specifically, we incorporate TALLY with PaCo and RIDE in this analysis and
report the results in Table 14. We observe that incorporating TALLY significantly improves the
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performance over the vanilla PaCo and RIDE. Nevertheless, the original TALLY already showed
competitive performance compared with TALLY+PaCo and TALLY+RIDE.

Table 14: Compatibility Analysis of TALLY. Worst performance represents the class-balanced
worst-domain accuracy.

Subpopulation shift OfficeHome-LT DomainNet-LT
Avg. Worst Avg. Worst

Vanilla TALLY 67.00 ± 0.47% 60.45 ± 0.09% 50.15 ± 0.46% 29.55 ± 0.19%

RIDE 63.27 ± 0.54% 54.04 ± 0.28% 47.51 ± 0.83% 28.16 ± 0.60%
+TALLY 66.20 ± 0.25% 60.38 ± 0.37% 49.82 ± 0.78% 28.72 ± 0.10%

PaCo 63.03 ± 0.92% 56.15 ± 0.71% 48.26 ± 0.22% 27.36 ± 0.52%
+TALLY 67.30 ± 0.22% 60.62 ± 0.57% 50.01 ± 0.19% 29.70 ± 0.29%

Domain shift TerraInc iWildCam
Macro F1 Acc Macro F1 Acc

Vanilla TALLY 46.23 ± 0.56% 59.89 ± 1.32% 34.4 ± 0.4% 73.4 ± 1.8%

RIDE 44.03 ± 1.42% 57.89 ± 1.46% 32.8 ± 0.5% 70.1 ± 1.9%
+TALLY 45.76 ± 0.38% 59.41 ± 1.24% 33.4 ± 0.3% 73.7 ± 1.4%

PaCo 43.40 ± 1.03% 57.35 ± 0.89% 31.9 ± 0.2% 72.6 ± 2.5%
+TALLY 46.46 ± 0.21% 59.19 ± 0.82% 33.9 ± 0.7% 72.6 ± 2.1%

F.3 FULL RESULTS OF COMBINING LONG-TAILED LEARNING AND INVARIANT LEARNING
APPROACHES

In Figure 8 and Table 15, we report the full results of combining long-tailed learning and invariant
learning approaches, where Figure 8 shows the results of domain shifts and Table 15 listed all results
with standard deviation over three seeds.

TerraInc iWildCam

Figure 8: Domain shift results (Macro F1) of the comparison between TALLY and variants of two
domain generalization approaches (CORAL, MixStyle), where we replace the losses of them with
class re-weighting or re-sampling ones.

F.4 FULL RESULTS OF THE EFFECT OF PROTOTYPES

We report the full results of the prototype analysis in Table 16.
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Table 15: Full results of the comparison between TALLY and variants of two representative domain
generalization approaches (CORAL, MixStyle). Worst means class-balanced worst domain accuracy
in subpopulation shift.

Subpopulation shift OfficeHome-LT DomainNet-LT
Avg. Worst Avg. Worst

CORAL

59.10 ± 0.20% 53.53 ± 0.60% 43.92 ± 0.36% 24.50 ± 0.68%
+UW 60.91 ± 1.40% 55.32 ± 2.14% 46.26 ± 0.48% 26.74 ± 0.15%
+Focal 61.72 ± 0.93% 55.26 ± 1.60% 46.39 ± 0.31% 27.13 ± 0.95%
+LDAM 61.09 ± 1.52% 56.22 ± 1.45% 46.69 ± 0.32% 26.58 ± 0.62%
+CRT 62.61 ± 0.68% 56.41 ± 0.51% 47.68 ± 0.53% 27.60 ± 0.37%

MixStyle

62.26 ± 0.22% 55.19 ± 1.10% 43.59 ± 0.57% 22.65 ± 0.22%
+UW 63.02 ± 0.69% 57.50 ± 2.11% 46.30 ± 0.35% 25.53 ± 0.48%
+Focal 63.69 ± 0.32% 57.56 ± 1.40% 46.18 ± 0.36% 26.51 ± 0.88%
+LDAM 62.77 ± 0.78% 57.50 ± 1.50% 46.32 ± 0.35% 25.31 ± 0.48%
+CRT 63.20 ± 0.29% 55.77 ± 0.63% 48.11 ± 0.29% 27.95 ± 0.72%

TALLY 67.00 ± 0.47% 60.45 ± 0.09% 50.15 ± 0.46% 29.55 ± 0.19%

Domain shift TerraInc iWildCam
Macro F1 Acc Macro F1 Acc

CORAL

45.43 ± 0.92% 58.10 ± 1.38% 32.8 ± 0.1% 73.3 ± 4.3%
+UW 45.67 ± 0.73% 59.73 ± 1.53% 32.6 ± 0.7% 73.0 ± 2.9%
+Focal 45.27 ± 0.88% 59.54 ± 1.71% 32.9 ± 0.8% 74.9 ± 3.2%
+LDAM 45.45 ± 1.13% 59.50 ± 2.04% 33.4 ± 0.5% 74.3 ± 1.6%
+CRT 45.72 ± 1.59% 59.47 ± 2.32% 33.2 ± 0.6% 73.2 ± 5.3%

MixStyle

44.73 ± 0.99% 57.55 ± 2.05% 32.4 ± 1.1% 74.9 ± 2.7%
+UW 45.25 ± 0.67% 58.65 ± 1.39% 32.7 ± 0.9% 72.0 ± 1.3%
+Focal 45.04 ± 1.22% 58.15 ± 2.18% 32.8 ± 0.5% 74.0 ± 2.8%
+LDAM 44.74 ± 1.03% 58.66 ± 1.76% 32.7 ± 1.3% 77.1 ± 3.0%
+CRT 44.97 ± 1.83% 58.38 ± 3.11% 33.1 ± 0.7% 71.7 ± 3.3%

TALLY 46.23 ± 0.56% 59.89 ± 1.32% 34.4 ± 0.4% 73.4 ± 1.8%

Table 16: Full results of the analysis of prototype-guided invariant learning. C Only and D Only
represent only using class prototype representation or class-agnostic domain factors, respectively.
Worst means class-balanced worst domain accuracy in subpopulation shift.

Subpopulation shift OfficeHome-LT DomainNet-LT
Avg. Worst Avg. Worst

None 66.19 ± 0.34% 58.72 ± 0.89% 48.78 ± 0.43% 27.21 ± 0.12%
C Only 66.54 ± 0.14% 59.55 ± 0.55% 49.45 ± 0.27% 27.50 ± 0.38%
D Only 66.23 ± 0.24% 58.98 ± 1.18% 49.09 ± 0.54% 27.50 ± 0.46%

TALLY 67.00 ± 0.47% 60.45 ± 0.09% 50.15 ± 0.46% 29.55 ± 0.19%

Domain shift TerraInc iWildCam
Macro F1 Acc Macro F1 Acc

None 45.30 ± 0.64% 58.02 ± 1.26% 32.9 ± 0.8% 72.6 ± 2.9%
C Only 45.86 ± 0.81% 59.06 ± 1.46% 33.9 ± 0.5% 74.6 ± 2.8%
D Only 45.47 ± 0.57% 58.22 ± 1.84% 33.2 ± 1.1% 72.3 ± 1.5%

TALLY 46.23 ± 0.56% 59.89 ± 1.32% 34.4 ± 0.4% 73.4 ± 1.8%

F.5 FULL RESULTS OF THE ANALYSIS OF SAMPLING STRATEGIES

In Table 4, we report the full results of the analysis of different sampling strategies.
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Table 17: Full results of comparison between sampling strategies. Worst means class-balanced worst
domain accuracy in subpopulation shift.

Subpopulation shift OfficeHome-LT DomainNet-LT
Avg. Worst Avg. Worst

Balanced Sampling 65.03 ± 0.91% 58.33 ± 0.24% 49.35 ± 0.21% 27.97 ± 0.25%

TALLY(Selective)) 67.00 ± 0.47% 60.45 ± 0.09% 50.15 ± 0.46% 29.55 ± 0.19%

Domain shift TerraInc iWildCam
Macro F1 Acc Macro F1 Acc

Balanced Sampling 44.79 ± 0.62% 57.78 ± 0.36% 33.1 ± 0.4% 71.6 ± 1.8%

TALLY(Selective)) 46.23 ± 0.56% 59.89 ± 1.32% 34.4 ± 0.4% 73.4 ± 1.8%

G RESULTS ON STANDARD DOMAIN GENERALIZATION BENCHMARKS

In this section, we present the additional comparison on standard domain generalization benchmarks.
Notice that the data distributions in these standard benchmarks are not long-tailed, which is thus
not our focus in this paper. The goal is to compare our approach with other domain generalization
methods. In Table 18-21, we present results on four standard benchmarks: VLCS, PACS, OfficeHome,
DomainNet, respectively. Results for all algorithms except TALLY are directly copied from Gulrajani
& Lopez-Paz (2021) and Yang et al. (2022). In Table 22, we summarize all results and show the
comparison between different approaches. According to the results, TALLY can achieve comparable
performance compared with state-of-the-art domain generalization approaches.

Table 18: Comparison on the standard VLCS benchmark.

Caltech101 LabelMe SUN09 VOC2007 Avg

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
BODA 98.1 ± 0.3 64.5 ± 0.4 74.3 ± 0.3 78.0 ± 0.6 78.5

TALLY (ours) 97.5 ± 0.5 67.2 ± 1.1 73.8 ± 0.5 79.2 ± 0.9 78.8
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Table 19: Comparison on the standard PACS benchmark.

Art painting Cartoon Photo Sketch Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
BODA 88.2 ± 0.2 81.7 ± 0.3 97.8 ± 0.2 80.2 ± 0.3 86.9

TALLY (ours) 89.5 ± 0.8 81.2 ± 0.7 97.0 ± 0.1 81.7 ± 0.9 87.4

Table 20: Comparison on the standard OfficeHome benchmark.

Art Clipart Product Real Avg

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
BODA 65.4 ± 0.1 55.4 ± 0.3 77.1 ± 0.1 79.5 ± 0.3 69.3

TALLY (ours) 64.2 ± 0.5 55.1 ± 0.8 78.0 ± 1.1 79.2 ± 0.5 69.1

Table 21: Comparison on the standard DomainNet benchmark.

Sketch Infograph Painting Quickdraw Real Clipart Avg

ERM 49.8 ± 0.4 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 58.1 ± 0.3 40.9
IRM 42.3 ± 3.1 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 48.5 ± 2.8 33.9
GroupDRO 40.1 ± 0.6 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 47.2 ± 0.5 33.3
Mixup 48.2 ± 0.5 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 55.7 ± 0.3 39.2
MLDG 50.2 ± 0.4 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 59.1 ± 0.2 41.2
CORAL 50.1 ± 0.6 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 59.2 ± 0.1 41.5
MMD 28.9 ± 11.9 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 32.1 ± 13.3 23.4
DANN 46.8 ± 0.6 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 53.1 ± 0.2 38.3
CDANN 45.9 ± 0.5 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 54.6 ± 0.4 38.3
MTL 49.2 ± 0.1 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 57.9 ± 0.5 40.6
SagNet 48.8 ± 0.2 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 57.7 ± 0.3 40.3
ARM 43.5 ± 0.4 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 49.7 ± 0.3 35.5
VREx 42.0 ± 3.0 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 47.3 ± 3.5 33.6
RSC 47.8 ± 0.9 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 55.0 ± 1.2 38.9
BODA 51.3 ± 0.3 20.5 ± 0.7 48.0 ± 0.1 13.8 ± 0.6 60.6 ± 0.4 62.1 ± 0.4 42.7

TALLY (ours) 50.5 ± 0.2 19.7 ± 0.1 47.7 ± 0.6 14.1 ± 0.3 60.0 ± 0.2 60.1 ± 0.5 42.0
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Table 22: Domain shift results over all four benchmarks.

VLCS PACS OfficeHome DomainNet Avg

ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 40.9 ± 0.1 67.6
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 33.9 ± 2.8 65.1
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 33.3 ± 0.2 65.1
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 39.2 ± 0.1 67.3
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 41.2 ± 0.1 67.5
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 41.5 ± 0.1 68.8
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 23.4 ± 9.5 63.0
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 38.3 ± 0.1 66.6
CDANN 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 38.3 ± 0.3 66.3
MTL 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 40.6 ± 0.1 67.2
SagNet 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 40.3 ± 0.1 68.1
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 35.5 ± 0.2 65.8
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 33.6 ± 2.9 65.8
RSC 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 38.9 ± 0.5 66.7
BODA 78.5 ± 0.3 86.9 ± 0.4 69.3 ± 0.1 42.7 ± 0.1 69.4

TALLY (ours) 78.8 ± 0.4 87.4 ± 0.2 69.1 ± 0.4 42.0 ± 0.1 69.3
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