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Figure 1: Generated images by RectifiedHR. The training-free RectifiedHR enables diffusion models
(SDXL is shown in the figure) to synthesize images at resolutions exceeding their original training
resolution. Please zoom in for a closer view.

ABSTRACT

Diffusion models have achieved remarkable progress across various visual gen-
eration tasks. However, their performance significantly declines when generating
content at resolutions higher than those used during training. Although numerous
methods have been proposed to enable high-resolution generation, they all suffer
from inefficiency. In this paper, we propose RectifiedHR, a straightforward and
efficient solution for training-free high-resolution synthesis. Specifically, we pro-
pose a noise refresh strategy that unlocks the model’s training-free high-resolution
synthesis capability and improves efficiency. Additionally, we are the first to ob-
serve the phenomenon of energy decay, which cause image blurriness during the
high-resolution synthesis process. To address this issue, we introduce average la-
tent energy analysis and find that tuning the classifier-free guidance hyperparam-
eter can significantly improve generation performance. Our method is entirely
training-free and demonstrates efficient performance. Furthermore, we show that
RectifiedHR is compatible with various diffusion model techniques, enabling ad-
vanced features such as image editing, customized generation, and video synthe-
sis. Extensive comparisons with numerous baseline methods validate the superior
effectiveness and efficiency of RectifiedHR.

1 INTRODUCTION

Recent advances in diffusion models (Rombach et al 2022} [Podell et al., [2023; [Chen et al} [2023b}
Li et al.} [2024b} [Zhuo et al.| 2024} [Labs}, [2023}; [Esser et al., 2024} [Luo et al., 2023} Liu et al.,[2024a)
have significantly improved generation quality, enabling realistic editing (Yang et al., 2023} Miyake

et al., 2023 [Tumanyan et al., 2023; [Brooks et al.| 2023} [Bar-Tal et al., 2022; Couairon et al., 2022;
Kawar et al.| [2023; [Mokady et al.,[2023) and customized generation (Li et al} [2024a}; Bar-Tal et al.
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Figure 2: The visualization images corresponding to “predicted x(” at different time step t, abbrevi-
ated as pio. The figure visualizes the process of how pio changes with the sampling steps, where the
x-axis represents the timestep in the sampling process. The 11 images are evenly extracted from 50
steps. Early steps primarily establish global structure, while later steps refine local details; toward
the end, p’,  exhibits RGB-like characteristics.

2023}, [Tewel et all 2023}, [Gal et all, 2022} [Ruiz et al., [2023b}, Ding et all [2024). However, these

models struggle to generate images at resolutions beyond those seen during training, resulting in
noticeable performance degradation. Training directly on high-resolution content is computationally
expensive, underscoring the need for methods that enhance resolution without requiring additional
training.

Currently, the naive approach is to directly input high-resolution noise. However, this method leads
to severe repeated pattern issues. To address this problem, many training-free high-resolution gen-
eration methods have been proposed, such as (Bar-Tal et al., 2023 [Lee et al., 2023} [Du et al.| 2024;

Lin et all 2025} 2024} [He et al., [2023; Huang et al., 2025} Zhang et al., 2023b; lin et al., 2023;

Hwang et al.l 2024; |Haji-Ali et al., [2024; |Shi et al.| 2024 2024b} Kim et al., 2024; (Cao
et al., 2024} Zhang et al., [2024} |Guo et al., [2024; Wu et al., [2024). However, these methods all

share a common problem: they inevitably introduce additional computational overhead. For exam-
ple, the sliding window operations introduced by (Bar-Tal et al., 2023} [Lee et al., 2023} [Du et al.,
[2024; [Lin et all, 2025 2024; [Hwang et al.| 2024) have overlapping regions that result in redun-
dant computations. Similarly, (Shi et al., [2024} |Liu et al.} [2024D} [Lin et al., 2025)) require setting
different prompts for small local regions of each image and need to incorporate a vision-language
model. Additionally, [2024; [Cao et al.| [2024; [Zhang et al.,[2024) require multiple rounds
of SDEdit (Meng et al., 2021 or complex classifier-free guidance (CFG) to gradually increase the
resolution from a low-resolution image to a high-resolution image, thereby introducing more sam-
pling steps or complex CFG calculations. All of these methods introduce additional computational
overhead and complexity, significantly reducing the speed of high-resolution synthesis.

We propose an efficient framework, RectifiedHR, to enable high-resolution synthesis by progres-
sively increasing resolution during sampling. The simplest baseline is to progressively increase
the resolution in the latent space. However, naive resizing in latent space introduces noise and ar-
tifacts. We identify two critical issues and propose corresponding solutions: (1) Since the latent
space is obtained by transforming RGB images via a VAE, RGB-based resizing becomes invalid in
the latent space (Tab. 2} Method D). Moreover, as the latent comprises “predicted " and Gaus-
sian noise, direct resizing distorts the noise distribution. To address this, we propose noise refresh,
which independently resizes “predicted zo”—shown to exhibit RGB characteristics in late sampling
(Fig. 2)—and injects fresh noise to maintain a valid latent distribution while increasing resolution.
(2) We are the first to observe that resizing “predicted x(”: introduces spatial correlations, reducing
pixel-wise independence, causing detail loss and blur, and leading to energy decay (Fig. [3a). To
mitigate this, we propose energy rectification, which adjusts the CFG hyperparameter (Fig.% to
compensate for the energy decay and effectively eliminate blur. Compared to [2024;
et al} 2024} [Zhang et al, [2024), our method achieves high-resolution synthesis without additional
sampling steps or complex CFG calculations, ensuring computational efficiency.

In general, our main contributions are as follows: (1) We propose RectifiedHR, an efficient, training-
free framework for high-resolution synthesis that eliminates redundant computation and enables
resolution scalability without requiring additional sampling steps. (2) We introduce noise refresh
and energy rectification, pioneering the use of average latent energy analysis to address energy de-
cay—an issue previously overlooked in high-resolution synthesis. (3) Our method surpasses existing
baselines in both efficiency and quality, achieving faster inference while preserving superior fidelity.
(4) We demonstrate that RectifiedHR can be seamlessly integrated with ControlNet, supporting a
range of applications such as image editing, customized image generation, and video synthesis.
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Figure 3: (a) The x-axis denotes the timesteps of the sampling process, and the y-axis indicates the
average latent energy. The blue line shows the average latent energy of the original sampling process
when generating 1024 x 1024-resolution images. The red line corresponds to our noise refresh
sampling process, where noise refresh is applied at the 30th and 40th timesteps, and the resolution
progressively increases from 1024 x 1024 to 2048 x 2048, and subsequently to 3072 x 3072. It
can be observed that noise refresh induces a noticeable decay in average latent energy. From the
left images, it is evident that after energy rectification, image details become more pronounced. (b)
The x-axis represents the timestep, the y-axis represents the average latent energy, and w denotes
the hyperparameter for classifier-free guidance. It can be observed that the average latent energy
increases as w increases. From the right figures, one can observe how the generated images vary
with increasing w.

2 RELATED WORK

2.1 TEXT-GUIDED IMAGE GENERATION

With the scaling of models, data volume, and computational resources, text-guided image genera-
tion has witnessed unprecedented advancements, leading to the emergence of numerous diffusion
models such as LDM (Rombach et al., |2022), SDXL (Podell et al., [2023), PixArt (Chen et al.,
2023b;2025), HunyuanDiT (Li et al., 2024b), LuminaNext (Zhuo et al., 2024)), FLUX (Labs|[2023),
SD3 (Esser et al., [2024), LCM (Luo et al., 2023), and UltraPixel (Ren et al., 2024). These models
learn mappings from Gaussian noise to high-quality images through diverse training and sampling
strategies, including DDPM (Ho et al., [2020), SGM (Song et al.,[2020b), EDM (Karras et al.||2022),
DDIM (Song et al.| [2020a)), flow matching (Lipman et al., [2022), rectified flow (Liu et al., |2022),
RDM (Teng et al., [2023), and pyramidal flow (Jin et al.;, [2024). However, these methods typically
require retraining and access to high-resolution datasets to support high-resolution generation. Con-
sequently, exploring training-free approaches for high-resolution synthesis has become a key area
of interest within the vision generation community. Our method is primarily designed to enable
efficient, training-free high-resolution synthesis in a plug-and-play manner.

2.2 TRAINING-FREE HIGH-RESOLUTION IMAGE GENERATION

Due to the domain gap across different resolutions, directly applying diffusion models to high-
resolution image generation often results in pattern repetition and poor semantic structure. Multi-
Diffusion (Bar-Tal et al.| [2023)) proposes a sliding window denoising scheme for panoramic image
generation. However, this method suffers from severe pattern repetition, as it primarily focuses on
the aggregation of local information. Improved variants based on the sliding window denoising
scheme include SyncDiffusion (Lee et al., [2023)), Demofusion (Du et al.| [2024), AccDiffusion (Lin
et al., |2025), and CutDiffusion (Lin et al.l 2024). Specifically, SyncDiffusion incorporates global
information by leveraging the gradient of perceptual loss from the predicted denoised images at
each denoising step as guidance. Demofusion employs progressive upscaling, skip residuals, and di-
lated sampling mechanisms to support higher-resolution image generation. AccDiffusion introduces
patch-content-aware prompts, while CutDiffusion adopts a coarse-to-fine strategy to mitigate pattern
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Figure 4: Overview and Pseudo Code of RectifedHR. During sampling, we perform Noise Refresh at
specific steps, resizing ]‘5;0 in the RGB space, followed by Energy Rectification, where the classifier-
free guidance parameter is appropriately increased to rectify energy decay in the sampling process
and thereby recover missing image details.

repetition. Nonetheless, these approaches share complex implementation logic and encounter effi-
ciency bottlenecks due to redundant computation arising from overlapping sliding windows.

ScaleCrafter (He et al 2023)), FouriScale (Huang et al.| [2025), HiDiffusion (Zhang et al., 2023b),
and Attn-SF (Jin et al., 2023)) modify the network architecture of the diffusion model, which may

result in suboptimal performance. Furthermore, these methods perform high-resolution denoising
throughout the entire sampling process, leading to slower inference compared to our approach,
which progressively transitions from low to high resolution. Although HiDiffusion accelerates in-
ference using window attention mechanisms, our method remains faster, as demonstrated by exper-
imental results.

Upscale Guidance (Hwang et al [2024) and ElasticDiffusion (Haji-Ali et all, 2024) both propose

incorporating global and local denoising information into classifier-free guidance (Ho & Salimans
[2022). The global branch of Upscale Guidance and the overlapping window regions in the local
branch of ElasticDiffusion involve significantly higher computational complexity compared to our
progressive resolution increase strategy. ResMaster and HiPrompt
introduce multi-modal models to regenerate prompts and enrich image details; however, the
use of such multi-modal models introduces substantial overhead, leading to further efficiency issues.

DiffuseHigh (Kim et al., 2024), MegaFusion (Wu et all, [2024), FreCas (Zhang et al [2024), and
AP-LDM (Cao et al. [2024) leverage the detail enhancement capabilities of SDEdit (Meng et al.,

[2021), progressively adding details from low-resolution to high-resolution images. In contrast to
these methods, our approach neither increases sampling steps nor requires additional computations
involving classifier-free guidance (CFG) variants, resulting in greater efficiency. Moreover, we iden-
tify the issue of energy decay and show that simply adjusting the classifier-free guidance parameter
is sufficient to rectify the energy and achieve improved results.

3 METHOD

3.1 PRELIMINARIES

Diffusion models establish a mapping between Gaussian noise and images, enabling image gener-
ation by randomly sampling noise. In this paper, we assume 50 sampling steps, with the denoising
process starting at step 0 and ending at step 49. We define [, as the RGB image. During training,
the diffusion model first employs a VAE encoder E(-) to transform the RGB image into a lower-
dimensional latent representation, denoted as xy. The forward diffusion process is then defined
as:

Ty = /0o + V 1-— Q€. (1)
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Noise of varying intensity is added to x( to produce different =,, where &; is a time-dependent
scheduler parameter controlling the noise strength, and ¢ is randomly sampled Gaussian noise. The
diffusion model é(xy, t, ¢), parameterized by 0, is optimized to predict the added noise via the fol-
lowing training objective:

minEy, e [lle = €zt )13 @

where ¢ denotes the conditioning signal for generation (e.g., a text prompt in T2I tasks). During
inference, random noise is sampled in the latent space, and the diffusion model gradually transforms
this noise into an image via a denoising process. Finally, the latent representation is passed through
the decoder D(-) of the VAE to reconstruct the generated RGB image. The objective of high-
resolution synthesis is to produce images at resolutions beyond those seen during training—for
instance, resolutions exceeding 1024 x 1024 in our setting.

Classifier-free guidance for diffusion models. Classifier-free guidance (CFG) (Ho & Salimans,
2022) is currently widely adopted to enhance the quality of generated images by incorporating un-
conditional outputs at each denoising step. The formulation of classifier-free guidance is as follows:

E(we,t) = é(me, t,0) + w - [e(m, t, ¢) — é(my, t, 0)], 3)

where w is the hyperparameter of classifier-free guidance, é(x¢,t, () and é(x4, t, ¢) denote the pre-
dicted noises from the unconditional and conditional branches, respectively. We refer to €(x, t) as
the predicted noise after applying classifier-free guidance.

Sampling process for diffusion models. In this paper, we adopt the DDIM sampler (Song et al.,
2020a) as the default. The deterministic sampling formulation of DDIM is given as follows:

Ty — /1 — ay - €(xy, t
Y it
t

predicted x¢ —>péo

+4/1 —ay_1 - €(xy, t).
) e t) “

As illustrated in Eq. 4} at timestep ¢, we first predict the noise €(z;,t) using the pre-trained neural
network é(-). We then compute a “predicted x” at timestep ¢, denoted as p’, ,- Finally, x;_1 is
derived from é(x¢,t) and pﬁco using the diffusion process defined in Eq.

In this paper, we propose RectifiedHR, which consists of noise refresh and energy rectification. The
noise refresh module progressively increases the resolution during the sampling process, while the
energy rectification module enhances the visual details of the generated contents.

3.2 NOISE REFRESH

To enable high-resolution synthesis, we propose a progressive resizing strategy during sampling. A
straightforward baseline for implementing this strategy is to directly perform image-space interpola-
tion in the latent space. However, this approach presents two key issues. First, since the latent space
is obtained via VAE compression of the image, interpolation operations that work in RGB space are
ineffective in the latent space, as demonstrated by Method D in the ablation study (Table[2). Second,
because the latent space consists of pl, , and noise, directly resizing it alters the noise distribution,
potentially shifting the latent representation outside the diffusion model’s valid domain. To address
this, we visualize pro, as shown in Fig.|2| and observe that the image corresponding to pfco exhibits
RGB-like characteristics in the later stages of sampling. Therefore, we resize péo to enlarge the
latent representation. To ensure the resized latent maintains a Gaussian distribution, we inject new
Gaussian noise into p, . The method for enhancing the resolution of pf, is as follows:

P, = E(resize(D(pl,))), )

where E denotes the VAE encoder, D denotes the VAE decoder, and resize(-) refers to the operation
of enlarging the RGB image. We adopt bilinear interpolation as the default resizing method. The
procedure for re-adding noise is as follows:

Ty—1 = /A—_1Py, + /1 — Q16 (6)

where e denotes a random Gaussian noise that shares the same shape as ﬁ;o. We refer to this process
as Noise Refresh.
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As illustrated in Fig. dp, the noise refresh operation is applied at specific time points 7; during
the sampling process. To automate the selection of these timesteps 7', we propose the following
selection formula: .

T’i == L(Tmax - Tmin) * (ZT)IMT + TminJa (7)
where Ti.x and T, define the range of sampling timesteps at which noise refresh is applied. N
denotes the number of different resolutions in the denoising process, and N — 1 corresponds to the
number of noise refresh operations performed. N is a positive integer, and the range of 7 includes
all integers in [1, N). Specifically, we set T to 0 and Tpux to the total number of sampling steps.
Thin 1s treated as a hyperparameter. Since pio exhibits more prominent image features in the later
stages of sampling, as shown in Fig. 2] Tp,, is selected to fall within the later stage of the sampling
process. A quantitative analysis of the variation in p;D is provided in Supp.

3.3 ENERGY RECTIFICATION

Although noise refresh enables the diffusion model to generate high-resolution images, we observe
that introducing noise refresh during the sampling process leads to blurriness in the generated con-
tent, as illustrated in the fourth row of Fig. [§] To investigate the cause of this phenomenon, we
introduce the average latent energy formula as follows:

c H w
2 Zi:l Zj:l Zk:l x?ijk
Elzi] = CxHxW ’

where x; represents the latent variable at time ¢, and C, H, and W denote the channel, height,
and width dimensions of the latent, respectively. This definition closely resembles that of image
energy and is used to quantify the average energy per element of the latent vector. To investigate
the issue of image blurring, we conduct an average latent energy analysis on 100 random prompts.
As illustrated in Fig. we first compare the average latent energy between the noise refresh sam-
pling process and the original sampling process. We observe significant energy decay during the
noise refresh sampling process, which explains why the naive implementation produces noticeably
blurred images. Subsequently, we experimentally discover that the hyperparameter w in classifier-
free guidance influences the average latent energy. As shown in Fig. [3b] we find that increasing
the classifier-free guidance parameter w leads to a gradual increase in energy. Therefore, the issue
of energy decay—and thus image quality degradation—can be mitigated by increasing w to boost
the energy in the noise refresh sampling scheme. As demonstrated in the left image of Fig. [3a
once energy is rectified by using a larger classifier-free guidance hyperparameter w, the blurriness is
substantially reduced, and the generated image exhibits significantly improved clarity. We refer to
this process of correcting energy decay as Energy Rectification. However, we note that a larger w
is not always beneficial, as excessively high values may lead to overexposure. The goal of energy
rectification is to align the energy level with that of the original diffusion model’s denoising process,
rather than to maximize energy indiscriminately. The experiment analyzing the rectified average
latent energy curve is provided in Supp.[A.10]

®)

As shown in Fig. fip, the energy rectification operation is applied during the sampling process fol-
lowing noise refresh. To automatically select an appropriate w value for classifier-free guidance, we
propose the following selection formula:

7
N -1
where wimax and wn,, define the range of w values used in classifier-free guidance during the sam-
pling process. IN denotes the number of different resolutions in the denoising process, and N—1
corresponds to the number of noise refresh operations performed. N is a positive integer, and the
range of ¢ includes all integers in [0, N). wpmin refers to the CFG hyperparameter at the original res-
olution supported by the diffusion model. M, is a tunable hyperparameter that allows for different
strategies in selecting w;. The value of N used in Eq.[7]and Eq. 0]remains consistent throughout the
sampling process.

w; = (wmax - Wmin) * ( )]WW + Wmin, ©)]

Additionally, we establish the connection between energy rectification and SNR correction strategies
proposed in (Zhang et al., 2024; Wu et al.,, |2024; [Hoogeboom et al., 2023)), showing that SNR
correction is essentially a form of energy rectification. The proof is provided in Supp.
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Methods | FID, | |KID, }| IS, 1 |FID, | |KID, || IS. 1 |CLIP1|Time, SHIS;;T
FouriScale | 71.344 | 0.010 |15.957] 53.990 | 0.014 [20.625|31.157| 59s |11.6%
ScaleCrafter | 64.236 | 0.007 [15.952| 45.861 | 0.010 [22.252|31.803| 35s |13.6%
HiDiffusion | 63.674 | 0.007 |16.876] 41.930 | 0.008 |23.165(31.711| 18s [12.7%
CutDiffusion |59.152 | 0.007 [17.109| 38.004 | 0.008 (23.444|32.573| 53s | -

ElasticDiffusion| 56.639 | 0.010 |15.326| 37.649 | 0.014 |19.867|32.301| 150s | -
AccDiffusion | 48.143 | 0.002 |18.466| 32.747 | 0.008 |24.778|33.153| 111s |13.8%
DiffuseHigh |49.748 | 0.003 |19.537| 27.667 | 0.004 (27.876|33.436| 37s | -

FreCas 49.129 | 0.003 (20274 27.002 | 0.004 |29.843|33.700| 14s |16.2%
DemoFusion | 47.079 | 0.002 [19.533| 26.441 | 0.004 [27.843|33.748| 79s | -
Ours 48.361 | 0.002 |20.616| 25.347 | 0.003 |28.126|33.756| 13s |32.2%
FouriScale [135.111| 0.046 | 9.481 [129.895] 0.057 | 9.792 [26.891| 489s | 11.6%

ScaleCrafter |110.094 0.028 [10.098|112.105| 0.043 |11.421(27.809| 528s |13.6%
HiDiffusion |93.515 | 0.024 |11.878]120.170| 0.058 |11.272|27.853| 71s |12.7%
CutDiffusion |130.207| 0.055 | 9.334 |113.033| 0.055 [10.961|26.734| 193s | -

ElasticDiffusion|101.313| 0.056 | 9.406 |111.102| 0.089 |7.627 [27.725| 400s | -
AccDiffusion | 54.918 | 0.005 |17.444| 60.362 | 0.023 |16.370|32.438| 826s | 13.8%
DiffuseHigh | 48.861 | 0.003 [19.716| 40.267 | 0.010 |21.550(33.390| 190s | -

FreCas 49764 | 0.003 |18.656| 39.047 | 0.010 [21.700(33.237| 74s |16.2%

DemoFusion | 48.983 | 0.003 |18.225| 38.136 | 0.010 |20.786|33.311| 605s | -

Ours 48.684 | 0.003 |20.352| 35.718 | 0.009 |20.819(33.415| 37s (32.2%

2048 x 2048

4096 x 4096

Table 1: Comparison to SOTA methods at 2048 x 2048 and 4096 x 4096 resolutions. Bold numbers
indicate the best performance, while underlined numbers denote the second-best performance.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Our experiments use SDXL (Podell et al., [2023)) as the base model, which by default generates
images at a resolution of 1024 x 1024. Furthermore, our method can also be applied to Stable Dif-
fusion and transformer-based diffusion models such as WAN (Wang et al., 2025)) and SD3 (Esser
et al, [2024), as demonstrated in Fig. [5and Supp. The specific evaluation metrics and meth-
ods are provided in Supp. The comparison includes state-of-the-art training-free methods:
Demofusion (Du et al., [2024), DiffuseHigh (Kim et al., 2024)), HiDiffusion (Zhang et al., 2023b),
CutDiffusion (Lin et al.|, [2024)), ElasticDiffusion (Haji-Ali et al.,|2024)), FreCas (Zhang et al.,|2024),
FouriScale (Huang et al.| 2025), ScaleCrafter (He et al.|[2023)), and AccDiffusion (Lin et al.| [2025)).
Quantitative assessments focus on upsampling to 2048 x 2048 and 4096 x 4096 resolutions. All
baseline methods are fairly and fully reproduced. For the 2048 x 2048 resolution setting, we set
Tinin 10 40, Tihax to 50, N to 2, Wmin t0 5, wmax to 30, My to 1, and M, to 1. For the 4096 x 4096
resolution setting, we set Ty to 40, Tk to 50, N to 3, wyin 10 5, wiax to 50, M to 0.5, and M, to
0.5. All experiments are conducted using 8 NVIDIA A800 GPUs unless specified. The above hyper-
parameters are obtained through a hyperparameter search, with detailed ablation studies provided in

Supp. [A.8] More qualitative results are presented in Supp.[A.2]and Supp. [A.T3]

4.2 QUANTITATIVE RESULTS

As shown in Tab. |1} RectifiedHR consistently surpasses competing methods at both 2048 x 2048 and
4096 x 4096. At 2048 x 2048, it leads 6/8 metrics, placing second on one and third on another; at
4096 x 4096, it leads 7/8 and places third on the remaining metric. At 2048 x 2048, our KID,. ranks
third because this metric downsamples high-resolution images for evaluation, underrepresenting fine
details—a known limitation (Du et al.| 2024} [Lin et al.| |2025)). Although RectifiedHR ranks second
and third on IS, its dominance on the other metrics, together with strong computational efficiency,
demonstrates its overall effectiveness and robustness for high-resolution generation. When scaled to
4096 x 4096, RectifiedHR is roughly twice as fast as the next fastest approach. This speedup comes
from preserving the original number of sampling steps and carefully tuning the CFG hyperparameter.
In contrast, methods such as DiffuseHigh incur substantial overhead by adding extra sampling via
repeated SDEdit and FreCas within heavier CFG pipelines. Notably, RectifiedHR achieves this
speed without sacrificing quality, matching or exceeding baseline visual fidelity across resolutions,
thereby striking a favorable speed—quality balance. User study also demonstrates the advantages
of our approach. Details of the user study are presented in Supp. [A.T4] Since the images of all
resolutions were mixed together during the user study, the user study values in different resolutions
are the same.
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Noise | Energy |Resize

Methods Refresh|Rectification| Latent FID, | |KID, || IS, 1 |FID, | |KID. || IS. 1 |CLIPt
2 A X X x 98.676 [ 0.030 [13.193] 73.426 | 0.029 [17.867(30.021
S| B X v x [86.595| 0.021 |13.900| 60.625 | 0.021 |19.921(30.728
x| C v X x| 79.743 | 0.021 [13.334|76.023 | 0.035 |11.840|29.966
2l D X v v’ |78.307] 0.019 [13.221| 74.419 | 0.034 |11.883|29.523
S| Ours v v x| 48.361 | 0.002 (20.616| 25.347 | 0.003 |28.126|33.756
S A X X x |187.667| 0.088 |8.636 [111.117| 0.057 |13.383[25.447
S B X v x [175.830| 0.079 | 8.403 | 80.733 | 0.034 |15.791{26.099
x| C v X x| 85.088 | 0.026 [13.114|141.422| 0.091 |5.465 |29.548
&l D X v v 89.968 | 0.033 [11.973|145.472| 0.103 | 6.312 |28.212
<| Ours v v x | 48.684 | 0.003 (20.352| 35.718 | 0.009 |20.819|33.415

Table 2: Quantitative results of the ablation studies. Method A denotes direct inference (without
noise refresh and energy rectification), Method B excludes noise refresh, Method C excludes energy
rectification, and Method D replaces noise refresh in our method with direct latent resizing. Ours
refers to the full version of our proposed method.

4.3 ABLATION STUDY

To evaluate the effectiveness of each module in our method, we conduct both quantitative experi-
ments (Tab. [2) and qualitative experiments (Supp. [A.4). The metric computation follows the pro-
cedure described in Supp. All hyperparameters are set according to Sec. Additionally,
in scenarios without energy rectification, the classifier-free guidance hyperparameter w is fixed at
5. For simplicity, this section mainly compares the FID. metric at the 4096 x 4096 resolution.
Comparing Method B in Tab[2] with Ours, the FID, increases from 35.718 to 80.733 without noise
refresh. Comparing Method C in Tab. 2] with Ours, the FID.. rises sharply from 35.718 to 141.422
without energy rectification, demonstrating that energy decay severely degrades generation quality.
This underscores the importance of energy rectification—despite its simplicity, it yields significant
improvements. Comparing Method D in Tab. [2] with Ours, the FID, improves from 145.472 to
35.718, revealing that directly resizing the latent is ineffective. This confirms that noise refresh is
indispensable and cannot be replaced by naive latent resizing. We also conduct ablation studies on
the hyperparameters related to Eq.[7|and Eq. [9] with detailed results provided in Supp.[A.8]

5 MORE APPLICATIONS

This section highlights how RectifiedHR can enhance a variety of tasks, with a focus on demon-
strating visual improvements. The experiments cover diverse tasks, models, and sampling methods
to validate the effectiveness of our approach. While primarily evaluated on classic methods and
models, RectifiedHR can also be seamlessly integrated into more advanced techniques. Supp.
provides detailed quantitative results and corresponding hyperparameter settings.

Video Generation. RectifiedHR can be directly applied to

video diffusion models such as WAN (Wang et al. [2025). Visual | Motion | Temporal
The officially supported maximum resolution for WAN 1.3B . Quality |Quality f|Consistency 1
is 480 x 832. As shown in Fig.[5h and Tab.[3] directly generat- |jpforence| 6331 | 5191 | 6378
ing high-resolution videos with WAN may lead to generation Ours | 67.22 | 54.30 64.26

failure or prompt misalignment. However, integrating Recti- o
fiedHR enables WAN to produce high-quality, high-resolution  Table 3: Quantitative results of
videos reliably. More experimental results and details are pre- Video generation.

sented in Supp. [A.12]and Supp.[A.9]

Image Editing. RectifiedHR can be applied to image editing tasks. In this section, we use SDXL as
the base model with a default resolution of 1024 x 1024. Directly editing high-resolution images with
OIR often results in ghosting artifacts, as illustrated in rows a, b, d, and e of Fig. E]) Additionally, it
can cause shape distortions and deformations, as shown in rows ¢ and f. In contrast, the combination
of OIR and RectifiedHR effectively mitigates these issues, as demonstrated in Fig. [Sp.

Customized Generation. RectifiedHR can be directly adapted to DreamBooth using SD1.4 with a
default resolution of 512 x 512, as shown in Fig. [5t. The direct generation of high-resolution cus-



Under review as a conference paper at ICLR 2026

Prompt: A busy city street at night with moving cars.
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W

Prompt: A cat playing with a ball of yarn.

WAN
+
RectifiedHR
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+
RectifiedHR
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(a) Video Generation (Resolution: 960x1664).
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Figure 5: Applications. (a) Video Generation. (b) Image Editing. (c) Customized Generation. (d)
Controllable Generation. Contents are best viewed when zoomed in.

tomized images often leads to severe repetitive pattern artifacts. Integrating RectifiedHR effectively
addresses this problem.

Controllable Generation. RectifiedHR can be seamlessly integrated with ControlNet
[2023a)) using SDXL at a default resolution of 1024 x 1024 to enable controllable generation. As
shown in Fig. [5d, control signals may include pose, canny edges, and other modalities.

6 CONCLUSION AND FUTURE WORK

We propose an efficient and straightforward method, RectifiedHR, for high-resolution synthesis.
Specifically, we conduct an average latent energy analysis and, to the best of our knowledge, are the
first to identify the energy decay phenomenon during high-resolution synthesis. Our approach intro-
duces a novel training-free pipeline that is both simple and effective, primarily incorporating noise
refresh and energy rectification operations. Extensive comparisons demonstrate that RectifiedHR
outperforms existing methods in both effectiveness and efficiency. Nonetheless, our method has cer-
tain limitations. During the noise refresh stage, it requires both decoding and encoding operations
via the VAE, which impacts the overall runtime. In future work, we aim to investigate performing
resizing operations directly in the latent space to further improve efficiency.
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A SUPPLEMENTARY

A.1 USE OF LLMSs

We use LLMs to polish my papers, correct some grammatical errors, and make the language more
concise and fluent.
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A.2 QUALITATIVE RESULTS

Resolution: 2048x2048 Resolution: 4096x4096 Resolution: 2048x4096

Prompt: A massive stained glass mural depicting a celestial sun and Prompt: A highly detailed, antique brass clockwork automaton in the
moon infertwined, glowing as sunlight passes through, casting colorful form of @ majestic peacack, its gears and mechanisms visible as it

reflections on a polished marble floor, photorealistic with infricate Struts across a polished mahogany table, photorealistic with intricate

glass textures, rich vibrant hues, and dramatic light dispersion brass engravings, glowing crystal eyes, and delicate feather-like gears.

Prompt: An elegant glass perfume bottle with efched floral designs,
golden stopper, and refracted light, on velvet, photorealistic with
intricate reflections,

DemoFusion AccDiffusion  Direct Inference Ours

FouriScale

HiDiffusion

ScaleCrafter

(b)

Figure 6: Qualitative comparison across three different resolutions between our method and other
training-free methods. The red box indicates an enlarged view of a local region within the high-
resolution image.

As shown in Fig. [6] to clearly illustrate the differences between our method and existing baselines,
we select a representative prompt for each of the three resolution scenarios and conduct qualita-
tive comparisons against SDXL direct inference, AccDiffusion, DemoFusion, FouriScale, FreCas,
HiDiffusion, and ScaleCrafter. AccDiffusion and DemoFusion tend to produce blurry details and
lower visual quality, such as the peacock’s eyes and feathers in column b, and the bottle stoppers
in column c. FouriScale and ScaleCrafter often generate deformed or blurred objects that fail to
satisfy the prompt, such as feathers lacking peacock characteristics in column b, and a blurry bottle
body missing the velvet element specified in the prompt in column c. HiDiffusion may introduce
repetitive patterns, as seen in the duplicate heads in column b and the recurring motifs on the bottles
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in column c. FreCas can produce distorted details or fail to adhere to the prompt, such as the de-
formed and incorrect number of bottles in column c. In contrast, our method consistently achieves
superior visual quality across all resolutions. In column a, our approach generates the clearest and
most refined faces and is the only method that correctly captures the prompt’s description of the sun
and moon intertwined. In column b, our peacock is the most detailed and visually accurate, with
a color distribution and fine-grained features that closely align with the prompt’s reference to crys-
tal eyes and delicate feather-like gears. In column c, our method demonstrates the highest fidelity
in rendering the bottle stopper and floral patterns, and it uniquely preserves the white velvet back-
ground described in the prompt. These qualitative results highlight the effectiveness of our method
in generating visually consistent, detailed, and prompt-faithful images across different resolution
settings.

A.3 COMPARISON WITH THE SUPER-RESOLUTION MODEL

SDXL+BSRGAN

Figure 7: Qualitative comparison between our method and SDXL+BSRGAN at a resolution of
2048 x 2048.

Training-free high-resolution image generation methods primarily exploit intrinsic properties of dif-
fusion models to achieve super-resolution. Beyond the aforementioned approaches, another viable
strategy adopts a two-stage pipeline that combines diffusion models with dedicated super-resolution
models. For example, methods such as SDXL + BSRGAN first generate an image using a diffusion
model, then apply a super-resolution model to upscale it to the target resolution. To further evaluate
the differences between SDXL+BSRGAN and our method, we conduct additional qualitative com-
parisons. The experimental setup follows that described in Sec.[d.1} As shown in Fig.[7] we observe
that when images generated by SDXL exceed the domain of the original training data—such as in
cases involving distorted facial features—BSRGAN is unable to correct these artifacts, resulting in
performance degradation. Furthermore, existing two-stage approaches rely on pre-trained super-
resolution models constrained by fixed-resolution training data. In contrast, our method inherently
adapts to arbitrary resolutions without retraining. For example, as demonstrated in the 2048 x 4096
resolution scene in Fig.[6] our approach remains effective, whereas BSRGAN cannot be applied.
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A.4 QUALITATIVE ABLATION STUDY

Direct Inference WX v Ours
. Noise Refresh % Noise Refres Noise Refresh Noise Refreshv/
D'?fé;f:{g;i')‘ce Energy Rectification){ Energy Rectification/ Energy Rectification){ Energy Rectificationv/
(2048x2048) (2048x2048) (2048x2048) (2048x2048)

Figure 8: Qualitative results of the ablation studies at 2048 x 2048 resolution. The orange and blue
boxes indicate enlarged views of local regions within the high-resolution image. Zoom in for details.

To evaluate the effectiveness of each module in our method, we conduct qualitative experiments
(Fig. [8). All hyperparameters are set according to Sec. d.I] Additionally, in scenarios without
energy rectification, the classifier-free guidance hyperparameter w is fixed at 5. As shown in Fig.[8f
vs. Fig. [Bg, this performance drop is due to the failure in generating correct semantic structures
caused by the absence of noise refresh. Fig. [8d and Fig. Bk highlight the critical role of energy
rectification in enhancing fine details. This confirms that noise refresh is indispensable and cannot
be replaced by naive latent resizing.

A.5 QUANTITATIVE ANALYSIS OF “PREDICTED z,”

To quantitatively validate this observation, as shown in Fig[9] we conduct additional experiments
on the generation of p!, , using 100 random prompts sampled from LAION-5B
2022), and analyze the CLIP Score (Hessel et al, 2021) and Mean Squared Error (MSE). From
Fig. i, we observe that after 30 denoising steps, the MSE between p, and p’_! exhibits minimal

change. In Fig.|9b, we find that the CLIP score between ptmo and the corresponding prompt increases
slowly beyond 30 denoising steps.
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Figure 9: The trend of the “predicted x(” at different timesteps ¢, denoted as pio, evaluated on 100
random prompts. (a) The average MSE between pio and p;gl. The x-axis represents the sampling
timestep, and the y-axis denotes the average MSE. It can be observed that after approximately 30
steps, the rate of change in p‘;o slows significantly. (b) The trend of the average CLIP Score between
pfco and the prompt across different timesteps. The x-axis represents the sampling timestep, and the
y-axis denotes the average CLIP Score.

A.6 THE CONNECTION BETWEEN ENERGY RECTIFICATION AND SIGNAL-TO-NOISE RATIO
(SNR) CORRECTION

In the proof presented in this section, all symbols follow the definitions provided in the Method
section of the main text. Any additional symbols not previously defined will be explicitly speci-
fied. This proof analyzes energy variation using the DDIM sampler as an example. The sampling
formulation of DDIM is given as follows:

T — /1 — € (x4, .
Ty = 0715—1< t ﬁtﬁ( L )>+\/15ét—1'6($t,t)
t

[Q—q — Va1Vl —ap\ |
= T+ (V91— — F————— ) € (24, 1) .
(j(t t < t—1 \/67t ) ( ts )
To simplify the derivation, we assume that all quantities in the equation are scalar values. Based on

the definition of average latent energy in Eq.8 of the main text, the average latent energy during the
DDIM sampling process can be expressed as follows:

(10)

2

E[sc?-ﬁ—E{ a;j‘“} *M(mm)é(w)r (1)

Vai
+2 x E[ &;tlxt} x E Km W) é(xht)} .

We assume that the predicted noise € follows a standard normal distribution, such that E [€ (x4, t)] =
0. Under this assumption, the average latent energy of the DDIM sampler can be simplified as:

B2 | = E [ d;tlxtr +E Km W) é(:ct,t)r. (12)

Several previous works (Hoogeboom et al.| [2023; Zhang et al.| 2024} Wu et al., [2024; Hwang et al.,
2024) define the Signal-to-Noise Ratio (SNR) at a given timestep of a diffusion model as follows:

SNR; = % (13)
- Gt

Several works (Hoogeboom et al.l [2023; [Zhang et al.| [2024; [Wu et al., |2024; Hwang et al., 2024)
have observed that the SNR must be adjusted during the generation process at different resolutions.
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Suppose the diffusion model is originally designed for a resolution of H x W, and we aim to extend
it to generate images at a higher resolution of H' x W', where H' > H and W’ > W. According
to the derivations in (Zhang et al., |2024; |Wu et al.|[2024), the adjusted formulation of «; is given as
follows:

_, (o

ARy "

Here, the value of 7 is typically defined as (H'/H - W'/W)?2. By substituting the modified &, into
Eq.[I0 we obtain the SNR-corrected sampling formulation as follows:

Elzi—1] =4/ %E[azt] + (, /1—a; 4 — W) E[€ (2, )]

— Ht*l, 1— o —
L W1 J —(-Dar_s (7 w—(v—l)m) E[¢ (21, 1)] (15)

D
\/ﬁ . —( = Dy <W— mﬁ) FE e

Compared to the original energy formulation Eqa. two additional coefficients appear:

y—(y=Day and Y
== y=(y=1)ar_1
imately equal to 1. In the DDIM sampling formulation, ¢&; is within the range [0, 1], which implies
that the second coefficient falls within [1, v]. As a result, after the SNR correction, the average
latent energy increases. Therefore, SNR correction essentially serves as a mechanism for energy en-
hancement. In this sense, both energy rectification and SNR correction aim to increase the average
latent energy. However, since our method allows for the flexible selection of hyperparameters, it can
achieve superior performance.

. Since a;—; and &, are very close, the first coefficient is approx-

A.7 APPLYING RectifiedHR TO STABLE DIFFUSION 3

To validate the effectiveness of our method on a transformer-based diffusion model, we apply it
to stable-diffusion-3-medium using the diffusers library. As shown in Fig. we
compare the qualitative results of our method with those of direct inference at a resolution of 2048 x
2048. Tt can be observed that direct inference introduces grid artifacts and object deformations,
whereas our method partially mitigates and corrects these issues.
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Prompt: A handcrafted ceramic tea set on a linen fablecloth, feapot and cups with Prompt: A wide mountain meadow filled with colorful wildflowers swaying in the
crackle glaze, steam rising from freshly poured tea, soft natural morning light, breeze, distant hills under drifting clouds, soft golden sunlight from the side,
photorealistic with subtle fextures. photorealistic with dynamic lighting and rich detail in flora and terrain.

Figure 10: Qualitative comparison on Stable Diffusion 3 at 2048 x 2048 resolution. The green boxes
indicate enlarged views of local regions within the high-resolution image.

In addition, as shown in Tab. @ we provide additional quantitative results on SD3 (50 images,
2048%2048), and the test results mainly include CLIP-Score (Hessel et all, [2021) and DEQA-

Score (You et al., )2025).

Model:SD3  |CLIP-ScoreT|DEQA-score
Direct-Inference 0.275 3.311
RectifiedHR 0.289 3.621

Table 4: The quantitative results of SD3.

A.8 ABLATION RESULTS ON HYPERPARAMETERS

In this section, we conduct ablation experiments on the hyperparameters in Eq.7 and Eq.9 of the main
text using SDXL. The baseline hyperparameter settings follow those described in the Evaluation
Setup section of the main text. We vary one hyperparameter at a time while keeping the others fixed
at the two target resolutions to evaluate the impact of each parameter on performance, as defined in
Eq.7 and Eq.9 of the main text. The evaluation procedure for FID., FID,., IS., and IS,. follows the
protocol outlined in Sec.[A.T1] All experiments are conducted on two NVIDIA A800 GPUs unless
otherwise specified. As a result, the performance may differ slightly from experiments conducted
using eight NVIDIA A800 GPUs.

In Eq.7 and Eq.9 of the main text, wmin and Ti,x are fixed and do not require ablation. The value
of N in both equations is kept consistent. For the 2048 x 2048 resolution scene, with IV set to 2,
variations in M7 and M, do not significantly affect the results. Thus, only N, wpax, and Ty, are
ablated. The quantitative ablation results for the 2048 x 2048 resolution are shown in Fig.[IT] Fig.[12]
and Fig. @ For the 4096 x 4096 resolution scene, N, Wmax, Imin,» M7, and M,, are ablated. The
corresponding quantitative ablation results for the 4096 x 4096 resolution are presented in Fig.[T4]
Fig. [15] Fig.[16] Fig. and Fig. [I8] Based on these results, it can be concluded that the basic
numerical settings used in this experiment represent the optimal solution.

In Eq.7 and Eq.9 of the main text, wpi, and T}, are fixed and thus excluded from ablation. The
value of NV is kept consistent across both equations. For the 2048 x 2048 resolution setting, with
N set to 2, variations in My and M,, have minimal impact on performance. Therefore, only N,
Wmax» and Thyi, are subject to ablation. The corresponding quantitative ablation results are shown in
Fig.[T1] Fig.[12] and Fig.[I3] For the 4096 x 4096 resolution setting, we ablate N, Wmax, Tmin, M7,
and M,,. The corresponding results are presented in Fig. [T4] Fig.[T3] Fig[T6] Fig[T7] and Fig. [I§]
Based on these findings, we conclude that the default numerical settings used in our experiments
yield the optimal performance.
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Figure 11: The image illustrates the ablation study of wy,ax in Eq.9 of the main text for the 2048 x
2048 resolution setting. The values of wy,x range over 20, 25, 30, 35, 40.

N N N

Figure 12: The image illustrates the ablation study of NV in Eq.7 and Eq.9 of the main text for the
2048 x 2048 resolution setting. The values of /N range over 2, 3, 4.

Figure 13: The image illustrates the ablation study of T}, in Eq.7 of the main text for the 2048 x
2048 resolution setting. The values of T1,;, range over 20, 25, 30, 35, 40.

FID,
s,

Figure 14: The image illustrates the ablation study of wp,y in Eq.9 of the main text for the 4096 x
4096 resolution setting. The values of wn,x range over 30, 40, 50, 60, 70.
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Figure 15: The image illustrates the ablation study of M, in Eq.9 of the main text for the 4096 x 4096
resolution setting. The values of M, range over 0.5, 1, 2.
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D,
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Figure 16: The image illustrates the ablation study of M in Eq.7 of the main text for the 4096 x 4096
resolution setting. The values of Mp range over 0.5, 1, 2.
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Figure 17: The image illustrates the ablation study of NV in Eq.7 and Eq.9 of the main text for the
4096 x 4096 resolution setting. The values of N range over 2, 3, 4.

Figure 18: The image illustrates the ablation study of T}, in Eq.7 of the main text for the 4096 x
4096 resolution setting. The values of T}, range over 25, 30, 35, 40, 45.

A.9 HYPERPARAMETER DETAILS AND QUANTITATIVE RESULTS FOR APPLYING RectifiedHR
TO APPLICATIONS

The combination of Rectified HR and WAN. RectifiedHR can be directly applied to video diffusion
models such as WAN (Wang et al., 2025). The officially supported maximum resolution for WAN
1.3B is 480 x 832 over 81 frames. Our goal is to generate videos at 960 x 1664 resolution using
WAN 1.3B on an NVIDIA A800 GPU. The direct inference baseline refers to generating a 960 x
1664 resolution video directly using WAN 1.3B. In contrast, WAN+RectifiedHR refers to using
RectifiedHR to generate the same-resolution video. The selected hyperparameters in Eq.7 and Eq.9
of the main text are: N = 2, wWmax = 10, Wmin = 5, Tmin = 30, Thax = 50, Mt =1, and M, = 1.
Our quantitative experimental details follow (Chen et al.,2023a) on 40 videos.

The combination of Rectified HR and OIR. RectifiedHR can also be applied to image editing tasks.
We employ SDXL as the base model and randomly select several high-resolution images from the
OIR-Bench (Yang et al.,|2023) dataset for qualitative comparison. Specifically, we compare two ap-
proaches: (1) direct single-object editing using OIR (Yang et al.,2023)), and (2) OIR combined with
RectifiedHR. While the OIR baseline directly edits high-resolution images, the combined method
first downsamples the input to 1024 x 1024, performs editing via the OIR pipeline, and then applies
RectifiedHR during the denoising phase to restore fine-grained image details. For the 2048 x 2048
resolution setting, the hyperparameters in Eq.7 and Eq.9 of the main text are: N = 2, wpax = 30,
Wmin = 95 Tmin = 40, Thax = 50, M7 = 1, and M, = 1. For the 3072 x 3072 resolution setting, the
hyperparameters are: N = 3, wmnax = 40, Wmin = 5, Thin = 40, Thax = 50, Mp = 1,and M, = 1.

The combination of RectifiedHR and DreamBooth. RectifiedHR can be directly adapted to var-
ious customization methods, where it is seamlessly integrated into DreamBooth without modifying
any of the training logic of DreamBooth (Ruiz et al.| [2023a). The base model for the experiment
is SD1.4, which supports a native resolution of 512 x 512 and a target resolution of 1536 x 1536.
The hyperparameters selected in Eq.7 and Eq.9 of the main text are as follows: N is 3, wmax is 30,
Winin 18 5, Tinin 18 40, Tax is 50, M is 1, and M,, is 1. Furthermore, as demonstrated in Tab. [5] we
conduct a quantitative comparison between the RectifiedHR and direct inference, using the Dream-
Booth dataset for testing. The test metrics and process were fully aligned with the methodology
in (Ruiz et al.| [2023a)). It can be observed that RectifiedHR outperforms direct inference in terms of
quantitative metrics for high-resolution customization generation.

RectifiedHR can be directly adapted to various customization methods and is seamlessly integrated
into DreamBooth (Ruiz et al.| 2023a) without modifying any part of its training logic. The base
model used in this experiment is SD1.4, which natively supports a resolution of 512 x 512, with
the target resolution set to 1536 x 1536. The selected hyperparameters in Eq.7 and Eq.9 of the
main text are as follows: N = 3, wmax = 30, Wmin = 9, Tmin = 40, Thax = 50, Mt = 1,
and M,, = 1. Furthermore, as shown in Tab[5} we conduct a quantitative comparison between
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RectifiedHR and direct inference using the DreamBooth dataset for evaluation. The test metrics
and protocol are fully aligned with the methodology described in (Ruiz et al., 2023a). The results
demonstrate that RectifiedHR outperforms direct inference in terms of quantitative metrics for high-
resolution customization generation.

Direct Inference DINO 7|CLIP-I 1|CLIP-T 1
DreamBooth + RectifiedHR| 0.625 | 0.761 0.249
DreamBooth 0.400 | 0.673 0.220

Table 5: Quantitative comparison results between RectificdHR and direct inference after Dream-
Booth training. The evaluation is conducted on a scene with a resolution of 1536 x 1536.

The combination of RectifiedHR and ControlNet. Our method can be seamlessly integrated with
ControlNet (Zhang et al.||2023a) to operate directly during the inference stage, enabling image gen-
eration conditioned on various control signals while simultaneously enhancing its ability to produce
high-resolution outputs. The base model used is SDXL. The selected hyperparameters in Eq.7 and
Eq.9 of the main text are: N = 3, wmax = 40, Wmin = 5, Tmin = 40, Thax = 50, My = 1, and
M, =1.

1.0 4 —— Original Sampling process
—— w/o Energy Rectification
—— w Energy Rectification

L=
©

o
@

Average Latent Energy

e
3

0.6

T T T T T T
o] 10 20 30 40 50
Timestep

Figure 19: Visualization of the average latent energy curve following energy rectification.

A.10 VISUALIZATION OF THE ENERGY RECTIFICATION CURVE

To better visualize the average latent energy during the energy rectification process, we plot the
corrected energy curves. We randomly select 100 prompts from LAION-5B for the experiments.
As shown in Fig. the blue line represents the energy curve at a resolution of 1024 x 1024. For
the 2048 x 2048 resolution setting, we use the following hyperparameters: Tryi, = 30, Tax = 50,
N = 2, Wpin = 5, Wmax = 30, M7 = 1, and M,, = 1. The red line corresponds to our method
with energy rectification for generating 2048 x 2048 resolution images, while the green line shows
the result of our method without the energy rectification module. It can be observed that energy
rectification effectively compensates for energy decay.

A.11 IMPLEMENTATION DETAILS

Although a limited number of samples may lead to lower values for metrics such as FID (Heusel
et al.,2017)), we follow prior protocols and randomly select 1,000 prompts from LAION-5B (Schuh-
mann et al.} 2022)) for text-to-image generation. Evaluations are conducted using 50 inference steps,
empty negative prompts, and fixed random seeds.
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We employ four widely used quantitative metrics: Fréchet Inception Distance (FID)
2017), Kernel Inception Distance (KID) (Bifikowski et all, 2018), Inception Score (IS)
mans et al) 2016), and CLIP Score (Radford et al) 2021). FID and KID are computed using
pytorch-fid, while CLIP Score and IS are computed using torchmetrics. The subscript
r refers to resizing high-resolution images to 299 x 299 before evaluation, whereas the subscript
c indicates that 10 patches of size 1024 x 1024 are randomly cropped from each generated high-
resolution image and then resized to 299 x 299 for evaluation. Specifically, FID,., KID,., and IS,
require resizing images to 299 x 299. However, such an evaluation is not ideal for high-resolution
image generation. Following prior works (Du et al., 2024} [Lin et al 2025)), we randomly crop 10
patches of size 1024 x 1024 from each generated high-resolution image to compute FID,, KID,,
and IS...

A.12 MORE VIDEO RESULTS

Prompt: A pig

RectifiedHR

ﬂ-"-"-"*-"*-"'*-'*-’“’-‘*

Prompt: A squirrel

Prom 'r: sh'rhermg snal
Prompt: Hailstones pelt an abandoned car in a barren fleld

Promif A dulaindafed carousel sims slowli cr'eakmi in the summer heat

WAN +

WAN +
RectifiedHR

moves through Thz lush green gr'ass

RectifiedHR

WAN +

WAN +
RectifiedHR

WAN

WAN +
RectifiedHR

Figure 20: More video results
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A.13 MORE IMAGE RESULTS

Hidiffusion FreCaS FoursiScale Demofusion AccDiffusion  Direct Inference Ours

ScaleCrafter

Resolution: 2048x2048

Prompt: A holographic data chip, translucent with glowing internal
circuits and futuristic glyphs floating around it, displayed on a smooth,
reflective dark surface, photorealistic with sharp details and intricate
light effects.

Resolution: 4096x4096 Resolution: 2048x4096
Prompt: A ceremonial obsidian dagger with a jagged black blade and a Prompt: A small red Lego man standing proudly on a giant, moss-
carved bone handle, displayed on red silk, photorealistic with sharp covered rock in a forest.

edges and fine surface reflections.

Figure 21: More image results
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A.14 USER STUDY DETAILS

#1. Note: This questionnaire may take about 10 minutes.

We generated six high—resolution images (2048 x 2048) using different Al techniques,
all based on the same prompt: “An opulent crystal chandelier with hundreds of
sparkling glass prisms reflecting warm candlelight, suspended in a grand ballroom with
ornate golden ceiling details, photorealistic with intricate refractions and glowing
highlights. ”

Please choose the image that you think is the best overall. When making your choice,
you can consider the following aspects:

Prompt adherence: How well the image matches the description in the prompt

Detail and clarity: The richness of textures and whether the image quality is clear.
Consistency: Whether shapes, perspective, and lighting are coherent

Overall aesthetics: Color harmony, composition, and visual appeal

For each image, we have also highlighted some detail regions for your reference.
However, please remember not to focus solely on the highlighted areas.

Figure 22: The interface of one question in the user study

We conducted a user study to further demonstrate the effectiveness of our method. We selected
15 images in total, evenly distributed across three resolutions: 2048 x 2048, 4096 x 4096, and
2048 x 4096 (five images per resolution). 30 participants were involved in the study, where they
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were asked to evaluate the images provided and identify the best. The questionnaire is designed on
the https://www.wjx.cn/ platform. The interface of the questionnaire is shown in Fig.[22]

The baselines in this study are consistent with those in Sec. except for direct inference and
DemoFusion. Direct inference was excluded because most of its generated images exhibited severe
global distortions. The outputs of AccDiffusion and DemoFusion are highly similar under a fixed
random seed. As 2025) has quantitatively demonstrated the superiority of AccDiffusion,
we retained AccDiffusion solely for conciseness in this study.

Fig. |2§| shows the results of the user study. Our method (RectifiedHR) received 32.2% of the to-
tal votes, significantly exceeding the other competing methods. The second most selected method,
FreCaS, accounted for only 16.2%, which is approximately half of RectifiedHR’s proportion. The
remaining methods, including AccDiffusion (13.8%), ScaleCrafter (13.6%), HiDiffusion (12.7%),
and FouriScale (11.5%), received relatively lower proportions of the total votes. These results
demonstrate that more users are inclined to identify RectifiedHR as the best compared to existing
approaches, validating the effectiveness of our method in subjective evaluation.

RectifiedHR
FreCaS
AccDiffusion
ScaleCrafter
HiDiffusion
FouriScale

13.6%

Figure 23: The results of the user study
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