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Abstract
We present an adaptive approach for robust learn-
ing from corrupted training sets. We iden-
tify corrupted and non-corrupted samples with
latent Bernoulli variables and thus formulate
the learning problem as maximization of the
likelihood where latent variables are marginal-
ized. The resulting problem is solved via varia-
tional inference, using an efficient Expectation-
Maximization based method. The proposed ap-
proach improves over the state-of-the-art by au-
tomatically inferring the corruption level, while
adding minimal computational overhead. We
demonstrate our robust learning method and its
parameter-free nature on a wide variety of ma-
chine learning tasks including online learning and
deep learning where it adapts to different levels
of noise and maintains high prediction accuracy.

1. Introduction
Several statistical learning problems are formulated as es-
timation of parameters θ ∈ Θ of a probabilistic model by
maximizing its likelihood function

∏n
i=1 p(zi|θ) given n

independent observations Z = {zi}ni=1, zi ∼ p(z). By
defining the loss function as the negative log-likelihood
ℓθ(z) = − ln p(z|θ), one can equivalently solve

θML = argmax
θ∈Θ

n∏
i=1

p(zi|θ) = argmin
θ∈Θ

n∑
i=1

ℓθ(zi). (1)

However, real-world data is often corrupted: samples arise
from the true distribution p(z) and a corrupting source q(z),

zi ∼ (1− ε)p(z) + εq(z), (2)

leading to a suboptimal solution θML. In this contaminated
mixture, corrupted samples z ∼ q(z) may result from inac-
curate measurements, errors or oversight in data acquisition
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or labeling, or even malicious attacks. Further, the corrupt-
ing distribution q(z) is typically unknown, and the level
of corruption ε, difficult to determine. Equation (2) used
herein follows the well-known Huber contamination model
from the robust statistics literature (Huber, 2011; Maronna
et al., 2019).

Existing approaches require an estimation of the noise struc-
ture or the corruption level ε. This imposes restrictions on
using these methods in settings where such pre-processing
becomes impractical, e.g., in online learning, wherein the
assumption about ε needs to be optimized in continuously ar-
riving data. In Figure 1, we show an example: the accuracy
of binary classification trained on data that is continuously
collected from the HAR dataset (Helou, 2023), and subse-
quently corrupted with varying number of randomly flipped
labels in each batch (details in Section 4.2).

Figure 1: Classification of online streaming data with vary-
ing number of corrupted labels. Adaptive nature of our
approach (RLVI) allows for automatic identification of out-
liers when learning from batches of data with different ε.
Our method is robust and thus has higher accuracy than the
standard stochastic optimization of the likelihood (SGD).

Contribution. This paper presents a principled approach
for robust learning from corrupted data that is

• widely applicable given any likelihood function,

• robust against a wide class of contamination sources,

• adaptable and tuning-parameter free,

• scalable for large data sets and deep learning models.
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Robust Learning via Variational Inference. The pro-
posed approach, denoted as RLVI, employs latent Bernoulli
variables to identify corrupted and non-corrupted training
samples. The distribution of the latent variables is charac-
terized from training data by maximizing the variational
lower bound of marginal likelihood (variational inference)
(Murphy, 2023). This allows detection of corrupted samples
and computation of the optimal corruption level ε automat-
ically, subsequently learning the model θ in a robust way.
The problem formulation entailing RLVI is theoretically
simple and also leads to an efficient and straightforward
implementation.

Related work. While some approaches address learning
from corrupted data with a special loss function, e.g., the
Huber loss (Huber, 1992), others construct certain criteria to
separate samples from the true distribution and the corrupted
ones (Bhatia et al., 2015; 2017). Recently, new general ap-
proaches, such as SEVER (Diakonikolas et al., 2019) and Ro-
bust Risk Minimization (RRM) (Osama et al., 2020), were
introduced. Both methods are not model-specific. SEVER
is a general gradient-based learning method that penalizes
the gradient components of the loss function corresponding
to outliers. RRM involves obtaining sample weights from
the constraint on the entropy of a weighted empirical distri-
bution and minimizing the modified empirical risk. Robust
Risk Minimization does not require calibrating multiple hy-
perparameters, unlike SEVER. Despite not requiring the
exact value of ε, both approaches are reliant on its upper-
bound estimate ε̃ ≥ ε. A very relevant work is (Wang et al.,
2017), where the authors introduce latent variables w and
raise likelihood terms to these variables to account for the
departure from model’s assumptions. The paper suggests to
impose a prior distribution for w that suits the problem at
hand and infer w together with the model parameters. Thus,
being quite general, this framework provides much freedom
to users while leaving inference of w as a computationally
challenging task solved with probabilistic programming. In
this paper, we rather consider a specific case and define
Bernoulli latent variables based on the Huber model (2),
which enables efficient computation and does not require to
specify any hyperparameters for a prior distribution.

In the recent past, learning from corrupted data has also
received attention in the field of deep learning, and several
approaches have been proposed to train a neural network in
a robust way. For instance, one can use the correction of
the regular loss function (Zhang & Sabuncu, 2018; Patrini
et al., 2017). Alternatively, some approaches directly esti-
mate the noise transition matrix (Goldberger & Ben-Reuven,
2016; Patrini et al., 2017). Others utilize an additional neu-
ral network to identify and prevent overfitting of the initial
model, as in (Jiang et al., 2018), and to obtain a better
accuracy by exchanging the information between two simul-
taneously trained networks, as in (Han et al., 2018) and (Wei

et al., 2020). Approach from (Ren et al., 2018) is based on
re-weighting the loss terms for each observation, wherein
sample weights are treated as hyperparameters optimized
with additional gradient computations. Another option is to
combine techniques that are specific to deep learning: early-
stopping (Xia et al., 2020) or dropout (Xu et al., 2023),
with a criterion that aims to eliminate corrupted samples.
However, training a neural network in the regular context
where the contamination issue is not addressed, already re-
quires certain hyperparameters to improve generalization,
e.g., learning rate, batch size, number of layers, etc. The
aforementioned approaches introduce additional parame-
ters to combat the problem of corrupted labels, including ε,
which makes their performance dependent on the efficacy
of these parameters and the underlying assumptions.

2. Problem Formulation
Central to our approach is the introduction of a latent vari-
able ti for each observation zi ∈ Z such that

ti =

{
1, zi ∼ p(z),

0, zi ∼ q(z).
(3)

Knowing the values of these variables will allow avoid-
ing minimization of the losses on corrupted samples in
the dataset in (1) by simply dropping the corresponding
terms from the sum. In other words, latent variables en-
able us to define a likelihood function with respect to the
non-corrupted data, such that

p(Z|t,θ) =
n∏

i=1

p(zi|θ)ti , (4)

where t = (t1, t2, . . . , tn). Optimization with respect to
this likelihood function implies a combinatorial search over
the latent variables t, which is computationally infeasible
even for moderate n.

We observe, however, that the contamination model (2) im-
plies that each sample has a probability ε of being corrupted.
Thus we have the following distribution over t,

p(t|ε) =
n∏

i=1

(1− ε)tiε1−ti . (5)

This prior information enables us to marginalize out the
latent variables and obtain the marginalized likelihood,

p(Z|θ, ε) =
∑
t

p(Z|t,θ)p(t|ε). (6)

Then the maximum marginal likelihood solution,

θ̂ = argmax
θ

max
ε

p(Z|θ, ε), (7)
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addresses the problem of robust learning of θ while obviat-
ing the need for specifying ε or a combinatorial search over
t. We now turn to developing a method to approximately
solve (7) in an efficient manner.

3. Method
We begin by introducing a variational bound on the marginal
likelihood in (7) and then turn to implementation-specific
aspects of the derived method.

Variational inference. To solve the formulated optimiza-
tion problem, we need a tractable way to compute the sum
over t in (6). Using Bayes’ rule, we express the marginal
likelihood as

p(Z|θ, ε) = p(Z|t,θ)p(t|ε)
p(t|Z,θ, ε)

, (8)

where the denominator is the posterior distribution of latent
variables t given the data Z, specified model θ, and the cor-
ruption level ε. As this posterior is intractable, we consider
its variational approximation denoted r(t|π). Specifically,
we use a distribution of n independent Bernoulli variables
with probabilities π = (π1, . . . , πn),

r(t|π) =
n∏

i=1

πti
i (1− πi)

1−ti . (9)

Therefore, instead of maximizing the marginal likelihood
function p(Z|θ, ε) directly, we apply the variational infer-
ence framework and optimize the so-called evidence lower-
bound (ELBO) (Murphy, 2023). This lower bound has the
following general form,

ln p(Z|θ, ε) ≥ Er(t|π)

[
ln p(Z|θ, t)

]
− KL

[
r(t|π)

∣∣∣∣p(t|ε)]︸ ︷︷ ︸
ELBO(θ,π, ε)

,

(10)
where the first term is the expected value of the log-
likelihood over latent variables and the second term is the
Kullback–Leibler divergence between the variational ap-
proximation and the prior. The first ELBO term can be
rewritten using the loss function ℓθ(zi) = − ln p(zi|θ),

Er(t|π)

[
−

n∑
i=1

tiℓθ(zi)
]
= −

n∑
i=1

πiℓθ(zi), (11)

where the equality follows from (9). This term corre-
sponds to an average loss with non-uniform sample weights,
with πi representing the probability of sample i being non-
corrupted.

The second ELBO term consists of the closed form,

KL
[
r
∣∣∣∣ p] =

n∑
i=1

πi ln
πi

1− ε
+ (1− πi) ln

1− πi

ε
. (12)

Note that corruption level does not appear in the first term of
the ELBO and we can optimize ε directly and independently
of the model θ:

ε = argmaxELBO(θ,π, ε) = 1− 1

n

n∑
i=1

πi. (13)

That is, variational inference framework resolves an un-
known hyperparameter by explicitly optimizing the corrup-
tion level. Moreover, we get an intuitively satisfying result
that parameters πi defining the probability of each sam-
ple being non-corrupted, should sum up to the number of
non-corrupted samples:

n(1− ε) =

n∑
i=1

πi. (14)

Hence we arrive at the following objective – the negative
ELBO, expressed as

L(θ,π) =
n∑

i=1

πiℓθ(zi)+πi ln
πi

⟨π⟩
+(1−πi) ln

1− πi

1− ⟨π⟩
,

(15)
where ⟨π⟩ :=

∑n
i=1 πi / n is the average of Bernoulli prob-

abilities.

Consequently, the objective in (7) is replaced by the opti-
mum of its variational bound, i.e.,

θRLVI = argmin
θ∈Θ

min
π∈(0;1)n

L(θ,π). (16)

Numerical optimization. The resulting optimization prob-
lem is solved using the block-wise Algorithm 1, which fol-
lows the general Expectation-Maximization (EM) scheme
(Bishop & Nasrabadi, 2006). The E-step consists of mini-
mizing L(θ,π) in π for fixed parameters θ. In the M-step,
the inferred probabilities are used to maximize the re-scaled
log-likelihood, −

∑n
i=1 πiℓθ(zi). As an example, in case

of linear regression the latter step solves a weighted least-
squares problem. For a classification task, we minimize the
cross-entropy loss corrected with sample weights.

Note that the E-step can be performed efficiently, as the
objective L(θ,π) is convex in π. Therefore, to find the
optimal parameters π for a fixed model, the derivative of
L(θ,π) is equated to zero w.r.t. πj for all j = 1, . . . , n,

∂L
∂πj

= 0 ⇐⇒ πj =

(
1 +

1− ⟨π⟩
⟨π⟩

eℓθ(zj)

)−1

. (17)

This is a system of nonlinear equations for π, which we
solve with the fixed-point iterations,

πnew
j =

(
1 +

1− ⟨π⟩old

⟨π⟩old eℓθ(zj)

)−1

. (18)
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In (18), for the mean weight, we use the value from the pre-
vious fixed-point iteration and compute πnew

j independently
with simple vector operations that scale well for large data.
A proof for L(θ,π) being convex in π and iterations (18)
converging to a stationary point is provided in the Appendix.

Algorithm 1 RLVI: robust learning from corrupted data

1: Input: data Z = {zi}ni=1

2: θ0 ← argmin
θ∈Θ

∑n
i=1 ℓθ(zi) // π0

i = 1

3: for k = 1, 2, . . .

4: Evaluate ℓθ(zi) for each zi ∈ Z using θk−1

5: πk ← fixed-point iterations (18) // E-step

6: θk ← argmin
θ∈Θ

∑n
i=1 π

k
i ℓθ(zi) // M-step

7: if ∥θk − θk−1∥ ≤ tolerance

8: return θk

Stochastic approximation. The formulated objective
L(θ,π) alleviates the need to know or assess ε, which is
particularly useful when ε is not fixed, such as in the online
learning setting. Another useful property of this variational
bound is its structure: with respect to θ, the function con-
sists of n independent terms, just as the standard likelihood
function, which can be employed by stochastic optimization
of L(θ,π). If one does not have access to the full dataset
but only to its batches, the M-step in Algorithm 1 can be
replaced with a stochastic gradient descent (SGD) update

θk = θk−1 − α

b∑
i=1

πk
i∇ℓθ(zi), (19)

where the loss function and, therefore, the gradient compo-
nents for each batch of b samples zi are re-weighted with
πk
i , i = 1, . . . , b. The latter are computed using the corre-

sponding loss values ℓθ(zi) at the preceding E-step with
(18). Batch minimization of L(θ,π), in effect, corresponds
to a stochastic variant of the EM algorithm – see, e.g., step-
wise EM in (Murphy, 2023).

Truncation as a form of regularization. Since the ob-
jective in RLVI is suitable for stochastic optimization, our
robust learning approach can also be used in deep learning,
where SGD-like approaches are dominant. However, neural
networks are overparameterized models and thus are prone
to overfitting, which in theory (and in practice: see Figure 5)
hinders the performance of RLVI. Indeed, if we substitute
zero loss for all training samples into the stationary point
condition (17), we find the corresponding minimum for all
i = 1, . . . , n,

π⋆
i =

(
1 +

ε

1− ε
eℓθ(zi)

)−1
∣∣∣∣∣
ℓθ(zi)=0

= 1− ε. (20)

That is, when overfitting commences, the marginal likeli-
hood approach treats all samples as non-corrupted since
overparameterized model is capable of minimizing loss to
zero on both ‘clean’ and corrupted samples. Nevertheless, as
is generally the case, to prevent overfitting, one can use reg-
ularization of the loss function. In this work, we introduce
regularization to the RLVI algorithm, making the algorithm
effective in the overparameterized regime as well. Namely,
samples that have a low probability of being non-corrupt
are eliminated from SGD updates:

πi < τ =⇒ πi ← 0. (21)

Furthermore, we define the threshold τ based on the follow-
ing criterion: maximize the number of samples to be used
for learning (maximize τ ) subject to a bounded type II error
(number of corrupted samples treated as ‘clean’). Hence,
τ = max {π1, π2, . . . , πn}, such that

Er

[
#False Clean

]
Er

[
#Corrupted

] =

n∑
i=1

(1− πi)1[πi ≥ τ ]

n∑
i=1

(1− πi)
≤ 0.05.

(22)
In this criterion, the admissable type II error is common
for statistical hypothesis testing and equals 5%. Also note
how the obtained posterior approximation is employed: the
numerator is the expected number of corrupted samples
considered as ‘clean’, and the denominator is the expected
total number of corrupted samples, based on r(t|π).

The resulting variant of RLVI, to be used for overparameter-
ized models, is listed as Algorithm 2. It implements RLVI
as stochastic gradient optimization of neural network param-
eters θ. Parameters πi are updated at the end of each epoch
using efficient iterations (18). To prevent model’s overfit-
ting to corrupted samples, the algorithm eliminates gradient
terms corresponding to low πi. Threshold for truncation
is re-computed across epochs as a non-decreasing value
from the type II error criterion (22). Note that Bernoulli
probabilites are updated once at each epoch, which makes
solution for π less dependent on the batch size in this case.

4. Experiments
The proposed RLVI method is compared to existing ap-
proaches in three problem settings: standard parameter esti-
mation, online learning, and deep learning1.

4.1. Benchmark on standard learning problems

First, we demonstrate that our method is applicable to dif-
ferent maximum likelihood problems and achieves higher

1Implementation of RLVI and our experiments are available at
https://github.com/akarakulev/rlvi.
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Figure 2: Box plots of relative errors for a fixed value of corruption level ε. Left. Linear regression: relative errors
∥θ̂ − θ⋆∥2/∥θ⋆∥2. Middle. Logistic regression: angle in degrees between the true separating hyperplane θ⋆ and estimates
θ̂. Right. PCA: misalignment errors 1− | cos (θ̂ ⊤θ⋆)| for the subspace spanned by the first principal component. Each box
spans the 25th to 75th quantiles; red dots depict the means. For all plots, 100 Monte Carlo runs are used.

model accuracy over contemporary alternatives. Thereto,
we reproduce the experiments from (Osama et al., 2020)
comparing various algorithms for robust learning on three
problems: linear regression, logistic regression, and di-
mensionality reduction using principal component analysis
(PCA). Since each problem can be formulated as likelihood
maximization, we define the corresponding loss functions
as the negative log-likelihood. In the experiments, synthetic
data (n samples) is generated from the mixture of p(z) and
q(z) with a fixed ratio of corrupted samples ε using the
specified model θ⋆. The optimal model θ̂ is estimated using
different algorithms: standard ML, HUBER (Zoubir et al.,
2018), SEVER (Diakonikolas et al., 2019), RRM (Osama
et al., 2020), and RLVI. The reader is referred to (Osama
et al., 2020) for more details on the three test problems, in-
cluding specifics of distributions used as true and corrupted.
Subsequently, we perform 100 Monte Carlo runs and plot
the statistics for corresponding errors with boxplots in Fig-
ure 2. For linear regression the results, shown in Figure 3,
also include average relative error for ε varying in [0; 0.4].
Again, 100 Monte Carlo runs are used for each fixed ε.

Problem dimension n ε ε̃

LinReg θ ∈ R10 40 0.2 0.4
LogReg θ ∈ R3 100 0.05 0.3
PCA θ ∈ {R2 : ∥θ∥ = 1} 40 0.2 0.4

Table 1: Experiments reproduced from (Osama et al., 2020):
θ is a parametric model learned from synthetic data (n
samples in total, εn are corrupted); ε̃ ≥ ε is the upper-
bound used for HUBER, SEVER, and RRM.

Note that using the unbounded likelihood for defining ℓθ(z)
within RLVI can lead to a degenerate solution and thus
might require additional regularization – see an example
with a covariance estimation problem in the Appendix.

From Figures 2 and 3, one can see that RLVI achieves better
average accuracy and tighter confidence intervals than the
competing methods.
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Figure 3: Linear regression. Average relative error versus
varying corruption level ε; 100 Monte Carlo runs are used.

4.2. Online learning

To further evaluate RLVI’s adaptivity, we apply it to online
learning – the setting where ε changes dynamically. Online
learning is used when dealing with, for example, signals
from remote sensors, user clicks on a website, daily weather
conditions, etc. In such cases, data is being collected se-
quentially and the model is incrementally learned from each
new set of observations. This allows continuous refinement
of the model and out-of-core inference when the dataset is
too large to be stored and handled entirely.

As described in Section 3, the objective L(θ,π) in RLVI
allows for an incremental learning scheme by replacing
the M-step of EM algorithm with an update of stochastic
gradient descent: θk = θk−1 − α

∑b
i=1 π

k
i∇ℓθ(zi). Here,

parameters πk are computed at the E-step with (18). The
computational overhead over the standard stochastic like-
lihood maximization is not significant: the fixed-point al-
gorithm only involves O(b) vectorized operations at each
SGD step.

We consider the Human Activity Recognition dataset from
(Helou, 2023) containing 24, 075 measurements from smart-
phone sensors. Each measurement zi = (xi, yi) consists
of xi ∈ R60 features extracted from accelerometers during
different human activities: Sitting, Standing, Walking, Run-
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ning, and Dancing. We perform binary classification and
towards that end, partition the five initial labels into two:
resting state (y = 0) and active state (y = 1). To simulate
a data stream, at each iteration we retrieve data in batches
of size 2b, where b = 100 samples are used for training and
another b = 100 samples serve performance evaluation. To
introduce noise, we corrupt the data in each training batch
by randomly flipping ε percent of positive labels. Moreover,
the corruption level ε changes in each iteration. Since we
are testing the robustness of RLVI against corruption, we
focus specifically on variation of noise – not on the grad-
ual change of θ (concept drift) or other possible challenges
related more to the method to learn θ incrementally. For
each batch, ε is sampled from a linearly transformed Beta
distribution (called PERT (Johnson et al., 1995)) that is sim-
ple to parameterize with three values, so that the samples
are within the interval [εmin, εmax] with the mode εmode. To
simulate a typical case, we set εmin = 0, εmax = 0.3, and
εmode = 0.1. Thus, the ratio of corrupted labels in each
batch varies according to the distribution in Figure 4.

Figure 4: Online classification. Left. Distribution of corrup-
tion level across batches of streaming data. Right. Recall
(true positive rate) on left-out data versus total number of
observed samples (smoothed with a moving average filter).

Since RRM is also based on block-wise optimization, it can
similarly be implemented as incremental learning, where
inference for θ consists of anti-gradient steps minimizing
the modified empirical risk for each batch. Hence, the exper-
iments compare three versions of online classification: the
standard stochastic maximization of the likelihood (SGD),
incremental minimization of the risk function defined in
RRM (Osama et al., 2020) with a threshold for ε set to
εmax = 0.3, and the proposed approach, RLVI.

Classification performance is evaluated with recall (true
positive rate) computed for 100 test samples in each iteration.
Figure 4 shows the evolution of recall smoothed with a
moving average filter with a window of 10 batches (also,
see the smoothed accuracy curve in Figure 1). It can be seen
that standard SGD clearly suffers from label corruption,
with RRM being affected to a lesser extent. RLVI attains
consistently higher accuracy and recall values as it does not
depend on a global estimate of the noise magnitude, and
robustly evaluates it from incoming data.

4.3. Overparameterized model

We now extend RLVI to learning an overparameterized
model and consider image classification using a convolu-
tional neural network when training labels are corrupted.

Existing approaches. State-of-the-art performance is
achieved in this setting by methods that identify and distill
corrupted samples based on some criterion. The algorithm
Co-teaching (Han et al., 2018) is based on training two neu-
ral networks in parallel and learning only on the samples
that attain a small loss for both models. The JoCoR ap-
proach (Wei et al., 2020) also trains two models but aims
to reduce the diversity between their predictions. Due to
simultaneous training of two models, Co-teaching and Jo-
CoR effectively double the computational time. CDR (Xia
et al., 2020) trains one model – it employs weight decay to
diminish the impact of network parameters that overfit to
corrupted samples, and early-stopping using a validation set.
The recent algorithm USDNL (Xu et al., 2023) estimates
prediction uncertainty for training samples using dropout,
thus identifying the samples with corrupted labels. Each
of the above methods combines its own criterion for cor-
rupted samples with a schedule to gradually consider fewer
samples and thus account for model overfitting occurring
in later epochs. The schedule is a non-decreasing function
defined with the corruption level ε (assumed to be known in
advance) so that, by the end of training, only (1− ε) ratio
of the training set is being used. The algorithm BARE from
(Patel & Sastry, 2023) aims to robustly train neural networks
for classification independently of ε. It removes samples
from the loss function using batch statistics, assuming that
the class conditional noise has a special structure.

Regularization. As discussed in Section 3, highly over-
parameterized models overfit to all samples, including the
corrupted ones. To prevent overfitting within RLVI, we use
hard truncation (21), where truncation boundary τ is defined
by the type II error criterion (22). Furthermore, as studied
empirically (Jiang et al., 2018; Nguyen et al., 2019; Xia
et al., 2020), neural networks overfit in later epochs. Thus,
regularization (21) is applied after the model starts to overfit,
which can be identified by a decrease in prediction accuracy
on a contaminated validation set.

Figure 5 presents an example of image classification on
CIFAR10 with randomly flipped labels. It illustrates how
the introduced regularization functions in practice: if no
regularization is used, the proportion of identified corrupted
observations decreases while model gradually fits q(z) de-
spite marginal likelihood formulation, thus attaining lower
test accuracy. But with regularization, differentiation of
corrupted and non-corrupted data points according to πi is
more effective during all iterations, which leads to better
generalization. In the Appendix, we provide similar plots
for various types and levels of noise.
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Figure 5: Image classification on CIFAR10 corrupted with
synthetic noise (pairflip, ε = 45%). Top. Accuracy on the
clean testing set for standard SGD and RLVI. Bottom. Per-
centage of corrupted and non-corrupted samples correctly
identified with the decision boundary πi < τ . In both plots,
the dashed line corresponds to RLVI with no regularization –
solid line indicates that truncation (πi < τ =⇒ πi ← 0) is
used for the terms in anti-gradient updates. Threshold τ is
computed from (22). Regularization based on the bounded
type II error makes differentiation of corrupted samples
more effective, ultimately improving test accuracy for the
overparameterized setting.

Synthetic corruption. To test the algorithm, we conduct
the experiments in image classification using convolutional
neural networks and cross-entropy loss as ℓθ. The datasets
being used are MNIST (LeCun, 1998), that contains hand-
written digits, and CIFAR10 and CIFAR100 (Krizhevsky,
2009) – both containing the same images that are classified
into ten and one hundred categories respectively. Subse-
quently, the training labels in these datasets are corrupted
with four types of synthetic noise: symmetric, asymmet-
ric, and pairflip (class-dependent) and instance (feature-
dependent). These noise types have been commonly used in
previous works (Han et al., 2018; Wei et al., 2020; Xia et al.,
2020; Xu et al., 2023). Additionally, we perform the experi-
ment in which data contains both the corrupted labels and
the out-of-distribution samples. To this end, we consider the
dataset CIFAR80N-O (Yao et al., 2021) which is obtained
from CIFAR100 as follows: the last 20 classes in CIFAR100
are regarded as out-of-distribution images, and images from
the remaining 80 classes are subsequently corrupted by one
of the class-dependent synthetic noise types (pairflip, sym-

Algorithm 2 RLVI: robust training of neural networks

1: Input: training set Ztr = {zi}ni=1, noisy validation set
Zval, learning rate α, batch size b

2: θ ← initialize neural network parameters
3: πi ← 1, i = 1, . . . , n

4: L← empty array of size n // to store ℓθ(zi), zi ∈ Ztr

5: overfit← False
6: τ ← 0

7: for epoch = 1, 2, . . . , nepochs

8: for Ib ∼ U{1, . . . , n} // for a batch of b indices
9: Li ← ℓθ(zi), i ∈ Ib // store loss value

10: θ ← θ − α
∑

i∈Ib
πi∇ℓθ(zi)

11: π ← fixed-point (18) using loss values in L

12: if overfit
13: τ⋆ ← max{π1, . . . , πn}, s.t. error bound (22)
14: τ ← max(τ, τ⋆) // can only increase
15: πi ← πi if πi ≥ τ else 0 // regularization
16: else if accuracy on Zval dropped
17: overfit← True
18: Output: θ

metric, and asymmetric). Thereto, we demonstrate that,
owing to the generality of Huber contamination model (2),
RLVI can be succesfully applied to learning in the presence
of noise of arbitrary structure. In these experiments, we
employ commonly used hyperparameter settings found in
literature specific to each dataset and model architecture.
These settings can be found in Table 4 of the Appendix.

We compare the attained classification accuracy on the test
set with the standard likelihood maximization approach and
recently proposed alternative methods: Co-teaching, JoCoR,
CDR, USDNL, and BARE. For CDR and RLVI, 10% of the
training data is used as a validation set: in RLVI, we apply
regularization (21) after validation accuracy at the current
epoch becomes less than the average of its two previous
values. In contrast, CDR uses a validation set for early-
stopping: optimization concludes if the validation accuracy
exceeds some specified threshold. The latter implies that
for CDR we report the test accuracy corresponding to the
lowest validation loss. For all the alternative methods, we
use their default hyperparameters related to robust learning,
including the same schedule for the ratio of considered sam-
ples during epochs, as defined in (Han et al., 2018), deduced
from the true noise level employed. Also, since USDNL is
based on uncertainty estimation using dropout, for USDNL
specifically, we used variants of the corresponding neural
nets with dropout layers, where dropout rate was set to 0.25,
as in the original paper (Xu et al., 2023).
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Table 2: Test accuracy (%) after training on corrupted datasets: mean ± standard deviation over five random initializations.

Dataset Method Symmetric Asymmetric Pairflip Instance

20% 45% 20% 45% 20% 45% 20% 45%

Standard 95.66±0.28 87.47±0.82 98.29±0.14 87.73±0.65 97.21±0.41 69.26±3.65 95.66±0.36 71.98±1.43
Co-teaching 96.62±0.08 96.68±0.07 95.94±0.06 93.40±0.42 96.19±0.10 92.91±0.43 96.49±0.23 95.39±0.59

MNIST JoCoR 99.07±0.05 98.38±0.10 99.02±0.05 95.21±3.70 98.96±0.09 91.06±5.01 99.03±0.05 97.81±0.35
CDR 98.81±0.09 98.27±0.09 99.14±0.05 94.35±1.29 98.95±0.06 87.55±1.26 98.25±0.16 88.27±1.92
USDNL 98.38±0.12 97.72±0.13 98.32±0.12 95.83±0.64 98.23±0.09 89.94±1.62 98.13±0.11 96.52±0.38
BARE 99.07±0.11 98.78±0.10 99.16±0.06 98.70±0.12 99.05±0.06 98.22±0.21 99.05±0.07 98.42±0.45

RLVI 99.10±0.06 98.70±0.18 98.90±0.22 98.69±0.05 99.10±0.07 98.52±0.07 99.12±0.03 98.38±0.08

Standard 83.36±0.35 60.22±0.28 87.26±0.40 75.03±0.28 81.14±0.43 52.30±0.85 81.76±0.37 55.51±1.04
Co-teaching 87.55±0.38 83.70±0.46 86.98±0.26 64.84±0.87 86.57±0.21 67.38±2.93 86.40±0.29 66.39±7.16

CIFAR10 JoCoR 90.42±0.07 86.33±0.23 90.60±0.19 76.94±2.56 89.25±0.30 72.53±3.57 89.08±0.36 79.48±1.37
CDR 85.57±0.38 77.83±0.30 87.98±0.61 75.99±1.95 87.34±0.34 68.13±2.03 85.72±0.74 66.82±2.48
USDNL 88.65±0.21 83.33±0.23 88.36±0.33 74.62±0.70 87.05±0.24 66.49±2.45 86.90±0.18 71.04±4.17
BARE 85.67±0.46 69.90±2.06 87.38±0.24 77.82±1.10 84.84±0.77 57.18±2.81 85.08±0.73 69.00±2.05

RLVI 92.30±0.14 88.69±0.33 91.73±0.12 76.96±0.50 92.15±0.27 89.13±0.29 91.97±0.33 85.15±1.57

Standard 61.96±0.11 42.36±0.80 62.88±0.20 39.91±0.58 62.62±0.53 38.94±0.42 62.87±0.32 43.17±0.63
Co-teaching 58.74±0.66 48.11±1.01 54.32±0.22 34.53±0.68 56.27±0.60 34.47±0.97 57.44±0.32 34.97±0.61

CIFAR100 JoCoR 69.43±0.25 62.37±0.94 62.93±0.60 38.68±0.83 65.90±0.35 40.94±0.70 67.98±0.32 52.47±0.31
CDR 61.57±0.41 46.31±0.81 62.89±0.30 39.47±0.75 61.27±2.23 38.55±0.22 62.09±0.45 41.80±0.77
USDNL 64.96±0.56 53.82±1.15 59.12±0.10 36.44±0.93 61.76±1.01 35.81±0.20 63.13±0.54 45.42±1.30
BARE 59.59±1.12 46.56±1.10 52.91±1.28 29.48±1.12 53.29±1.57 30.27±1.14 56.47±0.84 37.24±1.27

RLVI 69.64±0.55 64.11±0.79 69.33±0.83 55.76±2.12 69.25±0.77 55.77±1.01 69.54±0.84 62.00±1.29

Standard 59.41±0.40 37.84±0.79 61.01±0.37 39.13±0.26 60.88±0.33 38.88±0.52
Co-teaching 59.77±0.67 48.45±1.44 55.64±0.90 35.98±0.82 58.44±1.27 35.61±0.47

CIFAR80N-O JoCoR 70.02±0.80 62.29±0.41 64.12±0.19 40.13±0.40 67.11±0.83 41.85±0.29
CDR 56.08±0.98 44.46±1.03 58.16±1.47 36.76±1.28 57.96±0.57 36.16±1.41
USDNL 64.07±1.63 52.00±2.89 59.43±0.69 37.04±0.46 62.20±0.52 37.12±1.09
BARE 57.39±1.23 42.56±2.20 54.47±1.01 30.12±2.09 55.21±1.28 30.09±0.86

RLVI 71.13 ± 0.71 63.18 ± 0.36 71.96 ± 0.39 54.49 ± 1.76 71.45 ± 0.33 56.12 ± 0.23

Results are presented as mean ± standard deviation over
five runs with random initialization of network’s parameters.
Table 2 shows that RLVI, with the described regularization,
attains results competitive with alternative approaches. Also
note that additional steps in Algorithm 2 involving π (fixed-
point iterations and truncation) do not significantly increase
the computational time compared to standard SGD. Table 3
shows the average time per epoch during training.

Table 3: Time per one epoch in seconds when training on
CIFAR100: mean ± standard deviation over 200 epochs.

(Standard: 8.82±0.08)

Co-teaching JoCoR CDR

17.91±0.35 18.11±0.11 13.88±0.35

USDNL BARE RLVI

9.40±0.22 9.94 ± 0.10 10.52±0.56

Real corruption. To demonstrate how RLVI performs in
a naturally contaminated setting, we train ResNet50 – pre-
trained on ImageNet (Wightman, 2019) – on the challenging
dataset Food101 (Bossard et al., 2014) consisting of 101
food categories. For each class, 250 testing images were
cleaned manually, while the remaining 750 training images
per class still contain corrupted labels. We use the Adam
optimizer with hyperparameters listed in Table 4.

In the real setting, ε is unknown and has to be optimized for

Co-teaching, JoCoR, CDR, and USDNL. Figure 6 shows
that by varying the estimated ε for alternative methods (from
a large 20% – to a moderate 3% value), one can enhance
performance. In contrast, RLVI improves over the standard
approach without the need for additional optimization of the
hyperparameter. In Appendix, we provide results for other
assumptions on ε.

Figure 6: Food101. Test accuracy assuming high and low ε.

5. Conclusions
We presented the novel robust learning algorithm RLVI for
likelihood maximization problems with corrupted datasets.

8



Adaptive Robust Learning using Latent Bernoulli Variables

It leverages variational inference to identify corrupted sam-
ples under the Huber contamination model using latent
Bernoulli variables. This alleviates the need for specify-
ing hyperparameters such as the corruption level, which
existing approaches rely on. RLVI can also be implemented
as stochastic optimization, which makes it adaptive and
applicable to learning from data with varying noise and out-
of-core inference for large datasets. We demonstrated the
effectiveness of the method on benchmark test problems in
both – traditional statistical learning, as well as online and
deep learning settings. The proposed RLVI algorithm meets
or exceeds performance across considered experimental set-
tings in a parameter-free and efficient manner.
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A. Optimization of Bernoulli probabilities
A1. Convexity

Objective L(θ,π) defined in Equation (15) is a convex function of variables π ∈ (0; 1)n.

Proof. The objective can be viewed as a sum of three terms,

L(θ,π) =
n∑

i=1

πiℓθ(zi) +

n∑
i=1

πi ln
πi

⟨π⟩
+

n∑
i=1

(1− πi) ln
1− πi

1− ⟨π⟩
. (23)

The first term is linear in π, and we only need to verify if the second and the third terms are convex. Therefore, we first focus
on the second term and its Hessian. Using 1 for an n-dimensional vector of ones and diag(·) for a diagonal matrix, we write

f(π) :=

n∑
i=1

πi ln
πi

⟨π⟩
, (24)

∇2f(π) = diag
(

1

πi

)
− 1 · 1⊤

n⟨π⟩
. (25)

For f(π) to be convex, its Hessian has to be positive semi-definite: ∇2f ≽ 0. For clarity we multiply ∇2f by a positive
scalar n⟨π⟩ and consider a matrix

n⟨π⟩∇2f = diag
(
n⟨π⟩
πi

)
− 1 · 1⊤ = D − 1 · 1⊤. (26)

Notice that D − 1 · 1⊤ is a Schur complement of the block matrix(
D 1
1⊤ 1

)
. (27)

And, since D ≻ 0, the following inequalities should hold simultaneously by the properties of the Schur complement:

D − 1 · 1⊤ ≽ 0 ⇐⇒
(
D 1
1⊤ 1

)
≽ 0 ⇐⇒ 1− 1⊤D−11 ≥ 0. (28)

However, expression on the right holds true. Indeed,

1− 1⊤D−11 = 1− 1⊤diag
(

πi

n⟨π⟩

)
1 = 1− 1

n⟨π⟩

n∑
i=1

πi = 1− ⟨π⟩
⟨π⟩

= 0. (29)

Therefore, we conclude that ∇2f ≽ 0 and the second term in L(θ,π) is convex. To establish the convexity of the third
term, it suffices to consider 1− πi as its variables, which makes the proof identical to the above. Hence L(θ,π) is convex
in π as a sum of convex functions.

A2. Convergence

To see why iterations (18) converge to a minimizer of L(θ,π) in Bernoulli probabilities, consider the following. If we
over-parameterize L(θ,π) and let πo := ⟨π⟩ be a free variable, then the objective becomes a function of separate variables
π and πo. Equation (17) defines its closed-form minimizer with respect to π due to convexity. Whereas the stationary point
condition in terms of πo results in πo =

∑n
i=1 πi / n. Thus iterations (18) essentially implement the coordinate descent for

overparameterized objective in π and πo and hence converge to a minimizer π⋆ of L(θ,π).

B. Online learning with varying level of noise
In Figure 7, we provide the performance metrics of the standard SGD approach, RRM, and RLVI, used for binary
classification of data that arrives in batches with varying number of corrupted labels. In this figure, we show both accuracy
and recall values for all three methods. The metrics are smoothed with a moving average filter.
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To obtain the main results in online classification, shown in Figure 7, we used batches of 100 observations during optimization
(and reserved 100 samples for computing accuracy and recall in each iteration). To demonstrate how batch size affects the
performance, in Figures 8 and 9 we additionally show the same metrics when 75 and 50 examples are used for training
respectively (but 100 samples are still used for testing).

Figure 7: Online classification. Accuracy and recall when learning with the batch size 100.

Figure 8: Online classification. Accuracy and recall when learning with the batch size 75.

Figure 9: Online classification. Accuracy and recall when learning with the batch size 50.

C. Overparameterized setting: image classification using convolutional neural networks
C1. Hyperparameters

In the experiments on image classification, we use hyperparameter configurations that follow the common settings found in
literature. These settings are listed in Table 4.
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Table 4: Hyperparameter settings for the deep learning experiments (LR = learning rate, mom. = momentum)

Dataset MNIST CIFAR10 CIFAR100 & CIFAR80N-O Food101

Model LeNet ResNet18 ResNet34 ResNet50 (pre-trained on Imagenet)
Optimizer SGD with mom. 0.9 SGD with mom. 0.9 SGD with mom. 0.9 Adam
Epochs 100 200 200 80
Batch size 32 128 128 32
Weight decay 10−3 5 · 10−4 5 · 10−4 10−4

LR schedule linear decay cosine annealing cosine annealing multi-step
Initial LR 10−2 10−2 10−2 10−3

C2. Synthetic corruption

Figures 11 to 16 are the plots, similar to Figure 5, showing the results of image classification after training on the data
corrupted with three types of synthetic noise at corruption level ε equal to 0.2 and 0.45. We also provide the ratio of correctly
identified corrupted and non-corrupted images based on the introduced criterion. These figures show that, although type II
error is not always below 5%, overfitting is reduced in all settings, and RLVI achieves a higher accuracy than the standard
method in all problem instances.

C3. Real corruption

In case of the Food101 dataset, a part of the training images is mislabeled. The ratio of such images, ε, is unknown, and
thus we run the robust learning algorithms that depend on this hyperparameter: Co-teaching, JoCoR, CDR, and USDNL,
using different estimates of ε (40%, 20%, 10%, 5%, 3%, and 1%). Figure 17 presents the accuracy of different methods on
the manually cleaned testing set from Food101. As the estimate of ε used in training decreases, the accuracy of alternative
methods improves and becomes optimal with ε around 3%. In this experiment, RLVI achieved the best results when no
regularization was used. This can be attributed to the weaker overfitting in the case of the Food101 dataset, as compared to
examples with synthetic noise: test accuracy for RLVI without regularization in Figure 17 gradually increases, in contrast to
the corresponding curve in Figure 5.

D. Unbounded likelihood
As we note in Section 4.1, considering unbounded likelihood function in ℓθ(z) can lead to a degenerate solution θ when
using RLVI. In general, the problem of likelihood maximization is ill-posed, and one example when such pathological
estimate arises is, e.g, the Gaussian Mixture Model (Bishop & Nasrabadi, 2006). In the following, we address covariance
estimation from corrupted data. The corresponding negative log-likelihood function, which is used to estimate the mean µ
and the covariance matrix Σ, is

ℓθ(z) =
1

2

[
(z − µ)⊤Σ−1(z − µ) + ln detΣ+ d ln 2π

]
, (30)

where d is the dimension of the problem and θ = (µ,Σ). The first and second terms of (30) become unbounded as Σ
approaches rank deficiency. We note that the covariance estimate for RLVI is of the form:

ΣRLVI =
1

π⊤1

n∑
i=1

πi(zi − µRLVI)(zi − µRLVI)
⊤, (31)

where µRLVI =
∑n

i=1 πizi /π
⊤1. Therefore it is possible to find a set of weights πi such that ΣRLVI becomes rank-deficient

in a manner that minimizes the loss. This is indeed confirmed in our experiments.

To avoid such a singular solution, we impose additional regularization for π and ensure that enough samples are used
for learning:

∑n
i=1 πi = n(1 − ε) ≥ n0. That is, the total number of non-corrupted samples should be at least n0. The

corresponding constrained optimization problem for π is min
π∈(0;1)n

L(θ,π),

π⊤1 ≥ n0.
(32)
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Its Lagrangian L(π, λ) is thus the sum of objective L(θ,π), and a constraint weighted with Lagrange multiplier λ:

L(π, λ) = L(θ,π) + λ
(
n0 − π⊤1

)
. (33)

In this analysis we consider the optimization step with respect to π, and thus omit θ from the variables of the Lagrangian
above. Consequently, the corresponding Karush–Kuhn–Tucker conditions give

1. ∇πL(π, λ) = ∇πL(θ,π)− λ · 1 = 0 =⇒ πi =

(
1 +

1− ⟨π⟩
⟨π⟩

eℓi−λ

)−1

,

2. λ ≥ 0,

3. λ ·
(
n0 − π⊤1

)
= 0.

Note that if the constraint is not active, we fall back to the default RLVI formulation in which π are computed with (18). In
contrast, when the constraint is active, a change to the solution π is required.

a. Inactive constraint: π⊤1 > n0 =⇒ λ = 0, and

πi =

(
1 +

1− ⟨π⟩
⟨π⟩

eℓi
)−1

. (34)

b. Active constraint: π⊤1 = n0 =⇒ λ > 0. In this case, π⊤1 = n0, and for π and λ, we obtain the following equations:
πi =

(
1 +

n− n0

n0
eℓi−λ

)−1

,

λ > 0,
n∑

i=1

πi = n0.

(35)

Hence, in the case of a sparse solution (most πi are around zero), (35) allows us to find the dual variable λ⋆ and, after a
substitution, obtain the corrected π.

To test this regularization in practice, we reproduce the covariance estimation problem from (Osama et al., 2020): n = 50
samples are generated synthetically, of which ε = 20% are sampled from the corrupted distribution. The dimension of
samples is d = 2; 100 Monte Carlo tests are performed, similar to Section 4.1. Note that alternative methods, SEVER and
RRM, use the following upper-bound: ε ≤ ε̃ = 30%. Hence, for a fair comparison, we set n0 = n(1− ε̃) = 35. Figure 10
shows relative errors obtained with standard Maximum Likelihood (ML), SEVER, RRM, and the constrained variant of
RLVI according to (32). These results demonstrate that in the case of the unbounded likelihood one might still need to
employ the hyperparameter ε̃. But, in this case as well, RLVI can attain a low relative error with a tight confidence interval.

Figure 10: Covariance estimation. Boxplots of relative errors after 100 Monte Carlo runs. Constrained RLVI (32) is not
subject to the singular covariance issue that arises due to the unbounded likelihood.
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Adaptive Robust Learning using Latent Bernoulli Variables

Symmetric Asymmetric Pairflip Instance
Figure 11: MNIST, 20% noise rate. Top: test accuracy (mean ± st. dev. over 5 runs). Bottom: type I and type II errors
(mean over 5 runs).

Symmetric Asymmetric Pairflip Instance
Figure 12: MNIST, 45% noise rate. Top: test accuracy (mean ± st. dev. over 5 runs). Bottom: type I and type II errors
(mean over 5 runs).
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Adaptive Robust Learning using Latent Bernoulli Variables

Symmetric Asymmetric Pairflip Instance
Figure 13: CIFAR10, 20% noise rate. Top: test accuracy (mean ± st. dev. over 5 runs). Bottom: type I and type II errors
(mean over 5 runs).

Symmetric Asymmetric Pairflip Instance
Figure 14: CIFAR10, 45% noise rate. Top: test accuracy (mean ± st. dev. over 5 runs). Bottom: type I and type II errors
(mean over 5 runs).
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Adaptive Robust Learning using Latent Bernoulli Variables

Symmetric Asymmetric Pairflip Instance
Figure 15: CIFAR100, 20% noise rate. Top: test accuracy (mean ± st. dev. over 5 runs). Bottom: type I and type II errors
(mean over 5 runs).

Symmetric Asymmetric Pairflip Instance
Figure 16: CIFAR100, 45% noise rate. Top: test accuracy (mean ± st. dev. over 5 runs). Bottom: type I and type II errors
(mean over 5 runs).
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Adaptive Robust Learning using Latent Bernoulli Variables

Figure 17: Test accuracy (%) for Food101, using different estimates of corruption level ε for Co-teaching, JoCoR, CDR, and
USDNL.
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