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Abstract001

While Chain-of-Thought (CoT) prompting im-002
proves reasoning in large language models003
(LLMs), the excessive length of reasoning to-004
kens increases latency and KV cache memory005
usage, and may even truncate final answers un-006
der context limits. We propose ThinkLess, an007
inference-efficient framework that terminates008
reasoning generation early and maintains out-009
put quality without modifying the model. Att-010
tention analysis reveals that answer tokens fo-011
cus minimally on earlier reasoning steps and012
primarily attend to the reasoning terminator to-013
ken, due to information migration under causal014
masking. Building on this insight, ThinkLess015
inserts the terminator token at earlier positions016
to skip redundant reasoning while preserving017
the underlying knowledge transfer. To prevent018
format discruption casued by early termina-019
tion, ThinkLess employs a lightweight post-020
regulation mechanism, relying on the model’s021
natural instruction-following ability to produce022
well-structured answers. Without fine-tuning023
or auxiliary data, ThinkLess achieves compara-024
ble accuracy to full-length CoT decoding while025
greatly reducing decoding time and memory026
consumption.027

1 Introduction028

Large language models (LLMs) (Vaswani et al.,029

2017; Zhang et al., 2025b) have achieved remark-030

able progress in natural language understanding031

and generation, but still struggle with tasks requir-032

ing multi-step reasoning. Chain-of-Thought (CoT)033

prompting (Wei et al., 2022) has emerged as a popu-034

lar approach to address this issue, enabling models035

to decompose problems into intermediate reason-036

ing steps before producing an answer.037

While CoT improves accuracy on challenging038

benchmarks (Zhang et al., 2022; Jaech et al., 2024),039

it comes at a cost: reasoning tokens tend to be040

long and autoregressively generated, introducing041

substantial latency and memory overhead during042

Figure 1: GPQA (Rein et al., 2024) accuracy of DeepSeek-
R1-Distill-LLaMA-8B (Guo et al., 2025) under varying token
budgets. Red: ThinkLess (compressed reasoning); Blue: full
CoT reasoning.The left part of the legend illustrates the re-
lationship between marker size and latency, the middle part
denotes each methods, and the right part presents the maxi-
mum accuracy and corresponding latency of each method.

inference. As shown in Figure 1, increasing the 043

token budget does improve accuracy–but the gains 044

diminishes rapidly, indicating clear marginal re- 045

turns. Beyond a certain point, longer generations 046

incur significantly higher computational cost with- 047

out meaningful performance improvement. In de- 048

ployment scenarios where user experience and re- 049

sponse time are critical, such overhead becomes 050

a practical bottleneck, making blind expansion of 051

reasoning length both inefficient and unsustainable. 052

Several efforts aim to improve CoT efficiency 053

through techniques such as feedback-based refine- 054

ment (Yao et al., 2023b), search and planning (Bi 055

et al., 2024; Ye et al., 2024), and iterative optimiza- 056

tion (Zhang et al., 2024). While effective in con- 057

trolled settings, these approaches typically rely on 058

additional training, curated datasets, or supervised 059

fine-tuning (SFT)–introducing significant engineer- 060

ing overhead. Moreover, their reliance on task- 061

specific data or model customization limits gener- 062

alizability, making them difficult to scale or deploy 063

in real-world systems where flexibility, modularity, 064
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and minimal intervention are critical.065

We introduce ThinkLess, an inference-efficient066

framework that reduces DeepSeek-R1 (Guo et al.,067

2025) distilled CoT reasoning overhead without068

any model modification or additional training. Our069

key insight stems from an attention analysis: dur-070

ing answer generation, models rely minimally on071

earlier reasoning steps and focus on dispropor-072

tionately on the reasoning terminator tokens (e.g.,073

</think>). This indicates reasoning information074

is progressively migrated and compressed toward075

the end of the reasoning sequence due to causal076

attention (Lin et al., 2025).077

However, naively truncating reasoning by insert-078

ing the terminator token early often results in dis-079

rupted output formats. To solve, ThinkLess em-080

ploys a lightweight output regulation that guides081

the model to produce well-structured responses.082

This is implemented simply by appending a small083

instruction prompt after early termination, leverag-084

ing the model’s inherent instruction-following capa-085

bilities. This post-regulation step requires no model086

modification or fine-tuning, yet proves essential for087

maintaining output consistency and restoring accu-088

racy degraded by premature reasoning truncation.089

ThinkLess achieves substantial efficiency gains.090

As illustrated in Figure 1, ThinkLess reaches strong091

performance at a much lower token budget com-092

pared to full CoT decoding, and further reduces in-093

ference latency, as reflected by smaller sizes. These094

results demonstrate that long-form reasoning is not095

always necessary; with proper output regulation,096

shortened reasoning can retain accuracy while dra-097

matically improving inference efficiency.098

Our contributions are as follows:099

• We present an attention-based analysis reveal-100

ing that answer tokens in CoT generation at-101

tend minimally to earlier reasoning steps, in-102

dicating substantial redundancy.103

• We propose ThinkLess, a training-free early104

termination strategy that injects a reasoning105

terminator token to truncate redundant reason-106

ing while preserving core information.107

• To mitigate format disruption caused by early108

termination, we introduce a lightweight output109

regulation mechanism that restores structured110

answers using a minimal instruction prompt.111

• ThinkLess achieves comparable performance112

than full CoT decoding with fewer tokens and113

lower inference cost, offering a plug-and-play 114

solution deployable across models and tasks. 115

2 Related Work 116

2.1 LLMs Reasoning 117

Reasoning is a fundamental capability of LLMs, 118

enabling them to tackle complex multi-step tasks 119

across diverse domains (Qiao et al., 2022). To en- 120

hance this ability, recent work has explored various 121

prompting and architectural strategies. Chain-of- 122

Thought (CoT) prompting (Wei et al., 2022) has 123

emerged as a foundational method, guiding mod- 124

els to generate intermediate reasoning steps before 125

producing final answers. This decomposition of 126

complex problems into sub-goals significantly im- 127

proves performance on arithmetic, commonsense, 128

and scientific reasoning benchmarks (Kojima et al., 129

2022; Feng et al., 2023; Rein et al., 2024; Lyu et al., 130

2023). Building on CoT, techniques such as Self- 131

Consistency (Wang et al., 2022) aggregate multiple 132

reasoning paths to improve robustness, while Tree- 133

of-Thoughts (Yao et al., 2023a) introduces struc- 134

tured planning via tree-based exploration. More 135

recently, advanced frameworks like OpenAI’s o1, 136

Alibaba’s QwQ (Team, 2025), and DeepSeek’s 137

R1 (Guo et al., 2025) have extended CoT by incor- 138

porating reflective reasoning modes such as trial- 139

and-error, backtracking, and self-correction (Shinn 140

et al., 2023). 141

2.2 CoT Compression 142

While deeper reasoning improves performance, it 143

often comes with diminishing returns and increas- 144

ing computational cost (Chen et al., 2024; Wu 145

et al., 2024). Excessively long reasoning sequences 146

not only prolong inference but also strain mem- 147

ory and may even degrade output quality (Liu 148

et al., 2025b,a). Recent work has thus focused 149

on efficient CoT generation, which falls into two 150

broad categories: training-based compression and 151

inference-time optimization (Qu et al., 2025a; Sui 152

et al., 2025). Training-based methods learn more 153

compact reasoning traces through supervised fine- 154

tuning. Some approaches compress CoT chains at 155

the token level (Han et al., 2024; Xia et al., 2025), 156

dynamically adjusting reasoning length based on 157

task difficulty (Hao et al., 2024; Zhang et al., 158

2025a). Others replace explicit token-level reason- 159

ing with latent or abstract representations (Chen 160

et al., 2024; Shen et al., 2025; Qu et al., 2025b), 161

compressing the reasoning into a hidden state or 162
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learned vector. Inference-time methods, by con-163

trast, improve efficiency without modifying model164

weights. These include Sketch-of-Thought (Aytes165

et al., 2025; Xu et al., 2025), which generate con-166

cise draft reasoning before producing final outputs,167

balancing coherence and computational cost.168

Our ThinkLess, aligns with this line of inference-169

time CoT optimization but differs by being entirely170

training-free and model-agnostic, particularly for171

DeepSeek-R1 distilled models. Rather than com-172

pressing reasoning through learning, ThinkLess173

truncates redundant reasoning tokens based on at-174

tention insights and restores output quality through175

a lightweight post-regulation mechanism.176

3 Methodology177

We present ThinkLess, a training-free framework178

designed to improve inference efficiency for CoT179

reasoning in LLMs. ThinkLess achieves this by180

(1) identifying redundancy in long reasoning traces181

via attention and hidden state analyses, and (2) in-182

troducing a lightweight termination and regulation183

mechanism that preserves output accuracy and for-184

mat while significantly reducing decoding cost.185

3.1 CoT Bottlenecks at Inference186

Problem Formulation. Given a question q, LLM187

generates a sequence of tokens x1:N autoregres-188

sively, where each token xi is sampled based on189

the conditional probability p(xi | q, x<i). In CoT190

prompting, this sequence can be divided into rea-191

soning tokens xreason1:M and answer tokens xanswer1:N :192

p(xreason1:M | q) =
M∏
i=1

p(xreasoni | q, xreason<i ) (1)193

p(xanswer1:N | q, xreason1:M ) =

N∏
i=1

p(xansweri | q, xreason1:M , xanswer<i ).
(2)194

Inference-Time Bottlenecks. While reasoning195

tokens can enhance the model’s ability to arrive at196

a more accurate answer during training, they intro-197

duce significant overhead during inference. Specif-198

ically, long reasoning sequences lead to increased199

computational costs, higher memory usage (due200

to the expanded KV cache (Qin et al., 2025)), and201

longer response times. This is particularly problem-202

atic in applications where quick answer responses203

are crucial, such as interactive AI systems.204

Also, long reasoning paths may consume the 205

context budget before generating answers, ren- 206

dering the reasoning benefits inaccessible. This 207

mismatch between computation and usable output 208

severely undermines the efficacy of CoT at infer- 209

ence time. We empirically observe this issue in Fig- 210

ure 1, where the model’s performance noticeably 211

degrades when the total token length falls below 212

213. One key reason is that the answer segment 213

is often truncated due to limited context, prevent- 214

ing the model from fully leveraging the reasoning 215

process it has computed. 216

Motivation. These challenges expose a core in- 217

efficiency in current CoT generation: even if rea- 218

soning is computed, the final answer may not be 219

delivered due to truncation, or its benefits may be 220

outweighed by the added inference burden. These 221

raises an important question: how much of the rea- 222

soning is actually needed to support answer gen- 223

eration? In Section 3.2, we examine the model’s 224

internal attention behavior during decoding to in- 225

vestigate this question more closely. Section 3.3 226

then presents a termination mechanism with min- 227

imal formatting disruption, enabling efficient and 228

accurate CoT inference. 229

3.2 Attention Reveals Redundancy in CoT 230

Reasoning 231

To understand why long-form CoT reasoning in- 232

curs high cost but limited benefit, we analzye the 233

model’s attention behavior during answer genera- 234

tion. Our goal is to examine whether all reasoning 235

tokens are equally useful—or if, as we hypothesize, 236

later reasoning tokens alone may carry the neces- 237

sary information for generating accurate answers. 238

We visualize attention patterns across trans- 239

former layers using DeepSeek-R1-Distill-Llama- 240

8B on GSM8K samples, as shown in Figure 2. 241

Each heatmap represents the attention weights 242

from query tokens (rows) to key tokens (columns) 243

during autoregressive decoding. The <think> and 244

</think> tokens mark the boundaries of the rea- 245

soning span. In early layers, the model distributes 246

attention broadly across the reasoning region, sug- 247

gesting that its initially considers the full reasoning 248

race. However, as depth increases, the model’s 249

focus sharpens toward the end-of-reasoning bound- 250

ary, particularly the </think> token. This transi- 251

tion implies a progressive information migration 252

phenomenon, where reasoning content is gradually 253

compressed toward the end of the span. 254
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(a) Layer 1 (b) Layer 4 (c) Layer 6 (d) Layer 12

(e) Layer 21 (f) Layer 25 (g) Layer 29 (h) Layer 31

Figure 2: Attention heatmaps across different layers of DeepSeek-R1-Distill-LLaMA-8B on a GSM8K sam-
ple (Cobbe et al., 2021). Tokens within the <think>...</think> span receive uniform attention in early layers, but
deeper layers gradually shift focus to the boundary tokens, indicating information migration and compression of
reasoning content. Similar observations can be found in other models and datasets

We attribute this behavior to causal masking:255

under left-to-right generation, downstream tokens256

cannot access future context. As results, reason-257

ing must be internally summarized and propa-258

gated forward token by token. This leads earlier259

reasoning tokens to fade from view, while later260

tokens—particularly </think>—accumulate and261

represent the distilled reasoning state. Similar phe-262

nomena have been explored by (Lin et al., 2025).263

Analyzing Reasoning Redundancy. Building264

on the information migrration mechanism dis-265

cussed above, we ask: How early can useful reason-266

ing be distilled during generation? Since reason-267

ing content is expected to progressively compress268

toward the end of the span (e.g., </think>), we269

hypothesize that inserting this token at intermedi-270

ate positions during decoding should yield hidden271

states that already approximate the final reasoning272

state. If true, this would suggest that the model has273

already internalized most of the reasoning content274

before completing the full chain.275

To test this hypothesis, we conduct a similarity-276

based redundancy analysis. Specifically, we insert277

the </think> token at a fixed segment length of278

16 tokens during the reasoning generation process279

using DeepSeek-R1-Distill-Qwen-7B. At each in-280

sertion point, we extract the last-layer hidden state281

of the </think> token, treating it as the representa-282

tion of accumulated reasoning up to that step. We283
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Figure 3: We insert a </think> token every 16 tokens
in DeepSeek-R1-Distill-Qwen-7B and extract last-layer
hidden states. These states are highly similar (0.9)
across segments, showing that reasoning adds little new
information. The final state is also similar to earlier ones,
indicating early convergence and redundancy in later
reasoning. Similar observations can be found across
other models and datasets. Best view with zooming in.

then compute pairwise cosine similarities between 284

these intermediate hidden states. 285

As shown in Figure 3, the similarity between 286

adjacent reasoning segments remains consistently 287

high (∼0.9), indicating that each additional seg- 288

ment introduces only marginal new informa- 289

tion. Moreover, the similarity between the final 290

</think> state and earlier ones increases steadily, 291
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Figure 4: Accuracy of DeepSeek-R1-Distill-Qwen-7B
vs. position where </think> is inserted. The bench-
mark is BBH dataset (Suzgun et al., 2022).

confirming the progressive nature of reasoning ag-292

gregation. Notably, even early inserted </think>293

tokens already yield hidden states highly similar to294

the final one—supporting the view that most useful295

reasoning content is distilled early, and extended296

CoT traces incur diminishing returns.297

3.3 ThinkLess: Reasoning Termination and298

Output Regulation299

Building on our earlier conclusion that the most300

useful reasoning content is distilled early, we ask:301

can reasoning be safely truncated early without302

sacrificing answer quality? Since the model gradu-303

ally compresses reasoning into the </think> token,304

it may be possible to shorten the reasoning trace305

while still preserving essential information.306

To verify this, we divide the full reasoning se-307

quence into equal-length segments and insert the308

</think> token at varying cut-off points, thereby309

terminating reasoning at different locations. We310

then measure model accuracy across termination311

positions. Surprisingly, as shown in Figure 4, trun-312

cating reasoning early leads to a decreasing accu-313

racy—despite our hypothesis that essential infor-314

mation should have already migrated toward the315

</think> token. This unexpected decline gradu-316

ally recovers as the termination point moves later,317

forming a U-shaped performance curve.318

A more detailed investigation in Sec. A shows319

that the observed decline in performance is not at-320

tributable to deficiencies in the model’s reasoning321

process. Instead, the drop primarily arises from322

output formatting issues—such as the omission of323

the final answer or deviations from the expected re-324

sponse structure. These formatting errors can lead325

to incorrect evaluations, even when the model’s326

internal reasoning is logically sound. Notably, after327

manually correcting these malformed outputs to 328

align with the desired answer format, we find the 329

underlying responses are indeed accurate, resulting 330

in a substantial recovery in overall accuracy. 331

This confirms that the observed accuracy dip is 332

a surface-level artifact: early termination disrupts 333

output form, not semantic correctness. The model 334

had already internalized the reasoning; it simply 335

failed to express it in the expected format. 336

These results confirm that the model primarily 337

relies on the </think> token to access reasoning 338

information—rather than attending to every rea- 339

soning token individually. As a result, extending 340

the reasoning span offers limited benefit, revealing 341

substantial redundancy in long-form CoT. 342

ThinkLess Framework. We introduce Think- 343

Less, a simple, training-free framework to reduce 344

CoT inference cost. The key idea is to insert 345

the </think> token shortly after <think>, thereby 346

skipping the majority of reasoning generation. This 347

early termination substantially reduces decoding 348

time and KV cache memory usage. However, such 349

abrupt truncation may produce malformed answers 350

that lack structural completeness. 351

To overcome this dilemma, ThinkLess employs 352

a lightweight instruction-based output regulation 353

step. For each task, we prepend a short instruction 354

prompt (see Sec. B) to clarify output expectations. 355

This approach leverages the strong instruction- 356

following abilities of modern LLMs, enabling the 357

model to produce well-structured responses—even 358

in the absence of explicit reasoning. Since the 359

added instruction is minimal, the overall inference 360

cost remains low. 361

Clarification: ThinkLess Without Explicit Rea- 362

soning. ThinkLess inserts the </think> token 363

right after <think>, thereby skipping the genera- 364

tion of any explicit CoT reasoning. At first glance, 365

this appears to challenge the information migration 366

hypothesis: if no intermediate reasoning tokens are 367

produced, it is unclear what reasoning content, if 368

any, is being transferred to inform the final answer. 369

We contend, however, that the </think> token 370

serves a deeper function than a mere delimiter. It 371

acts as a semantic anchor—a learned symbolic 372

abstraction that implicitly encodes a compressed 373

representation of the reasoning process. During 374

pretraining, language models likely acquire the 375

ability to internalize multi-step reasoning patterns 376

and embed this abstracted knowledge into com- 377

pact markers such as </think>. This hypothesis 378
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is supported by our empirical observations: even379

when the reasoning trace is entirely omitted, the380

model frequently produces correct answers, indi-381

cating that the cognitive process of reasoning may382

have been executed internally and silently.383

From this perspective, </think> does not denote384

the absence of reasoning, but rather the culmination385

of an internalized reasoning trajectory. It signals386

to the model that deliberation has concluded and387

that it should proceed to answer generation. This388

behavior can be interpreted as a form of reasoning389

distillation, in which the explicit explanatory steps390

are compressed into latent activations, allowing for391

both efficient inference and high-quality outputs392

without requiring full CoT generation.393

4 Experiment394

4.1 Datasets395

To comprehensively evaluate our proposed method396

across diverse reasoning and knowledge-intensive397

scenarios, we conduct experiments on the follow-398

ing four benchmark datasets:399

• GSM8K (Cobbe et al., 2021): A grade-school400

level math word problem dataset to assess401

arithmetic reasoning. Each question requires402

multi-step calculation and logical deduction.403

• MMLU (Hendrycks et al., 2020): It covers404

57 tasks across various domains including hu-405

manities, STEM, and social sciences, measur-406

ing general knowledge and reasoning ability.407

• GPQA (Rein et al., 2024): A graduate-level408

physics question answering dataset targeting409

conceptual understanding. It tests model ca-410

pability in high-level scientific reasoning.411

• BBH (Suzgun et al., 2022): This subset fo-412

cuses on difficult tasks that require multi-step,413

symbolic, or logical reasoning, offering a rig-414

orous stress test for language models.415

4.2 Metrics416

We report three key evaluation metrics across all417

tasks to provide a comprehensive comparison of418

both performance and efficiency: Top-1 accuracy419

(Top@1↑), inference time (Time↓), and token us-420

age (Tokens↓). Accuracy reflects the percentage of421

exact top-1 matches. All results are from a single422

run.423

Given that ThinkLess omits the explicit rea-424

soning, we also report Top-k accuracy (Top@k)425

(k ≥ 2) for ThinkLess variants. In this setup, the 426

model is allowed to generate k candidate answers 427

for each question, and the response is considered 428

correct if any of them is accurate. This allows 429

us to assess ThinkLess under a relaxed evaluation 430

regime, which reflects its ability to retain answer 431

quality even when reasoning tokens are suppressed. 432

To ensure fair comparison, we constrain the total 433

number of generated tokens in the Top@k setting 434

to remain comparable to the token budget used 435

by standard CoT decoding (i.e., Top@1 with full 436

reasoning). This enables an apples-to-apples evalu- 437

ation of accuracy under equivalent costs of tokens. 438

4.3 Backbones and Baselines 439

To ensure a comprehensive and fair evaluation, we 440

conduct experiments on publicly available LLMs 441

within the 7B to 14B parameter scale. This range 442

reflects the practical constraints imposed by our 443

available GPU resources, while still covering mod- 444

els with strong reasoning capabilities. 445

Backbone. Qwen2.5-7B/14B (Yang et al., 2024): 446

A family of powerful open-source instruction-tuned 447

models known for their strong general reasoning 448

abilities. LLaMA3.1-8B (Grattafiori et al., 2024): 449

A well-balanced model from the LLaMA series 450

that combines efficient inference with competitive 451

instruction-following performance. All backbones 452

are evaluated under identical decoding settings to 453

ensure a consistent comparison. 454

Baselines. We compare ThinkLess against a sin- 455

gle, strong baseline: the full CoT distilled variant. 456

This model is obtained by distilling reasoning ca- 457

pabilities from a more powerful DeepSeek-R1, and 458

it represents a high-performance upper bound. 459

ThinkLess requires no fine-tuning, no auxiliary 460

data, and no changes to the underlying model 461

weights. To our best knowledge, we are the first to 462

offer such efficient CoT reasoning compression in 463

a fully training-free manner. Given this setting, the 464

distilled full CoT model provides the most appro- 465

priate and meaningful baseline for comparison. 466

4.4 How Effective is ThinkLess? 467

Table 1 and Figure 5 present a detailed comparison 468

between our proposed ThinkLess framework and 469

the Distill baseline. The maximum token budget is 470

set as 8k in Table 1. We detail accuracy, inference 471

time, and token consumption below. 472

Comparable Accuracy Despite Omitting Rea- 473

soning. While ThinkLess entirely skips the visi- 474

ble CoT reasoning trace, its Top@1 accuracy re- 475
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Method GSM8K MMLU GPQA BBH AVG.

Top@1 ↑ Time↓ Tokens↓ Top@1 ↑ Time↓ Tokens↓ Top@1 ↑ Time↓ Tokens↓ Top@1 ↑ Time↓ Tokens↓ Top@1 ↑ Time↓ Tokens↓

Qwen2.5-7B

Distill 88.17 10.62 438.92 60.86 47.01 1817.84 30.81 148.82 5523.17 69.29 24.79 976.08 62.28 57.81 2189.00
ThinkLess w/o Instruct 87.79 6.57 274.20 54.04 6.77 279.50 31.31 15.39 631.87 62.02 8.57 341.91 58.79 9.33 381.87
ThinkLess 88.40 5.46 235.41 57.06 9.07 370.34 40.91 14.59 591.17 65.25 9.34 379.32 62.91 9.62 394.06

Qwen2.5-14B

Distill 92.12 20.37 508.40 81.40 62.20 1516.46 41.92 217.62 5205.02 83.84 55.48 1349.88 74.82 88.92 2144.94
ThinkLess w/o Instruct 92.42 9.94 252.49 75.95 12.06 300.33 39.39 24.69 612.79 76.36 11.04 275.33 71.03 14.43 360.24
ThinkLess 92.49 9.05 235.32 76.44 14.84 361.92 44.95 22.34 547.43 78.38 14.73 351.00 73.07 15.24 373.92

LLaMA3.1-8B

Distill 79.38 12.95 493.70 64.07 56.69 2119.48 25.76 162.79 6094.77 71.92 33.21 1252.02 60.28 66.41 2489.99
ThinkLess w/o Instruct 79.76 6.99 270.19 57.55 7.85 298.14 30.30 15.75 600.88 65.45 8.28 315.91 58.27 9.72 371.28
ThinkLess 78.92 6.73 260.74 60.27 10.23 384.55 31.31 48.81 1817.93 71.92 11.45 430.89 60.61 19.31 723.53

Table 1: Comparison of our ThinkLess and DeepSeek-R1 distilled models.
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Figure 5: Top@k accuracy of ThinkLess vs. Top@1 accuracy of DeepSeek-distilled models across datasets and models. We set
k = Token Budget

512
to match the token usage on par with distilled models. Legends follow Figure 1.

mains consistently close to that of the full CoT base-476

line. For example, with Qwen2.5-7B, ThinkLess477

achieves an average accuracy of 62.91%, compared478

to 62.28% from Distill. With Qwen2.5-14B, Thin-479

kLess reaches 73.07% vs. 74.82%. These small480

differences—within 1–2 points—demonstrate that481

ThinkLess retains most of the reasoning quality,482

validating our core hypothesis: reasoning can be483

effectively compressed into latent representations484

without explicit CoT generation.485

Enhanced Accuracy under Comparable To-486

ken Budgets. Figure 5 presents the Top@k accu-487

racy of ThinkLess compared against the Top@1488

accuracy of the full CoT Distill baseline, under an489

equal token budget. The results show that Think-490

Less significantly outperforms the distilled counter- 491

part across various datasets and model backbones. 492

Notably, beyond accuracy improvements, Think- 493

Less also achieves lower inference latency. This 494

is because the k candidate answers in ThinkLess 495

can be generated in parallel, whereas the distilled 496

baseline must generate a long CoT sequence token 497

by token in an inherently sequential manner. 498

Massive Reductions in Token Usage and In- 499

ference Time. ThinkLess achieves substantial ef- 500

ficiency gains across all settings. On average: 1. 501

Token usage is reduced by 60–70%, dropping from 502

2189 tokens (Qwen2.5-7B, Distill) to just 904 with 503

ThinkLess. 2. Inference time is reduced by 50% or 504

more, e.g., from 21.89s to 9.64s with Qwen2.5-14B. 505

7



51.1%

20.8%

14.1%

13.9%

BBH - LLaMA

70.8%

8.6%

8.9%

11.7%

GSM8k - LLaMA

13.1% 12.6%

17.2%

57.1%

GPQA - LLaMA

46.0%

18.3%11.5%

24.2%

MMLU - LLaMA

50.6%

20.0%

20.8%

8.6%

BBH - Qwen

82.3%
5.5%

5.0%

7.1%

GSM8k - Qwen

15.2%
15.7%

15.7%

53.5%

GPQA - Qwen

45.8%

18.0%10.8%

25.4%

MMLU - Qwen

True, True True, False False, True False, False

Figure 6: Answer overlap between Distill and ThinkLess w/o Instruct. Each pie shows the proportion of “a, b”
cases, where “a” is Distill’s results (True or False) and “b” is ThinkLess w/o Instruct’s (True or False).

These savings stem from truncating long reasoning506

sequences early via </think>, which eliminates507

most of the token generation and KV cache ac-508

cumulation that typically burdens autoregressive509

inference. Crucially, these gains come without510

any fine-tuning, distillation, or prompt engineer-511

ing, making ThinkLess easy to deploy.512

Robustness Across Models and Tasks. Al-513

though ThinkLess occasionally underperforms on514

specific datasets (e.g., slightly lower on BBH with515

Qwen2.5-14B), its average accuracy is remarkably516

stable across all backbones. This consistency in-517

dicates that our method generalizes well across518

diverse reasoning tasks and model families.519

The Role of Output Regulation. Comparing520

ThinkLess to its ablated version ThinkLess w/o521

Instruct highlights the impact of our lightweight522

instruction-based output regulation. Across all523

settings, ThinkLess consistently outperforms the524

w/o Instruct variant in Top@1 accuracy, often by525

a significant margin. For instance: On MMLU526

with Qwen2.5-14B: ThinkLess achieves 76.44% vs.527

75.22%. On BBH with LLaMA3-8B: 71.92% vs.528

65.45%, a gap of over 6 points.529

Figure 6 illustrates the answer agreement be-530

tween Distill and ThinkLess w/o Instruct across531

datasets and backbones. Across most of the532

datasets, over 70% of predictions remain consis-533

tent (i.e., <True, True> or <False, False>), demon-534

strating ThinkLess can well preserve ability of the535

Distill model despite its early termination.536

This confirms that without output regulation, the537

model—though internally sound—frequently fails 538

to produce well-structured answers (e.g., missing 539

final choice or wrong format). The addition of 540

a short task-specific instruction guides the model 541

to produce answers in a predictable and scorable 542

format, which is critical for maintaining accuracy 543

in the absence of full reasoning traces. 544

Summary. ThinkLess achieves comparable 545

Top@1 accuracy to full CoT reasoning while halv- 546

ing inference time and reducing token usage by up 547

to 70%, all in a training-free and model-agnostic 548

manner. These results demonstrate that ThinkLess 549

offers a highly practical trade-off between reason- 550

ing fidelity and computational efficiency. 551

5 Conclusion 552

This paper presents ThinkLess, an inference- 553

efficient framework that reduces the overhead of 554

CoT reasoning without any model modification or 555

additional training. By analyzing attention patterns, 556

we find that final answers rely little on early rea- 557

soning steps—enabling safe early termination via 558

a reasoning terminator token. To preserve answer 559

completeness and format, a lightweight output reg- 560

ulation step is introduced, leveraging the model’s 561

instruction-following ability. Experimental Results 562

show that ThinkLess achieves comparable accuracy 563

to full CoT decoding while significantly lowering 564

token usage and latency, making it a practical and 565

generalizable solution for real-world deployment. 566
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6 Limitations567

While ThinkLess demonstrates strong efficiency568

and accuracy trade-offs, several limitations remain:569

Reliance on Instruction Quality. The suc-570

cess of ThinkLess depends on the effectiveness of571

lightweight output regulation instructions. Poorly572

phrased or overly generic instructions may fail to573

guide the model toward well-structured outputs,574

especially for complex or ambiguous tasks. De-575

signing effective instructions for new tasks may576

require manual tuning or domain-specific insights.577

Lack of Dynamic Truncation Strategy. Think-578

Less currently inserts the </think> token at fixed579

positions, without dynamically adapting to the com-580

plexity of individual questions. For harder tasks581

requiring deeper reasoning, premature truncation582

may omit essential content. Developing an adap-583

tive termination policy that tailors reasoning length584

to question difficulty remains an open direction.585

Assumption of Internal Reasoning Compres-586

sion. ThinkLess assumes that LLMs internally587

compress reasoning into the </think> token,588

which may hold for certain instruction-tuned mod-589

els but not all. Models without strong instruction-590

following capabilities or those trained with differ-591

ent prompting formats may not benefit from early592

termination in the same way, limiting the general-593

izability of our method.594

Limited Scalability Validation. Due to com-595

putational resource constraints, we only evaluate596

ThinkLess on mid-sized models (7B–14B) and a597

limited set of reasoning benchmarks. Its perfor-598

mance on larger foundation models or broader tasks599

remains to be validated.600

These limitations also highlight important di-601

rections for future work. In particular, extending602

ThinkLess to larger-scale models, more diverse task603

types, and dynamic truncation policies remains a604

key focus of our ongoing efforts.605

7 Ethical Considerations606

We use publicly available datasets and model check-607

points under licenses that permit research use. De-608

tails about the license terms and usage restrictions609

are provided in Section 4.1. We ensured that all ar-610

tifacts were used in accordance with their intended611

purpose as stated by the original providers.612
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A Analysis of Output Formatting Issues808

from Early Termination809

While ThinkLess is designed to terminate reason-810

ing early and rely on internalized representations811

for answer generation, this can occasionally re-812

sult in malformed outputs—particularly when the813

model is not explicitly instructed on how to format814

its final answer. Tables 2 and 3 illustrate common815

failure cases across different datasets, caused not816

by flawed reasoning, but by formatting deviations817

that hinder correct evaluation.818

GPQA: Outputting the Answer Directly In-819

stead of the Option. In multiple GPQA exam-820

ples, the model correctly computes the numeri-821

cal answer (e.g., “18”, “1+nv
n+v ”, or “3536”), but822

fails to select the corresponding multiple-choice823

option letter (e.g., “A”, “B”, etc.). This is problem-824

atic because the task requires choosing from a list,825

and direct numeric answers—though logically cor-826

rect—are treated as incorrect under automatic eval-827

uation scripts. This issue is a direct consequence828

of skipping the reasoning trace, which would oth-829

erwise reinforce the expected answer format (e.g.,830

“The answer is A”).831

BBH: Verbose or Misaligned Natural Lan-832

guage Outputs. In BBH, early termination some-833

times causes the model to output full explanations834

(e.g., “No, Tamika does not tell the truth”) instead835

of a concise boolean token like “False” or a lettered836

choice. In one example, the model responds with837

an overly verbose phrase: “The statement ‘Return838

your final response within boxed {}’ is True”—a839

hallucination likely caused by partial instruction840

remnants seen during pretraining. These cases re-841

veal how early truncation may weaken task compli-842

ance, especially for boolean or classification-based843

tasks that expect minimal final output.844

MMLU: Misformatting Algebraic Expres-845

sions. For math-heavy tasks like MMLU, the846

model sometimes produces an exactly correct sym-847

bolic expression (e.g., “(x+1)(x−2)(x+4)”) that848

does not match any of the provided answer options849

verbatim. Though mathematically equivalent to850

one of the choices, the mismatch in formatting or851

token order causes the model to be penalized. This852

highlights the fragility of matching-based evalua-853

tion when outputs are not explicitly aligned with854

options.855

Key Insight: Output Regulation is Essential.856

These examples demonstrate that output format-857

ting errors—not reasoning failures—are the domi-858

nant cause of performance drop in ThinkLess with- 859

out instruction-based regulation. The missing or 860

misaligned final answers occur because the model 861

lacks an explicit signal about how to conclude the 862

response after </think> is triggered. 863

By contrast, ThinkLess with output regulation 864

prepends a short, task-specific instruction (e.g., 865

“Select the best option (A, B, C, D):”) that helps 866

the model map internal reasoning to a valid and 867

scorable final output—without increasing token 868

length significantly. This regulation mechanism 869

is crucial for ensuring compatibility with automatic 870

scorers and maintaining downstream performance. 871

B Instruction-based Output Regulation 872

Tables 4 and 5 provides instructions details that reg- 873

ulate the output formatting across different datasets 874

and their subtasks. 875
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Dataset Input Output

GPQA
If an equimolar mixture X of two liquids, which decol-
orizes bromine water, is treated with platinum when
heated, then an equimolar mixture Y of two other liq-
uids is formed as a result of disproportionation, which
does not decolorize bromine water. Hydrogenation
of both mixture X and mixture Y in the presence of
platinum under rather severe conditions gives only one
substance, a certain hydrocarbon Z (mass fraction of
hydrogen is 14.28%), which is a constituent of mixture
Y and widely used as a solvent. Substance Z does not
react further with hydrogen. There are no conjugated
multiple bonds in the molecules of the compounds of
mixture X. Indicate the total number of hydrogen atoms
in two liquids of mixture X.

A. 18

B. 22

C. 16

D. 12

18

A light beam is propagating through a glass with index
of refraction n. The glass is moving at constant velocity
v in the same direction as the beam and toward the
observer in laboratory. What is the speed of light in
glass relative to the observer in laboratory? Take the
speed of light in vacuum c=1.

A. 1

B.
1− nv

n+ v

C.
1 + nv

n+ v

D.
1 + nv

n− v

1 + nv

n+ v

A synchrocyclotron is a special type of cyclotron. A
proton is injected at t = 0 with negligible kinetic en-
ergy, i.e., T ≃ 0, and undergoes two accelerations in
the accelerator to reach the kinetic energy

T1 = 950MeV.

The alternating voltage applied in the accelerator is
given by

U(t) = U0 cos [2πν(α) t+Φ0] .

How many revolutions does the proton make in the
synchrocyclotron?

A. 5300

B. 2500

C. 3536

D. 1864

3536

Table 2: Input and output cases of early termination from GPQA.
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Dataset Input Output

BBH
Fidel lies. Millicent says Fidel tells the truth. Crista
says Millicent lies. Leda says Crista lies. Tamika says
Leda tells the truth. Does Tamika tell the truth?

No, Tamika does not tell the truth.

False or not False or True or True is The statement "Return your final response within
\boxed {}." is True.

The following paragraph describes a set of seven ob-
jects arranged in a fixed order. The statements are
logically consistent within the paragraph.
On a branch, there are seven birds: a robin, a humming-
bird, a raven, a blue jay, a crow, a cardinal, and a quail.
The hummingbird is to the left of the crow. The cardinal
is to the right of the quail. The blue jay is the fourth
from the left. The robin is the second from the left. The
quail is to the right of the crow. The raven is to the left
of the robin. Which bird is the leftmost?

A. The crow is the leftmost

B. The raven is the leftmost

C. The blue jay is the leftmost

D. The robin is the leftmost

E. The hummingbird is the leftmost

F. The cardinal is the leftmost

G. The quail is the leftmost

The raven is the leftmost

MMLU
Find all zeros in the indicated finite field of the given
polynomial with coefficients in that field:

x5 + 3x3 + x2 + 2x in Z5

A. 0, 1

B. 0, 4

C. 0

D. 1

0, 4

The polynomial

x3 + 2x2 + 2x+ 1

can be factored into linear factors in Z7[x]. Find this
factorization.

A. (x− 2)(x+ 2)(x− 1)

B. (x+ 1)(x+ 4)(x− 2)

C. (x+ 1)(x− 4)(x− 2)

D. (x− 1)(x− 4)(x− 2)

(x+ 1)(x− 2)(x+ 4)

Table 3: Input and output cases of early termination from BBH and MMLU.
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Dataset Sub-task Instruction

BBH

boolean expression Evaluate the given Boolean expression step by step,
carefully analyzing each operation and verifying
the logic at every stage. Ensure the reasoning
process is accurate and consistent. Return the final
result as either “True” or “False”.

causal judgement Assess whether the stated causal relationship
between two events or phenomena is logically valid.
Analyze the connection step by step, verify your
reasoning at each stage, and base your judgment on
evidence, logic, and plausibility. Conclude by
providing your final answer as “Yes” or “No”.

formal fallacies Analyze the given argument to determine whether
it is deductively valid. Start by identifying and
formalizing the premises and conclusion. Reflect
on each step of your evaluation, ensuring the
conclusion follows logically and necessarily from
the premises without relying on external
information or assumptions. Finally, respond with
either “valid” or “invalid”.

web of lies Based on the statements made by the characters,
determine whether the specified character is telling
the truth. Analyze the relationships and consistency
between the statements step by step, reflect on your
reasoning at each stage, and ensure your judgment
is logically sound. The final answer should be “Yes”
or “No”’

navigate Given the navigation instructions, determine
whether you can reach the destination. You can
learn to analyze, but the final answer should be
“Yes” or “No”.

logical deduction seven objects Solve the following logic puzzle to determine the
correct order of seven objects based on the given
clues. Analyze the clues step by step, reflect on
your reasoning at each stage, and systematically
eliminate incorrect possibilities. Finally, evaluate
all the options (A-G) and select the one that
represents the correct answer.

ruin names Analyze each option for its humor, creativity, and
resemblance to the original name step by step.
Reflect on the reasoning process to determine the
best choice for each question. Output your answers
as a sequence of four letters (A-D), one for each
question.

temporal sequences Determine the correct order of events from the
given choices. For each item, select the correct
option (A-D) and output them in order.

Table 4: Instruction regulations on BBH Subtasks
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Dataset Instruction
GSM8K Solve the math problem step by step. Give only the final numerical answer.
MMLU Given the multiple-choice question above drawn from different academic

disciplines, think step by step, self-check your reasoning, and output only the
single final option (A, B, C, or D).

GPQA You will be given a graduate-level multiple-choice science question. Think
step-by-step (LaTeX allowed), self-check, then output one line with only the
letter A, B, C, or D.

Table 5: Instruction regulations on GSM8K, MMLU and GPQA.
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