
PabLO: Improving Semi-Supervised Learning with
Pseudolabeling Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract
Modern semi-supervised learning (SSL) methods frequently rely on pseudolabeling1

and consistency regularization. The main technical challenge in pseudolabeling2

is identifying the points that can reliably be labeled. To address this challenge3

we propose a framework to learn confidence functions and thresholds explicitly4

aligned with the SSL task, obviating the need for manual designs. Our approach5

formulates an optimization problem over a flexible space of confidence functions6

and thresholds, allowing us to obtain optimal scoring functions—while remaining7

compatible with the most popular and performant SSL techniques today. Extensive8

empirical evaluation of our method shows up to 11% improvement in test accuracy9

over the standard baselines while requiring substantially fewer training iterations.10

1 Introduction11

Obtaining high-quality labeled data is a major bottleneck in machine learning. The semi-supervised12

learning (SSL) paradigm tackles this problem by training models on a small amount of labeled data and13

a large quantity of unlabeled data [7, 57, 47]. Modern SSL methods frequently rely on a pair of ideas:14

pseudolabeling [29, 2, 40, 27, 39] and consistency regularization [26, 4, 41, 11, 22]. SSL techniques15

marrying these ideas have delivered strong performance on a number of benchmark datasets. The16

main challenge with pseudolabeling is balancing accurate point selection with efficient model training.17

A promising solution is a framework that learns confidence functions and thresholds explicitly aligned18

with the SSL task, eliminating the need for manual experimentation. Inspired by threshold-based19

auto-labeling (TBAL) [50], a data development technique, we propose a framework that adapts TBAL20

principles to learn confidence functions and thresholds specifically for pseudolabeling-based SSL.21

Our approach involves two aspects. First, we formulate an optimization problem over a flexible space22

of confidence functions and thresholds to optimize the quantity/quality tradeoff in pseudolabeling.23

The space we optimize over is broad enough to subsume many existing manually-designed approaches.24

That is, we learn confidence functions and thresholds. Second, we develop strategies to make the25

framework compatible with SSL approaches. Experimentally, we couple our framework to some of26

the most prominent SSL techniques in use today, including Fixmatch [45] and Freematch [52]. We27

observed accuracy lifts of up to 11%, 6%, and 3% on popular benchmarks like SVHN, CIFAR-10,28

and CIFAR-100 respectively, along with substantial improvements in convergence speed.29

2 Background and Problem Setup30

Notation. Consider a feature space X and label space Y = {1, . . . , k} in a k-class classification31

task. As usual in semi-supervised learning, we have access to a set Xu = {xu}nu
u=1 of unlabeled32

data drawn from the distribution Px over X . We also have access to Dl = {(xl, yl)}Nl

l=1, a set of33

labeled data points drawn from the joint distribution Pxy, with nl ≪ Nu. Let h : X → Y denote a34

model and g : X → T k ⊆ Rk be an associated confidence function giving a score g(x) indicating35

the confidence of h on its prediction for any data point x. For any x the hard label prediction is36
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ŷ := h(x). When the prediction ŷ is used as a pseudolabel we denote it as ỹ. In general, for a vector37

v ∈ Rd, v[i] denotes its i−th component. The vector t denotes thresholds over the scores k-classes,38

and t[y] is its y−th entry, i.e., the score for class y.39

2.1 Pseudolabeling-based Semi-Supervised Learning40

Given a large collection of unlabeled data Xu and a small set of labeled points Dl, inductive semi-41

supervised learning (SSL) seeks to learn a classifier ĥssl from the model class H. The promise of42

SSL is that by effectively using Xu in the learning process it can learn a better classifier than its43

supervised counterpart, which learns only from Dl.44

In many recent pseudolabeling-based SSL techniques, in each iteration of training, a batch of labeled45

and unlabeled data is obtained, then the sum of the losses L̂ = L̂s + λuL̂u + λrL̂r is minimized46

w.r.t to the model h. Here L̂s is the supervised loss, L̂u unsupervised loss, and L̂r is (the sum of)47

regularization term(s). The constants λu, λr are hyperparameters controlling the relative importance48

of the corresponding terms.49

Supervised loss. Given a batch of labeled data Db
l the supervised loss is computed as follows,50

L̂s(h|Db
l ) =

1
|Db

l |
∑

(x,y)∈Db
l
H(y, h,x). Here H(y, h,x) is the standard cross-entropy loss between51

the 1-hot representation of y and the softmax output of h on input x.52

Unsupervised loss and consistency regularization. For the unlabeled batch Xb
u, pseudolabels53

ỹ = h(x) are computed for each x ∈ Xb
u. Then, a pseudlabeling mask S(x, g, t | h) = 1(g(x)[ỹ] ≥54

t[ỹ]), is 1 for points having confidence score bigger than predetermined threshold corresponding55

to the predicted class. Recent methods, couple this loss and consistency regularization together56

by doing pseudolabeling on weakly augmented data using weak transform ω and then defining the57

cross-entropy loss on the strongly augmented data using strong transformation Ω. The loss is58

L̂u(h | g, t, D̃b
u) =

1

|D̃b
u|

∑
(x,ỹ)∈D̃b

u

S(ω(x), g, t|h) ·H(ỹ, h,Ω(x)).

2.2 Problem Statement59

The success of pseudolabeling-based SSL hinges heavily on maximizing the quality and quantity of60

the pseudolabels. These are defined as follows:61

Pseudolabeling coverage (quantity). Given a set of points X , the pseudolabeling coverage is the62

fraction of points that were pseudolabeled using h, g and t. This measurement captures the quantity63

of pseudolabels and is defined as64

P̂(g, t | h,X) :=
1

|X|
∑

(x)∈X

S(x, g, t | h) , P(g, t|h) := Ex[S(x, g, t | h)]. (1)

Pseudolabeling error (quality). This is the fraction of pseudolabeled points that received wrong65

labels. This metric captures the quality of pseudolabels:66

Ê(g, t | h,D) :=

∑
(x,y,ỹ)∈D S(x, g, t | h) · 1(h(x) ̸= y)∑

(x,y,ỹ)∈D S(x, g, t | h) , (2)

E(g, t | h) = Ex[S(x, g, t | h) · 1(h(x) ̸= y)]

P(g, t|h) . (3)

Goal. We want to learn a classifier ĥssl that generalizes well on the unseen data.67

3 Methodology68

Our approach integrates learnable confidence functions and thresholds into existing pseudolabeling-69

based SSL pipelines. To do so, we build on a recently-developed technique [50] to improve the70

performance of threshold-based auto-labeling (TBAL) [43, 49, 38] systems. In order to make such an71

approach compatible with SSL, we apply a simple notion—accumulating pseudolabels—that may72

also be useful for other methods.73
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3.1 Pseudolabeling Optimization Framework74

The fundamental problem in pseudolabeling is, given a classifier ĥi, to correctly identify the points in75

the pool of unlabeled data Xu where the predictions of ĥi are correct. Since the classifier is frequently76

undertrained during the SSL process, it may not have high accuracy. That is, it might only be accurate77

in some small part of the feature space, which we hope to identify via the confidence scores and78

appropriate thresholds. As discussed earlier, existing solutions [27, 45, 52] use maximum softmax79

probability (MSP) from the model ĥi in concert with heuristics for thresholds that are either fixed80

or vary dynamically based on the learning status of the model. Some recent works have observed81

that MSP scores tend to be miscalibrated and proposed solutions to obtain more calibrated scores82

[30, 28], which also led to performance gains.83

Theoretical Framework. We propose to express the objective of pseudolabeling as an optimization84

problem over the space of confidence functions and thresholds. The objective is to maximize the85

quantity i.e. the pseudolabeling coverage (eq. (1)) while keeping the pseudolabeling error low (eq.86

(3)) i.e. have high quality. More specifically, one approach to formalizing this optimization problem87

is to seek to maximize the pseudolabeling coverage while ensuring pseudolabeling error is at most88

ϵ ∈ (0, 1), for some hyperparameter ϵ. In other words, given the classifier ĥi in any iteration i of89

SSL, then,90

g⋆i , t
∗
i ∈ argmax

g∈G,t∈Tk

P(g, t|ĥi) s.t. E(g, t|ĥi) ≤ ϵ,

are the optimal confidence functions and thresholds for pseudolabeling using ĥi’s predictions. The91

quality of the pseudolabels can be controlled using ϵ. This follows the recipe for TBAL [50], with92

one additional complication: for SSL, it is not clear what value of ϵ is suitable, while in TBAL ϵ is a93

system-level constant provided as input.94

The most attractive property of this framework is that, irrespective of the choice of ϵ, it provides95

the scores and threshold that yield maximum pseudolabeling coverage at that error level, freeing96

us from making arbitrary choices of confidence scores, calibration techniques, and thresholding97

heuristics. Instead, we solve the optimization problem over a flexible enough space will subsume98

specific strategies. We defer the discussion of making the framework practical into Appendix B.99

3.2 Threshold Estimation100

While we can obtain both the confidence scores and thresholds by solving (P1), we propose to101

adapt the threshold estimation procedure from [50] as it avoids potential generalization issues due102

to learning them simultaneously from the same data Dcal and ensures stricter control over the103

pseudolabeling errors. It is also decoupled from any particular choice of scoring function, hence it104

can replace the thresholding procedure in the existing SSL pipelines as well.105

Our procedure is simple. It takes in a confidence function g̃i and another part of the held-out106

validation data referred to as Dth. It estimates thresholds for each class separately and estimates107

the pseudolabeling errors Ê(g̃i, t | h,Dth, ỹ) on the super level sets of g̃i. Here we slightly abuse108

notation: instead of t ∈ T k, we use t ∈ T , to indicate the estimate of pseudolabeling error at109

threshold t for class y. To obtain a threshold t̃[y] for class y, the procedure finds the smallest t ∈ T110

such that Ê(g̃i, t | h,Dth, ỹ) + C1σ̂(Ê) ≤ ϵ. Here C1 is a constant and σ̂(z) =
√

z · (1− z) and Ê111

is used for brevity in place of Ê(g̃i, t | h,Dth, ỹ). Using the thresholds found using this procedure112

ensures pseudolabeling error remains below (or close to) the a tolerance level ϵ. We refer to our113

method as PabLO . A more formal listing of the steps is detailed in Algorithm 1, deferred to Appendix114

B due to space constraints.115

4 Experiments116

We evaluate our method empirically to verify the following claims: C1. Our method produces models117

with improved test accuracy while taking fewer iterations. C2. In certain cases, we may wish to118

produce a high-quality dataset using pseudolabeling (rather than a single high-quality model). For119

such scenarios, PabLO achieves much higher dataset coverage and accuracy. Additionally, we conduct120

ablation studies, deferred to the Appendix C.121

4.1 Experimental Setup122

Methods. We use two simple base methods capturing the core ideas of pseudolabeling (PL) and123

consistency regularization (CR). The first is Fixmatch [45] which uses fixed thresholds on MSP scores124
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Table 1: Top-1 Accuracy for CIFAR-10, CIFAR-100 and SVHN averaged across 3 random seeds. The best
accuracy is bolded

Dataset CIFAR-10 CIFAR-100 SVHN

# Labels 250 2500 250

Fixmatch 88.15 ± 1.27 50.07 ± 1.12 96.54 ± 0.05
Fixmatch + MR 87.85 ± 1.10 44.75 ± 1.36 96.58 ± 0.04
Fixmatch + BaM 86.44 ± 1.47 44.58 ± 0.41 95.99 ± 0.06
Fixmatch + Ours 93.03 ± 0.44 53.17 ± 1.27 96.61 ± 0.16
Freematch 90.17 ± 0.13 57.21 ± 0.78 85.25 ± 1.70
Freematch + MR 90.17 ± 0.45 57.23 ± 1.18 84.65 ± 1.03
Freematch + BaM 88.34 ± 0.99 51.98 ± 1.74 86.28 ± 1.75
Freematch + Ours 93.08 ± 0.05 60.96 ± 0.53 96.48 ± 0.33

for PL along with CR. Freematch [52] improves upon it by using adaptive, class-wise thresholds125

and class fairness regularization (CFR) along with CR, and is a promising method among others126

using dynamic thresholds for PL. We include their combinations with recently proposed Bayesian127

Model Averaging (BAM) [28] and Margin Regularization (MR)1 [30] to improve calibration in SSL.128

We replace the pseudolabeling component by our method PabLO to obtain Fixmatch + Ours (a129

combination of PabLO and CR) and Freematch + Ours (a combination of PabLO , CR, and CFR).130

Datasets. We experiment with 3 datasets: CIFAR-10 [21], CIFAR-100 [21] and SVHN [32]. More131

details are summarized in Table 2 in Appendix C. We use a portion of the validation data (Nval) for132

our method, split into Ncal, used to calibrate the function g, and Nth, used to estimate the threshold.133

Models and Training. The backbone encoder is a Wide ResNet-28-2 for all the datasets. We134

use the default hyperparameters and dataset-specific settings (learning rates, batch size, optimizers135

and schedulers) following previous baseline recommendations [51]. We run till 25K iterations—in136

contrast to the extremely large number of iterations (220) in prior works—which may be unrealistic137

in practice due to resource constraints. For confidence functions class G, we use a class of 2-layer138

neural nets and provide its last two layers representations from h as input, as in [49]. We use ϵ = 5%139

across all settings. More experimental details are deferred to Appendix C.140

4.2 Results and Discussion141

C1. Test accuracy improvements. Our method maximizes pseudolabeling coverage and accuracy,142

producing more accurate pseudolabels. As Table 1 shows, integrating our method into Fixmatch and143

Freematch significantly improves test accuracy on CIFAR-10, CIFAR-100, and SVHN. Notably, we144

see a 6% improvement on CIFAR-10 with Fixmatch, a 3% improvement on the harder CIFAR-100145

with Fixmatch, and an 11% improvement on SVHN with Freematch.146

C2. Improved pseudolabeling coverage and accuracy. As our method is designed to maximize147

coverage and accuracy of pseudolabels, we expect high pseudolabeling accuracy and coverage from148

the beginning. To test this, we log the pseudolabeling coverage and accuracy in each iteration on the149

batch of unlabeled data used in that iteration. We refer to these as batch pseudolabeling coverage150

(batch-pl-cov) and batch pseudolabeling accuracy (batch-pl-acc). We show these for CIFAR-10 and151

CIFAR-100 settings in Figure 1 and 2 in the Appendix. As expected, the batch-pl-acc is high right152

from the beginning and it is close to the desired level of 95% (with ϵ = 5%) throughout for CIFAR-10.153

However, for CIFAR-100 possibly due to high class cardinality it drops to around 70%, This is similar154

to the baselines but yields much higher coverage. Similar results hold for SVHN (Figure 3).155

5 Conclusion156

We built a framework, inspired by ideas from autolabeling, that learns confidence functions and157

thresholds explicitly aligned with the SSL task. This approach eliminates the need for manual158

designs and hand-crafted notions of confidence, which can be limited in specialized data settings. By159

formulating an optimization problem over a flexible space of confidence functions and thresholds,160

we characterized optimal scoring functions. We derived our practical method to learn the scores and161

evaluated it empirically, where it achieved up to 11% improvement in test accuracy over standard162

baselines, while also reducing training iterations.163

1We assign this name for convenience.
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Supplementary Material303

We discuss related works in Appendix A formal algorithm in Appendix B. Additional experimental304

results and details are in Appendix C.305

A Related Work306

Semi-supervised learning (SSL). There is a rich literature on SSL spanning multiple decades307

[57, 7, 44, 36]. This literature comprises of a wide variety of approaches. Among these significant308

focus has been placed on self-training (also called pseudolabeling) [42, 6, 40, 27, 37, 2], generative309

models [34, 1, 20], graph-based strategies [5, 35, 46], and transductive approaches [48, 17]. Due to310

their simplicity, pseudolabeling-based approaches have gained prominence and are widely used in311

application areas such as NLP [19], speech recognition [18], and protein prediction [10]. Our paper312

focuses on recent variants of this, discussed next.313

Pseudolabeling based SSL. These methods generate artificial labels for unlabeled data and use them314

for training the model. A crucial challenge here is the issue of confirmation bias [3] i.e., when a model315

starts to reinforce its own mistakes. To overcome this and to maintain high quality of pseudolabels,316

confidence-based thresholding is applied. Here only the unlabeled data where confidence is higher317

than a particular threshold is used [45]. Due to the limitations of fixed thresholds, adaptive thresholds318

based on the classifier’s learning status have been introduced to improve performance [54, 56, 52].319

Nearly all of these methods also use some form of consistency regularization [26, 4, 41, 11, 22]320

where the core idea is that the model should produce similar prediction when presented with different321

versions (perturbations) of inputs and all the present SSL methods [53, 52, 45, 56, 8, 54].322

Confidence functions and calibration. Miscalibration (overconfidence) in neural networks plagues323

various applications [33, 15, 13], including SSL. To mitigate this in general, a range of solutions324

have been proposed, including training-time methods [31, 25, 16, 9, 12] and post-hoc methods325

[13, 24, 14, 23, 55]. In pseudolabeling based SSL, recent works [39, 28, 30] noted the issue of326

miscalibration. To promote calibration, (author?) [28] use Bayesian neural nets by replacing the327

model’s final layer with a Bayesian layer. (author?) [39] improve pseudolabeling with negative labels328

and an uncertainty-aware pseudolabel selection technique. (author?) [30] incorporate a regularizer329

in pseudolabeling to encourage calibration.330

While calibration is generally desirable, it may not be enough to solve the overconfidence issue331

in SSL and other applications. Pseudolabeling requires scores that effectively distinguish correct332

from incorrect predictions, aligning with the ordinal ranking criterion [15, 31, 12, 9]. Instead of333

trial-and-error with various options, we propose a flexible framework that learns confidence functions334

directly optimized for pseudolabeling objectives. This builds upon principles used in threshold-based335

auto-labeling (TBAL) [50], a technique for creating labeled datasets.336

B Appendix to the Method Section337

Practical Version. The optimization problem discussed earlier involves population-level quantities338

which are usually not accessible in practice. Thus we have to fall back to using their finite sample339

estimates and smooth variations to make the optimization problem tractable. We adapt the steps from340

[50] to obtain such a practical version of the optimization problem. There, the authors first estimate341

the coverage and error using a small amount held-out labeled data (called calibration data Dcal)342

curated from the validation data. They then introduce differentiable surrogates for the 0-1 variables.343

Let σ(α, z) := 1/(1 + exp(−αz)) denote the sigmoid function on R with scale parameter α ∈ R.344

The surrogates are as follows,345

P̃(g, t|h,Dcal) :=
1

|Dcal|
∑

(x,y,ỹ)∈Dcal

σ
(
α, g(x)[ỹ]− t[ỹ]

)
, (4)

Ẽ(g, t | h,Dcal) :=

∑
(x,y,ỹ)∈Dcal

1
(
y ̸= ỹ

)
σ
(
α, g(x)[ỹ]− t[ỹ]

)∑
(x,y,ỹ)∈Dcal

σ
(
α, g(x)[ỹ]− t[ỹ]

) . (5)

Using these surrogates the following practical optimization problem is obtained. It is also converted346

into unconstrained formulation by introducing the penalty term λ ∈ R+ controlling the relative347
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Algorithm 1 Pseudolabeling Based SSL with PabLO

Input: Labeled data for training Dl, Validation data Dval, unlabeled pool Xu, error tolerance ϵ,
use-accumulation flag, num_iters, batch size B, replication factor µ, weak ω and strong Ω
augmentations.

Output: ĥssl, model with the best validation accuracy.
1: Ỹ ← [0]× nu, S ← [0]× nu, i← 1.
2: Dcal, Dth ← draw_randomly(Dval, Ncal, Nth)
3: while i ≤ num_iters do
4: Db

l , X
b
u, I

b
u ← draw_random_batch(µDl, µXu, B)

5: Xb
u,w, X

b
u,s ← ω(Xb

u), Ω(X
b
u)

6: if use-PabLO then
7: if i%F = 0 then
8: ĝi ← solve_opt_problem_P1(ĥi, Dcal)

9: t̂i ← estimate_thresholds(ĥi, ĝi, Dth)

10: Ỹ f ← ĥi(ω(Xu)), Sf ← 1(ĝi(ω(Xu)) ≥ t̂)
11: if use-accumulation then
12: Ỹ , S ← Sf Ỹ f + (1− Sf )Ỹ ; S ← S ∨ Sf

13: else
14: Ỹ , S ← Ỹ f , Sf

15: end if
16: end if
17: Ỹ b, Sb ← Ỹ [Ibu], S[Ibu]
18: else
19: Ỹ b, Sb ← baseline_pseudo_labeling(ĥi, X

b
u,w)

20: if use-accumulation then
21: for j ∈ Ibu do
22: Ỹ [j]← Sb[j]Ỹ b[j] + (1− Sb[j])Ỹ [j]
23: S[j]← S[j] ∨ Sb[j]
24: end for
25: end if
26: end if
27: L̂s(ĥi)← supervised_loss(h,Db

l )

28: L̂u(ĥi)← unsupervised_loss(h,Xb
u,wX

b
u,s, Ỹ

b, Sb)

29: L̂r(ĥi)← baseline_regularizers()
30: L̂(ĥi)← L̂s(ĥi) + λuL̂u(ĥi) + λrL̂r(ĥi)

31: ĥi+1 ← SGD_update(L̂(ĥi)); i← i+ 1
32: if i%eval_freq = 0 then
33: eval_acc← evaluate_model(ĥi, Dval)

34: If eval_acc is best so far then ĥssl = ĥi.
35: end if
36: end while

importance of the pseudolabeling error and coverage.348

ĝi, t̂i ∈ argmin
g∈G,t∈Tk

−P̃(g, t | ĥi, Dcal) + λ Ẽ(g, t | ĥi, Dcal) (P1)

We use 2-layer neural nets as a choice of G. The optimization problem (P1) is nonconvex, but349

differentiable and we solve it using Stochastic Gradient Descent (SGD). See Appendix C for more350

details on our choice of G and training details and hyperparameters.351

The full algorithm we use is:352
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Table 2: Details of the dataset we use in experiments. k is the no. of classes. Nl is the no. of labeled data
points used for training the backbone model h. Nu is the no. of unlabelled data points used for consistency
regularization and pseudolabeling for all the methods. Nval is the no. of points used for model selection in all
methods. Ntest is the no. of test data points. Ncal is the number of points used for learning the g function. Nth

is the no. of points used for threshold estimation.

Dataset Backbone Model h k Nu Nval Ntest Nl Ncal Nth Augmentation

CIFAR-10 WRN-28-2 10 50K 6K 4K 250 1K 1K Weak, Strong
CIFAR-100 WRN-28-2 100 50K 6K 4K 2500 3K 3K Weak, Strong

SVHN WRN-28-2 10 604,388 15,620 10,412 250 3K 3K Weak, Strong

Figure 1: Left to Right: Top-1 accuracy, Batched pseudolabeling accuracy and Batched pseudolabel-
ing coverage of our method and baselines on CIFAR-10. We plot the values for every 200 steps.

C Additional Experiments and Details353

Compute. For all our experiments, we used an NVIDIA RTX A6000 which has 48GB of VRAM354

and an NVIDIA RTX 4090 with 24GB of VRAM. The runtime depends on several factors including355

CPU I/O and GPU load, but on average, the baselines took around 8 hours, while our method took356

around 15 hours for 25K iterations.357

Hyperparameters. For the baselines, we have used their default settings. To maintain consistency358

and experiment the efficiency of method, we used WRN-28-2 which is 1.4M parameter model for all359

the datasets. We summarize the main hyperparameters we have used in our method in Table 3.360

C.1 Ablation Studies361

We perform ablations that give insights into the role of various parts of it. We run all the ablation362

experiments on the CIFAR-10 data setting.363

Table 3: Hyperparameters used for our method.
Method Hyperparameter Values

Learning g function

optimizer SGD
learning rate 0.01
batch size 64
max epoch 500
weight decay 0.01
momentum 0.9

Estimating t

optimizer SGD
learning rate 0.01
batch size 64
max epoch 500
weight decay 0.01
momentum 0.9

10



Figure 2: Left to Right: Top-1 accuracy, Batched pseudolabeling accuracy and Batched pseudolabel-
ing coverage of our method and baselines on CIFAR-100. We plot the values for every 200 steps.

Figure 3: Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and batched pseudolabel-
ing coverage of our method and various baselines on SVHN. We plots the values for every 200 steps.

A1. Is pseudolabel accumulation helpful? Accumulation allows the methods to use old pseudolabel364

for points that couldn’t get pseudolabeled in the current iteration. Thus we expect accumulation365

could help in improving the utilization of unlabeled data and could lead to better test accuracy in366

cases where the pseudolabel quality is assured to be high in all iterations. We run two variations367

of our method and baselines — with accumulation and without it and report the results in Table 4.368

We observe that our method has similar test accuracy irrespective of accumulation. However, with369

accumulation it achieves better coverage in early iterations as observed in Figure 6. These results are370

not surprising, since our method ensures high quality of pseudolabels while maximizing coverage,371

it is able to eventually catch up with the version using accumulation, leading to similar final test372

accuracies. On the other hand, having accumulation hurts the performance of baseline models. This373

might be because the pseudo labels generated by the baseline models are not accurate especially374

in the earlier iterations, thus degrading the overall performance. Overall, we believe accumulation375

is going to be helpful when we have pseudolabels with high accuracy. The plots for coverage and376

accuracy over the entire run are in Figures 7, 8 in the Appendix C.377

Table 4: Results on CIFAR-10 with and without pseu-
dolabel accumulation (Acc) for all the methods.

Method Acc—True Acc—False

Fixmatch 66.30 ± 1.68 88.15 ± 1.27

Fixmatch + MR 64.24 ± 1.93 87.85 ± 1.10

Fixmatch + BaM 84.50 ± 2.60 86.44 ± 1.47

Freematch 85.17 ± 4.74 90.17 ± 0.13

Freematch + MR 80.67 ± 2.39 90.17 ± 0.45

Freematch + BaM 88.92 ± 0.49 88.34 ± 0.99

Fixmatch + Ours 93.03 ± 0.44 93.34 ± 0.50

Freematch + Ours 93.08 ± 0.05 93.01 ± 0.24

A2. Does error tolerance affect perfor-378

mance? In our method, the error tolerance379

parameter ϵ is a knob to control the amount380

of noise in pseudolabels. A common wis-381

dom in pseudolabeling is higher noise will382

lead to worse performance, which is our383

expectation too. To see this, we run our384

method with ϵ ∈ {0.01, 0.05, 0.1, 0.2, 0.4}385

in the CIFAR-10 setting. We run each386

setting with 3 random seeds and report387

the results in Figure 5. The results are388

as expected — higher values of ϵ lead to389
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Figure 4: Top-1 accuracy of our method with
different Nth and Ncal.

Figure 5: Top-1 accuracy of our method with
different error tolerance ϵ.

Figure 6: Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and Batched pseudola-
beling coverage of our method with and without pseudolabeling accumulation enabled.

degraded test accuracy due to high noise390

in the pseudolabels and with decreasing ϵ391

leads to improved accuracy. These results392

also suggest that prioritizing the quality (ac-393

curacy) of pseudolabels over quantity is a394

better choice in pseudolabeling. The results are also summarized in Table 6 and Figure 10.395

A3. How much data is needed to learn the g and t? We take Ncal and Nth from the validation data396

to learn the confidence function g and estimate the thresholds t respectively. Intuitively larger values397

of these should lead to good g and t that can extract the expected level of pseudolabeling coverage and398

accuracy from the classifier at hand. However, the task of learning good g and estimating thresholds399

is not super hard and we expect it will take fewer samples to be successful. To understand this better400

we run our method with Ncal and Nth in {250, 500, 750, 1000} on CIFAR-10 setting for 3 random401

seeds and report the result in Fig 4. We observe that our method can achieve desired performance402

with just 500 labeled points (i.e 50 labels per class). This is interesting because we can achieve 90%403

accuracy by just using 250 points (Nl) for training h and a total of 1K for learning g. Refer Table 5404

and Figure 9 for more details.405
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Figure 7: (A1.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and batched
pseudolabeling coverage of Fixmatch with and without pseudolabeling accumulation enabled on
CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen the performance of
baseline methods in terms of accuracy and coverage.

Figure 8: (A1.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and batched
pseudolabeling coverage of Freematch with and without pseudolabeling accumulation enabled on
CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen the performance of
baseline methods in terms of accuracy and coverage.

Figure 9: (A3.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and batched
pseudolabeling coverage of our method with Nth = Ncal ∈ {250, 500, 750, 1000} on CIFAR-10. We
observe that having more calibration and threshold estimation points benefits the performance of our
method.

Table 5: Results on CIFAR-10 with varying Ncal and Nth.

Method Ncal = Nth = 250 Ncal = Nth = 500 Ncal = Nth = 750

Fixmatch + Ours 82.67 ± 7.08 91.74 ± 0.41 91.66 ± 2.11

Freematch + Ours 82.13 ± 7.93 92.33 ± 0.49 93.20 ± 0.53
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Figure 10: (A2.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and batched
pseudolabeling coverage of our method with ϵ ∈ {0.01, 0.05, 0.1, 0.2, 0.4} on CIFAR-10. Although
having a looser constraint on the error encourages more coverage, the pseudolabeling drops as a
trade-off.

Table 6: Results on CIFAR-10 with varying ϵ.

Method ϵ = 0.01 ϵ = 0.1 ϵ = 0.2 ϵ = 0.4

Fixmatch + Ours 94.85 ± 0.28 93.24 ± 0.18 90.52 ± 0.43 80.62 ± 1.22

Freematch + Ours 94.67 ± 0.09 92.11 ± 0.84 90.20 ± 0.65 82.23 ± 1.31
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