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MODELS
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Figure 1: Generated images by RectifiedHR. The training-free RectifiedHR enables diffusion models
(SDXL is shown in the figure) to synthesize images at resolutions exceeding their original training
resolution. Please zoom in for a closer view.

ABSTRACT

Diffusion models have achieved remarkable progress across various visual gen-
eration tasks. However, their performance significantly declines when generating
content at resolutions higher than those used during training. Although numerous
methods have been proposed to enable high-resolution generation, they all suffer
from inefficiency. In this paper, we propose RectifiedHR, a straightforward and
efficient solution for training-free high-resolution synthesis. Specifically, we pro-
pose a noise refresh strategy that unlocks the model’s training-free high-resolution
synthesis capability and improves efficiency. Additionally, we are the first to ob-
serve the phenomenon of energy decay, which cause image blurriness during the
high-resolution synthesis process. To address this issue, we introduce average la-
tent energy analysis and find that tuning the classifier-free guidance hyperparam-
eter can significantly improve generation performance. Our method is entirely
training-free and demonstrates efficient performance. Furthermore, we show that
RectifiedHR is compatible with various diffusion model techniques, enabling ad-
vanced features such as image editing, customized generation, and video synthe-
sis. Extensive comparisons with numerous baseline methods validate the superior
effectiveness and efficiency of RectifiedHR.

1 INTRODUCTION

Recent advances in diffusion models (Rombach et al., 2022; Podell et al., 2023; Chen et al., 2023b;
Li et al., 2024b; Zhuo et al., 2024; Labs, 2023; Esser et al., 2024; Luo et al., 2023; Liu et al., 2024a)
have significantly improved generation quality, enabling realistic editing (Yang et al., 2023; Miyake
et al., 2023; Tumanyan et al., 2023; Brooks et al., 2023; Bar-Tal et al., 2022; Couairon et al., 2022;
Kawar et al., 2023; Mokady et al., 2023) and customized generation (Li et al., 2024a; Bar-Tal et al.,
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0 49 Timestep

Figure 2: The visualization images corresponding to “predicted x0” at different time step t, abbrevi-
ated as ptx0

. The figure visualizes the process of how ptx0
changes with the sampling steps, where the

x-axis represents the timestep in the sampling process. The 11 images are evenly extracted from 50
steps. Early steps primarily establish global structure, while later steps refine local details; toward
the end, ptx0

exhibits RGB-like characteristics.

2023; Tewel et al., 2023; Gal et al., 2022; Ruiz et al., 2023b; Ding et al., 2024). However, these
models struggle to generate images at resolutions beyond those seen during training, resulting in
noticeable performance degradation. Training directly on high-resolution content is computationally
expensive, underscoring the need for methods that enhance resolution without requiring additional
training.

Currently, the naive approach is to directly input high-resolution noise. However, this method leads
to severe repeated pattern issues. To address this problem, many training-free high-resolution gen-
eration methods have been proposed, such as (Bar-Tal et al., 2023; Lee et al., 2023; Du et al., 2024;
Lin et al., 2025; 2024; He et al., 2023; Huang et al., 2025; Zhang et al., 2023b; Jin et al., 2023;
Hwang et al., 2024; Haji-Ali et al., 2024; Shi et al., 2024; Liu et al., 2024b; Kim et al., 2024; Cao
et al., 2024; Zhang et al., 2024; Guo et al., 2024; Wu et al., 2024). However, these methods all
share a common problem: they inevitably introduce additional computational overhead. For exam-
ple, the sliding window operations introduced by (Bar-Tal et al., 2023; Lee et al., 2023; Du et al.,
2024; Lin et al., 2025; 2024; Hwang et al., 2024) have overlapping regions that result in redun-
dant computations. Similarly, (Shi et al., 2024; Liu et al., 2024b; Lin et al., 2025) require setting
different prompts for small local regions of each image and need to incorporate a vision-language
model. Additionally, (Kim et al., 2024; Cao et al., 2024; Zhang et al., 2024) require multiple rounds
of SDEdit (Meng et al., 2021) or complex classifier-free guidance (CFG) to gradually increase the
resolution from a low-resolution image to a high-resolution image, thereby introducing more sam-
pling steps or complex CFG calculations. All of these methods introduce additional computational
overhead and complexity, significantly reducing the speed of high-resolution synthesis.

We propose an efficient framework, RectifiedHR, to enable high-resolution synthesis by progres-
sively increasing resolution during sampling. The simplest baseline is to progressively increase
the resolution in the latent space. However, naive resizing in latent space introduces noise and ar-
tifacts. We identify two critical issues and propose corresponding solutions: (1) Since the latent
space is obtained by transforming RGB images via a VAE, RGB-based resizing becomes invalid in
the latent space (Tab. 2, Method D). Moreover, as the latent comprises “predicted x0” and Gaus-
sian noise, direct resizing distorts the noise distribution. To address this, we propose noise refresh,
which independently resizes “predicted x0”—shown to exhibit RGB characteristics in late sampling
(Fig. 2)—and injects fresh noise to maintain a valid latent distribution while increasing resolution.
(2) We are the first to observe that resizing “predicted x0”: introduces spatial correlations, reducing
pixel-wise independence, causing detail loss and blur, and leading to energy decay (Fig. 3a). To
mitigate this, we propose energy rectification, which adjusts the CFG hyperparameter (Fig. 3b) to
compensate for the energy decay and effectively eliminate blur. Compared to (Kim et al., 2024; Cao
et al., 2024; Zhang et al., 2024), our method achieves high-resolution synthesis without additional
sampling steps or complex CFG calculations, ensuring computational efficiency.

In general, our main contributions are as follows: (1) We propose RectifiedHR, an efficient, training-
free framework for high-resolution synthesis that eliminates redundant computation and enables
resolution scalability without requiring additional sampling steps. (2) We introduce noise refresh
and energy rectification, pioneering the use of average latent energy analysis to address energy de-
cay—an issue previously overlooked in high-resolution synthesis. (3) Our method surpasses existing
baselines in both efficiency and quality, achieving faster inference while preserving superior fidelity.
(4) We demonstrate that RectifiedHR can be seamlessly integrated with ControlNet, supporting a
range of applications such as image editing, customized image generation, and video synthesis.
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(a) The energy decay phenomenon of our noise
refresh sampling process is evaluated in compar-
ison to the original sampling process across 100
random prompts.
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(b) The evolution of average latent energy over timesteps
during the generation of 1024 × 1024 resolution images
from 100 random prompts under different classifier-free
guidance hyperparameters.

Figure 3: (a) The x-axis denotes the timesteps of the sampling process, and the y-axis indicates the
average latent energy. The blue line shows the average latent energy of the original sampling process
when generating 1024 × 1024-resolution images. The red line corresponds to our noise refresh
sampling process, where noise refresh is applied at the 30th and 40th timesteps, and the resolution
progressively increases from 1024 × 1024 to 2048 × 2048, and subsequently to 3072 × 3072. It
can be observed that noise refresh induces a noticeable decay in average latent energy. From the
left images, it is evident that after energy rectification, image details become more pronounced. (b)
The x-axis represents the timestep, the y-axis represents the average latent energy, and ω denotes
the hyperparameter for classifier-free guidance. It can be observed that the average latent energy
increases as ω increases. From the right figures, one can observe how the generated images vary
with increasing ω.

2 RELATED WORK

2.1 TEXT-GUIDED IMAGE GENERATION

With the scaling of models, data volume, and computational resources, text-guided image genera-
tion has witnessed unprecedented advancements, leading to the emergence of numerous diffusion
models such as LDM (Rombach et al., 2022), SDXL (Podell et al., 2023), PixArt (Chen et al.,
2023b; 2025), HunyuanDiT (Li et al., 2024b), LuminaNext (Zhuo et al., 2024), FLUX (Labs, 2023),
SD3 (Esser et al., 2024), LCM (Luo et al., 2023), and UltraPixel (Ren et al., 2024). These models
learn mappings from Gaussian noise to high-quality images through diverse training and sampling
strategies, including DDPM (Ho et al., 2020), SGM (Song et al., 2020b), EDM (Karras et al., 2022),
DDIM (Song et al., 2020a), flow matching (Lipman et al., 2022), rectified flow (Liu et al., 2022),
RDM (Teng et al., 2023), and pyramidal flow (Jin et al., 2024). However, these methods typically
require retraining and access to high-resolution datasets to support high-resolution generation. Con-
sequently, exploring training-free approaches for high-resolution synthesis has become a key area
of interest within the vision generation community. Our method is primarily designed to enable
efficient, training-free high-resolution synthesis in a plug-and-play manner.

2.2 TRAINING-FREE HIGH-RESOLUTION IMAGE GENERATION

Due to the domain gap across different resolutions, directly applying diffusion models to high-
resolution image generation often results in pattern repetition and poor semantic structure. Multi-
Diffusion (Bar-Tal et al., 2023) proposes a sliding window denoising scheme for panoramic image
generation. However, this method suffers from severe pattern repetition, as it primarily focuses on
the aggregation of local information. Improved variants based on the sliding window denoising
scheme include SyncDiffusion (Lee et al., 2023), Demofusion (Du et al., 2024), AccDiffusion (Lin
et al., 2025), and CutDiffusion (Lin et al., 2024). Specifically, SyncDiffusion incorporates global
information by leveraging the gradient of perceptual loss from the predicted denoised images at
each denoising step as guidance. Demofusion employs progressive upscaling, skip residuals, and di-
lated sampling mechanisms to support higher-resolution image generation. AccDiffusion introduces
patch-content-aware prompts, while CutDiffusion adopts a coarse-to-fine strategy to mitigate pattern

3
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𝐿𝐿𝑀𝑁 and 𝐿𝐿𝑂𝑃 de!ne the range of sampling timesteps to use noise
refresh. 𝑀 denotes the number of noise refresh that need to be
performed. The range of 𝑁 is all integers between 1 and 𝑀 . 𝑂 is a
hyperparameter that can be adjusted to obtain di"erent strategies
to select 𝐿𝑂 .

3.3 Energy rectification
Although the image resolution increases after using noise refresh,
we !nd that the generated images exhibit signi!cant blurring if
we do not conduct further process, as shown in the fourth column
in Fig. 7. To analyze the cause of this phenomenon, we introduce
relative latent energy formula as follows:

𝑃𝑄2
𝑄 =

∑𝑅
𝑂=1

∑𝑆
𝑇=1

∑𝑈
𝑉=1 𝑄

2
𝑄𝐿 𝑀𝑁

𝑅 → 𝑆 →𝑇 , (8)

𝑄𝑄 represents the latent variable at time 𝑈 , where𝑅 ,𝑆 , and𝑇 denote
the dimensions of the channel, height, and width of latent, respec-
tively. The de!nition is very similar to the energy de!nition of an
image, and is used to indicate the average energy of each element
of a latent vector.

To analyze the issue of image blurring, we conduct an average
energy experiment on 100 random prompts. As illustrated in Fig.
4, we !rst compare the relative latent energy di"erences between
the noise refresh sampling process and the original sampling pro-
cess. We observe a signi!cant energy decay phenomenon in the
noise refresh sampling process, which is the reason why the naive
implementation method produces noticeably blurred images. Sub-
sequently, we conduct an experiment to analyze the impact of the
hyperparameter 𝑉 in classi!er-free guidance on latent energy. As
shown in Fig. 5, we !nd that as the classi!er-free guidance param-
eter 𝑉 increases, the energy exhibits a gradually increasing trend.
Therefore, we can address the issue of energy decay and improve
the quality of generated images by increasing 𝑉 to enhance the
energy in the noise refresh sampling scheme. As demonstrated in
the fourth column and !fth column in Fig. 7, after the energy is
recti!ed with a larger classi!er-free guidance hyperparameter 𝑉 ,
the blurry issue has been well addressed and the generated image
shows remarkable clarity. We refer to this process of correcting
energy decay as Energy Recti!cation.

As shown in Fig. 6b, the energy recti!cation operation is applied
to the sampling process after noise refresh. To more automatically
select 𝑉 in the classi!er-free guidance, we propose the following
selection formula:

𝑉𝑂 = (𝑉𝐿𝑀𝑁 ↑ 𝑉𝐿𝑂𝑃) ↓ ( 𝑁
𝑀
)𝑊 + 𝑉𝐿𝑂𝑃 (9)

𝑉𝐿𝑀𝑁 and 𝑉𝐿𝑂𝑃 represent the range of 𝑉 in classi!er-free guid-
ance during sampling process. 𝑀 denotes the number of noise re-
fresh that needs to be performed. The range of 𝑁 is all integers
between 1 and 𝑀 . 𝑂 is a hyperparameter that can be adjusted to
obtain di"erent strategies to select 𝑉𝑂 .

Algorithm 1 Original Sampling Process
Require: 𝑄𝑋 ↔ N(0, 𝑊 ), 0 ↗ 𝑉 ↘ R

1: for 𝑁 in range(50) do
2: 𝑋 (𝑄𝑄 , 𝑈, ≃) = 𝑋 (𝑄𝑄 , 𝑈) + 𝑉 · [𝑋 (𝑄𝑄 , 𝑈, 𝑌) ↑ 𝑋 (𝑄𝑄 , 𝑈, ≃)]
3: 𝑍𝑄𝑁0 ⇐ (𝑄𝑄 ↑

⇒
1 ↑ 𝑎𝑄𝑋 (𝑄𝑄 , 𝑈))/

⇒
𝑎𝑄

4: 𝑄𝑄↑1 =
⇒
𝑎𝑄↑1𝑍𝑄𝑁0 +

⇒
1 ↑ 𝑎𝑄↑1𝑋 (𝑄𝑄 , 𝑈)

5: end for
6: return 𝑄0

Algorithm 2 Our Sampling Process
Require: 𝑄𝑋 ↔ N(0, 𝑊 ), 0 ↗ 𝑉 ↘ R
Require: ω𝑌𝑍𝑎𝑄𝑂 𝑏 𝑂𝑍𝑐 = {{𝐿𝑂 : 𝑉𝑂 }|𝑁 = 1...𝑀 ↑ 1}

1: for 𝑁 in range(50) do
2: 𝑋 (𝑄𝑄 , 𝑈) = 𝑋 (𝑄𝑄 , 𝑈, ≃) + 𝑉 · [𝑋 (𝑄𝑄 , 𝑈, 𝑌) ↑ 𝑋 (𝑄𝑄 , 𝑈, ≃)]
3: 𝑍𝑄𝑁0 ⇐ (𝑄𝑄 ↑

⇒
1 ↑ 𝑎𝑄𝑋 (𝑄𝑄 , 𝑈))/

⇒
𝑎𝑄

4: if 𝑁 in ω𝑌𝑍𝑎𝑄𝑂 𝑏 𝑂𝑍𝑐 .keys() then
5: 𝑍𝑄𝑁0 ⇐ 𝑃 (𝑏𝑐𝑑𝑁𝑒𝑐 (𝑓 (𝑍𝑄𝑁0 )))
6: 𝑋 ↔ N(0, 𝑊𝑑̃𝑂𝑃0

)
7: 𝑄𝑄↑1 =

⇒
𝑎𝑄↑1𝑍𝑄𝑁0 +

⇒
1 ↑ 𝑎𝑄↑1𝑋

8: 𝑉 = ω𝑌𝑍𝑎𝑄𝑂 𝑏 𝑂𝑍𝑐 [𝑈]
9: else

10: 𝑄𝑄↑1 =
⇒
𝑎𝑄↑1𝑍𝑄𝑁0 +

⇒
1 ↑ 𝑎𝑄↑1𝑋 (𝑄𝑄 , 𝑈)

11: end if
12: end for
13: return 𝑄0

4 Experiment

4.1 Evaluation Setup
We conduct experiments using SDXL [39] with 50 sampling steps
as our base model, which is able to generate images at 1024 x 1024
resolution by default. Following the previous work, we randomly
sample 1,000 prompts from the laion-5B [45] dataset as conditions
to generate images. We compare our method with the following
state-of-the-art: Demofusion [10], Di"useHigh [25], HiDi"usion[55],
CutDi"usion [30], ElasticDi"usion [13], AP-LDM [5], FreCas [56],
SDXL+BSRGAN [54] FouriScale [20], ScaleCrafter [14], and AccDif-
fusion [31]. Except for SDXL+BSRGAN, which requires to use the
trained BSRGAN model, other methods are training-free. We !x
inference steps and set the negative prompts as empty. In addition,
we remove additional tricks such as FreeU [47] for a fair comparison.
Quantitatively, we mainly generate high-resolution images at target
resolutions of 2048 x 2048, 4x of the original resolution.

We employ four widely used quantitative evaluation metrics:
FID (Frechet Inception Distance) [16], KID (Kernel Inception Dis-
tance) [3], IS (Inception Score) [44], and CLIP Score [40]. Speci!cally,
FID𝑌 , KID𝑌 , and IS𝑌 require resizing images to 299x299 before cal-
culation. However, this kind of evaluation is not reasonable for
high-resolution image generation. Following the approach of pre-
vious works [10, 31], we randomly crop 10 patches of 1024x1024
(1x) from each generated high-resolution image to further calculate
FID𝑒 , KID𝑎 , and IS𝑎 . We set 𝐿𝐿𝑂𝑃 at 40, 𝐿𝐿𝑀𝑁 at 50, N at 1, 𝑉𝐿𝑂𝑃 at

, Vol. 1, No. 1, Article . Publication date: May 2025.

Figure 4: Overview and Pseudo Code of RectifedHR. During sampling, we perform Noise Refresh at
specific steps, resizing p̃tx0

in the RGB space, followed by Energy Rectification, where the classifier-
free guidance parameter is appropriately increased to rectify energy decay in the sampling process
and thereby recover missing image details.

repetition. Nonetheless, these approaches share complex implementation logic and encounter effi-
ciency bottlenecks due to redundant computation arising from overlapping sliding windows.

ScaleCrafter (He et al., 2023), FouriScale (Huang et al., 2025), HiDiffusion (Zhang et al., 2023b),
and Attn-SF (Jin et al., 2023) modify the network architecture of the diffusion model, which may
result in suboptimal performance. Furthermore, these methods perform high-resolution denoising
throughout the entire sampling process, leading to slower inference compared to our approach,
which progressively transitions from low to high resolution. Although HiDiffusion accelerates in-
ference using window attention mechanisms, our method remains faster, as demonstrated by exper-
imental results.

Upscale Guidance (Hwang et al., 2024) and ElasticDiffusion (Haji-Ali et al., 2024) both propose
incorporating global and local denoising information into classifier-free guidance (Ho & Salimans,
2022). The global branch of Upscale Guidance and the overlapping window regions in the local
branch of ElasticDiffusion involve significantly higher computational complexity compared to our
progressive resolution increase strategy. ResMaster (Shi et al., 2024) and HiPrompt (Liu et al.,
2024b) introduce multi-modal models to regenerate prompts and enrich image details; however, the
use of such multi-modal models introduces substantial overhead, leading to further efficiency issues.

DiffuseHigh (Kim et al., 2024), MegaFusion (Wu et al., 2024), FreCas (Zhang et al., 2024), and
AP-LDM (Cao et al., 2024) leverage the detail enhancement capabilities of SDEdit (Meng et al.,
2021), progressively adding details from low-resolution to high-resolution images. In contrast to
these methods, our approach neither increases sampling steps nor requires additional computations
involving classifier-free guidance (CFG) variants, resulting in greater efficiency. Moreover, we iden-
tify the issue of energy decay and show that simply adjusting the classifier-free guidance parameter
is sufficient to rectify the energy and achieve improved results.

3 METHOD

3.1 PRELIMINARIES

Diffusion models establish a mapping between Gaussian noise and images, enabling image gener-
ation by randomly sampling noise. In this paper, we assume 50 sampling steps, with the denoising
process starting at step 0 and ending at step 49. We define Io as the RGB image. During training,
the diffusion model first employs a VAE encoder E(·) to transform the RGB image into a lower-
dimensional latent representation, denoted as x0. The forward diffusion process is then defined
as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (1)

4
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Noise of varying intensity is added to x0 to produce different xt, where ᾱt is a time-dependent
scheduler parameter controlling the noise strength, and ϵ is randomly sampled Gaussian noise. The
diffusion model ϵ̂(xt, t, c), parameterized by θ, is optimized to predict the added noise via the fol-
lowing training objective:

min
θ

Ext,t,c

[
∥ϵ− ϵ̂ (xt, t, c)∥22

]
, (2)

where c denotes the conditioning signal for generation (e.g., a text prompt in T2I tasks). During
inference, random noise is sampled in the latent space, and the diffusion model gradually transforms
this noise into an image via a denoising process. Finally, the latent representation is passed through
the decoder D(·) of the VAE to reconstruct the generated RGB image. The objective of high-
resolution synthesis is to produce images at resolutions beyond those seen during training—for
instance, resolutions exceeding 1024× 1024 in our setting.

Classifier-free guidance for diffusion models. Classifier-free guidance (CFG) (Ho & Salimans,
2022) is currently widely adopted to enhance the quality of generated images by incorporating un-
conditional outputs at each denoising step. The formulation of classifier-free guidance is as follows:

ϵ̃(xt, t) = ϵ̂(xt, t, ∅) + ω · [ϵ̂(xt, t, c)− ϵ̂(xt, t, ∅)], (3)

where ω is the hyperparameter of classifier-free guidance, ϵ̂(xt, t, ∅) and ϵ̂(xt, t, c) denote the pre-
dicted noises from the unconditional and conditional branches, respectively. We refer to ϵ̃(xt, t) as
the predicted noise after applying classifier-free guidance.

Sampling process for diffusion models. In this paper, we adopt the DDIM sampler (Song et al.,
2020a) as the default. The deterministic sampling formulation of DDIM is given as follows:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱt · ϵ̃(xt, t)√

ᾱt

)
︸ ︷︷ ︸

predicted x0→pt
x0

+
√

1− ᾱt−1 · ϵ̃(xt, t).
(4)

As illustrated in Eq. 4, at timestep t, we first predict the noise ϵ̃(xt, t) using the pre-trained neural
network ϵ̂(·). We then compute a “predicted x0” at timestep t, denoted as ptx0

. Finally, xt−1 is
derived from ϵ̃(xt, t) and ptx0

using the diffusion process defined in Eq. 4.

In this paper, we propose RectifiedHR, which consists of noise refresh and energy rectification. The
noise refresh module progressively increases the resolution during the sampling process, while the
energy rectification module enhances the visual details of the generated contents.

3.2 NOISE REFRESH

To enable high-resolution synthesis, we propose a progressive resizing strategy during sampling. A
straightforward baseline for implementing this strategy is to directly perform image-space interpola-
tion in the latent space. However, this approach presents two key issues. First, since the latent space
is obtained via VAE compression of the image, interpolation operations that work in RGB space are
ineffective in the latent space, as demonstrated by Method D in the ablation study (Table 2). Second,
because the latent space consists of ptx0

and noise, directly resizing it alters the noise distribution,
potentially shifting the latent representation outside the diffusion model’s valid domain. To address
this, we visualize ptx0

, as shown in Fig. 2, and observe that the image corresponding to ptx0
exhibits

RGB-like characteristics in the later stages of sampling. Therefore, we resize ptx0
to enlarge the

latent representation. To ensure the resized latent maintains a Gaussian distribution, we inject new
Gaussian noise into ptx0

. The method for enhancing the resolution of ptx0
is as follows:

p̃tx0
= E(resize(D(ptx0

))), (5)

where E denotes the VAE encoder, D denotes the VAE decoder, and resize(·) refers to the operation
of enlarging the RGB image. We adopt bilinear interpolation as the default resizing method. The
procedure for re-adding noise is as follows:

xt−1 =
√
ᾱt−1p̃

t
x0

+
√

1− ᾱt−1ϵ, (6)

where ϵ denotes a random Gaussian noise that shares the same shape as p̃tx0
. We refer to this process

as Noise Refresh.
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As illustrated in Fig. 4b, the noise refresh operation is applied at specific time points Ti during
the sampling process. To automate the selection of these timesteps T , we propose the following
selection formula:

Ti = ⌊(Tmax − Tmin) ∗ (
i− 1

N
)MT + Tmin⌋, (7)

where Tmax and Tmin define the range of sampling timesteps at which noise refresh is applied. N
denotes the number of different resolutions in the denoising process, and N − 1 corresponds to the
number of noise refresh operations performed. N is a positive integer, and the range of i includes
all integers in [1, N). Specifically, we set T0 to 0 and Tmax to the total number of sampling steps.
Tmin is treated as a hyperparameter. Since ptx0

exhibits more prominent image features in the later
stages of sampling, as shown in Fig. 2, Tmin is selected to fall within the later stage of the sampling
process. A quantitative analysis of the variation in ptx0

is provided in Supp. A.5.

3.3 ENERGY RECTIFICATION

Although noise refresh enables the diffusion model to generate high-resolution images, we observe
that introducing noise refresh during the sampling process leads to blurriness in the generated con-
tent, as illustrated in the fourth row of Fig. 8. To investigate the cause of this phenomenon, we
introduce the average latent energy formula as follows:

E[x2
t ] =

∑C
i=1

∑H
j=1

∑W
k=1 x

2
tijk

C ×H ×W
, (8)

where xt represents the latent variable at time t, and C, H , and W denote the channel, height,
and width dimensions of the latent, respectively. This definition closely resembles that of image
energy and is used to quantify the average energy per element of the latent vector. To investigate
the issue of image blurring, we conduct an average latent energy analysis on 100 random prompts.
As illustrated in Fig. 3a, we first compare the average latent energy between the noise refresh sam-
pling process and the original sampling process. We observe significant energy decay during the
noise refresh sampling process, which explains why the naive implementation produces noticeably
blurred images. Subsequently, we experimentally discover that the hyperparameter ω in classifier-
free guidance influences the average latent energy. As shown in Fig. 3b, we find that increasing
the classifier-free guidance parameter ω leads to a gradual increase in energy. Therefore, the issue
of energy decay—and thus image quality degradation—can be mitigated by increasing ω to boost
the energy in the noise refresh sampling scheme. As demonstrated in the left image of Fig. 3a,
once energy is rectified by using a larger classifier-free guidance hyperparameter ω, the blurriness is
substantially reduced, and the generated image exhibits significantly improved clarity. We refer to
this process of correcting energy decay as Energy Rectification. However, we note that a larger ω
is not always beneficial, as excessively high values may lead to overexposure. The goal of energy
rectification is to align the energy level with that of the original diffusion model’s denoising process,
rather than to maximize energy indiscriminately. The experiment analyzing the rectified average
latent energy curve is provided in Supp. A.10.

As shown in Fig. 4b, the energy rectification operation is applied during the sampling process fol-
lowing noise refresh. To automatically select an appropriate ω value for classifier-free guidance, we
propose the following selection formula:

ωi = (ωmax − ωmin) ∗ (
i

N − 1
)Mω + ωmin, (9)

where ωmax and ωmin define the range of ω values used in classifier-free guidance during the sam-
pling process. N denotes the number of different resolutions in the denoising process, and N−1
corresponds to the number of noise refresh operations performed. N is a positive integer, and the
range of i includes all integers in [0, N). ωmin refers to the CFG hyperparameter at the original res-
olution supported by the diffusion model. Mω is a tunable hyperparameter that allows for different
strategies in selecting ωi. The value of N used in Eq. 7 and Eq. 9 remains consistent throughout the
sampling process.

Additionally, we establish the connection between energy rectification and SNR correction strategies
proposed in (Zhang et al., 2024; Wu et al., 2024; Hoogeboom et al., 2023), showing that SNR
correction is essentially a form of energy rectification. The proof is provided in Supp. A.6.
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Methods FIDr ↓ KIDr ↓ ISr ↑ FIDc ↓ KIDc ↓ ISc ↑ CLIP↑ Time↓ User
Study↑

20
48

×
20

48

FouriScale 71.344 0.010 15.957 53.990 0.014 20.625 31.157 59s 11.6%
ScaleCrafter 64.236 0.007 15.952 45.861 0.010 22.252 31.803 35s 13.6%
HiDiffusion 63.674 0.007 16.876 41.930 0.008 23.165 31.711 18s 12.7%
CutDiffusion 59.152 0.007 17.109 38.004 0.008 23.444 32.573 53s -

ElasticDiffusion 56.639 0.010 15.326 37.649 0.014 19.867 32.301 150s -
AccDiffusion 48.143 0.002 18.466 32.747 0.008 24.778 33.153 111s 13.8%
DiffuseHigh 49.748 0.003 19.537 27.667 0.004 27.876 33.436 37s -

FreCas 49.129 0.003 20.274 27.002 0.004 29.843 33.700 14s 16.2%
DemoFusion 47.079 0.002 19.533 26.441 0.004 27.843 33.748 79s -

Ours 48.361 0.002 20.616 25.347 0.003 28.126 33.756 13s 32.2%

40
96

×
40

96

FouriScale 135.111 0.046 9.481 129.895 0.057 9.792 26.891 489s 11.6%
ScaleCrafter 110.094 0.028 10.098 112.105 0.043 11.421 27.809 528s 13.6%
HiDiffusion 93.515 0.024 11.878 120.170 0.058 11.272 27.853 71s 12.7%
CutDiffusion 130.207 0.055 9.334 113.033 0.055 10.961 26.734 193s -

ElasticDiffusion 101.313 0.056 9.406 111.102 0.089 7.627 27.725 400s -
AccDiffusion 54.918 0.005 17.444 60.362 0.023 16.370 32.438 826s 13.8%
DiffuseHigh 48.861 0.003 19.716 40.267 0.010 21.550 33.390 190s -

FreCas 49.764 0.003 18.656 39.047 0.010 21.700 33.237 74s 16.2%
DemoFusion 48.983 0.003 18.225 38.136 0.010 20.786 33.311 605s -

Ours 48.684 0.003 20.352 35.718 0.009 20.819 33.415 37s 32.2%

Table 1: Comparison to SOTA methods at 2048×2048 and 4096×4096 resolutions. Bold numbers
indicate the best performance, while underlined numbers denote the second-best performance.
4 EXPERIMENTS

4.1 EVALUATION SETUP

Our experiments use SDXL (Podell et al., 2023) as the base model, which by default generates
images at a resolution of 1024× 1024. Furthermore, our method can also be applied to Stable Dif-
fusion and transformer-based diffusion models such as WAN (Wang et al., 2025) and SD3 (Esser
et al., 2024), as demonstrated in Fig. 5 and Supp. A.7. The specific evaluation metrics and meth-
ods are provided in Supp. A.11. The comparison includes state-of-the-art training-free methods:
Demofusion (Du et al., 2024), DiffuseHigh (Kim et al., 2024), HiDiffusion (Zhang et al., 2023b),
CutDiffusion (Lin et al., 2024), ElasticDiffusion (Haji-Ali et al., 2024), FreCas (Zhang et al., 2024),
FouriScale (Huang et al., 2025), ScaleCrafter (He et al., 2023), and AccDiffusion (Lin et al., 2025).
Quantitative assessments focus on upsampling to 2048 × 2048 and 4096 × 4096 resolutions. All
baseline methods are fairly and fully reproduced. For the 2048 × 2048 resolution setting, we set
Tmin to 40, Tmax to 50, N to 2, ωmin to 5, ωmax to 30, MT to 1, and Mω to 1. For the 4096 × 4096
resolution setting, we set Tmin to 40, Tmax to 50, N to 3, ωmin to 5, ωmax to 50, MT to 0.5, and Mω to
0.5. All experiments are conducted using 8 NVIDIA A800 GPUs unless specified. The above hyper-
parameters are obtained through a hyperparameter search, with detailed ablation studies provided in
Supp. A.8. More qualitative results are presented in Supp. A.2 and Supp. A.13.

4.2 QUANTITATIVE RESULTS

As shown in Tab. 1, RectifiedHR consistently surpasses competing methods at both 2048×2048 and
4096 × 4096. At 2048 × 2048, it leads 6/8 metrics, placing second on one and third on another; at
4096×4096, it leads 7/8 and places third on the remaining metric. At 2048×2048, our KIDr ranks
third because this metric downsamples high-resolution images for evaluation, underrepresenting fine
details—a known limitation (Du et al., 2024; Lin et al., 2025). Although RectifiedHR ranks second
and third on ISc, its dominance on the other metrics, together with strong computational efficiency,
demonstrates its overall effectiveness and robustness for high-resolution generation. When scaled to
4096× 4096, RectifiedHR is roughly twice as fast as the next fastest approach. This speedup comes
from preserving the original number of sampling steps and carefully tuning the CFG hyperparameter.
In contrast, methods such as DiffuseHigh incur substantial overhead by adding extra sampling via
repeated SDEdit and FreCas within heavier CFG pipelines. Notably, RectifiedHR achieves this
speed without sacrificing quality, matching or exceeding baseline visual fidelity across resolutions,
thereby striking a favorable speed–quality balance. User study also demonstrates the advantages
of our approach. Details of the user study are presented in Supp. A.14. Since the images of all
resolutions were mixed together during the user study, the user study values in different resolutions
are the same.
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Methods Noise
Refresh

Energy
Rectification

Resize
Latent FIDr ↓ KIDr ↓ ISr ↑ FIDc ↓ KIDc ↓ ISc ↑ CLIP↑

20
48

×
2
0
4
8 A × × × 98.676 0.030 13.193 73.426 0.029 17.867 30.021

B × ✓ × 86.595 0.021 13.900 60.625 0.021 19.921 30.728
C ✓ × × 79.743 0.021 13.334 76.023 0.035 11.840 29.966
D × ✓ ✓ 78.307 0.019 13.221 74.419 0.034 11.883 29.523

Ours ✓ ✓ × 48.361 0.002 20.616 25.347 0.003 28.126 33.756

40
96

×
40

96 A × × × 187.667 0.088 8.636 111.117 0.057 13.383 25.447
B × ✓ × 175.830 0.079 8.403 80.733 0.034 15.791 26.099
C ✓ × × 85.088 0.026 13.114 141.422 0.091 5.465 29.548
D × ✓ ✓ 89.968 0.033 11.973 145.472 0.103 6.312 28.212

Ours ✓ ✓ × 48.684 0.003 20.352 35.718 0.009 20.819 33.415

Table 2: Quantitative results of the ablation studies. Method A denotes direct inference (without
noise refresh and energy rectification), Method B excludes noise refresh, Method C excludes energy
rectification, and Method D replaces noise refresh in our method with direct latent resizing. Ours
refers to the full version of our proposed method.

4.3 ABLATION STUDY

To evaluate the effectiveness of each module in our method, we conduct both quantitative experi-
ments (Tab. 2) and qualitative experiments (Supp. A.4). The metric computation follows the pro-
cedure described in Supp. A.11. All hyperparameters are set according to Sec. 4.1. Additionally,
in scenarios without energy rectification, the classifier-free guidance hyperparameter ω is fixed at
5. For simplicity, this section mainly compares the FIDc metric at the 4096 × 4096 resolution.
Comparing Method B in Tab.2 with Ours, the FIDc increases from 35.718 to 80.733 without noise
refresh. Comparing Method C in Tab. 2 with Ours, the FIDc rises sharply from 35.718 to 141.422
without energy rectification, demonstrating that energy decay severely degrades generation quality.
This underscores the importance of energy rectification—despite its simplicity, it yields significant
improvements. Comparing Method D in Tab. 2 with Ours, the FIDc improves from 145.472 to
35.718, revealing that directly resizing the latent is ineffective. This confirms that noise refresh is
indispensable and cannot be replaced by naı̈ve latent resizing. We also conduct ablation studies on
the hyperparameters related to Eq. 7 and Eq. 9, with detailed results provided in Supp. A.8.

5 MORE APPLICATIONS

This section highlights how RectifiedHR can enhance a variety of tasks, with a focus on demon-
strating visual improvements. The experiments cover diverse tasks, models, and sampling methods
to validate the effectiveness of our approach. While primarily evaluated on classic methods and
models, RectifiedHR can also be seamlessly integrated into more advanced techniques. Supp. A.9
provides detailed quantitative results and corresponding hyperparameter settings.

Visual
Quality ↑

Motion
Quality ↑

Temporal
Consistency ↑

Direct
Inference 65.31 51.91 63.78

Ours 67.22 54.30 64.26

Table 3: Quantitative results of
video generation.

Video Generation. RectifiedHR can be directly applied to
video diffusion models such as WAN (Wang et al., 2025).
The officially supported maximum resolution for WAN 1.3B
is 480× 832. As shown in Fig. 5a and Tab. 3, directly generat-
ing high-resolution videos with WAN may lead to generation
failure or prompt misalignment. However, integrating Recti-
fiedHR enables WAN to produce high-quality, high-resolution
videos reliably. More experimental results and details are pre-
sented in Supp. A.12 and Supp. A.9.

Image Editing. RectifiedHR can be applied to image editing tasks. In this section, we use SDXL as
the base model with a default resolution of 1024×1024. Directly editing high-resolution images with
OIR often results in ghosting artifacts, as illustrated in rows a, b, d, and e of Fig. 5b. Additionally, it
can cause shape distortions and deformations, as shown in rows c and f. In contrast, the combination
of OIR and RectifiedHR effectively mitigates these issues, as demonstrated in Fig. 5b.

Customized Generation. RectifiedHR can be directly adapted to DreamBooth using SD1.4 with a
default resolution of 512 × 512, as shown in Fig. 5c. The direct generation of high-resolution cus-
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Figure 5: Applications. (a) Video Generation. (b) Image Editing. (c) Customized Generation. (d)
Controllable Generation. Contents are best viewed when zoomed in.

tomized images often leads to severe repetitive pattern artifacts. Integrating RectifiedHR effectively
addresses this problem.

Controllable Generation. RectifiedHR can be seamlessly integrated with ControlNet (Zhang et al.,
2023a) using SDXL at a default resolution of 1024 × 1024 to enable controllable generation. As
shown in Fig. 5d, control signals may include pose, canny edges, and other modalities.

6 CONCLUSION AND FUTURE WORK

We propose an efficient and straightforward method, RectifiedHR, for high-resolution synthesis.
Specifically, we conduct an average latent energy analysis and, to the best of our knowledge, are the
first to identify the energy decay phenomenon during high-resolution synthesis. Our approach intro-
duces a novel training-free pipeline that is both simple and effective, primarily incorporating noise
refresh and energy rectification operations. Extensive comparisons demonstrate that RectifiedHR
outperforms existing methods in both effectiveness and efficiency. Nonetheless, our method has cer-
tain limitations. During the noise refresh stage, it requires both decoding and encoding operations
via the VAE, which impacts the overall runtime. In future work, we aim to investigate performing
resizing operations directly in the latent space to further improve efficiency.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kasten, and Tali Dekel. Text2live: Text-
driven layered image and video editing. pp. 707–723. Springer, 2022.

Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
controlled image generation. 2023.
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A SUPPLEMENTARY

A.1 USE OF LLMS

We use LLMs to polish my papers, correct some grammatical errors, and make the language more
concise and fluent.
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A.2 QUALITATIVE RESULTS

Resolution: 2048x2048
Prompt: A massive stained glass mural depicting a celestial sun and 

moon intertwined, glowing as sunlight passes through, casting colorful 
reflections on a polished marble floor, photorealistic with intricate 

glass textures, rich vibrant hues, and dramatic light dispersion. 
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Resolution: 4096x4096 Resolution: 2048x4096

Prompt: A highly detailed, antique brass clockwork automaton in the 
form of a majestic peacock, its gears and mechanisms visible as it 

struts across a polished mahogany table, photorealistic with intricate 
brass engravings, glowing crystal eyes, and delicate feather-like gears.

Prompt: An elegant glass perfume bottle with etched floral designs, 
golden stopper, and refracted light, on velvet, photorealistic with 

intricate reflections. 

(a) (b) (c)

Figure 6: Qualitative comparison across three different resolutions between our method and other
training-free methods. The red box indicates an enlarged view of a local region within the high-
resolution image.

As shown in Fig. 6, to clearly illustrate the differences between our method and existing baselines,
we select a representative prompt for each of the three resolution scenarios and conduct qualita-
tive comparisons against SDXL direct inference, AccDiffusion, DemoFusion, FouriScale, FreCas,
HiDiffusion, and ScaleCrafter. AccDiffusion and DemoFusion tend to produce blurry details and
lower visual quality, such as the peacock’s eyes and feathers in column b, and the bottle stoppers
in column c. FouriScale and ScaleCrafter often generate deformed or blurred objects that fail to
satisfy the prompt, such as feathers lacking peacock characteristics in column b, and a blurry bottle
body missing the velvet element specified in the prompt in column c. HiDiffusion may introduce
repetitive patterns, as seen in the duplicate heads in column b and the recurring motifs on the bottles
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in column c. FreCas can produce distorted details or fail to adhere to the prompt, such as the de-
formed and incorrect number of bottles in column c. In contrast, our method consistently achieves
superior visual quality across all resolutions. In column a, our approach generates the clearest and
most refined faces and is the only method that correctly captures the prompt’s description of the sun
and moon intertwined. In column b, our peacock is the most detailed and visually accurate, with
a color distribution and fine-grained features that closely align with the prompt’s reference to crys-
tal eyes and delicate feather-like gears. In column c, our method demonstrates the highest fidelity
in rendering the bottle stopper and floral patterns, and it uniquely preserves the white velvet back-
ground described in the prompt. These qualitative results highlight the effectiveness of our method
in generating visually consistent, detailed, and prompt-faithful images across different resolution
settings.

A.3 COMPARISON WITH THE SUPER-RESOLUTION MODEL

Ours SDXL+BSRGAN

Figure 7: Qualitative comparison between our method and SDXL+BSRGAN at a resolution of
2048× 2048.

Training-free high-resolution image generation methods primarily exploit intrinsic properties of dif-
fusion models to achieve super-resolution. Beyond the aforementioned approaches, another viable
strategy adopts a two-stage pipeline that combines diffusion models with dedicated super-resolution
models. For example, methods such as SDXL + BSRGAN first generate an image using a diffusion
model, then apply a super-resolution model to upscale it to the target resolution. To further evaluate
the differences between SDXL+BSRGAN and our method, we conduct additional qualitative com-
parisons. The experimental setup follows that described in Sec. 4.1. As shown in Fig. 7, we observe
that when images generated by SDXL exceed the domain of the original training data—such as in
cases involving distorted facial features—BSRGAN is unable to correct these artifacts, resulting in
performance degradation. Furthermore, existing two-stage approaches rely on pre-trained super-
resolution models constrained by fixed-resolution training data. In contrast, our method inherently
adapts to arbitrary resolutions without retraining. For example, as demonstrated in the 2048× 4096
resolution scene in Fig. 6, our approach remains effective, whereas BSRGAN cannot be applied.
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A.4 QUALITATIVE ABLATION STUDY

Direct Inference 
(1024x1024)

Noise Refresh 
Energy Rectification 

(2048x2048)

Noise Refresh 
Energy Rectification 

(2048x2048)

Ours 
Noise Refresh 

Energy Rectification 
(2048x2048)

Direct Inference 
Noise Refresh 

Energy Rectification 
(2048x2048)

(a) (b) (c) (d) (e)

Figure 8: Qualitative results of the ablation studies at 2048× 2048 resolution. The orange and blue
boxes indicate enlarged views of local regions within the high-resolution image. Zoom in for details.

To evaluate the effectiveness of each module in our method, we conduct qualitative experiments
(Fig. 8). All hyperparameters are set according to Sec. 4.1. Additionally, in scenarios without
energy rectification, the classifier-free guidance hyperparameter ω is fixed at 5. As shown in Fig. 8c
vs. Fig. 8e, this performance drop is due to the failure in generating correct semantic structures
caused by the absence of noise refresh. Fig. 8d and Fig. 8e highlight the critical role of energy
rectification in enhancing fine details. This confirms that noise refresh is indispensable and cannot
be replaced by naı̈ve latent resizing.

A.5 QUANTITATIVE ANALYSIS OF “PREDICTED x0”

To quantitatively validate this observation, as shown in Fig.9, we conduct additional experiments
on the generation of ptx0

using 100 random prompts sampled from LAION-5B (Schuhmann et al.,
2022), and analyze the CLIP Score (Hessel et al., 2021) and Mean Squared Error (MSE). From
Fig. 9a, we observe that after 30 denoising steps, the MSE between ptx0

and pt−1
x0

exhibits minimal
change. In Fig. 9b, we find that the CLIP score between ptx0

and the corresponding prompt increases
slowly beyond 30 denoising steps.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Timestep
0 10 20 30 40 50

A
ve

ra
ge

 C
LI

P 
Sc

or
e

34

32

30

28

26

24

22

20

0 10 20 30 40 50
Timestep

M
SE

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

MSE(      ,        ) Average_CLIP_Score(      , prompt)

(a) (b)

pt
x0pt

x0 pt−1
x0

Figure 9: The trend of the “predicted x0” at different timesteps t, denoted as ptx0
, evaluated on 100

random prompts. (a) The average MSE between ptx0
and pt−1

x0
. The x-axis represents the sampling

timestep, and the y-axis denotes the average MSE. It can be observed that after approximately 30
steps, the rate of change in ptx0

slows significantly. (b) The trend of the average CLIP Score between
ptx0

and the prompt across different timesteps. The x-axis represents the sampling timestep, and the
y-axis denotes the average CLIP Score.

A.6 THE CONNECTION BETWEEN ENERGY RECTIFICATION AND SIGNAL-TO-NOISE RATIO
(SNR) CORRECTION

In the proof presented in this section, all symbols follow the definitions provided in the Method
section of the main text. Any additional symbols not previously defined will be explicitly speci-
fied. This proof analyzes energy variation using the DDIM sampler as an example. The sampling
formulation of DDIM is given as follows:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ̃ (xt, t)√

ᾱt

)
+
√
1− ᾱt−1 · ϵ̃ (xt, t)

=

√
ᾱt−1

ᾱt
xt +

(√
1− ᾱt−1 −

√
ᾱt−1

√
1− ᾱt√

ᾱt

)
ε̃ (xt, t) .

(10)

To simplify the derivation, we assume that all quantities in the equation are scalar values. Based on
the definition of average latent energy in Eq.8 of the main text, the average latent energy during the
DDIM sampling process can be expressed as follows:

E[x2
t−1] = E

[√
ᾱt−1

ᾱt
xt

]2
+ E

[(√
1− ᾱt−1 −

√
ᾱt−1

√
1− ᾱt√

ᾱt

)
ε̃ (xt, t)

]2
+2× E

[√
ᾱt−1

ᾱt
xt

]
× E

[(√
1− ᾱt−1 −

√
ᾱt−1

√
1− ᾱt√

ᾱt

)
ε̃ (xt, t)

]
.

(11)

We assume that the predicted noise ϵ̃ follows a standard normal distribution, such that E [ϵ̃ (xt, t)] =
0. Under this assumption, the average latent energy of the DDIM sampler can be simplified as:

E[x2
t−1] = E

[√
ᾱt−1

ᾱt
xt

]2
+ E

[(√
1− ᾱt−1 −

√
ᾱt−1

√
1− ᾱt√

ᾱt

)
ε̃ (xt, t)

]2
. (12)

Several previous works (Hoogeboom et al., 2023; Zhang et al., 2024; Wu et al., 2024; Hwang et al.,
2024) define the Signal-to-Noise Ratio (SNR) at a given timestep of a diffusion model as follows:

SNRt =
ᾱt

1− ᾱt
. (13)

Several works (Hoogeboom et al., 2023; Zhang et al., 2024; Wu et al., 2024; Hwang et al., 2024)
have observed that the SNR must be adjusted during the generation process at different resolutions.
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Suppose the diffusion model is originally designed for a resolution of H×W , and we aim to extend
it to generate images at a higher resolution of H ′ ×W ′, where H ′ > H and W ′ > W . According
to the derivations in (Zhang et al., 2024; Wu et al., 2024), the adjusted formulation of αt is given as
follows:

ᾱ′
t =

ᾱt

γ − (γ − 1)ᾱt
. (14)

Here, the value of γ is typically defined as (H ′/H ·W ′/W )2. By substituting the modified ᾱ′
t into

Eq. 10, we obtain the SNR-corrected sampling formulation as follows:

E[xt−1] =

√
ᾱ′
t−1

ᾱ′
t

E[xt] +

(√
1− ᾱ′

t−1 −
√

ᾱ′
t−1

√
1− ᾱ′

t√
ᾱ′
t

)
E[ϵ̃ (xt, t)]

=

√√√√ ᾱt−1

γ−(γ−1)ᾱt−1

ᾱt

γ−(γ−1)ᾱt

E[xt] +


√
1− αt−1

γ − (γ − 1)αt−1
−

√√√√√ αt−1

γ−(γ−1)ᾱt−1

(
1− αt

γ−(γ−1)ᾱt

)
αt

γ−(γ−1)αt

E[ϵ̃ (xt, t)]

=

√
γ − (γ − 1)ᾱt

γ − (γ − 1)ᾱt−1

√
ᾱt−1

ᾱt
E[xt] +

√
γ

γ − (γ − 1)ᾱt−1

(√
1− ᾱt−1 −

√
ᾱt−1

√
1− ᾱt√

ᾱt

)
E[ε̃ (xt, t)].

(15)

The average latent energy under SNR correction can be derived as follows:

E[x2
t−1] = E

[√
ᾱ′
t−1

ᾱ′
t

xt

]2
+ E

[(√
1− ᾱ′

t−1 −
√

ᾱ′
t−1

√
1− ᾱ′

t√
ᾱ′
t

)
ϵ̃ (xt, t)

]2

=
γ − (γ − 1)ᾱt

γ − (γ − 1)ᾱt−1
E
[√

ᾱt−1

ᾱt
xt

]2
+

γ

γ − (γ − 1)ᾱt−1
E
[(√

1− ᾱt−1 −
√
ᾱt−1

√
1− ᾱt√

ᾱt

)
ϵ̃ (xt, t)

]2
.

(16)

Compared to the original energy formulation Eqa. 12, two additional coefficients appear:
γ−(γ−1)ᾱt

γ−(γ−1)ᾱt−1
and γ

γ−(γ−1)ᾱt−1
. Since ᾱt−1 and ᾱt are very close, the first coefficient is approx-

imately equal to 1. In the DDIM sampling formulation, ᾱt is within the range [0, 1], which implies
that the second coefficient falls within [1, γ]. As a result, after the SNR correction, the average
latent energy increases. Therefore, SNR correction essentially serves as a mechanism for energy en-
hancement. In this sense, both energy rectification and SNR correction aim to increase the average
latent energy. However, since our method allows for the flexible selection of hyperparameters, it can
achieve superior performance.

A.7 APPLYING RectifiedHR TO STABLE DIFFUSION 3

To validate the effectiveness of our method on a transformer-based diffusion model, we apply it
to stable-diffusion-3-medium using the diffusers library. As shown in Fig. 10, we
compare the qualitative results of our method with those of direct inference at a resolution of 2048×
2048. It can be observed that direct inference introduces grid artifacts and object deformations,
whereas our method partially mitigates and corrects these issues.
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Prompt: A wide mountain meadow filled with colorful wildflowers swaying in the 
breeze, distant hills under drifting clouds, soft golden sunlight from the side, 

photorealistic with dynamic lighting and rich detail in flora and terrain.
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Prompt: A handcrafted ceramic tea set on a linen tablecloth, teapot and cups with 
crackle glaze, steam rising from freshly poured tea, soft natural morning light, 

photorealistic with subtle textures.

Figure 10: Qualitative comparison on Stable Diffusion 3 at 2048×2048 resolution. The green boxes
indicate enlarged views of local regions within the high-resolution image.

In addition, as shown in Tab. 4, we provide additional quantitative results on SD3 (50 images,
2048×2048), and the test results mainly include CLIP-Score (Hessel et al., 2021) and DEQA-
Score (You et al., 2025).

Model:SD3 CLIP-Score↑ DEQA-score↑
Direct-Inference 0.275 3.311

RectifiedHR 0.289 3.621

Table 4: The quantitative results of SD3.

A.8 ABLATION RESULTS ON HYPERPARAMETERS

In this section, we conduct ablation experiments on the hyperparameters in Eq.7 and Eq.9 of the main
text using SDXL. The baseline hyperparameter settings follow those described in the Evaluation
Setup section of the main text. We vary one hyperparameter at a time while keeping the others fixed
at the two target resolutions to evaluate the impact of each parameter on performance, as defined in
Eq.7 and Eq.9 of the main text. The evaluation procedure for FIDc, FIDr, ISc, and ISr follows the
protocol outlined in Sec. A.11. All experiments are conducted on two NVIDIA A800 GPUs unless
otherwise specified. As a result, the performance may differ slightly from experiments conducted
using eight NVIDIA A800 GPUs.

In Eq.7 and Eq.9 of the main text, ωmin and Tmax are fixed and do not require ablation. The value
of N in both equations is kept consistent. For the 2048 × 2048 resolution scene, with N set to 2,
variations in MT and Mω do not significantly affect the results. Thus, only N , ωmax, and Tmin are
ablated. The quantitative ablation results for the 2048×2048 resolution are shown in Fig. 11, Fig. 12,
and Fig. 13. For the 4096 × 4096 resolution scene, N , ωmax, Tmin, MT , and Mω are ablated. The
corresponding quantitative ablation results for the 4096 × 4096 resolution are presented in Fig. 14,
Fig. 15, Fig. 16, Fig. 17, and Fig. 18. Based on these results, it can be concluded that the basic
numerical settings used in this experiment represent the optimal solution.

In Eq.7 and Eq.9 of the main text, ωmin and Tmax are fixed and thus excluded from ablation. The
value of N is kept consistent across both equations. For the 2048 × 2048 resolution setting, with
N set to 2, variations in MT and Mω have minimal impact on performance. Therefore, only N ,
ωmax, and Tmin are subject to ablation. The corresponding quantitative ablation results are shown in
Fig. 11, Fig. 12, and Fig. 13. For the 4096× 4096 resolution setting, we ablate N , ωmax, Tmin, MT ,
and Mω . The corresponding results are presented in Fig. 14, Fig. 15, Fig.16, Fig.17, and Fig. 18.
Based on these findings, we conclude that the default numerical settings used in our experiments
yield the optimal performance.
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2048的wmax消融

Figure 11: The image illustrates the ablation study of ωmax in Eq.9 of the main text for the 2048 ×
2048 resolution setting. The values of ωmax range over 20, 25, 30, 35, 40.

2048的N消融

Figure 12: The image illustrates the ablation study of N in Eq.7 and Eq.9 of the main text for the
2048× 2048 resolution setting. The values of N range over 2, 3, 4.

2048的T_min消融

Figure 13: The image illustrates the ablation study of Tmin in Eq.7 of the main text for the 2048 ×
2048 resolution setting. The values of Tmin range over 20, 25, 30, 35, 40.

4096的wmax消融

Figure 14: The image illustrates the ablation study of ωmax in Eq.9 of the main text for the 4096 ×
4096 resolution setting. The values of ωmax range over 30, 40, 50, 60, 70.

4096的Mcfg消融

Figure 15: The image illustrates the ablation study of Mω in Eq.9 of the main text for the 4096×4096
resolution setting. The values of Mω range over 0.5, 1, 2.

4096的M_T消融

Figure 16: The image illustrates the ablation study of MT in Eq.7 of the main text for the 4096×4096
resolution setting. The values of MT range over 0.5, 1, 2.
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4096的N消融

Figure 17: The image illustrates the ablation study of N in Eq.7 and Eq.9 of the main text for the
4096× 4096 resolution setting. The values of N range over 2, 3, 4.

4096的T_min消融

Figure 18: The image illustrates the ablation study of Tmin in Eq.7 of the main text for the 4096 ×
4096 resolution setting. The values of Tmin range over 25, 30, 35, 40, 45.

A.9 HYPERPARAMETER DETAILS AND QUANTITATIVE RESULTS FOR APPLYING RectifiedHR
TO APPLICATIONS

The combination of RectifiedHR and WAN. RectifiedHR can be directly applied to video diffusion
models such as WAN (Wang et al., 2025). The officially supported maximum resolution for WAN
1.3B is 480 × 832 over 81 frames. Our goal is to generate videos at 960 × 1664 resolution using
WAN 1.3B on an NVIDIA A800 GPU. The direct inference baseline refers to generating a 960 ×
1664 resolution video directly using WAN 1.3B. In contrast, WAN+RectifiedHR refers to using
RectifiedHR to generate the same-resolution video. The selected hyperparameters in Eq.7 and Eq.9
of the main text are: N = 2, ωmax = 10, ωmin = 5, Tmin = 30, Tmax = 50, MT = 1, and Mω = 1.
Our quantitative experimental details follow (Chen et al., 2023a) on 40 videos.

The combination of RectifiedHR and OIR. RectifiedHR can also be applied to image editing tasks.
We employ SDXL as the base model and randomly select several high-resolution images from the
OIR-Bench (Yang et al., 2023) dataset for qualitative comparison. Specifically, we compare two ap-
proaches: (1) direct single-object editing using OIR (Yang et al., 2023), and (2) OIR combined with
RectifiedHR. While the OIR baseline directly edits high-resolution images, the combined method
first downsamples the input to 1024× 1024, performs editing via the OIR pipeline, and then applies
RectifiedHR during the denoising phase to restore fine-grained image details. For the 2048 × 2048
resolution setting, the hyperparameters in Eq.7 and Eq.9 of the main text are: N = 2, ωmax = 30,
ωmin = 5, Tmin = 40, Tmax = 50, MT = 1, and Mω = 1. For the 3072×3072 resolution setting, the
hyperparameters are: N = 3, ωmax = 40, ωmin = 5, Tmin = 40, Tmax = 50, MT = 1, and Mω = 1.

The combination of RectifiedHR and DreamBooth. RectifiedHR can be directly adapted to var-
ious customization methods, where it is seamlessly integrated into DreamBooth without modifying
any of the training logic of DreamBooth (Ruiz et al., 2023a). The base model for the experiment
is SD1.4, which supports a native resolution of 512 × 512 and a target resolution of 1536 × 1536.
The hyperparameters selected in Eq.7 and Eq.9 of the main text are as follows: N is 3, ωmax is 30,
ωmin is 5, Tmin is 40, Tmax is 50, MT is 1, and Mω is 1. Furthermore, as demonstrated in Tab. 5, we
conduct a quantitative comparison between the RectifiedHR and direct inference, using the Dream-
Booth dataset for testing. The test metrics and process were fully aligned with the methodology
in (Ruiz et al., 2023a). It can be observed that RectifiedHR outperforms direct inference in terms of
quantitative metrics for high-resolution customization generation.

RectifiedHR can be directly adapted to various customization methods and is seamlessly integrated
into DreamBooth (Ruiz et al., 2023a) without modifying any part of its training logic. The base
model used in this experiment is SD1.4, which natively supports a resolution of 512 × 512, with
the target resolution set to 1536 × 1536. The selected hyperparameters in Eq.7 and Eq.9 of the
main text are as follows: N = 3, ωmax = 30, ωmin = 5, Tmin = 40, Tmax = 50, MT = 1,
and Mω = 1. Furthermore, as shown in Tab.5, we conduct a quantitative comparison between
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RectifiedHR and direct inference using the DreamBooth dataset for evaluation. The test metrics
and protocol are fully aligned with the methodology described in (Ruiz et al., 2023a). The results
demonstrate that RectifiedHR outperforms direct inference in terms of quantitative metrics for high-
resolution customization generation.

Direct Inference DINO ↑ CLIP-I ↑ CLIP-T ↑
DreamBooth + RectifiedHR 0.625 0.761 0.249

DreamBooth 0.400 0.673 0.220

Table 5: Quantitative comparison results between RectifiedHR and direct inference after Dream-
Booth training. The evaluation is conducted on a scene with a resolution of 1536× 1536.

The combination of RectifiedHR and ControlNet. Our method can be seamlessly integrated with
ControlNet (Zhang et al., 2023a) to operate directly during the inference stage, enabling image gen-
eration conditioned on various control signals while simultaneously enhancing its ability to produce
high-resolution outputs. The base model used is SDXL. The selected hyperparameters in Eq.7 and
Eq.9 of the main text are: N = 3, ωmax = 40, ωmin = 5, Tmin = 40, Tmax = 50, MT = 1, and
Mω = 1.

Figure 19: Visualization of the average latent energy curve following energy rectification.

A.10 VISUALIZATION OF THE ENERGY RECTIFICATION CURVE

To better visualize the average latent energy during the energy rectification process, we plot the
corrected energy curves. We randomly select 100 prompts from LAION-5B for the experiments.
As shown in Fig. 19, the blue line represents the energy curve at a resolution of 1024 × 1024. For
the 2048 × 2048 resolution setting, we use the following hyperparameters: Tmin = 30, Tmax = 50,
N = 2, ωmin = 5, ωmax = 30, MT = 1, and Mω = 1. The red line corresponds to our method
with energy rectification for generating 2048× 2048 resolution images, while the green line shows
the result of our method without the energy rectification module. It can be observed that energy
rectification effectively compensates for energy decay.

A.11 IMPLEMENTATION DETAILS

Although a limited number of samples may lead to lower values for metrics such as FID (Heusel
et al., 2017), we follow prior protocols and randomly select 1,000 prompts from LAION-5B (Schuh-
mann et al., 2022) for text-to-image generation. Evaluations are conducted using 50 inference steps,
empty negative prompts, and fixed random seeds.
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We employ four widely used quantitative metrics: Fréchet Inception Distance (FID) (Heusel et al.,
2017), Kernel Inception Distance (KID) (Bińkowski et al., 2018), Inception Score (IS) (Sali-
mans et al., 2016), and CLIP Score (Radford et al., 2021). FID and KID are computed using
pytorch-fid, while CLIP Score and IS are computed using torchmetrics. The subscript
r refers to resizing high-resolution images to 299 × 299 before evaluation, whereas the subscript
c indicates that 10 patches of size 1024 × 1024 are randomly cropped from each generated high-
resolution image and then resized to 299 × 299 for evaluation. Specifically, FIDr, KIDr, and ISr
require resizing images to 299 × 299. However, such an evaluation is not ideal for high-resolution
image generation. Following prior works (Du et al., 2024; Lin et al., 2025), we randomly crop 10
patches of size 1024 × 1024 from each generated high-resolution image to compute FIDs, KIDc,
and ISc.

A.12 MORE VIDEO RESULTS

Figure 20: More video results
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A.13 MORE IMAGE RESULTS

Figure 21: More image results
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A.14 USER STUDY DETAILS

Figure 22: The interface of one question in the user study

We conducted a user study to further demonstrate the effectiveness of our method. We selected
15 images in total, evenly distributed across three resolutions: 2048 × 2048, 4096 × 4096, and
2048 × 4096 (five images per resolution). 30 participants were involved in the study, where they
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were asked to evaluate the images provided and identify the best. The questionnaire is designed on
the https://www.wjx.cn/ platform. The interface of the questionnaire is shown in Fig. 22.

The baselines in this study are consistent with those in Sec. A.2, except for direct inference and
DemoFusion. Direct inference was excluded because most of its generated images exhibited severe
global distortions. The outputs of AccDiffusion and DemoFusion are highly similar under a fixed
random seed. As (Lin et al., 2025) has quantitatively demonstrated the superiority of AccDiffusion,
we retained AccDiffusion solely for conciseness in this study.

Fig. 23 shows the results of the user study. Our method (RectifiedHR) received 32.2% of the to-
tal votes, significantly exceeding the other competing methods. The second most selected method,
FreCaS, accounted for only 16.2%, which is approximately half of RectifiedHR’s proportion. The
remaining methods, including AccDiffusion (13.8%), ScaleCrafter (13.6%), HiDiffusion (12.7%),
and FouriScale (11.5%), received relatively lower proportions of the total votes. These results
demonstrate that more users are inclined to identify RectifiedHR as the best compared to existing
approaches, validating the effectiveness of our method in subjective evaluation.

Figure 23: The results of the user study
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