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Abstract

While Chain-of-Thought (CoT) prompting im-
proves reasoning in large language models
(LLMs), the excessive length of reasoning to-
kens increases latency and KV cache memory
usage, and may even truncate final answers un-
der context limits. We propose ThinkLess, an
inference-efficient framework that terminates
reasoning generation early and maintains out-
put quality without modifying the model. Att-
tention analysis reveals that answer tokens fo-
cus minimally on earlier reasoning steps and
primarily attend to the reasoning terminator to-
ken, due to information migration under causal
masking. Building on this insight, ThinkLess
inserts the terminator token at earlier positions
to skip redundant reasoning while preserving
the underlying knowledge transfer. To prevent
format discruption casued by early termina-
tion, ThinkLess employs a lightweight post-
regulation mechanism, relying on the model’s
natural instruction-following ability to produce
well-structured answers. Without fine-tuning
or auxiliary data, ThinkLess achieves compara-
ble accuracy to full-length CoT decoding while
greatly reducing decoding time and memory
consumption.

1 Introduction

Large language models (LLMs) (Vaswani et al.,
2017; Zhang et al., 2025b) have achieved remark-
able progress in natural language understanding
and generation, but still struggle with tasks requir-
ing multi-step reasoning. Chain-of-Thought (CoT)
prompting (Wei et al., 2022) has emerged as a popu-
lar approach to address this issue, enabling models
to decompose problems into intermediate reason-
ing steps before producing an answer.

While CoT improves accuracy on challenging
benchmarks (Zhang et al., 2022; Jaech et al., 2024),
it comes at a cost: reasoning tokens tend to be
long and autoregressively generated, introducing
substantial latency and memory overhead during
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Figure 1: GPQA (Rein et al., 2024) accuracy of DeepSeek-
R1-Distill-LLaMA-8B (Guo et al., 2025) under varying token
budgets. Red: ThinkLess (compressed reasoning); Blue: full
CoT reasoning.The left part of the legend illustrates the re-
lationship between marker size and latency, the middle part
denotes each methods, and the right part presents the maxi-
mum accuracy and corresponding latency of each method.

inference. As shown in Figure 1, increasing the
token budget does improve accuracy—but the gains
diminishes rapidly, indicating clear marginal re-
turns. Beyond a certain point, longer generations
incur significantly higher computational cost with-
out meaningful performance improvement. In de-
ployment scenarios where user experience and re-
sponse time are critical, such overhead becomes
a practical bottleneck, making blind expansion of
reasoning length both inefficient and unsustainable.

Several efforts aim to improve CoT efficiency
through techniques such as feedback-based refine-
ment (Yao et al., 2023b), search and planning (Bi
et al., 2024; Ye et al., 2024), and iterative optimiza-
tion (Zhang et al., 2024). While effective in con-
trolled settings, these approaches typically rely on
additional training, curated datasets, or supervised
fine-tuning (SFT)—introducing significant engineer-
ing overhead. Moreover, their reliance on task-
specific data or model customization limits gener-
alizability, making them difficult to scale or deploy
in real-world systems where flexibility, modularity,



and minimal intervention are critical.

We introduce ThinkLess, an inference-efficient
framework that reduces DeepSeek-R1 (Guo et al.,
2025) distilled CoT reasoning overhead without
any model modification or additional training. Our
key insight stems from an attention analysis: dur-
ing answer generation, models rely minimally on
earlier reasoning steps and focus on dispropor-
tionately on the reasoning terminator tokens (e.g.,
</think>). This indicates reasoning information
is progressively migrated and compressed toward
the end of the reasoning sequence due to causal
attention (Lin et al., 2025).

However, naively truncating reasoning by insert-
ing the terminator token early often results in dis-
rupted output formats. To solve, ThinkLess em-
ploys a lightweight output regulation that guides
the model to produce well-structured responses.
This is implemented simply by appending a small
instruction prompt after early termination, leverag-
ing the model’s inherent instruction-following capa-
bilities. This post-regulation step requires no model
modification or fine-tuning, yet proves essential for
maintaining output consistency and restoring accu-
racy degraded by premature reasoning truncation.

ThinkLess achieves substantial efficiency gains.
As illustrated in Figure 1, ThinkLess reaches strong
performance at a much lower token budget com-
pared to full CoT decoding, and further reduces in-
ference latency, as reflected by smaller sizes. These
results demonstrate that long-form reasoning is not
always necessary; with proper output regulation,
shortened reasoning can retain accuracy while dra-
matically improving inference efficiency.

Our contributions are as follows:

* We present an attention-based analysis reveal-
ing that answer tokens in CoT generation at-
tend minimally to earlier reasoning steps, in-
dicating substantial redundancy.

* We propose ThinkLess, a training-free early
termination strategy that injects a reasoning
terminator token to truncate redundant reason-
ing while preserving core information.

» To mitigate format disruption caused by early
termination, we introduce a lightweight output
regulation mechanism that restores structured
answers using a minimal instruction prompt.

» ThinkLess achieves comparable performance
than full CoT decoding with fewer tokens and

lower inference cost, offering a plug-and-play
solution deployable across models and tasks.

2 Related Work

2.1 LLMs Reasoning

Reasoning is a fundamental capability of LLMs,
enabling them to tackle complex multi-step tasks
across diverse domains (Qiao et al., 2022). To en-
hance this ability, recent work has explored various
prompting and architectural strategies. Chain-of-
Thought (CoT) prompting (Wei et al., 2022) has
emerged as a foundational method, guiding mod-
els to generate intermediate reasoning steps before
producing final answers. This decomposition of
complex problems into sub-goals significantly im-
proves performance on arithmetic, commonsense,
and scientific reasoning benchmarks (Kojima et al.,
2022; Feng et al., 2023; Rein et al., 2024; Lyu et al.,
2023). Building on CoT, techniques such as Self-
Consistency (Wang et al., 2022) aggregate multiple
reasoning paths to improve robustness, while Tree-
of-Thoughts (Yao et al., 2023a) introduces struc-
tured planning via tree-based exploration. More
recently, advanced frameworks like OpenAl’s ol,
Alibaba’s QwQ (Team, 2025), and DeepSeek’s
R1 (Guo et al., 2025) have extended CoT by incor-
porating reflective reasoning modes such as trial-
and-error, backtracking, and self-correction (Shinn
et al., 2023).

2.2 CoT Compression

While deeper reasoning improves performance, it
often comes with diminishing returns and increas-
ing computational cost (Chen et al., 2024; Wu
et al., 2024). Excessively long reasoning sequences
not only prolong inference but also strain mem-
ory and may even degrade output quality (Liu
et al., 2025b,a). Recent work has thus focused
on efficient CoT generation, which falls into two
broad categories: training-based compression and
inference-time optimization (Qu et al., 2025a; Sui
et al., 2025). Training-based methods learn more
compact reasoning traces through supervised fine-
tuning. Some approaches compress CoT chains at
the token level (Han et al., 2024; Xia et al., 2025),
dynamically adjusting reasoning length based on
task difficulty (Hao et al., 2024; Zhang et al.,
2025a). Others replace explicit token-level reason-
ing with latent or abstract representations (Chen
et al., 2024; Shen et al., 2025; Qu et al., 2025b),
compressing the reasoning into a hidden state or



learned vector. Inference-time methods, by con-
trast, improve efficiency without modifying model
weights. These include Sketch-of-Thought (Aytes
et al., 2025; Xu et al., 2025), which generate con-
cise draft reasoning before producing final outputs,
balancing coherence and computational cost.

Our ThinkLess, aligns with this line of inference-
time CoT optimization but differs by being entirely
training-free and model-agnostic, particularly for
DeepSeek-R1 distilled models. Rather than com-
pressing reasoning through learning, ThinkLess
truncates redundant reasoning tokens based on at-
tention insights and restores output quality through
a lightweight post-regulation mechanism.

3 Methodology

We present ThinkLess, a training-free framework
designed to improve inference efficiency for CoT
reasoning in LLMs. ThinkLess achieves this by
(1) identifying redundancy in long reasoning traces
via attention and hidden state analyses, and (2) in-
troducing a lightweight termination and regulation
mechanism that preserves output accuracy and for-
mat while significantly reducing decoding cost.

3.1 CoT Bottlenecks at Inference

Problem Formulation. Given a question g, LLM
generates a sequence of tokens z;.y autoregres-
sively, where each token z; is sampled based on
the conditional probability p(x; | ¢, x<;). In CoT
prompting, this sequence can be divided into rea-

soning tokens z7737°" and answer tokens z7{"":
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Inference-Time Bottlenecks. While reasoning
tokens can enhance the model’s ability to arrive at
a more accurate answer during training, they intro-
duce significant overhead during inference. Specif-
ically, long reasoning sequences lead to increased
computational costs, higher memory usage (due
to the expanded KV cache (Qin et al., 2025)), and
longer response times. This is particularly problem-
atic in applications where quick answer responses
are crucial, such as interactive Al systems.

Also, long reasoning paths may consume the
context budget before generating answers, ren-
dering the reasoning benefits inaccessible. This
mismatch between computation and usable output
severely undermines the efficacy of CoT at infer-
ence time. We empirically observe this issue in Fig-
ure 1, where the model’s performance noticeably
degrades when the total token length falls below
213 One key reason is that the answer segment
is often truncated due to limited context, prevent-
ing the model from fully leveraging the reasoning
process it has computed.

Motivation. These challenges expose a core in-
efficiency in current CoT generation: even if rea-
soning is computed, the final answer may not be
delivered due to truncation, or its benefits may be
outweighed by the added inference burden. These
raises an important question: how much of the rea-
soning is actually needed to support answer gen-
eration? In Section 3.2, we examine the model’s
internal attention behavior during decoding to in-
vestigate this question more closely. Section 3.3
then presents a termination mechanism with min-
imal formatting disruption, enabling efficient and
accurate CoT inference.

3.2 Attention Reveals Redundancy in CoT
Reasoning

To understand why long-form CoT reasoning in-
curs high cost but limited benefit, we analzye the
model’s attention behavior during answer genera-
tion. Our goal is to examine whether all reasoning
tokens are equally useful—or if, as we hypothesize,
later reasoning tokens alone may carry the neces-
sary information for generating accurate answers.
We visualize attention patterns across trans-
former layers using DeepSeek-R1-Distill-Llama-
8B on GSMB8K samples, as shown in Figure 2.
Each heatmap represents the attention weights
from query tokens (rows) to key tokens (columns)
during autoregressive decoding. The <think> and
</think> tokens mark the boundaries of the rea-
soning span. In early layers, the model distributes
attention broadly across the reasoning region, sug-
gesting that its initially considers the full reasoning
race. However, as depth increases, the model’s
focus sharpens toward the end-of-reasoning bound-
ary, particularly the </think> token. This transi-
tion implies a progressive information migration
phenomenon, where reasoning content is gradually
compressed toward the end of the span.
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Figure 2: Attention heatmaps across different layers of DeepSeek-R1-Distill-LLaMA-8B on a GSM8K sam-
ple (Cobbe et al., 2021). Tokens within the <think>...</think> span receive uniform attention in early layers, but
deeper layers gradually shift focus to the boundary tokens, indicating information migration and compression of
reasoning content. Similar observations can be found in other models and datasets

We attribute this behavior to causal masking:
under left-to-right generation, downstream tokens
cannot access future context. As results, reason-
ing must be internally summarized and propa-
gated forward token by token. This leads earlier
reasoning tokens to fade from view, while later
tokens—particularly </think>—accumulate and
represent the distilled reasoning state. Similar phe-
nomena have been explored by (Lin et al., 2025).

Analyzing Reasoning Redundancy. Building
on the information migrration mechanism dis-
cussed above, we ask: How early can useful reason-
ing be distilled during generation? Since reason-
ing content is expected to progressively compress
toward the end of the span (e.g., </think>), we
hypothesize that inserting this token at intermedi-
ate positions during decoding should yield hidden
states that already approximate the final reasoning
state. If true, this would suggest that the model has
already internalized most of the reasoning content
before completing the full chain.

To test this hypothesis, we conduct a similarity-
based redundancy analysis. Specifically, we insert
the </think> token at a fixed segment length of
16 tokens during the reasoning generation process
using DeepSeek-R1-Distill-Qwen-7B. At each in-
sertion point, we extract the last-layer hidden state
of the </think> token, treating it as the representa-
tion of accumulated reasoning up to that step. We

s s

(a) Sample idx = 59

(b) Sample idx = 231

(c) Sample idx = 321

(d) Sampleidx =340  (e) Sampleidx =510 () Sample idx = 849

Figure 3: We insert a </think> token every 16 tokens
in DeepSeek-R1-Distill-Qwen-7B and extract last-layer
hidden states. These states are highly similar (0.9)
across segments, showing that reasoning adds little new
information. The final state is also similar to earlier ones,
indicating early convergence and redundancy in later
reasoning. Similar observations can be found across
other models and datasets. Best view with zooming in.

then compute pairwise cosine similarities between
these intermediate hidden states.

As shown in Figure 3, the similarity between
adjacent reasoning segments remains consistently
high (~0.9), indicating that each additional seg-
ment introduces only marginal new informa-
tion. Moreover, the similarity between the final
</think> state and earlier ones increases steadily,
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Figure 4: Accuracy of DeepSeek-R1-Distill-Qwen-7B
vs. position where </think> is inserted. The bench-
mark is BBH dataset (Suzgun et al., 2022).

confirming the progressive nature of reasoning ag-
gregation. Notably, even early inserted </think>
tokens already yield hidden states highly similar to
the final one—supporting the view that most useful
reasoning content is distilled early, and extended
CoT traces incur diminishing returns.

3.3 ThinkLess: Reasoning Termination and
Output Regulation

Building on our earlier conclusion that the most
useful reasoning content is distilled early, we ask:
can reasoning be safely truncated early without
sacrificing answer quality? Since the model gradu-
ally compresses reasoning into the </think> token,
it may be possible to shorten the reasoning trace
while still preserving essential information.

To verify this, we divide the full reasoning se-
quence into equal-length segments and insert the
</think> token at varying cut-off points, thereby
terminating reasoning at different locations. We
then measure model accuracy across termination
positions. Surprisingly, as shown in Figure 4, trun-
cating reasoning early leads to a decreasing accu-
racy—despite our hypothesis that essential infor-
mation should have already migrated toward the
</think> token. This unexpected decline gradu-
ally recovers as the termination point moves later,
forming a U-shaped performance curve.

A more detailed investigation in Sec. A shows
that the observed decline in performance is not at-
tributable to deficiencies in the model’s reasoning
process. Instead, the drop primarily arises from
output formatting issues—such as the omission of
the final answer or deviations from the expected re-
sponse structure. These formatting errors can lead
to incorrect evaluations, even when the model’s
internal reasoning is logically sound. Notably, after

manually correcting these malformed outputs to
align with the desired answer format, we find the
underlying responses are indeed accurate, resulting
in a substantial recovery in overall accuracy.

This confirms that the observed accuracy dip is
a surface-level artifact: early termination disrupts
output form, not semantic correctness. The model
had already internalized the reasoning; it simply
failed to express it in the expected format.

These results confirm that the model primarily
relies on the </think> token to access reasoning
information—rather than attending to every rea-
soning token individually. As a result, extending
the reasoning span offers limited benefit, revealing
substantial redundancy in long-form CoT.

ThinkLess Framework. We introduce Think-
Less, a simple, training-free framework to reduce
CoT inference cost. The key idea is to insert
the </think> token shortly after <think>, thereby
skipping the majority of reasoning generation. This
early termination substantially reduces decoding
time and KV cache memory usage. However, such
abrupt truncation may produce malformed answers
that lack structural completeness.

To overcome this dilemma, ThinkLess employs
a lightweight instruction-based output regulation
step. For each task, we prepend a short instruction
prompt (see Sec. B) to clarify output expectations.
This approach leverages the strong instruction-
following abilities of modern LLMs, enabling the
model to produce well-structured responses—even
in the absence of explicit reasoning. Since the
added instruction is minimal, the overall inference
cost remains low.

Clarification: ThinkLess Without Explicit Rea-
soning. ThinkLess inserts the </think> token
right after <think>, thereby skipping the genera-
tion of any explicit CoT reasoning. At first glance,
this appears to challenge the information migration
hypothesis: if no intermediate reasoning tokens are
produced, it is unclear what reasoning content, if
any, is being transferred to inform the final answer.

We contend, however, that the </think> token
serves a deeper function than a mere delimiter. It
acts as a semantic anchor—a learned symbolic
abstraction that implicitly encodes a compressed
representation of the reasoning process. During
pretraining, language models likely acquire the
ability to internalize multi-step reasoning patterns
and embed this abstracted knowledge into com-
pact markers such as </think>. This hypothesis



is supported by our empirical observations: even
when the reasoning trace is entirely omitted, the
model frequently produces correct answers, indi-
cating that the cognitive process of reasoning may
have been executed internally and silently.

From this perspective, </think> does not denote
the absence of reasoning, but rather the culmination
of an internalized reasoning trajectory. It signals
to the model that deliberation has concluded and
that it should proceed to answer generation. This
behavior can be interpreted as a form of reasoning
distillation, in which the explicit explanatory steps
are compressed into latent activations, allowing for
both efficient inference and high-quality outputs
without requiring full CoT generation.

4 Experiment

4.1 Datasets

To comprehensively evaluate our proposed method
across diverse reasoning and knowledge-intensive
scenarios, we conduct experiments on the follow-
ing four benchmark datasets:

* GSMBSK (Cobbe et al., 2021): A grade-school
level math word problem dataset to assess
arithmetic reasoning. Each question requires
multi-step calculation and logical deduction.

* MMLU (Hendrycks et al., 2020): It covers
57 tasks across various domains including hu-
manities, STEM, and social sciences, measur-
ing general knowledge and reasoning ability.

* GPQA (Rein et al., 2024): A graduate-level
physics question answering dataset targeting
conceptual understanding. It tests model ca-
pability in high-level scientific reasoning.

* BBH (Suzgun et al., 2022): This subset fo-
cuses on difficult tasks that require multi-step,
symbolic, or logical reasoning, offering a rig-
orous stress test for language models.

4.2 Metrics

We report three key evaluation metrics across all
tasks to provide a comprehensive comparison of
both performance and efficiency: Top-1 accuracy
(Top@17), inference time (Timel), and token us-
age (Tokens]). Accuracy reflects the percentage of
exact top-1 matches. All results are from a single
run.

Given that ThinkLess omits the explicit rea-
soning, we also report Top-k accuracy (Top@Fk)

(k > 2) for ThinkLess variants. In this setup, the
model is allowed to generate k£ candidate answers
for each question, and the response is considered
correct if any of them is accurate. This allows
us to assess ThinkLess under a relaxed evaluation
regime, which reflects its ability to retain answer
quality even when reasoning tokens are suppressed.

To ensure fair comparison, we constrain the total
number of generated tokens in the Top@F setting
to remain comparable to the token budget used
by standard CoT decoding (i.e., Top@1 with full
reasoning). This enables an apples-to-apples evalu-
ation of accuracy under equivalent costs of tokens.

4.3 Backbones and Baselines

To ensure a comprehensive and fair evaluation, we
conduct experiments on publicly available LLMs
within the 7B to 14B parameter scale. This range
reflects the practical constraints imposed by our
available GPU resources, while still covering mod-
els with strong reasoning capabilities.

Backbone. Qwen2.5-7B/14B (Yang et al., 2024):
A family of powerful open-source instruction-tuned
models known for their strong general reasoning
abilities. LLaMA3.1-8B (Grattafiori et al., 2024):
A well-balanced model from the LLaMA series
that combines efficient inference with competitive
instruction-following performance. All backbones
are evaluated under identical decoding settings to
ensure a consistent comparison.

Baselines. We compare ThinkLess against a sin-
gle, strong baseline: the full CoT distilled variant.
This model is obtained by distilling reasoning ca-
pabilities from a more powerful DeepSeek-R1, and
it represents a high-performance upper bound.

ThinkLess requires no fine-tuning, no auxiliary
data, and no changes to the underlying model
weights. To our best knowledge, we are the first to
offer such efficient CoT reasoning compression in
a fully training-free manner. Given this setting, the
distilled full CoT model provides the most appro-
priate and meaningful baseline for comparison.

4.4 How Effective is ThinkLess?

Table 1 and Figure 5 present a detailed comparison
between our proposed ThinkLess framework and
the Distill baseline. The maximum token budget is
set as 8k in Table 1. We detail accuracy, inference
time, and token consumption below.

Comparable Accuracy Despite Omitting Rea-
soning. While ThinkLess entirely skips the visi-
ble CoT reasoning trace, its Top@1 accuracy re-



Method GSMSK MMLU GPQA BBH AVG.
Top@1 1 Time| Tokens| | Top@1 1 Time| Tokens| | Top@11 Time| Tokens| | Top@11 Time| Tokens| | Top@1{ Time| Tokens|
Qwen2.5-7B
Distill 88.17  10.62 43892 | 60.86  47.01 1817.84 | 30.81 14882 5523.17 | 6929 2479 97608 | 62.28  57.81 2189.00
ThinkLess w/o Instruct ~ 87.79 657 27420 | 5404 677 27950 | 3131 1539  631.87 | 62.02 8.57 34191 5879 933 381.87
ThinkLess 88.40 546 23541 5706  9.07 37034 | 4091 1459 59117 | 6525 934 37932 | 6291 9.62  394.06
Qwen2.5-14B
Distill 9212 2037 50840 | 8140 6220 151646 | 4192  217.62 520502 | 83.84 5548 1349.88 | 74.82  88.92 214494
ThinkLess w/o Instruct 9242 9.94 25249 | 7595 1206 30033 | 39.39 2469 61279 | 7636  11.04 27533 | 7103 1443  360.24
ThinkLess 9249 905 23532 | 7644 1484 36192 | 4495 2234 54743 | 7838 1473 35100 | 73.07 1524 37392
LLaMA3.1-8B
Distill 7938 1295 49370 | 6407 5669 211948 | 2576 16279 609477 | 7192 3321 125202 | 60.28  66.41 2489.99
ThinkLess w/o Instruct ~ 79.76 699 270.19 | 57.55 785 29814 | 3030 1575 600.88 | 65.45 828 31591 5827 972 37128
ThinkLess 7892 673 26074 | 6027 1023 38455 | 3131 4881 1817.93 | 7192 1145 43089 | 60.61 1931 72353
Table 1: Comparison of our ThinkLess and DeepSeek-R1 distilled models.
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mains consistently close to that of the full CoT base-
line. For example, with Qwen2.5-7B, ThinkLess
achieves an average accuracy of 62.91%, compared
to 62.28% from Distill. With Qwen2.5-14B, Thin-
kLess reaches 73.07% vs. 74.82%. These small
differences—within 1-2 points—demonstrate that
ThinkLess retains most of the reasoning quality,
validating our core hypothesis: reasoning can be
effectively compressed into latent representations
without explicit CoT generation.

Enhanced Accuracy under Comparable To-
ken Budgets. Figure 5 presents the Top@¥k accu-
racy of ThinkLess compared against the Top@1
accuracy of the full CoT Distill baseline, under an
equal token budget. The results show that Think-

to match the token usage on par with distilled models. Legends follow Figure 1.

Less significantly outperforms the distilled counter-
part across various datasets and model backbones.
Notably, beyond accuracy improvements, Think-
Less also achieves lower inference latency. This
is because the k candidate answers in ThinkLess
can be generated in parallel, whereas the distilled
baseline must generate a long CoT sequence token
by token in an inherently sequential manner.

Massive Reductions in Token Usage and In-
ference Time. ThinkLess achieves substantial ef-
ficiency gains across all settings. On average: 1.
Token usage is reduced by 60—70%, dropping from
2189 tokens (Qwen2.5-7B, Distill) to just 904 with
ThinkLess. 2. Inference time is reduced by 50% or
more, e.g., from 21.89s to 9.64s with Qwen2.5-14B.
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Figure 6: Answer overlap between Distill and ThinkLess w/o Instruct. Each pie shows the proportion of “a, b”
cases, where “a” is Distill’s results (True or False) and “b” is ThinkLess w/o Instruct’s (True or False).

These savings stem from truncating long reasoning
sequences early via </think>, which eliminates
most of the token generation and KV cache ac-
cumulation that typically burdens autoregressive
inference. Crucially, these gains come without
any fine-tuning, distillation, or prompt engineer-
ing, making ThinkLess easy to deploy.

Robustness Across Models and Tasks. Al-
though ThinkLess occasionally underperforms on
specific datasets (e.g., slightly lower on BBH with
Qwen2.5-14B), its average accuracy is remarkably
stable across all backbones. This consistency in-
dicates that our method generalizes well across
diverse reasoning tasks and model families.

The Role of Output Regulation. Comparing
ThinkLess to its ablated version ThinkLess w/o
Instruct highlights the impact of our lightweight
instruction-based output regulation. Across all
settings, ThinkLess consistently outperforms the
w/o Instruct variant in Top@1 accuracy, often by
a significant margin. For instance: On MMLU
with Qwen2.5-14B: ThinkLess achieves 76.44% vs.
75.22%. On BBH with LLaMA3-8B: 71.92% vs.
65.45%, a gap of over 6 points.

Figure 6 illustrates the answer agreement be-
tween Distill and ThinkLess w/o Instruct across
datasets and backbones. Across most of the
datasets, over 70% of predictions remain consis-
tent (i.e., <True, True> or <False, False>), demon-
strating ThinkLess can well preserve ability of the
Distill model despite its early termination.

This confirms that without output regulation, the

model—though internally sound—frequently fails
to produce well-structured answers (e.g., missing
final choice or wrong format). The addition of
a short task-specific instruction guides the model
to produce answers in a predictable and scorable
format, which is critical for maintaining accuracy
in the absence of full reasoning traces.

Summary. ThinkLess achieves comparable
Top@1 accuracy to full CoT reasoning while halv-
ing inference time and reducing token usage by up
to 70%, all in a training-free and model-agnostic
manner. These results demonstrate that ThinkLess
offers a highly practical trade-off between reason-
ing fidelity and computational efficiency.

5 Conclusion

This paper presents ThinkLess, an inference-
efficient framework that reduces the overhead of
CoT reasoning without any model modification or
additional training. By analyzing attention patterns,
we find that final answers rely little on early rea-
soning steps—enabling safe early termination via
a reasoning terminator token. To preserve answer
completeness and format, a lightweight output reg-
ulation step is introduced, leveraging the model’s
instruction-following ability. Experimental Results
show that ThinkLess achieves comparable accuracy
to full CoT decoding while significantly lowering
token usage and latency, making it a practical and
generalizable solution for real-world deployment.



6 Limitations

While ThinkLess demonstrates strong efficiency
and accuracy trade-offs, several limitations remain:

Reliance on Instruction Quality. The suc-
cess of ThinkLess depends on the effectiveness of
lightweight output regulation instructions. Poorly
phrased or overly generic instructions may fail to
guide the model toward well-structured outputs,
especially for complex or ambiguous tasks. De-
signing effective instructions for new tasks may
require manual tuning or domain-specific insights.

Lack of Dynamic Truncation Strategy. Think-
Less currently inserts the </think> token at fixed
positions, without dynamically adapting to the com-
plexity of individual questions. For harder tasks
requiring deeper reasoning, premature truncation
may omit essential content. Developing an adap-
tive termination policy that tailors reasoning length
to question difficulty remains an open direction.

Assumption of Internal Reasoning Compres-
sion. ThinkLess assumes that LLMs internally
compress reasoning into the </think> token,
which may hold for certain instruction-tuned mod-
els but not all. Models without strong instruction-
following capabilities or those trained with differ-
ent prompting formats may not benefit from early
termination in the same way, limiting the general-
izability of our method.

Limited Scalability Validation. Due to com-
putational resource constraints, we only evaluate
ThinkLess on mid-sized models (7B—14B) and a
limited set of reasoning benchmarks. Its perfor-
mance on larger foundation models or broader tasks
remains to be validated.

These limitations also highlight important di-
rections for future work. In particular, extending
ThinkLess to larger-scale models, more diverse task
types, and dynamic truncation policies remains a
key focus of our ongoing efforts.

7 Ethical Considerations

We use publicly available datasets and model check-
points under licenses that permit research use. De-
tails about the license terms and usage restrictions
are provided in Section 4.1. We ensured that all ar-
tifacts were used in accordance with their intended
purpose as stated by the original providers.
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A Analysis of Output Formatting Issues
from Early Termination

While ThinkLess is designed to terminate reason-
ing early and rely on internalized representations
for answer generation, this can occasionally re-
sult in malformed outputs—particularly when the
model is not explicitly instructed on how to format
its final answer. Tables 2 and 3 illustrate common
failure cases across different datasets, caused not
by flawed reasoning, but by formatting deviations
that hinder correct evaluation.

GPQA: Outputting the Answer Directly In-
stead of the Option. In multiple GPQA exam-
ples, the model correctly computes the numeri-
cal answer (e.g., “18”, “%”, or “3536”), but
fails to select the corresponding multiple-choice
option letter (e.g., “A”, “B”, etc.). This is problem-
atic because the task requires choosing from a list,
and direct numeric answers—though logically cor-
rect—are treated as incorrect under automatic eval-
uation scripts. This issue is a direct consequence
of skipping the reasoning trace, which would oth-
erwise reinforce the expected answer format (e.g.,
“The answer is A”).

BBH: Verbose or Misaligned Natural Lan-
guage Outputs. In BBH, early termination some-
times causes the model to output full explanations
(e.g., “No, Tamika does not tell the truth”) instead
of a concise boolean token like “False” or a lettered
choice. In one example, the model responds with
an overly verbose phrase: “The statement ‘Return
your final response within boxed {}’ is True”—a
hallucination likely caused by partial instruction
remnants seen during pretraining. These cases re-
veal how early truncation may weaken task compli-
ance, especially for boolean or classification-based
tasks that expect minimal final output.

MMLU: Misformatting Algebraic Expres-
sions. For math-heavy tasks like MMLU, the
model sometimes produces an exactly correct sym-
bolic expression (e.g., “(x+1)(z—2)(z+4)”) that
does not match any of the provided answer options
verbatim. Though mathematically equivalent to
one of the choices, the mismatch in formatting or
token order causes the model to be penalized. This
highlights the fragility of matching-based evalua-
tion when outputs are not explicitly aligned with
options.

Key Insight: Output Regulation is Essential.
These examples demonstrate that output format-
ting errors—not reasoning failures—are the domi-

12

nant cause of performance drop in ThinkLess with-
out instruction-based regulation. The missing or
misaligned final answers occur because the model
lacks an explicit signal about how to conclude the
response after </think> is triggered.

By contrast, ThinkLess with output regulation
prepends a short, task-specific instruction (e.g.,
“Select the best option (A, B, C, D):”) that helps
the model map internal reasoning to a valid and
scorable final output—without increasing token
length significantly. This regulation mechanism
is crucial for ensuring compatibility with automatic
scorers and maintaining downstream performance.

B Instruction-based Output Regulation

Tables 4 and 5 provides instructions details that reg-
ulate the output formatting across different datasets
and their subtasks.



Dataset | Input Output

If an equimolar mixture X of two liquids, which decol- | 18
orizes bromine water, is treated with platinum when
heated, then an equimolar mixture Y of two other lig-
uids is formed as a result of disproportionation, which
does not decolorize bromine water. Hydrogenation
of both mixture X and mixture Y in the presence of
platinum under rather severe conditions gives only one
substance, a certain hydrocarbon Z (mass fraction of
hydrogen is 14.28%), which is a constituent of mixture
Y and widely used as a solvent. Substance Z does not
react further with hydrogen. There are no conjugated
multiple bonds in the molecules of the compounds of
mixture X. Indicate the total number of hydrogen atoms
in two liquids of mixture X.

GPQA

A. 18
B. 22
C. 16
D. 12
. . . L. 1
A light beam is propagating through a glass with index ++nv
n+ov

of refraction n. The glass is moving at constant velocity
v in the same direction as the beam and toward the
observer in laboratory. What is the speed of light in
glass relative to the observer in laboratory? Take the
speed of light in vacuum c=1.

A1

B. 1—nv
n—+v

C 14+ nv
n-+wv

D. 1+ nv
n—uv

A synchrocyclotron is a special type of cyclotron. A | 3536
proton is injected at t = 0 with negligible kinetic en-
ergy, i.e., ' ~ 0, and undergoes two accelerations in
the accelerator to reach the kinetic energy

T1 = 950 MeV.

The alternating voltage applied in the accelerator is
given by

U(t) = Up cos [2nv(a) t + Po] .

How many revolutions does the proton make in the
synchrocyclotron?

A. 5300
B. 2500
C. 3536
D

. 1864

Table 2: Input and output cases of early termination from GPQA.

13



Dataset

Input

Output

BBH

Fidel lies. Millicent says Fidel tells the truth. Crista
says Millicent lies. Leda says Crista lies. Tamika says
Leda tells the truth. Does Tamika tell the truth?

No, Tamika does not tell the truth.

False or not False or True or True is

The statement "Return your final response within
\boxed {}."is True.

The following paragraph describes a set of seven ob-
jects arranged in a fixed order. The statements are
logically consistent within the paragraph.

On a branch, there are seven birds: a robin, a humming-
bird, a raven, a blue jay, a crow, a cardinal, and a quail.
The hummingbird is to the left of the crow. The cardinal
is to the right of the quail. The blue jay is the fourth
from the left. The robin is the second from the left. The
quail is to the right of the crow. The raven is to the left
of the robin. Which bird is the leftmost?

A. The crow is the leftmost

. The raven is the leftmost

. The blue jay is the leftmost

. The robin is the leftmost

The hummingbird is the leftmost

. The cardinal is the leftmost

Q mm m O o w

. The quail is the leftmost

The raven is the leftmost

MMLU

Find all zeros in the indicated finite field of the given
polynomial with coefficients in that field:

0,4

z° +3£3+12 +2x inZs
A. 0,1
B. 0,4
C.0
D. 1
The polynomial

m3+2x2+2x+1

can be factored into linear factors in Z-[z]. Find this
factorization.

A (¢ —2)(z+2)(@—1)
B. (z+1)(z+4)(z—2)
C. (z+1)(z—4)(z—2)
D. (z—1)(z—4)(z —2)

@+ 1)@ -2)(=+9))

Table 3: Input and output cases of early termination from BBH and MMLU.

14



Dataset

Sub-task

Instruction

BBH

boolean expression

Evaluate the given Boolean expression step by step,
carefully analyzing each operation and verifying
the logic at every stage. Ensure the reasoning
process is accurate and consistent. Return the final
result as either “True” or “False”.

causal judgement

Assess whether the stated causal relationship
between two events or phenomena is logically valid.
Analyze the connection step by step, verify your
reasoning at each stage, and base your judgment on
evidence, logic, and plausibility. Conclude by
providing your final answer as “Yes” or “No”.

formal fallacies

Analyze the given argument to determine whether
it is deductively valid. Start by identifying and
formalizing the premises and conclusion. Reflect
on each step of your evaluation, ensuring the
conclusion follows logically and necessarily from
the premises without relying on external
information or assumptions. Finally, respond with
either “valid” or “invalid”.

web of lies

Based on the statements made by the characters,
determine whether the specified character is telling
the truth. Analyze the relationships and consistency
between the statements step by step, reflect on your
reasoning at each stage, and ensure your judgment
is logically sound. The final answer should be “Yes”
or “No””’

navigate

Given the navigation instructions, determine
whether you can reach the destination. You can
learn to analyze, but the final answer should be
“Yes” or “No”.

logical deduction seven objects

Solve the following logic puzzle to determine the
correct order of seven objects based on the given
clues. Analyze the clues step by step, reflect on
your reasoning at each stage, and systematically
eliminate incorrect possibilities. Finally, evaluate
all the options (A-G) and select the one that
represents the correct answer.

ruin names

Analyze each option for its humor, creativity, and
resemblance to the original name step by step.
Reflect on the reasoning process to determine the
best choice for each question. Output your answers
as a sequence of four letters (A-D), one for each
question.

temporal sequences

Determine the correct order of events from the
given choices. For each item, select the correct
option (A-D) and output them in order.

Table 4: Instruction regulations on BBH Subtasks
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Dataset Instruction

GSMSK Solve the math problem step by step. Give only the final numerical answer.

MMLU Given the multiple-choice question above drawn from different academic
disciplines, think step by step, self-check your reasoning, and output only the
single final option (A, B, C, or D).

GPQA You will be given a graduate-level multiple-choice science question. Think
step-by-step (LaTeX allowed), self-check, then output one line with only the
letter A, B, C, or D.

Table 5: Instruction regulations on GSM8K, MMLU and GPQA.
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