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Abstract

The widespread use of cameras in our society has created an overwhelming amount
of video data, far exceeding the capacity for human monitoring. This presents a
critical challenge for public safety and security, as the timely detection of anoma-
lous or criminal events is crucial for effective response and prevention. The ability
for an embodied agent to recognize unexpected events is fundamentally tied to
its capacity for spatial reasoning. This paper investigates the spatial reasoning
of vision-language models (VLMs) by framing anomalous action recognition as
a zero-shot, language-grounded task, addressing the embodied perception chal-
lenge of interpreting dynamic 3D scenes from sparse 2D video. Specifically, we
investigate whether small, pre-trained vision—-LLMs can act as spatially-grounded,
zero-shot anomaly detectors by converting video into text descriptions and scoring
labels via textual entailment. We evaluate four open models on UCF-Crime and
RWF-2000 under prompting and privacy-preserving conditions. Few-shot exem-
plars can improve accuracy for some models, but may increase false positives, and
privacy filters—especially full-body GAN transforms—introduce inconsistencies
that degrade accuracy. These results chart where current vision—-LLMs succeed
(simple, spatially salient events) and where they falter (noisy spatial cues, identity
obfuscation). Looking forward, we outline concrete paths to strengthen spatial
grounding without task-specific training: structure-aware prompts, lightweight
spatial memory across clips, scene-graph or 3D-pose priors during description, and
privacy methods that preserve action-relevant geometry. This positions zero-shot,
language-grounded pipelines as adaptable building blocks for embodied, real-world
video understanding. Our implementation for evaluating VLMs is publicly available
at: https://github. com/pascalbenschopTU/VLLM_AnomalyRecognition

1 Introduction

Zero-shot action recognition has emerged as a promising approach for labeling previously unseen
video data, which is especially relevant for applications such as surveillance and anomaly detection.
Recent advances in large vision-language models have demonstrated impressive performance on
standard action recognition tasks Zhang et al.|[2025]], Team et al.|[2025]], Liu et al|[2024]], Bai et al.
[2023]], largely by leveraging the transfer capabilities of pre-trained language models. However, there
is little to no research validating whether these models can generalize to anomalous action recogni-
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tion—a domain characterized by rare, atypical, or criminal events that are often underrepresented
or entirely absent from standard training datasets. For high-stakes settings like security or forensic
analysis, detecting anomalous actions automatically could help in settings where the amount of
cameras far exceeds the amount of operators. To do this reliably, substantial training and testing data
are required, and this data should be anonymized with privacy filters. Public datasets for anomalous
action recognition, such as UCF-Crime [Sultani et al.|[2018]], XD-Violence [Wu et al.| [2020], and
RWEF-2000 [Cheng et al.|[2021]], are limited in scope, size, and label diversity. As a result, models
trained or evaluated only on these datasets may not generalize well to new types of anomalies, and
some relevant behaviors may not be covered at all.

In this work, we systematically evaluate the zero-shot capabilities of several state-of-the-art small
(<8B params) vision-LLMs across a range of anomalous action recognition benchmarks and experi-
mental conditions. We focus on two central research questions: RQ1: How can current vision-LLMs
be adapted to recognize criminal or anomalous actions in a zero-shot setting, and what role does
few-shot prompting play in shaping their predictions? RQ2: How do privacy-preserving transforma-
tions (e.g., blurring or appearance changes) affect the ability of vision-LLMs to detect and classify
anomalous events?

To answer these questions, we design controlled experiments using two benchmark datasets (UCF-
Crime and RWF-2000) and four representative vision-LLMs, under multiple prompting strategies:
unguided, guided, with privacy filtering, and with few-shot prompting. Our analysis includes both
quantitative metrics and fault analysis to identify typical model errors and failure cases. Our findings
provide new insight into the limits and biases of current vision-LLMs for real-world anomalous
action recognition, with practical recommendations for improving robustness—including strategies
for frame sampling, prompt engineering, and privacy-aware preprocessing. This work aims to inform
the design of safer, more effective video understanding systems for critical domains.

2 Related Work

Training-based Anomalous Action Recognition (UCF-Crime/XD-Violence). UCF-Crime intro-
duced weakly supervised MIL over long, untrimmed videos [Sultani et al.|[2018]], while XD-Violence
added large-scale multimodal (audio—visual) supervision Wu et al. [2020]. Recent systems emphasize
efficiency/real-time deployment (e.g., REWARD Karim et al.{[2024] and AnomalyCLIP |[Zanella et al.
[2024a]) and structured reasoning via multimodal GNNs with mission-specific knowledge graphs
(MissionGNN) [Yun et al.|[2025]. These methods, while not zero-shot, set competitive supervised or
weakly supervised baselines for anomalous recognition on UCF-Crime/XD-Violence.

Vision-Language Models (VLMs) and Zero-Shot Anomaly Recognition. VLMs have been
adapted to surveillance in several ways. AnomalyCLIP reshapes CLIP’s latent space and learns a
classifier for anomaly classes, achieving strong recognition but not strictly zero-shot|Zanella et al.
[2024a]. Training-free pipelines like LAVAD caption frames and prompt an LLM to aggregate
anomalies temporally |Zanella et al.|[2024b]],|Meo et al.| [2024b]], and Holmes-VAD instruction-tunes
a multimodal LLM for interpretable VAD within a supervised pipeline |Zhang et al.|[2024]]. Other
caption-driven works (e.g., TEVAD) leverage text to improve anomaly scoring |Chen et al.| [2023]],
while open-vocabulary VAD explores generalization beyond closed sets [Wu et al.| [2024]]. Recent
open vision-LLMs (e.g., NVILA [Liu et al.| [2024] and VideoLLaMA3 |Zhang et al.|[2025]]) provide
stronger video understanding backbones for zero-shot probing, but have not been systematically
evaluated for privacy-robust anomaly recognition on UCF-Crime or RWF-2000 |Cheng et al.|[2021].

3 Methodology

Traditional approaches to video anomaly detection often rely on supervised learning, requiring
extensive datasets with meticulously annotated event boundaries and classes |Sultani et al.| [2018]],
Karim et al.|[2024], Zanella et al.|[2024a]. This paradigm is costly, scales poorly, and fundamentally
struggles to recognize novel or rare anomalies not present in the training data. In contrast to these
data-hungry methods, our goal is to develop a framework that can identify and classify anomalous
events in a zero-shot, training-free manner. We seek to leverage the powerful semantic reasoning
and world knowledge embedded Meo et al.| [[2024a]] within large, pre-trained vision-LLMs. The core
motivation is to reframe anomaly classification not as a pixel-to-label mapping problem, but as a



language-grounded reasoning task. By prompting a model to first describe a video’s content in natural
language and then using a separate text classifier to evaluate this description against human-readable
labels, we can create a flexible and adaptable system that requires no task-specific fine-tuning or
parameter updates.

3.1 Derivation

We formally derive our training-free anomaly classification framework. Let a video be represented
as a sequence of RGB frames X = (z;)Z_,, where each frame z; € {0, ...,255}7XW >3 The task
is to assign a label from a predefined set of human-readable anomaly classes, £ = {{1,{s,...,¢c}.
The process is composed of two main steps:

Textual Description Generation: The central component is a vision-LLM, Fp, with frozen param-
eters 6. This model processes the input video X to generate a concise, descriptive text string, t.
This generation is conditioned on the visual input and an optional textual prompt, p, which provides
context for the task. The output description is sampled from the model’s predictive distribution:

t~po(-| X,p)

Zero-Shot Classification via NLI: The generated text ¢ is then evaluated by a pre-trained, frozen
Natural Language Inference (NLI) classifier, g4, with parameters ¢. We cast the classification as
a zero-shot textual entailment problem. For each candidate label £; € L, the classifier computes a
score, s;, that quantifies the degree to which the generated description ¢ logically entails the label Z;.

Formally, s; = g4(t,¢;) V{; € L. The final classification, f is the anomaly label that receives the
highest entailment score, thus representing the most plausible description of the event in the video.
This entire pipeline, from raw video frames to a final class label, operates without any gradient-based
updates to either the vision-LLM (Fp) or the NLI classifier (g4).

3.2 Practical Implications

The proposed framework has several practical advantages over traditional supervised models.

True Zero-Shot Flexibility: Its primary strength is the ability to classify anomalies it has never been
trained on. New anomaly types can be detected simply by adding a corresponding text label to the set
L, without any modification to the models, making the system adaptable to evolving requirements.

Modular and Upgradable: The architecture is inherently modular. The vision-LLM and the NLI
classifier are decoupled components that can be independently updated or replaced. For instance,
a more advanced vision-LLM can be integrated into the pipeline to improve visual understanding
without altering the classification module, facilitating straightforward performance enhancements.

4 Experimental Setup

To assess the performance of our training-free framework, we evaluate its zero-shot anomalous action
classification across models, prompting regimes, and privacy-preserving conditions. We validate on
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Figure 1: Few-shot prompting impact on models accuracy level.




two standard video anomaly detection benchmarks using their canonical splits: UCF-Crime |Sultani
et al.| [2018]], which contains 13 anomaly classes plus normal videos, and RWF-2000 |Cheng et al.
[2021]], which comprises real-world videos labeled as normal or fighting. We evaluate four open-
source vision-LLMs off the shelf (no additional training): Gemma-3 (4B) [Team et al.| [2025]],
Qwen-2.5-VL-7B-Instruct|Bai et al.|[2025], VideoLLaMA-3-7B [Zhang et al.|[2025]], and NVILA-
8B |Liu et al|[2024]. Our primary metric is class-averaged Top-1 accuracy (Top-1™%"°). For
videos processed in multiple temporal windows, a video-level prediction is counted as correct if the
ground-truth label is the Top-1 class in at least one window. Formally,

Top_lmacro _ %Z ni Z 1{3]{; : éz(,lk) = yi}7 (1)

ceC ¢ ieT,

where C is the set of classes, C' = |C|, Z. = {i | y; = ¢}, n. is the number of videos in class c,
and k indexes temporal windows. All experiments run on NVIDIA A40 or L40 GPUs (up to 46 GB
VRAM). To stabilize generation, we use conservative decoding: temperature 0.05-0.1, a cap of
64—128 new tokens, and a repetition penalty of 1.5. We use facebook/bart-large-mnli|Lewis
et al[[2019] as a frozen NLI text classifier for scoring. Each experiment is run once (single pass) due
to computational cost.

5 Results

5.1 Impact of prompting across models

We study how prompt design shapes zero-shot anomalous action recognition by evaluating Gemma-3
(4B), NVILA-8B, Qwen-2.5-VL-7B-Instruct, and VideoLLaMA-3-7B on UCF-Crime under three
regimes: an unguided prompt, a guided prompt, and a guided prompt with few-shot examples (see
Appendix [A] for prompts and Figure [2]in Appendix [B]for the few-shot images). All few-shot images
and descriptions are sourced from the official training split to avoid test leakage. Figure [T|reports
Top-1 accuracies for the classes included in the few-shot prompts. On average, few-shot examples
improve accuracy but tend to increase the false-positive rate, with Gemma-3 and NVILA benefiting
the most; see Tables 2] [3] and f]in Appendix [C]

5.2 Privacy filters

We assess robustness on RWF-2000 under privacy-preserving filters that remove personally iden-
tifiable appearance cues while retaining action-relevant structure. We consider three filters: (i)
local head/face blur, where detected head regions are Gaussian-blurred using a merged mask; (ii)
GAN-based anonymization from DeepPrivacy2 |[Hukkelas and Lindseth|[2023]] applied at the face
level; and (iii) the same GAN-based anonymization extended to full-body masks. For each filter, we
pre-generate a separate dataset so multiple models can be tested without reapplying the transform.
All evaluations use the guided prompt; sampling, aggregation, and scoring mirror the prompting study
so that differences can be attributed to privacy transforms rather than prompting or preprocessing.
See results in Table[T|and additional details in Appendix [C]

Model None Blur Face GAN Face  GAN Full Body
Acc (%) / FP (%) AAcc/AFP AAcc/ AFP AAcc / AFP
Gemma-3 (4B) 86.25/20.50 -5.0/+10.5 -2.8/+7.0 -4.0/+7.0
NVILA-8B 82.50/14.00 -1.8/+2.0 -1.8/+5.0 -11.3/+7.5
Qwen-2.5-VL-7B-Instruct 82.25/24.50 -4.8/+49.0 -1.0/+42.0 -6.5/+11.0
VideoLLaMA-3-7B 83.25/8.50 257420 -4.5/-5.5 -8.8/-6.5

Table 1: Baseline Top-1 accuracy and false-positive (FP) rate with no filter, and relative changes (A,
percentage points) under privacy filters on RWF-2000. Accuracy generally drops by 2—11 pp with
privacy, while FP rates often rise. VideoLLaMA-3 shows FP reductions under GAN filters.



6 Conclusions

This work evaluated small vision-LLMs for zero-shot anomaly detection, revealing a critical trade-off
between prompting techniques, privacy filters and accuracy. While few-shot prompting improves
accuracy for some models, it often increases false-positive rates. Privacy-preserving filters, crucial
for deployment, induce a modest performance drop, with full-body GAN anonymization being the
most disruptive due to video inconsistencies. Overall, these models show promise for simple tasks
like fight detection but are not yet reliable enough for complex, autonomous surveillance. Future
efforts must focus on improving the temporal consistency of privacy methods and balancing model
sensitivity with precision.
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A Prompts used in experiments

UNGUIDED_PROMPT_UCF = """
You are given a short video clip. Identify the primary
action(s) you see and provide a concise description (<=
40 words) .

GUIDED_PROMPT = """
You are given a short video clip. Analyze it and respond in
the following format:

[Predicted Class]: Brief description of actions happening
in the input frames (<= 40 words).

Choose the most likely class from the options below.

1. Abuse: Person being abused or assaulted by another

individual.

Arrest: Law enforcement detaining or arresting

individuals.

Arson: Deliberate setting of fire causing a blaze.

Assault: Physical attack (punching, kicking, hitting).

Burglary: Unauthorized intrusion to commit theft.

Explosion: Sudden blast or large fireball.

Fighting: Close-quarters physical fight (wrestling,

brawling) .

8. Normal: Routine, non-violent, everyday activity.

9. RoadAccidents: Vehicle collision or traffic accident.

10. Robbery: Theft involving force or threat from a person.

11. Shooting: Discharge of a firearm (gun visible or muzzle
flash).

12. Shoplifting: Theft from a store without force or threat

N

~NOo O W

13. Stealing: Theft of objects without direct confrontation

14. Vandalism: Deliberate damage or destruction of property

\end{lstlisting

\begin{lstlisting}[breaklines=true, basicstyle=\ttfamily]
FEW_SHOT_EXAMPLES: List[Dict[str, Anyl]l = [

{"role": "user", "content": [{"type": "image_url", "
image_url": {"url": "demo_images/few_shot/Shooting.png
"}31},

{"role": "assistant", "content": "A person with raised arm

firing a gun as seen from the muzzle flash. Label:
Shooting."},

{"role": "user", "content": [{"type": "image_url", "
image_url": {"url": "demo_images/few_shot/RoadAccidents
.png"}}31},

{"role": "assistant", "content": "A car crashes seen from

the smoke on the right. Label: RoadAccidents."},

{"role": "user", "content": [{"type": "image_url", "
image_url": {"url": "demo_images/few_shot/Fighting.png
"}}1%},



{"role": "assistant", "content": "Two persons trying to hit
people. Label: Fighting."},

{"role": "user", "content": [{"type": "image_url", "
image_url": {"url": "demo_images/few_shot/Stealing.png
"}}1},

{"role": "assistant", "content": "A person breaking into a

car. Label: Stealing."},
]

GUIDED_PROMPT_RWF2000 = """
You are given a short surveillance video clip. Analyze it
and respond in the following format:

[Predicted Class]: Brief description of actions happening
in the input frames (<= 40 words).

Choose the most likely class from the options below.
1. Fighting: Physical altercation between individuals (e.g
., punching, pushing, brawling).

2. Normal: Routine, peaceful activities with no signs of

aggression or conflict.
nnn

B Additional figures

Few-Shot prompting images

Fighting RoadAccidents Shooting

2

Figure 2: Images from UCF-Crime dataset used for few-shot prompting

C Experimental results

Figure[d contains the results of all classes compared over the prompting experiments, the tables below
show results for each individual experiment. AUC is taken as the batch (256 frames) level score with
each class other than "Normal" labeled as anomaly. FP shows the percentage of batches predicted
as an other class than "Normal" in videos that are labeled "Normal". Wrong label indicates a label
being present in the generated text which does not correspond to the video label. All experiments on
RFW2000 share the guided prompt.

C.1 RWF2000 experiments



Table 2: UCF-Crime (Unguided Prompt)

Model Top-1 (%) AUC (%) FP (%) Wrong Label (%)
Gemma3-4B 26.29 65.68 11.33 4.56
NVILA-8B 13.39 56.96 6.67 0.39
Qwen2.5 25.31 64.14 11.00 2.21
VideoLLama3 19.94 50.05 80.67 4.17

Table 3: UCF-Crime (Guided Prompt)

Model Top-1(%) AUC (%) FP (%) Wrong Label (%)
Gemma3-4B 33.85 77.71 21.67 58.20
NVILA-8B 27.00 78.97 5.00 56.38
Qwen2.5 34.69 74.63 10.67 76.56
VideoLLama3  34.16 73.40 19.67 42.19

Table 4: UCF-Crime (Guided Prompt + Few-Shot Examples)

Model Top-1 (%) AUC (%) FP (%) Wrong Label (%)
Gemma3-4B 29.80 57.73 68.67 42.97
NVILA-8B 45.05 67.06 18.00 47.79
Qwen2.5 38.87 75.22 9.33 73.24
VideoLLama3 31.44 69.61 5.00 47.27

Table 5: UCF-Crime (Guided Prompt + Privacy Filter)

Model Top-1(%) AUC (%) FP (%) Wrong Label (%)
Gemma3-4B 34.33 75.19  29.33 61.72
NVILA-8B 28.14 77.22 9.33 58.20
Qwen2.5 34.62 75.70 14.67 76.56
VideoLLama3  27.74 68.95  34.00 39.19

Table 6: RWF2000

Model Top-1 (%) FP (%) Wrong Label (%)
Gemma3-4B 86.25 20.50 16.75
NVILA-8B 82.50 14.00 54.50
Qwen2.5 82.25 24.50 88.50
VideoLLama3 83.25 8.50 14.25

Table 7: RWF2000 (With privacy filter - blur face)

Model Top-1 (%) FP (%) Wrong Label (%)
Gemma3-4B 81.25 31.00 21.25
NVILA-8B 80.75 16.00 56.25
Qwen2.5 77.50 33.50 92.50
VideoLLLama3 80.75 10.50 17.75

Table 8: RWF2000 (With privacy filter - GAN face)

Model Top-1 (%) FP (%) Wrong Label (%)
Gemma3-4B 83.50 27.50 19.25
NVILA-8B 80.75 19.00 58.00
Qwen2.5 81.25 26.50 91.50
VideoLLama3 78.75 3.00 24.00
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(a) Example A (b) Example B

Figure 3: Two examples of the same person generated slightly differently by the GAN, leading to
inconsistent motion in video.

Table 9: RWF2000 (With privacy filter - GAN full body)

Model Top-1 (%) FP (%) Wrong Label (%)
Gemma3-4B 82.25 27.50 23.75
NVILA-8B 73.25 21.50 59.75
Qwen2.5 75.75 35.50 95.50
VideoLLama3 74.50 2.00 27.25
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Effect of prompt design on per-class mean accuracy (UCF-Crime)

1.0 = Exp 1: unguided prompt
B Exp 2: guided prompt
W Exp 3: guided + few-shot prompt

° ° o
S o [}

Mean per-class accuracy

o
N

Figure 4: All classes compared over prompting experiments, the few-shot examples include: Fighting,
RoadAccidents, Shooting and Stealing.
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