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Abstract

Regret Matching+ (RM+) variants are widely used to build superhuman Poker
AIs, yet few studies investigate their last-iterate convergence in learning a Nash
equilibrium (NE). Although their last-iterate convergence is established for games
satisfying the Minty Variational Inequality (MVI), no studies have demonstrated
that these algorithms achieve such convergence in the broader class of games
satisfying the weak MVI. A key challenge in proving last-iterate convergence
for RM+ variants in games satisfying the weak MVI is that even if the game’s
loss gradient satisfies the weak MVI, RM+ variants operate on a transformed loss
feedback which does not satisfy the weak MVI. To provide last-iterate convergence
for RM+ variants, we introduce a concise yet novel proof paradigm that involves:
(i) transforming an RM+ variant into an Online Mirror Descent (OMD) instance
that updates within the original strategy space of the game to recover the weak
MVI, and (ii) showing last-iterate convergence by proving the distance between
accumulated regrets converges to zero via the recovered weak MVI of the feedback.
Inspired by our proof paradigm, we propose Smooth Optimistic Gradient Based
RM+ (SOGRM+) and show that it achieves last-iterate and finite-time best-iterate
convergence in learning an NE of games satisfying the weak MVI, the weakest
condition among all known RM+ variants. Experiments show that SOGRM+

significantly outperforms other algorithms. Our code is available at https://github.
com/menglinjian/NeurIPS-2025-SOGRM.

1 Introduction

Nash Equilibrium (NE) is a fundamental concept in the field of game theory. Recent advancements in
superhuman game AI, are largely attributed to NE learning [Bowling et al., 2015, Moravčı́k et al.,
2017, Brown and Sandholm, 2018, 2019, Pérolat et al., 2022]. Despite these advancements, the most
popular algorithms for learning an NE—no-regret algorithms, typically achieve only average-iterate
convergence. Even in two-player zero-sum matrix games, they are prone to divergence or cyclic
behavior [Bailey and Piliouras, 2018, Mertikopoulos et al., 2018b, Pérolat et al., 2021]. Average-
iterate convergence requires strategy averaging, which poses significant challenges in large-scale
games where function approximation is used to denote the strategy as a new function has to be trained
to represent the average strategy [Liu et al., 2023].
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Table 1: Comparisons between the convergence results of ours and previous studies about RM+

variants. ”2p0s Games”, ”SM”, ”SN”, and ”RS” refer to two-player zero-sum matrix games, strong
monotonicity, strict NE, and restarting [Cai et al., 2025], respectively. Games with the MVI cover
games with strong monotonicity and two-player zero-sum matrix games. Games with the weak MVI
is a super set of games with the MVI. The notations “✓” and “◦” refer to last-iterate convergence and
finite-time best-iterate convergence, respectively. Note that the finite-time best-iterate convergence
serves as a basis for deriving the linear last-iterate convergence rate of Restarting SExRM+ and
Restarting SPRM+. A detailed discussion is provided in Section 2. Notably, the convergence
of “SExRM+ & SPRM+” in Cai et al. [2025] for two-player zero-sum matrix games refers to
convergence to a specific point within the set of NEs. This is a stronger notion than the convergence
concept we adopt (which is also used in Cai et al. [2025] for games with the MVI), where the iterates
are guaranteed to converge to the set of NEs. See details in Section 3.1.

Algorithm Games with
SM

2p0s Games
with SN

2p0s
Games

Games with
MVI

Games with
Weak MVI

Meng et al. [2023] RM+ ✓ ◦

Cai et al. [2025]
RM+ ✓ ◦

SExRM+ & SPRM+ ✓ ✓ ◦ ✓ ◦ ✓
RS-SExRM+ & RS-SPRM+ ✓ ◦ ✓ ◦

Ours SExRM+ & SPRM+ ✓ ◦ ✓ ◦ ✓ ◦ ✓ ◦
SOGPRM+ ✓ ◦ ✓ ◦ ✓ ◦ ✓ ◦ ✓ ◦

To address the challenges related to averaging, numerous studies consider last-iterate convergence,
ensuring iterates converge to NE [Mertikopoulos et al., 2018a, Daskalakis and Panageas, 2019,
Tatarenko and Kamgarpour, 2020, Wei et al., 2021, Lee et al., 2021, Cen et al., 2021, Liu et al., 2023,
Sokota et al., 2023, Abe et al., 2022a,b, 2023, Pérolat et al., 2021, 2022, Cai and Zheng, 2023]. These
algorithms are based on Online Mirror Descent (OMD) or Follow the Regularized Leader (FTRL).
Despite their theoretical appeal, Regret Matching+ (RM+) variants [Tammelin, 2014, Bowling
et al., 2015, Farina et al., 2021, 2023], are more commonly utilized in solving real-world games, as
evidenced by their success in superhuman Poker AIs [Bowling et al., 2015, Moravčı́k et al., 2017,
Brown and Sandholm, 2018]. The key distinction between RM+ variants and FTRL/OMD-based
algorithms is that the former updates within the (subset of the) cone of the original strategy space of
the game, whereas the latter updates within the original strategy space of the game itself.

Unfortunately, few studies investigate last-iterate convergence of RM+ variants. The results on last-
iterate convergence of RM+ variants are restricted to games satisfying strong monotonicity [Meng
et al., 2023] or a broader class of games—those satisfying the Minty Variation Inequality (MVI) [Cai
et al., 2025]. Games satisfying the MVI cover several common game types, such as two-player
zero-sum matrix games and convex-concave games, along with significant applications like the
training of Large Language Models (LLM) [Munos et al., 2023, Wang et al., 2025]. Unfortunately,
last-iterate convergence of RM+ variants is not established in the broader class of games, such as
those that satisfy the weak MVI [Diakonikolas, 2020, Cai and Zheng, 2022, Pethick et al., 2023, Cai
et al., 2024]1. The weak MVI is weaker and covers more games than the MVI, including applications
like Generative Adversarial Networks (GAN) [Cai and Zheng, 2022]. Therefore, a key question is

Do RM+ variants achieve last-iterate convergence in
learning an NE of games satisfying the weak MVI?

The main challenge in proving last-iterate convergence of RM+ variants in games satisfying the weak
MVI is that even if the game’s loss gradient satisfies the weak MVI, RM+ variants operate on a
transformed feedback which does not satisfy it. Similar to Cai et al. [2025], we focus on smooth RM+

variants [Farina et al., 2023], as other RM+ variants (e.g., RM+[Tammelin, 2014], PRM+[Farina
et al., 2021]) diverge even in two-player zero-sum matrix games [Cai et al., 2025].

Contributions. (i) To prove last-iterate convergence for smooth RM+ variants, we introduce a
novel proof paradigm: recovering the weak MVI by transforming a smooth RM+ variant into an
OMD instance that updates within the original strategy space of the game2, then showing last-iterate

1These works and ours, consider on games satisfying the weak MVI with ρ (defined in Section 3) bounded
below by a negative constant. No prior work has investigated games satisfying the weak MVI with any ρ > −∞.

2This transformation is not the equivalence in Farina et al. [2021], which transforms a RM+ variant into an
OMD instance that updates within the cone of the original strategy space, rather than the original strategy space
itself. In the OMD instance used in Farina et al. [2021], the feedback does not satisfy the weak MVI.
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convergence by proving the distance between accumulated regrets converges to zero via the recovered
weak MVI. Our proof paradigm is inspired by the fact: for any smooth RM+ variant, its feedback
does not satisfy the weak MVI; however, in this corresponding OMD instance, the feedback is the loss
gradient of the original games, satisfying the weak MVI, implying the weak MVI is recovered. By
using the recovered weak MVI, we show that the distance of smooth RM+ variants to the set of NEs
is related to the distance between accumulated regrets, and the latter distance converges to zero. (ii)
To show the practical applicability of our proof paradigm, we utilize this paradigm to establish that
two existing smooth RM+ variants, Smooth Extra-gradient RM+ (SExRM+) and Smooth Predictive
RM+ (SPRM+), achieve last-iterate in learning an NE of games satisfying the MVI. (iii) Inspired
by our proof paradigm, we propose Smooth Optimistic Gradient Based RM+ (SOGRM+), which
achieves last-iterate convergence in games satisfying the weak MVI. (iv) Experimental results show
that SOGRM+ significantly outperforms other algorithms. (v) Our proof paradigm yields finite-time
best-iterate convergence rates for SExRM+, SPRM+, and SOGRM+ without any modifications.

2 Related Work

Our work primarily focuses on the last-iterate convergence of RM+ variants in learning an NE.
Table 1 shows the comparison between our work and the two most relevant literature [Meng et al.,
2023, Cai et al., 2025]. (i) Our proof diverges significantly from theirs as they either analyze the
dynamics of limit points [Cai et al., 2025] or use the strong monotonicity [Meng et al., 2023]. (ii)
The last-iterate convergence results of Meng et al. [2023] and Cai et al. [2025] cannot be extended
to games satisfying the weak MVI. Specifically, the results in Meng et al. [2023] need the strong
monotonicity, which is a stronger assumption than the MVI (let alone the weak MVI). In addition,
the algorithms in Cai et al. [2025], such as SExRM+ and SPRM+, do not demonstrate last-iterate
convergence in games satisfying the weak MVI. (iii) Cai et al. [2025] have to use another approach to
prove the finite-time best-iterate convergence while we employ the same proof paradigm. (iv) The
finite-time best-iterate convergence results of Cai et al. [2025] only hold in two-player zero-sum
matrix games as their results depend on the definition of the duality gap of these games. In contrast,
our finite-time best-iterate convergence results hold in games satisfying the weak MVI.

Notably, we establish the finite-time, rather than asymptotic, best convergence rate for both SExRM+

and SPRM+, which is very important for establishing the linear last-iterate convergence rate for
smooth RM+ variants. Specifically, as shown in Cai et al. [2025], if either SExRM+ or SPRM+

achieves the finite-time best-iterate convergence rate in a game satisfying monotonicity3 and the
metric subregularity [Wei et al., 2021], then their RM+ variants employing the restarting: Restarting
SExRM+ or Restarting SPRM+, exhibit a linear last-iterate convergence rate in that game. As
mentioned above, we prove the finite-time best-iterate convergence rate of SExRM+ and SPRM+ in
games satisfying the MVI, whereas Cai et al. [2025] establish this result only for two-player zero-sum
matrix games. In other words, our results regarding the finite-time best-iterate convergence rate of
SExRM+ and SPRM+ extend the linear last-iterate convergence rate of Restarting SExRM+ and
Restarting SPRM+ from two-player zero-sum matrix games to games satisfying monotonicity and
the metric subregularity. As we can directly apply the proof steps outlined in Cai et al. [2025] (their
Appendix F.4 and G.3), we do not reproduce these details in this paper.

In this paper, we focus on smooth RM+ variants. Our proof paradigm transforms a smooth RM+

variant into an OMD instance that updates within the original strategy space of the game. This
contrasts with prior work [Liu et al., 2021], which transforms the vanilla RM+ [Tammelin, 2014]
rather than a smooth RM+ variant into an OMD instance that updates within the original strategy
space. More importantly, our equivalence (transformation) establishes both last-iterate and finite-time
best-iterate convergence for smooth RM+ variants. In contrast, Liu et al. [2021] fail to demonstrate
even average-iterate convergence for RM+ by using their equivalence.

SOGRM+ is the first RM+ variant to achieve both last-iterate and finite-time best-iterate convergence
in games satisfying the weak MVI. To achieve such convergences, it ensures that the weak MVI can
be used after the weak MVI is recovered, which is not achievable by other smooth RM+ variants.
This arises as SOGRM+ performs one prox-mapping operator (defined in Section 3.2) per iteration,
whereas other smooth RM+ variants execute two, as detailed in the second and third paragraphs of

3Monotonicity is a stronger assumption than the MVI, as the former guarantees ∀x∗ ∈ X ∗ and x ∈
X , ⟨ℓx,x − x∗⟩ ≥ 0, whereas the latter ensures ∃x∗ ∈ X ∗, ∀x ∈ X , ⟨ℓx,x − x∗⟩ ≥ 0 in the games
considered in this paper. For more details, see Section 3.
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Section 6. Notably, even with our proof paradigm, establishing these convergences for SOGRM+

is significantly more challenging than for OMD-based algorithms, as discussed in Section 6. For
the detailed comparison to Cai et al. [2025], see Appendix A. For the comparison between the
convergence results of ours and previous studies about OMD variants in games satisfying the weak
MVI, refer to Appendix B.

3 Preliminaries

3.1 Smooth Games

Smooth games. In this paper, we consider smooth games whose strategy space is simplex. We use
xi ∈ X i to denote the strategy of player i and x = {xi|i ∈ N} to represent the strategy profile,
where X i is an (|Ai| − 1)-dimension simplex ∆|Ai| and N is the set of players. The utility of player
i if all players follow strategy profile x is −∞ < ui(xi,x−i) < +∞, where −i are the players other
than i. For any i and the fixed x−i ∈ X−i, ui(xi,x−i) is a concave function w.r.t. xi ∈ X i. Also,
ℓxi = −∇xi

ui(xi,x−i) is loss gradient. In smooth games, ∥ℓx−ℓx
′∥2 ≤ L∥x−x′∥2,∀x,x′ ∈ X ,

where ℓx = [ℓxi : i ∈ N ], and L > 0 is a constant. In addition, we assume ∥ℓxi ∥1 ≤ P for each
player i and strategy x, where P is a positive constant.

Nash equilibrium (NE). In NE, for any player, her strategy is the best-response to the strategies
of others. No player can benefit by unilaterally deviating from this equilibrium. The notation X ∗

denotes the set of NEs. As ui(xi,x−i) is a concave function w.r.t. xi ∈ X i, then ∀x∗ ∈ X ∗,x ∈ X ,
the Stampacchia variational inequality ⟨ℓx∗

i ,x∗
i − xi⟩ ≤ 0 holds [Facchinei, 2003].

Last-iterate convergence. In this paper, this convergence refers to the behavior where the strategy
profiles xt converge to the set of NEs X ∗. Note that Cai et al. [2025] define a stronger concept of
convergence, known as last-iterate convergence of the iterates. In contrast to last-iterate convergence
discussed in our paper, last-iterate convergence of the iterates implies that xt converges to a specific
point within the set of NEs. Our results and the results in Cai et al. [2025] for games satisfying the
MVI do not pertain to last-iterate convergence of the iterates, whereas the results in Cai et al. [2025]
regarding SExRM+ and SPRM+ for two-player zero-sum games do.

Monotonicity. Smooth games with monotonicity are called smooth monotone games, which include
many common and well-studied classes of games, such as two-player zero-sum matrix games and
convex-concave games [Rosen, 1965]. The most important property of smooth monotone games is
monotonicity ⟨ℓx−ℓx

′
,x−x′⟩ ≥ 0,∀x,x′ ∈ X . Monotonicity is the most widely used assumption

in existing works about last-iterate convergence. From the definition of the NE, in smooth monotone
games, ∀x∗ ∈ X ∗ and x ∈ X , ⟨ℓx,x − x∗⟩ ≥ 0. We do not present the definition of strong
monotonicity—a stronger assumption than monotonicity—as few types of games satisfy it.

Minty variation inequality (MVI). It is a weaker assumption than the monotonicity. The MVI
implies that ∃x∗ ∈ X ∗, ∀x ∈ X , ⟨ℓx,x− x∗⟩ ≥ 0. Note that the MVI uses ∃ rather than ∀. We
provide an example of games that satisfy the weak MVI in Appendix J.

Weak MVI. Some recent works consider a weaker assumption than the MVI called the weak
MVI [Diakonikolas, 2020, Cai and Zheng, 2022, Pethick et al., 2023, Cai et al., 2024], which covers
more game types. Formally, the weak MVI with ρ ≤ 0 implies there exists x∗ ∈ X ∗ that ensures

⟨ℓx + z,x− x∗⟩ ≥ ρ∥ℓx + z∥22,∀z ∈ NX (x),x ∈ X ,

where NX (x) = {v ∈ R|X | : ⟨v,x′ − x⟩ ≤ 0,∀x′ ∈ X} is the normal cone of x. If ρ → −∞,
intuitively, any smooth games satisfy the weak MVI. In Appendix J, we provide a smooth game that
satisfies the weak MVI with 0 > ρ > −∞ and does not satisfy the MVI. The relations between
monotonicity, the MVI, and the weak MVI, is that monotonicity ⊆ MVI ⊆ weak MVI.

Tangent residual. To measure the distance from a strategy profile to the set of NEs, we employ the
tangent residual provided by Cai et al. [2022]. Formally, ∀x ∈ X , its tangent residual is

rtan(x) = min
z∈NX (x)

∥ℓx + z∥2.

If rtan(x) = 0, then x is an NE in smooth games. Also, if x is an NE in smooth games, rtan(x) = 0.
Therefore, limt→∞ rtan(xt) = 0 implies that xt converges to the set of NEs. As shown in Cai
et al. [2022], the tangent residual is an upper bound for the duality gap, a conventional metric that
quantifies the distance between a strategy profile and the set of NEs (details are in Appendix L).
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3.2 Regret Matching+ and Smooth Regret Matching+ Variants

Online convex optimization. Each player i selects a decision xti via the feedback in this framework.
Such feedback is the loss gradient ℓt−1

i = ℓx
t−1

i in solving smooth games. No-regret algorithms are
the algorithms that ensure the regret RT

i = maxxi∈X i

∑T
t=1⟨ℓti,xti −xi⟩ to grow sublinearly, where

xti is the decision at iteration t.

Online mirror descent (OMD). OMD is a traditional no-regret algorithm [Nemirovskij and Yudin,
1983]. Let qti(·) : X i → R,∀t ≥ 1, OMD generates the decisions via the prox-mapping operator

xt+1
i ∈ argmin

xi∈X i

{⟨ℓti,xi⟩+ qti(xi) +Dq0:t−1
i

(xi,x
t
i)}, (1)

where q0:t−1
i (·) = q0i (·) + q1i (·) + · · · + qt−1

i (·), and Dq0:t−1
i

(x,y) = q0:t−1
i (x) − q0:t−1

i (y) −
⟨∇q0:t−1

i (y),x− y⟩ is the Bregman divergence associated with q0:t−1
i (·). We employ the definition

of OMD in Joulani et al. [2017] and Liu et al. [2021], which is a generalization of the standard OMD,
to demonstrate the equivalence between smooth RM+ variants and OMD that updates within the
original strategy space of the game. To recover the standard OMD, we can set q0i = ϕ(·)/η and
qti = 0 for all t ≥ 1, where ϕ(·) is a 1-strongly convex regularizer w.r.t. some norm in the decision
space X , and η > 0. The use of this specific OMD form in Eq. (1) is necessary as a RM+ variant
can be transformed into an OMD instance that updates within the original strategy space of the game
only when using the OMD of this form.

Blackwell approachability framework. RM+ variants are from this framework whose core insight
lies in reframing the problem of regret minimization within the strategy space Z as regret minimiza-
tion within cone(Z) = {λz | z ∈ Z, λ ≥ 0} [Blackwell, 1956, Abernethy et al., 2011, Farina et al.,
2021]. Specifically, a regret minimization algorithm is instantiated in cone(Z), where its output at
iteration t is θt. This corresponds to the strategy zt = θt/⟨θt,1⟩ within Z . Given the loss ℓt at
iteration t, the algorithm observes the transformed loss −F (θt) = −⟨ℓt, zt⟩1+ ℓt and subsequently
generates θt+1. The pseudocode of all RM+ variants presented in this paper, e.g., SExRM+, SPRM+,
and SOGRM+, is in Appendix K.

Smooth RM+ variants [Farina et al., 2023]. These variants are designed to address the instability of
PRM+ [Farina et al., 2021], e.g., rapid fluctuations of the strategy xi across iterations. To do that,
Farina et al. [2023] enable the decision θti in Rd≥1 instead of Rd≥0 in other RM+ variants to obtain the
smoothness of the strategy xi w.r.t. θi (Lemma 5.4), where Rd≥1 = {y|y ∈ Rd,y ≥ 0, ∥y∥1 ≥ 1}.
We consider two existing smooth RM+ variants, Smooth Extra-gradient RM+ (SExRM+) and Smooth
Predictive RM+ (SPRM+). They are algorithm grounded in Blackwell approachability framework.
Specifically, they are respectively related to instances of two OMD variants, Optimistic Gradient
Descent Ascent (OGDA) [Popov, 1980] and Extra-Gradient (EG) [Korpelevich, 1976], which updates
within Rd≥1, the subset of cone(X i). The update rule of SExRM+ is

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt),θi⟩+
1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

θt+1
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

,

(2)

and the update rule of SPRM+ is

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

θt+1
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

,

(3)

where η > 0 and ψ(·) is the quadratic regularizer. Unlike RM+, smooth RM+ variants do not enjoy
step size invariance [Chakrabarti et al., 2024]. However, empirical evidence demonstrates that RM+

does not achieve last-iterate convergence in two-player zero-sum matrix games [Cai et al., 2025].
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4 Our Proof Paradigm

We now introduce our proof paradigm. We only consider smooth RM+ variants, since other RM+

variants, e.g., RM+ and PRM+, are experimentally shown to diverge even in two-player zero-sum
matrix games [Cai et al., 2025]. Our proof paradigm is inspired by this fact: for any smooth RM+

variant, its feedback does not satisfy the weak MVI; however, in its corresponding OMD instance
that updates within the original strategy space of the games, the feedback is the loss gradient of the
original games, satisfying the weak MVI. Specifically, our proof paradigm consists of two steps:
(i) recovering the weak MVI by transforming a smooth RM+ variant into an OMD instance that
updates within the original strategy space of the games, and (ii) showing the last-iterate convergence
by proving the distance between accumulated regrets converges to zero via the recovered weak MVI.

Phase 1. To recover the weak MVI of a smooth RM+ variant, we transform this smooth RM+ variant
into an OMD instance that updates within the original strategy space of the game. To do that, it is
sufficient to show the equivalence between the update rule defined in Eq. (4) and (5):

θt2i ∈ argmin
θi∈R|Ai|

≥1

{⟨−Fi(θt1),θi⟩+
1

η
Dψ(θi,θ

t0
i )},

xt2i =
θt2i
∥θt2i ∥1

, Fi(θ
t1) = ⟨ θt1i

∥θt1i ∥1
, ℓt1i ⟩1− ℓt1i ,

(4)


xt2i ∈ argmin

xi∈X i

{⟨ℓt1i ,xi⟩+ fi(xi) +Dhi(xi,x
t0
i )},

hi(xi) + fi(xi) =
∥θt2i ∥1
η

ψ(xi), hi(xi) =
∥θt0i ∥1
η

ψ(xi),
(5)

where t0, t1, t2 refer to different iterations, η > 0, xt0i = θt0i /∥θ
t0
i ∥1, θt0i with θt1i ∈ R|Ai|

≥1 , ℓt1i is
the loss gradient of player i induced by xt1 = [xt1i = θt1i /∥θ

t1
i ∥1 : i ∈ N ], and ψ(·) is the quadratic

regularizer.

The intuitive explanation of this equivalence between the update rule defined in Eq. (4) and (5) is that
both projecting onto the truncated positive orthant and projecting onto the simplex can be written in a
unified way using the max operator, e.g., both update rules in Eq. (4) and Eq. (5) can be expressed as
[·]+ = max(·,0). Due to page limits, the detailed proof is in Appendix C.

This equivalence is the inherent property of smooth RM+ variants and does not involve the game
types. Notably, this equivalence is not the equivalence in Farina et al. [2021] as the OMD in Farina
et al. [2021] updates within cone(X i) rather than X i, the original strategy space of the game. The
weak MVI is recovered as the feedback in Eq. (5) is the loss gradient of the original game that
satisfies the weak MVI. Formally, for the feedback in Eq. (5), there exists an x∗ ∈ X ∗ ensures that
⟨ℓt1 + z,xt1 − x∗⟩ ≥ ρ∥ℓt1 + z∥22, ∀z ∈ NX (xt1) with ℓt1 = [ℓt1i |i ∈ N ], as ℓt1i is the loss gradient
of the original game that satisfies the weak MVI.

Phase 2. The first step in this phase is: establishing a relationship between the distance of the strategy
profile induced by RM+ variants to the set of NEs and the distance between accumulated regrets.
Formally, from the first-order optimality of the prox-mapping operator in Eq. (5), ∀xi ∈ Xi we have

⟨ℓt1i +∇
x

t2
i
fi(x

t2
i ) +∇x

t2
i
Dhi(x

t2
i ,x

t0
i ),xi − xt2i ⟩ ≥ 0

⇒
∑
i∈N
⟨ℓt1i +∇

x
t2
i
hi(x

t2
i ) +∇x

t2
i
fi(x

t2
i )−∇x

t0
i
hi(x

t0
i ),xi − xt2i ⟩ ≥ 0

⇒
∑
i∈N
⟨ℓt1i −

θt0i − θt2i
η

,xi − xt2i ⟩ ≥ 0 ⇔ −ℓt1 + θt0 − θt2

η
∈ NX (xt2)

⇒ rtan(xt2) ≤ ∥ℓt2 − ℓt1 +
θt0 − θt2

η
∥2,

(6)

where xt2i =θt2i /∥θ
t2
i ∥1, the third line is from ∇

x
t2
i
hi(x

t2
i )+∇x

t2
i
fi(x

t2
i )=θt2i /η and

∇
x

t0
i
hi(x

t0
i )=θt0i /η, as well as the last line is from the definition of the tangent residual. Thus,

if we prove ∥ℓt2 − ℓt1∥2 → 0 and ∥θt2 − θt0∥2 → 0, we can get that rtan(xt2) → 0, imply-
ing xt2 is an NE. For smooth RM+ variants, we have that ∥ℓt2 − ℓt1∥2 ≤ O(∥θt2 − θt1∥2),
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which does not hold for other RM+ variants, where ℓt2i is the loss gradient of player i induced by
xt2 = [xt2i = θt2i /∥θ

t2
i ∥1 : i ∈ N ]. For smooth games satisfying the MVI, we show that for existing

smooth RM+ variants, such as SExRM+ and SPRM+, ∥θt2 − θt1∥2 → 0 and ∥θt1 − θt0∥2 → 0
(indicating ∥θt2 − θt0∥2 → 0) as t0 → ∞, implying that xt2 converges to the set of NEs, where
t1 = t0 + 1/2 and t2 = t1 + 1/2 (detailed in Eq. (22), (23), and (24)). For smooth games satisfying
the weak MVI, we apply the recovered weak MVI to SOGRM+ to get ∥θt0 − θt0+1∥2 → 0 as
t0 →∞, proving that xt2 converges to the set of NEs, where t2 = t0 + 1/2 (detailed in Eq. (11)).
Note that t0 can be any iteration t, while these convergence results hold only as t0 →∞.

5 Application of Our Proof Paradigm: Convergence of SExRM+ and SPRM+

To demonstrate the practical applicability of our paradigm, we employ it to establish both last-iterate
and finite-time best-iterate convergence of two existing smooth RM+ variants, namely SExRM+

and SPRM+. It is important to note that while Cai et al. [2025] provide last-iterate convergence
guarantees for SExRM+ and SPRM+ in learning an NE of games satisfying the MVI, they do not
address the finite-time best-iterate convergence.
Theorem 5.1. SExRM+ with 0 < η < 1

DLu
or SPRM+ with 0 < η < 1

8DLu
achieves the asymptotic

last-iterate convergence and O( 1√
t
) best-iterate convergence rate in learning an NE of games

satisfying the MVI, whereD = maxi∈N |Ai| and Lu =
√
2P 2 + 4L2. Specifically, rtan(xt+

1
2 )→ 0

and minτ∈[t] r
tan(xτ+

1
2 ) ≤ O( 1√

t
) as t→∞.

To prove Theorem 5.1, we introduce the Theorem 5.2, Theorem 5.3, and Lemma 5.4 (the proof of
Theorems 5.2 and 5.3 are in Appendix E and F, respectively).

Theorem 5.2. SExRM+ with 0 < η < 1
DLu

ensures ∥θt+ 1
2 − θt∥2 → 0 and ∥θt+1 − θt+

1
2 ∥2 → 0

as t→∞, and minτ∈[t]

(
∥θτ+ 1

2 − θτ∥22 + ∥θτ+1 − θτ+
1
2 ∥22

)
≤ O( 1t ), ∀t ≥ 1.

Theorem 5.3. SPRM+ with 0 < η < 1
8DLu

ensures ∥θt+ 1
2 − θt∥2 → 0 and ∥θt+1 − θt+

1
2 ∥2 → 0

as t→∞, and minτ∈[t]

(
∥θτ+ 1

2 − θτ∥22 + ∥θτ+1 − θτ+
1
2 ∥22

)
≤ O( 1t ), ∀t ≥ 1.

Lemma 5.4. (Proposition 1 in Farina et al. [2023]) ∀a, b ∈ Rd≥1, ∥ a
∥a∥1

− b
∥b∥1
∥2 ≤

√
d∥a− b∥2.

Proof Sketch of Theorem 5.1. From the analysis in Section 4, for SExRM+ and SPRM+, the tangent
residual of the strategy profile xt+1 is

rtan(xt+1) ≤L∥xt+1 − xt+
1
2 ∥2 +

1

η
∥θt − θt+

1
2 ∥2 +

1

η
∥θt+ 1

2 − θt+1∥2,

Then, using Lemma 5.4 with a = θt+1 and b = θt+
1
2 , we have

rtan(xt+1) ≤L
√
D∥θt+1 − θt+

1
2 ∥2 +

1

η
∥θt − θt+

1
2 ∥2 +

1

η
∥θt+ 1

2 − θt+1∥2.

From Theorem 5.2 and 5.3 (∥θt − θt+
1
2 ∥2 → 0 and ∥θt+ 1

2 − θt+1∥2 → 0), we get rtan(xt)→ 0 as
t→∞. Similarly, we get

(rtan(xt+1))2 ≤2L2∥xt+1 − xt+
1
2 ∥2 +

2

η2
∥θt − θt+1∥22.

By using Lemma 5.4, we get

(rtan(xt+1))2 ≤
(
2L2D2 +

4

η2

)(
∥θt+1 − θt+

1
2 ∥22 + ∥θt − θt+

1
2 ∥22

)
.

Thus, from Theorem 5.2 and 5.3 (minτ∈[t](∥θτ+
1
2 − θτ∥22 + ∥θτ+1 − θτ+

1
2 ∥22) ≤ O( 1t )), we get

that for τ = argminτ∈[t](∥θτ+
1
2 − θτ∥22 + ∥θτ+1 − θτ+

1
2 ∥22),

rtan(xτ+1) ≤
√
O
((
∥θτ+ 1

2 − θτ∥22 + ∥θτ+1 − θτ+
1
2 ∥22

))
≤ O(

1√
t
).

For more details, see Appendix D.
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6 Our Algorithm: SOGRM+

We prove that SExRM+ and SPRM+ achieve last-iterate convergence and finite-time best-iterate
convergence in games satisfying the MVI. However, they do not achieve such convergences in games
satisfying the weak MVI, covering games satisfying the MVI. Inspired by our paradigm, we propose a
new smooth RM+ variant called Smooth Optimistic Gradient Based Regret Matching+ (SOGRM+),
which achieves last-iterate and finite-time best-iterate convergence in games satisfying the weak MVI.

The key insight of SOGRM+ is to transform the term related to x∗ (an NE) to a term that only depends
on the gap between accumulated regrets across different iterations via the recovered weak MVI,
which is pivotal for establishing last-iterate convergence. Specifically, it transforms the penultimate
line of Eq. (6) from −ℓt1 + (θt0 − θt2)/η ∈ NX (xt2) to −ℓt2 + (θt0 − θt0+1)/η ∈ NX (xt2) by using
the second line of Eq. (7) (e.g., θt+1

i = θ
t+ 1

2
i − ηFi(θt−

1
2 ) + ηFi(θ

t+ 1
2 )), enabling the derivation

of −⟨ℓt2−ℓt2+(θt0−θt0+1)/η,xt2−x∗⟩≤−ρ∥(θt0−θt0+1)/η∥22 via the weak MVI, where t0 can
be any iteration t, t1 = t0 − 1/2, and t2 = t0 + 1/2. See details in Eq. (9), (10), (41) and (42).

In contrast, for SExRM+ and SPRM+, the second line of the update rule in SOGRM+, θt+1
i =

θ
t+ 1

2
i − ηFi(θt−

1
2 ) + ηFi(θ

t+ 1
2 ), corresponds to a prox-mapping operator (first mentioned in the

text around Eq. (1)): θt+1
i ∈argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ),θi⟩+Dψ(θi,θ

t
i)/η}. Unfortunately, this

update does not yield −ℓt2+(θt0−θt0+1)/η∈NX (xt2), enabling the weak MVI cannot be used.

Notably, the proof of SOGRM+ needs additional techniques compared to that of OMD-based
algorithms, i.e., transforming variables using the definition of the inner product to employ the weak
MVI and tangent residual (details are in Eq. (9), (10), (38), (39), (41), and (46)) rather than directly
transforming variables using equalities as in OMD-based algorithms. The update rule of SOGRM+

at iteration t is

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

θt+1
i = θ

t+ 1
2

i − ηFi(θt−
1
2 ) + ηFi(θ

t+ 1
2 ).

(7)

The intuition for the update step in Eq. (7) is: SOGRM+, can be viewed as a momentum-based
method, conceptually similar to Adam. Specifically, the update in Eq. (7) is equivalent to θ

t+ 3
2

i ∈
argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ) − (Fi(θ

t+ 1
2 ) − Fi(θ

t− 1
2 )),θi⟩ + 1

ηDψ(θi,θ
t+ 1

2
i )}. In this context,

Fi(θ
t+ 1

2 )−Fi(θ
t− 1

2 ) acts as a momentum term. More precisely, it represents the trend of change in
Fi over the two most recent iterations, analogous to the ”acceleration” of Fi. This can be likened to a
ball rolling down a hill; as acceleration accumulates, its velocity increases, allowing it to reach the
bottom more swiftly.

SOGRM+ is a smooth RM+ variant since it operates within the R|Ai|
≥1 , the subset of cone(X i), and

updates by facing the adjusted loss vector Fi(θt) = ⟨ℓti,xti⟩1− ℓti instead of directly using ℓti. The
convergence results of SOGRM+ are shown in Theorem 6.1.

Theorem 6.1. In smooth games satisfying the weak MVI with ρ > − 1
12

√
3DLu

, there always exists

an η ∈
(
0, 1

2DLu

)
satisfying 1

2 + 2ρ
η − 2η2D2L2

u > 0 such that ensures SOGRM+ achieves the

asymptotic last-iterate convergence and O( 1√
t
) best-iterate convergence rate in learning an NE of

these games, where D = maxi∈N |Ai| and Lu =
√
2P 2 + 4L2. Specifically, if all players follow

the update rule of SOGRM+, then rtan(xt+
1
2 )→ 0 and minτ∈[t] r

tan(xτ+
1
2 ) ≤ O( 1√

t
) as t→∞.

To prove last-iterate and finite-time best-iterate convergence of SOGRM+, we introduce Theorem 6.2
and Lemma 6.3, whose proofs are in Appendix G and H, respectively.

Theorem 6.2. If ρ>− 1
12

√
3DLu

, there always exists an η∈
(
0, 1

2DLu

)
satisfying 1

2+
2ρ
η −2η

2D2L2
u>0

such that ensures ∥θt+1−θt∥2→0 as t→∞ and minτ∈[t] ∥θτ+1 − θτ∥22 ≤ O( 1t ), ∀t ≥ 1.
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Lemma 6.3. If all players follow the update rule of SOGRM+, ∀x = [xi|i ∈ N ] ∈ X ,

∑
i∈N
⟨ℓt−

1
2

i − θti − θ
t+ 1

2
i

η
, xi − x

t+ 1
2

i ⟩ =
∑
i∈N
⟨ℓt+

1
2

i − θti − θt+1
i

η
,xi − x

t+ 1
2

i ⟩.

Proof. Now, we prove Theorem 6.1 via our proof paradigm. Firstly, from the equivalence in Section
4 (Eq. (4) can be written as the form in Eq. (5)), the update rule of SOGRM+ can be written as (see
details in Appendix I)

x
t+ 1

2
i ∈ argmin

xi∈X i

{⟨ℓt−
1
2

i ,xi⟩+ q
t− 1

2
i (xi) +Dq0:t−1

i
(xi,x

t
i)},

θt+1
i = θ

t+ 1
2

i − ηFi(θt−
1
2 ) + ηFi(θ

t+ 1
2 ),

q0:t−1
i (xi) =

∥θti∥1
η

ψ(xi), q
0:t−1
i (xi) + q

t− 1
2

i (x) =
∥θt+

1
2

i ∥1
η

ψ(xi),

(8)

From the first-order optimality of the first prox-mapping operator in Eq. (8), ∀x ∈ X , we have

⟨ℓt−
1
2

i +∇
x

t+1
2

i

q
t− 1

2
i (x

t+ 1
2

i ) +∇
x

t+1
2

i

Dq0:t−1
i

(x
t+ 1

2
i ,xti),xi − x

t+ 1
2

i ⟩ ≥ 0

⇒
∑
i∈N
⟨ℓt−

1
2

i +∇
x

t+1
2

i

q0:t−1
i (xt+

1
2 ) +∇

x
t+1

2
i

q
t− 1

2
i (xt+

1
2 )−∇xt

i
q0:t−1
i (xt),xi − x

t+ 1
2

i ⟩ ≥ 0.

Then, we have∑
i∈N
⟨ℓt−

1
2

i − θti − θ
t+ 1

2
i

η
,xi − x

t+ 1
2

i ⟩ ≥ 0,
∑
i∈N
⟨ℓt+

1
2

i − θti − θt+1
i

η
,xi − x

t+ 1
2

i ⟩ ≥ 0, (9)

where the first inequality is from ∇
x

t+1
2

i

q0:t−1
i (xt+

1
2 ) + ∇

x
t+1

2
i

q
t− 1

2
i (xt+

1
2 ) = θ

t+ 1
2

i /η with

∇xt
i
q0:t−1
i (xti) = θti/η, and the second inequality is from Lemma 6.3. According to Eq. (9)

and the definition of the normal cone, we have

−ℓt+ 1
2 +

θt − θt+1

η
∈ NX (xt+

1
2 ), (10)

where ℓt+
1
2 = [ℓ

t+ 1
2

i : i ∈ N ]. From the definition of the tangent residual, we obtain

rtan(xt+
1
2 ) ≤ ∥ℓt+ 1

2 − ℓt+
1
2 +

θt − θt+1

η
∥2 ≤

1

η
∥θt − θt+1∥2. (11)

Combining Eq. (11) and Theorem 6.2 (∥θt − θt+1∥2 → 0), we get rtan(xt+
1
2 ) → 0 as

t → ∞. Similarly, from Theorem 6.2 (minτ∈[t] ∥θτ+1 − θτ∥22 ≤ O( 1t )), we get that for
τ = argminτ∈[t] ∥θτ − θτ+1∥22,

rtan(xτ+
1
2 ) ≤ 1

η
∥θτ − θτ+1∥2 ≤ O(

1√
t
).

These complete the proof.

7 Conclusions

We study last-iterate convergence of RM+ variants in learning an NE of games satisfying the weak
MVI. We introduce a concise yet novel proof paradigm to analyze last-iterate convergence of RM+

variants. Using this paradigm, we show that two existing smooth RM+ variants, such as SExRM+

and SPRM+, exhibit last-iterate and finite-time best-iterate convergence in games satisfying the
MVI. Building on our proof paradigm, we propose SOGRM+, achieving last-iterate and finite-time
best-iterate convergence in games satisfying the weak MVI. To the best of our knowledge, this is (i)
the first last-iterate convergence for RM+ variants in games satisfying the weak MVI, and (ii) the
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first finite-time best-iterate convergence for RM+ variants in games satisfying the MVI or even only
the weak MVI. Future directions involve integrating our proof paradigm with other OMD algorithms,
such as Reflected Gradient [Hsieh et al., 2019] and composite Fast Extra-Gradient [Cai et al., 2024],
to develop novel RM+ variants that achieve stronger last-iterate convergence.

Limitations. The primary limitation of our paper is the lack of proof for the convergence of RM+
variants within extensive-form games. RM+ variants are typically integrated with the counterfactual
regret minimization (CFR) framework [Zinkevich et al., 2007, Farina et al., 2019] to tackle extensive-
form games. Establishing convergence in this context is particularly challenging, and addressing this
issue constitutes one of our future research directions. The second limitation lies in the fact that our
SOGRM+ requires a larger minimum ρ for convergence compared to OMD variants, as shown in
Appendix B. Nonetheless, it’s important to emphasize that we are the first to explore the last-iterate
convergence of RM+ variants in games that satisfy the weak MVI.
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Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.
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Justification: We provide the full set of assumptions and a complete (and correct) proof.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information needed to reproduce the main experimental
results of this paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We will provide the code once this paper is accepted.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all hyperparameters.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, when testing on randomly generated games, we report the variances
across the game generated by different seeds.
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• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of the computer where the experiments are conducted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper only investigates the convergence of some algorithms.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper only investigates the convergence of some algorithms.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code that we used is cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLM for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Table 2: Comparisons between the minimum value of ρ of ours and previous studies about OMD
variants in games satisfying the weak MVI.

Minimum ρ Algorithms

Cai and Zheng [2022] − 1

12
√
3L

OMD Variants

Pethick et al. [2023] − 1
2L

OMD Variants

Alacaoglu et al. [2024] − 1
L

OMD Variants

Cai et al. [2024] − 1
2L

OMD Variants

Pethick et al. [2025] − 1
L

OMD Variants

Ours − 1

12
√
3D

√
2P2+4L2

RM+ Variants

A Detailed Comparison to Cai et al. [2025]

Now, we provide a detailed comparison to Cai et al. [2025], including the proof techniques, the
best-iterate convergence results, the non-finite-time last-iterate convergence results, and the finite-time
last-iterate convergence results.

In terms of the proof techniques, our proof paradigm centers on recovering the weak MVI, whereas
the methods proposed by Cai et al. [2025] focus on analyzing the limit points of iterates or leveraging
the definition of the duality gap in two-player zero-sum games. Notably, our paradigm is applicable
to both best-iterate convergence and last-iterate convergence, in contrast to Cai et al. [2025], who
require separate proofs for these two types of convergence.

Regarding the best-iterate convergence results, our results apply to games satisfying the weak
MVI, whereas those of Cai et al. [2025] are restricted to two-player zero-sum matrix games. The
applicability of our best-iterate convergence results is significantly broader than that of Cai et al.
[2025].

Concerning the non-finite-time last-iterate convergence results, our findings hold for games satisfying
the weak MVI. Cai et al. [2025] divide their results into two sections: the first pertains to two-player
zero-sum matrix games, while the second addresses broader games satisfying the MVI. Their results
exhibit pointwise convergence for two-player zero-sum matrix games, surpassing our own in strength.
However, in games satisfying the MVI, our results align with theirs, yet ours extend further to include
games satisfying the weak MVI.

With respect to the finite-time last-iterate convergence results, as mentioned in Section 2, our best-
iterate convergence results enable us to extend the finite-time last-iterate convergence findings of Cai
et al. [2025] from two-player zero-sum matrix games to games that concurrently satisfy monotonicity
and metric subregularity. This exemplifies one of the advantages of our best-iterate convergence
results.

B Comparison between the Minimum Value of ρ of Ours and OMD variants

We also compare the minimum value of ρ between our SOGRM+ and previous studies on OMD
variants in games satisfying the weak MVI, as shown in Appendix B. Focusing on the constrained
setting, we present this comparison specifically within this context. Although other algorithms
accommodate a broader range of ρ, existing work primarily concentrates on OMD variants. We are
the first to explore the last-iterate convergence of RM+ variants in games that satisfy the weak MVI.

C Detailed Proof of the Phase 1 of Section 4

In this section, we provide a detailed proof for the Phase 1 of Section 4. Before starting our proof, we
first present the following lemma.

Lemma C.1 (Adapted from Theorem 2.2 of Chen and Ye [2011]). For any y ∈ Rd, the projection of
y onto the simplex ∆d is obtained by [y − γ1]+, where γ exists and is unique.
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Now, we start our proof. Firstly, considering Eq. (4), from the fact that ψ(·) is the quadratic regularizer
(in other words, ∀a, b ∈ Rd, c ∈ R, cψ(a) = c∥a∥22/2, Dcψ(a, b) = c∥a− b∥22/2), we have

θt2i ∈ argmin
θi∈R|Ai|

≥1

{⟨−Fi(θt1),θi⟩+
1

η
Dψ(θi,θ

t0
i )}
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2η
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2
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Then, we have
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Eq. (12) indicates getting the projection of θt0i + η⟨ θ
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the solution is the projection of θt0i + η⟨ θ
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as well as (ii) γ exists and is unique. In other words, θt2i in Eq. (4) can be obtained via
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i − β1]+, if ∥[θt0i + η⟨ θ

t1
i

∥θt1
i ∥1

, ℓt1i ⟩1− ηℓ
t1
i ]

+∥1 < 1,

Secondly, for Eq. (5), we have

xt2i ∈ argmin
xi∈X i

{⟨ℓt1i ,xi⟩+ fi(xi) +Dhi
(xi,x

t0
i )}

⇔xt2i ∈ argmin
xi∈X i

{⟨ℓt1i ,xi⟩+
∥θt2i ∥1
η

ψ(xi)−
∥θt0i ∥1
η

ψ(xi) +D ∥θt0
i

∥1
η ψ

(xi,x
t0
i )}.

Since ψ(·) is the quadratic regularizer (in other words, ∀a, b ∈ Rd, c ∈ R, cψ(a) = c∥a∥22/2,
Dcψ(a, b) = c∥a− b∥22/2), we have

xt2i ∈ argmin
xi∈X i

{⟨ℓt1i ,xi⟩+ fi(xi) +Dhi
(xi,x

t0
i )}

⇔xt2i ∈ argmin
xi∈X i

{⟨ℓt1i ,xi⟩+
∥θt2i ∥1
2η

∥xi∥22 −
∥θt0i ∥1
2η

∥xi∥22 +
∥θt0i ∥1
2η

∥xi − xt0i ∥
2
2}

⇔xt2i ∈ argmin
xi∈X i

{⟨2ηℓt1i ,xi⟩+ ∥θ
t2
i ∥1∥xi∥

2
2 − ∥θ

t0
i ∥1∥xi∥

2
2 + ∥θ

t0
i ∥1∥xi − xt0i ∥

2
2}

⇔xt2i ∈ argmin
xi∈X i

{⟨2ηℓt1i ,xi⟩+ ∥θ
t2
i ∥1∥xi∥

2
2 − ∥θ

t0
i ∥1∥xi∥

2
2 + ∥θ

t0
i ∥1∥xi∥

2
2+

∥θt0i ∥1∥x
t0
i ∥

2
2 − 2∥θt0i ∥1⟨xi,x

t0
i ⟩}

⇔xt2i ∈ argmin
xi∈X i

{⟨2ηℓt1i ,xi⟩+ ∥θ
t2
i ∥1∥xi∥

2
2 − 2∥θt0i ∥1⟨xi,x

t0
i ⟩}

⇔xt2i ∈ argmin
xi∈X i

{⟨2ηℓt1i − 2∥θt0i ∥1x
t0
i ,xi⟩+ ∥θ

t2
i ∥1∥xi∥

2
2}

⇔xt2i ∈ argmin
xi∈X i

{2 ⟨ηℓ
t1
i − ∥θ

t0
i ∥1x

t0
i ,xi⟩

∥θt2i ∥1
+ ∥xi∥22}

⇔xt2i ∈ argmin
xi∈X i

{2 ⟨ηℓ
t1
i − ∥θ

t0
i ∥1x

t0
i ,xi⟩

∥θt2i ∥1
+ ∥xi∥22 + ∥

ηℓt1i − ∥θ
t0
i ∥1x

t0
i

∥θt2i ∥1
∥22}

⇔xt2i ∈ argmin
xi∈X i

∥∥θ
t0
i ∥1x

t0
i − ηℓ

t1
i

∥θt2i ∥1
− xi∥22

⇔xt2i ∈ argmin
xi∈X i

∥θ
t0
i − ηℓ

t1
i

∥θt2i ∥1
− xi∥22,

(14)

where the last line is from θt0i = ∥θt0i ∥1x
t0
i (xt0i =

θ
t0
i

∥θt0
i ∥1

). Since X i is simplex, Eq. (14) indicates

getting the projection of θ
t0
i −ηℓt1i
∥θt2

i ∥1
on simplex. Therefore, as shown in Lemma C.1, the closed-form

solution of Eq. (14) is Eq. (15):

xt2i = [
θt0i − ηℓ

t1
i

∥θt2i ∥1
− α′1]+ =

[θt0i − α1− ηℓ
t1
i ]

+

∥θt2i ∥1
, (15)

where α′ = α

∥θt2
i ∥1

. Notably, α exists and is unique to ensure [θ
t0
i −α1−ηℓt1i ]+

∥θt2
i ∥1

in simplex, because (i)

α′ is the term γ in Lemma C.1, as well as (ii) γ exists and is unique. In other words, the update rule
in Eq. (5) can be written as

xt2i =
[θt0i − α1− ηℓ

t1
i ]

+

∥θt2i ∥1
. (16)

Note that θt2i , θt0i , and ℓt1i are the same between Eq. (4) and Eq. (5).
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Thirdly, assume α in Eq. (16) is

α =

−η⟨
θ
t1
i

∥θt1
i ∥1

, ℓt1i ⟩ if ∥[θt0i + η⟨ θ
t1
i

∥θt1
i ∥1

, ℓt1i ⟩1− ηℓ
t1
i ]

+∥1 ≥ 1,

−η⟨ θ
t1
i

∥θt1
i ∥1

, ℓt1i ⟩+ β if ∥[θt0i + η⟨ θ
t1
i

∥θt1
i ∥1

, ℓt1i ⟩1− ηℓ
t1
i ]

+∥1 < 1,
(17)

By using Eq. (13), we have [θt0i −α1− ηℓ
t1
i ]

+ = θt2i . Therefore, substituting Eq. (17) into Eq. (16),
we get that the update rule in Eq. (16) (or Eq. (5)) can be written as (since [θt0i −α1− ηℓ

t1
i ]

+ = θt2i )

xt2i =
[θt0i − α1− ηℓ

t1
i ]

+

∥θt2i ∥1
=

θt2i
∥θt2i ∥1

, (18)

which enables xt2i in simplex since ∥xt2i ∥1 and xt2i ≥ 0 (the xt2i in Eq. (5)). In addition, as mention

in the text around Eq. (15), we have α is unique to ensure xt2i =
[θ

t0
i −α1−ηℓt1i ]+

∥θt2
i ∥1

in simplex. Hence,

the value of α must be same as Eq. (17) shown! Also, note the xt2i in Eq. (4) is obtained via

xt2i =
θt2i
∥θt2i ∥1

. (19)

Therefore, combining Eq. (18) with Eq. (19), we get that the update rule in Eq. (4) is the same as Eq.
(5). It completes the proof.

D Proof of Theorem 5.1

Proof. Now, we start to prove last-iterate and finite-time best-iterate convergence of SExRM+ and
SPRM+. Firstly, from the analysis in Section 4 that Eq. (4) can be written as the form in Eq. (5), the
update rule of SExRM+ can be written as (see details in Appendix I)

x
t+ 1

2
i ∈ argmin

xi∈X i

{⟨ℓti,xi⟩+ q
t− 1

2
i (xi) +Dq0:t−1

i
(xi,x

t
i)}, q0:t−1

i (xi) =
∥θti∥1
η

ψ(xi),

xt+1
i ∈ argmin

xi∈X i

{⟨ℓt+
1
2

i ,xi⟩+ qti(xi) +Dq0:t−1
i

(xi,x
t
i)},

q0:t−1
i (xi) + q

t− 1
2

i (x) =
∥θt+

1
2

i ∥1
η

ψ(xi), q
0:t−1
i (xi) + qti(xi) =

∥θt+1
i ∥1
η

ψ(xi).

(20)

Similarly, the update rule of SPRM+ can be written as

x
t+ 1

2
i ∈ argmin

xi∈X i

{⟨ℓt−
1
2

i ,xi⟩+ q
t− 1

2
i (xi) +Dq0:t−1

i
(xi,x

t
i)}, q0:t−1

i (xi) =
∥θti∥1
η

ψ(xi),

xt+1
i ∈ argmin

xi∈X i

{⟨ℓt+
1
2

i ,xi⟩+ qti(xi) +Dq0:t−1
i

(xi,x
t
i)},

q0:t−1
i (xi) + q

t− 1
2

i (x) =
∥θt+

1
2

i ∥1
η

ψ(xi), q
0:t−1
i (xi) + qti(xi) =

∥θt+1
i ∥1
η

ψ(xi).

(21)

The MVI is recovered since the feedback ℓ
t− 1

2
i , ℓti, and ℓ

t+ 1
2

i are the loss gradients of the original
game that satisfy the MVI. Now, we prove that the tangent residual of the strategy profiles xt

converges to 0. From the analysis in Phase 2 of Section 4, according to the second prox-mapping
operator in Eq. (20) and (21), ∀x ∈ X , we have

⟨ℓt+ 1
2+

θt+1−θt

η
,x−xt+1⟩≥0⇔−ℓt+ 1

2+
θt−θt+1

η
∈NX (xt+1). (22)

From the definition of the tangent residual, we obtain

rtan(xt+1) ≤∥ℓt+1 − ℓt+
1
2 +

θt − θt+1

η
∥2

≤∥ℓt+1 − ℓt+
1
2 ∥2 +

1

η
∥θt − θt+1∥2

≤L∥xt+1 − xt+
1
2 ∥2 +

1

η
∥θt − θt+

1
2 ∥2 +

1

η
∥θt+ 1

2 − θt+1∥2,

(23)
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where the last inequality is from the smoothness of the smooth games. Then, using Lemma 5.4 with
a = θt+1 and b = θt+

1
2 , we have

rtan(xt+1) ≤L
√
D∥θt+1 − θt+

1
2 ∥2 +

1

η
∥θt − θt+

1
2 ∥2 +

1

η
∥θt+ 1

2 − θt+1∥2. (24)

From Theorem 5.2 and 5.3 (∥θt − θt+
1
2 ∥2 → 0 and ∥θt+ 1

2 − θt+1∥2 → 0), we get rtan(xt)→ 0 as
t→∞. Similarly, we get

(rtan(xt+1))2 ≤ ∥ℓt+1 − ℓt+
1
2 +

θt − θt+1

η
∥22 ≤2∥ℓt+1 − ℓt+

1
2 ∥22 +

2

η2
∥θt − θt+1∥22

≤2L2∥xt+1 − xt+
1
2 ∥2 +

2

η2
∥θt − θt+1∥22.

By using Lemma 5.4, we get

(rtan(xt+1))2 ≤2L2D2∥θt+1 − θt+
1
2 ∥22 +

4

η2
∥θt − θt+

1
2 ∥22 +

4

η2
∥θt+ 1

2 − θt+1∥22

≤
(
2L2D2 +

4

η2

)(
∥θt+1 − θt+

1
2 ∥22 + ∥θt − θt+

1
2 ∥22

)
.

Thus, from Theorem 5.2 and 5.3 (minτ∈[t](∥θτ+
1
2 − θτ∥22 + ∥θτ+1 − θτ+

1
2 ∥22) ≤ O( 1t )), we get

that for τ = argminτ∈[t](∥θτ+
1
2 − θτ∥22 + ∥θτ+1 − θτ+

1
2 ∥22),

rtan(xτ+1) ≤
√
O
((
∥θτ+ 1

2 − θτ∥22 + ∥θτ+1 − θτ+
1
2 ∥22

))
≤ O(

1√
t
).

These complete the proof.

E Proof of Theorem 5.2

Lemma E.1. (Proof is in Appendix E.1) Let x∗ ∈ X ∗ that satisfies the MVI and assume all players
follow the update rule of SExRM+, then for every iteration t ≥ 1, it holds that ∥θt+1 − x∗∥22 ≤
∥θt − x∗∥22 − (1 − ηDLu)

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
, where D = maxi∈N |Ai| and

Lu =
√
2P 2 + 4L2.

From Lemma E.1, we have

∥θt+1 − x∗∥22 − ∥θt − x∗∥22 ≤ −(1− ηDLu)
(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
. (25)

Assume
(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
does not converge to 0. Then, from Eq. (25), we have

∥θT+1 − x∗∥22 ≤ ∥θ1 − x∗∥22 −
T∑
t=1

(1− ηDLu)
(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
In addition, since η < 1

DLu
, we have (1 − ηDLu) > 0. Therefore, as T → ∞, ∥θT+1 −

x∗∥22 ≤ ∥θ1 − x∗∥22 −
∑T
t=1

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
= −∞, which contracts that

∥θT+1 − x∗∥22 ≥ 0. Therefore, we have
(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
converge to 0 as

t→∞.

In addition, from η < 1
DLu

and Eq. (25), we have
T∑
t=1

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤ ∥θ

1 − x∗∥22 − ∥θT+1 − x∗∥22
1− ηDLu

≤ C,

where C is a constant which depends on θ1, x∗, η, D, and Lu. Therefore, we get

T min
t∈T

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤

T∑
t=1

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤ C,

which implies

min
t∈T

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤ C

T
.
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E.1 Proof of Lemma E.1

Lemma E.2. (Proof is in Appendix E.2) Assume all players follow the update rule of SExRM+, then
for any θ ∈ R|X |

≥1 , we have

Dψ(θ,θ
t+1)−Dψ(θ,θ

t)

≤−η⟨F (θt+
1
2 ),θ⟩+η⟨F (θt+

1
2 )−F (θt),θt+1−θt+ 1

2 ⟩−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt).

Substituting θ = x∗ ∈ X ∗ that satisfie s the MVI into Lemma E.2, we get

Dψ(x
∗,θt+1)−Dψ(x

∗,θt)

≤−η⟨F (θt+
1
2 ),x∗⟩−Dψ(θ

t+1,θt+
1
2 )−Dψ(θ

t+ 1
2 ,θt)+η⟨F (θt+

1
2 )−F (θt),θt+1−θt+ 1

2 ⟩.
(26)

For the first term of the right-hand side of Eq. (26), we have

−η
∑
i∈N
⟨Fi(θt+

1
2 ),x∗

i ⟩ = −η
∑
i∈N
⟨ℓt+

1
2

i ,x
t+ 1

2
i − x∗

i ⟩ = −η⟨ℓt+
1
2 ,xt+

1
2 − x∗⟩ ≤ 0. (27)

where the last inequality is from the definition of MVI (Section 3.1). For the fourth term of the
right-hand side of Eq. (26), we have

η⟨F (θt+
1
2 )− F (θt),θt+1 − θt+

1
2 ⟩ ≤η∥F (θt+

1
2 )− F (θt)∥2∥θt+1 − θt+

1
2 ∥2

≤ηDLu∥θt+
1
2 − θt∥2∥θt+1 − θt+

1
2 ∥2,

(28)

where the last line is from Lemma 5.2 of Farina et al. [2023] (∥F (θ) − F (θ′)∥2 ≤ DLu∥θ −
θ′∥2,∀θ,θ′ ∈ R|X |

≥1 , where D,Lu are in Theorem 5.1). Combining Eq. (26), (27), and (28), we get

Dψ(x
∗,θt+1)−Dψ(x

∗,θt)

≤−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt) + ηDLu∥θt+

1
2 − θt∥2∥θt+1 − θt+

1
2 ∥2

≤−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt) + ηDLu

(
Dψ(θ

t+ 1
2 ,θt) +Dψ(θ

t+1,θt+
1
2 )
)

≤− (1− ηDLu)Dψ

(
Dψ(θ

t+ 1
2 ,θt) +Dψ(θ

t+1,θt+
1
2 )
)
.

where the second inequality is from ∀a, b ∈ R, ab ≤ pa2/2 + b2/2p,∀p > 0 (in this case, a =

∥θt+ 1
2 − θt∥2, b = ∥θt+1 − θt+

1
2 ∥2, p = 1) and Dψ(a, b) = ∥a − b∥22/2, ∀a, b ∈ Rd if ψ(·) is

the quadratic regularizer.

E.2 Proof of Lemma E.2

To prove Lemma E.2, we first introduce the following folk theorem (we drop the terms involved x in
Eq. (2) and Eq. (3) since they are not used in the following proofs).
Theorem E.3. The Update rule of SExRM+ can be written as

θt+
1
2 ∈ argmin

θ∈×i∈NR|Ai|
≥1

{⟨−F (θt),θ⟩+ 1

η
Dψ(θ,θ

t)},

θt+1 ∈ argmin
θ∈×i∈NR|Ai|

≥1

{⟨−F (θt+
1
2 ),θ⟩+ 1

η
Dψ(θ,θ

t)},
(29)

and the update rule of SPRM+ can be written as

θt+
1
2 ∈ argmin

θ∈×i∈NR|Ai|
≥1

{⟨−F (θt−
1
2 ),θ⟩+ 1

η
Dψ(θ,θ

t)},

θt+1 ∈ argmin
θ∈×i∈NR|Ai|

≥1

{⟨−F (θt+
1
2 ),θ⟩+ 1

η
Dψ(θ,θ

t)},
(30)

where η > 0 is the learning rate.
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Considering Eq. (29), and using Lemma G.2 with a = θt, a′ = θt+1, a∗ = θ and g = −ηF (θt+
1
2 )

(in this case, A is ×i∈NR|Ai|
≥1 ), we have

η⟨−F (θt+
1
2 ),θt+1 − θ⟩ ≤ Dψ(θ,θ

t)−Dψ(θ,θ
t+1)−Dψ(θ

t+1,θt). (31)

Similarly, with a = θt, a′ = θt+
1
2 , a∗ = θt+1 and g = −ηF (θt), we get

η⟨−F (θt),θt+
1
2 − θt+1⟩ ≤ Dψ(θ

t+1,θt)−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt). (32)

Summing up Eq. (31) and (32), and adding η⟨F (θt+
1
2 )−F (θt),θt+1− θt+

1
2 ⟩ to both sides, we get

η⟨−F (θt+
1
2 ),θt+

1
2 − θ⟩

≤Dψ(θ,θ
t)−Dψ(θ,θ

t+1)−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt) + η⟨F (θt+

1
2 )− F (θt),θt+1 − θt+

1
2 ⟩.

Arranging the terms, we have
Dψ(θ,θ

t+1)−Dψ(θ,θ
t)

≤η⟨F (θt+
1
2 ),θt+

1
2 − θ⟩+ η⟨F (θt+

1
2 )− F (θt),θt+1 − θt+

1
2 ⟩ −Dψ(θ

t+1,θt+
1
2 )−Dψ(θ

t+ 1
2 ,θt)

≤− η⟨F (θt+
1
2 ),θ⟩+ η⟨F (θt+

1
2 )− F (θt),θt+1 − θt+

1
2 ⟩ −Dψ(θ

t+1,θt+
1
2 )−Dψ(θ

t+ 1
2 ,θt),

where the last line comes from ⟨F (θt+
1
2 ),θt+

1
2 ⟩ =

∑
i∈N ⟨Fi(θt+

1
2 ),θ

t+ 1
2

i ⟩ =∑
i∈N ⟨⟨ℓ

t+ 1
2

i ,x
t+ 1

2
i ⟩1 − ℓ

t+ 1
2

i ,θ
t+ 1

2
i ⟩ =

∑
i∈N ⟨ℓ

t+ 1
2

i ,x
t+ 1

2
i ⟩⟨1,θt+

1
2

i ⟩ − ⟨ℓt+
1
2

i ,θ
t+ 1

2
i ⟩ =∑

i∈N ⟨ℓ
t+ 1

2
i ,

θ
t+1

2
i

∥θ
t+1

2
i ∥1

⟩∥θt+
1
2

i ∥1 − ⟨ℓ
t+ 1

2
i ,θ

t+ 1
2

i ⟩ = 0. It completes the proof.

F Proof of Theorem 5.3

Lemma F.1. (Proof is in Appendix F.1) Let x∗ ∈ X ∗ that satisfies the MVI and 0 < η < 1
8DLu

, then
for every iteration t ≥ 1, it holds that

∥θt+1−x∗∥22+
1

16
∥θt+1−θt+ 1

2 ∥22≤∥θt−x∗∥22+
1

16
∥θt−θt− 1

2 ∥22−
15

16
(∥θt+1−θt+ 1

2 ∥22+∥θt−θt+
1
2 ∥22).

From Lemma F.1, we have

∥θt+1 − x∗∥22 +
1

16
∥θt+1 − θt+

1
2 ∥22 ≤ ∥θt − θ∗∥22+

1

16
∥θt − θt−

1
2 ∥22 −

15

16
(∥θt+1 − θt+

1
2 ∥22 + ∥θt − θt+

1
2 ∥22).

(33)

Assume ∥θt+1 − θt+
1
2 ∥22 + ∥θt − θt+

1
2 ∥22 do not converge to 0. Then, from Eq. (33), we have

∥θT+1 − x∗∥22 +
1

16
∥θT+1 − θT+ 1

2 ∥22

≤∥θ1 − x∗∥22 + ∥
1

16
∥θ1 − θ1− 1

2 ∥22 −
15

16

T∑
t=1

(∥θt+1 − θt+
1
2 ∥22 + ∥θt − θt+

1
2 ∥22).

Therefore, as T →∞, ∥θT+1−x∗∥22+ 1
16∥θ

T+1−θT+ 1
2 ∥22 ≤ ∥θ1−θ∗∥22+ ∥ 1

16∥θ
1−θ1− 1

2 ∥22−
15
16

∑T
t=1(∥θt+1−θt+ 1

2 ∥22+∥θt−θt+
1
2 ∥22) = −∞, which contracts that ∥θT+1−x∗∥22+ 1

16∥θ
T+1−

θT+ 1
2 ∥22 ≥ 0. Therefore, we have ∥θt+1 − θt+

1
2 ∥22 + ∥θt − θt+

1
2 ∥22 → 0 as t→∞, which implies

∥θt+1 − θt+
1
2 ∥22 → 0 and ∥θt − θt+

1
2 ∥22 → 0 as t→∞. It completes the proof.

In addition, from η < 1
8DLu

and Eq. (33), we have
T∑
t=1

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤ C,

where C is a constant which depends on θ1, θ
1
2 , x∗, η, D, and Lu. Therefore, we get

T min
t∈T

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤

T∑
t=1

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤ C,

which implies

min
t∈T

(
∥θt+ 1

2 − θt∥22 + ∥θt+1 − θt+
1
2 ∥22

)
≤ C

T
.
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F.1 Proof of Lemma F.1

Lemma F.2. (Proof is in Appendix F.2) Assume all players follow the update rule of SPRM+, then
for any θ ∈ R|X |

≥1 , we have

Dψ(θ,θ
t+1)−Dψ(θ,θ

t)

≤−η⟨F (θt+
1
2 ),θ⟩+η⟨F (θt+

1
2 )−F (θt−

1
2 ),θt+1−θt+ 1

2 ⟩−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt).

Substituting θ = x∗ ∈ X ∗ that satisfies the MVI into Lemma F.2, we get

Dψ(x
∗,θt+1)−Dψ(x

∗,θt)

≤−η⟨F (θt+
1
2 ),x∗⟩−Dψ(θ

t+1,θt+
1
2 )−Dψ(θ

t+ 1
2 ,θt)+η⟨F (θt+

1
2 )−F (θt−

1
2 ),θt+1−θt+ 1

2 ⟩.
(34)

According to the analysis in Section 5, for the first term of the right-hand side of Eq. (34), from Eq.
(27), we have

−η
∑
i∈N
⟨Fi(θt+

1
2 ),x∗

i ⟩≤0.

To simply the fourth term of the right-hand side of Eq. (34), we first introduce Lemma F.3, whose
proof is in Appendix F.3.
Lemma F.3. Assume all players follow the update rule of SPRM+, then we have

∥θt+1 − θt+
1
2 ∥2 ≤ η∥F (θt+

1
2 )− F (θt−

1
2 )∥2.

Therefore, for the fourth term of the right-hand side of Eq. (34), we have

η⟨F (θt+
1
2 )− F (θt−

1
2 ),θt+1 − θt+

1
2 ⟩

≤η∥F (θt+
1
2 )− F (θt−

1
2 )∥2∥θt+1 − θt+

1
2 ∥2

≤η2∥F (θt+
1
2 )− F (θt−

1
2 )∥22.

where the third line is from Lemma F.3. Then, from Lemma 5.2 of Farina et al. [2023] (∥F (θ) −
F (θ′)∥2 ≤ DLu∥θ− θ′∥2,∀θ,θ′ ∈ R|X |

≥1 , where D,Lu are defined in Theorem 5.1) and the choice
of η, we have

η2∥F (θt+
1
2 )− F (θt−

1
2 )∥22 ≤η2D2L2

u∥θt+
1
2 − θt−

1
2 ∥22 ≤

1

64
∥θt+ 1

2 − θt−
1
2 ∥22.

Continuing from Eq. (34), we then have

Dψ(x
∗,θt+1)−Dψ(x

∗,θt)

≤−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt) +

1

64
∥θt+

1
2 − θt−

1
2 ∥22

≤−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt) +

1

32
∥θt+

1
2 − θt∥22 +

1

32
∥θt − θt−

1
2 ∥22

⇔∥θt+1 − x∗∥22 +
1

16
∥θt+1 − θt+

1
2 ∥22

≤ ∥θt − x∗∥22 +
1

16
∥θt − θt−

1
2 ∥22 −

15

16
(∥θt+1 − θt+

1
2 ∥22 + ∥θt − θt+

1
2 ∥22),

where the last line is from Dψ(a, b) = ∥a− b∥22/2.

F.2 Proof of Lemma F.2

Considering Eq. (30), and using Lemma G.2 with a = θt, a′ = θt+1, a∗ = θ and g = −ηF (θt+
1
2 )

(in this case, A is ×i∈NR|Ai|
≥1 ), we have

η⟨−F (θt+
1
2 ),θt+1 − θ⟩ ≤ Dψ(θ,θ

t)−Dψ(θ,θ
t+1)−Dψ(θ

t+1,θt)

⇔η⟨−F (θt+
1
2 ),θt+1 − θ⟩ ≤ Dψ(θ,θ

t)−Dψ(θ,θ
t+1)−Dψ(θ

t+1,θt).
(35)

28



Similarly, with a = θt, a′ = θt+
1
2 , a∗ = θt+1 and g = −ηF (θt−

1
2 ), we get

η⟨−F (θt−
1
2 ),θt+

1
2 − θt+1⟩ ≤ Dψ(θ

t+1,θt)−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt)

⇔η⟨−F (θt−
1
2 ),θt+

1
2 − θt+1⟩ ≤ Dψ(θ

t+1,θt)−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt).

(36)

Summing up Eq. (35) and (36), and adding η⟨F (θt+
1
2 )−F (θt−

1
2 ),θt+1 − θt+

1
2 ⟩ to both sides, we

get

η⟨−F (θt+
1
2 ),θt+

1
2 − θ⟩

≤Dψ(θ,θ
t)−Dψ(θ,θ

t+1)−Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt) + η⟨F (θt+

1
2 )− F (θt−

1
2 ),θt+1 − θt+

1
2 ⟩.

Arranging the terms, we have

Dψ(θ,θ
t+1)−Dψ(θ,θ

t)

≤η⟨F (θt+
1
2 ),θt+

1
2 − θ⟩+ η⟨F (θt+

1
2 )− F (θt−

1
2 ),θt+1 − θt+

1
2 ⟩ −Dψ(θ

t+1,θt+
1
2 )−Dψ(θ

t+ 1
2 ,θt)

≤− η⟨F (θt+
1
2 ),θ⟩+ η⟨F (θt+

1
2 )− F (θt−

1
2 ),θt+1 − θt+

1
2 ⟩ −Dψ(θ

t+1,θt+
1
2 )−Dψ(θ

t+ 1
2 ,θt),

where the last line comes from ⟨F (θt+
1
2 ),θt+

1
2 ⟩ =

∑
i∈N ⟨Fi(θt+

1
2 ),θ

t+ 1
2

i ⟩ =∑
i∈N ⟨⟨ℓ

t+ 1
2

i ,x
t+ 1

2
i ⟩1 − ℓ

t+ 1
2

i ,θ
t+ 1

2
i ⟩ =

∑
i∈N ⟨ℓ

t+ 1
2

i ,x
t+ 1

2
i ⟩⟨1,θt+

1
2

i ⟩ − ⟨ℓt+
1
2

i ,θ
t+ 1

2
i ⟩ =∑

i∈N ⟨ℓ
t+ 1

2
i ,

θ
t+1

2
i

∥θ
t+1

2
i ∥1

⟩∥θt+
1
2

i ∥1 − ⟨ℓ
t+ 1

2
i ,θ

t+ 1
2

i ⟩ = 0. It completes the proof.

F.3 Proof of Lemma F.3

To prove Lemma F.3, we first introduce Lemma F.4, which is Lemma 11 of Wei et al. [2021]
Lemma F.4. Suppose that φ(·) satisfiesDφ(b, b

′) ≥ 1
2∥b−b′∥2p for some p ≥ 1, and let a,a1,a2 ∈

A (a convex set) be related by the following:

a1 ∈ argmin
a′∈A

{⟨a′, g1⟩+Dφ(a
′,a)},

a2 ∈ argmin
a′∈A

{⟨a′, g2⟩+Dφ(a
′,a)}.

Then, we have
∥a1 − a2∥p ≤ ∥g1 − g2∥q,

where q ≥ 1 and 1
p +

1
q = 1.

Considering Eq. (30) and substituting a1 = θt+1, a2 = θt+
1
2 , g1 = −ηF (θt+

1
2 ), g2 =

−ηF (θt−
1
2 ) and φ(·) = ψ(·) (ψ(·) is the quadratic regularizer, which satisfies Dψ(b, b

′) ≥
1
2∥b− b′∥22) into Lemma F.4 (in this case, A is ×i∈NR|Ai|

≥1 ), we have

∥θt+1 − θt+
1
2 ∥2 ≤ ∥ηF (θt+

1
2 )− ηF (θt−

1
2 )∥2

⇔∥θt+1 − θt+
1
2 ∥2 ≤ η∥F (θt+

1
2 )− F (θt−

1
2 )∥2,

which completes the proof.

G Proof of Theorem 6.2

Lemma G.1. Let x∗ ∈ X ∗ that satisfies the weak MVI and 0 < η < 1
2DLu

, then for every iteration
t ≥ 1, it holds that

T∑
t=1

(
1

2
+

2ρ

η
− 2η2D2L2

u

)
∥θt+1 − θt∥22 ≤ ∥θ1 − x∗∥22 +

1

4
∥θ 1

2 − θ− 1
2 ∥22.

where D = maxi∈N |Ai| and Lu =
√
2P 2 + 4L2.
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From Lemma G.1, we have

T∑
t=1

(
1

2
+

2ρ

η
− 2η2D2L2

u

)
∥θt+1 − θt∥22 ≤ ∥θ1 − x∗∥22 +

1

4
∥θ 1

2 − θ− 1
2 ∥22. (37)

Now, we first prove that if ρ > − 1
12

√
3DLu

, there always exists 0 < η < 1
2DLu

that ensures
1
2 + 2ρ

η − 2η2D2L2
u > 0. Formally, consider this case where ρ = − 1

12
√
3DLu

, we can set η =

1/(2
√
3DLu) that ensures

1

2
+

2ρ

η
− 2η2D2L2

u =
1

2
− 1

3
− 1

6
= 0.

It is evident that the expression 1
2 + 2ρ

η − 2η2D2L2
u increases with ρ if η > 0. We have shown that

when ρ = − 1
12

√
3DLu

and η = 1
2
√
3DLu

, the expression evaluates to zero

1

2
+

2ρ

η
− 2η2D2L2

u =
1

2
− 1

3
− 1

6
= 0.

Therefore, if ρ > − 1
12

√
3DLu

, with η = 1
2
√
3DLu

, it must hold that

1

2
+

2ρ

η
− 2η2D2L2

u > 0.

In other words, if ρ > − 1
12

√
3DLu

, then there always exists some η = 1
2
√
3DLu

∈
(
0, 1

2DLu

)
such

that
1

2
+

2ρ

η
− 2η2D2L2

u > 0.

Assume ∥θt+1 − θt∥22 do not converge to 0. Then, from Eq. (37), we have

T∑
t=1

(
1

2
+

2ρ

η
− 2η2D2L2

u

)
∥θt+1 − θt∥22 ≥ O(T ),

which contracts that

T∑
t=1

(
1

2
+

2ρ

η
− 2η2D2L2

u

)
∥θt+1 − θt∥22 ≤ ∥θ1 − x∗∥22 +

1

4
∥θ 1

2 − θ− 1
2 ∥22.

Therefore, ∥θt+1 − θt∥22 → 0.

In addition, from 1
2 + 2ρ

η − 2η2D2L2
u > 0 and Eq. (37), we have

T∑
t=1

∥θt+1 − θt∥22 ≤
∥θ1 − x∗∥22 + 1

4∥θ
1
2 − θ− 1

2 ∥22(
1
2 + 2ρ

η − 2η2D2L2
u

) = C.

Since θ1, θ
1
2 , θ− 1

2 , x∗, η, ρ, D, and Lu is fixed, C must be a constant. Therefore, we get

T min
t∈T
∥θt+1 − θt∥22 ≤

T∑
t=1

∥θt+1 − θt∥22 ≤ C,

which implies

min
t∈T
∥θt+1 − θt∥22 ≤

C

T
.
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G.1 Proof of Lemma G.1

Lemma G.2. (Lemma 10 of Wei et al. [2021]) Let A as a convex set and a′ ∈ argmina′∈A{⟨a′, g⟩+
Dψ(a

′,a)}. Then for any a∗ ∈ A,

⟨a′ − a∗, g⟩ ≤ Dψ(a
∗,a)−Dψ(a

∗,a′)−Dψ(a
′,a).

Lemma G.3. (Adapted from Lemma A.2 of Hsieh et al. [2019]) Assume all players follow the update
rule of SOGRM+, then for any θi ∈ R|X i|

≥1 , we have

Dψ(θi,θ
t+1
i )−Dψ(θi,θ

t
i)

≤⟨θti−θ
t+ 1

2
i +ηFi(θ

t− 1
2 )−ηFi(θt+

1
2 ),θi−θ

t+ 1
2

i ⟩+Dψ(θ
t+1
i ,θ

t+ 1
2

i )−Dψ(θ
t+ 1

2
i ,θti).

Considering Eq. (7) and using Lemma G.2 with a = θti , a
′ = θ

t+ 1
2

i , a∗ = x
t+ 1

2
i , and g =

−ηFi(θt−
1
2 ), we have

0 ≤ ⟨ηFi(θt−
1
2 ),θ

t+ 1
2

i − x
t+ 1

2
i ⟩+Dψ(x

t+ 1
2

i ,θti)−Dψ(x
t+ 1

2
i ,θ

t+ 1
2

i )−Dψ(θ
t+ 1

2
i ,θti)

⇔0 ≤ ⟨ηFi(θt−
1
2 ),θ

t+ 1
2

i − x
t+ 1

2
i ⟩+ ⟨θti − θ

t+ 1
2

i ,θ
t+ 1

2
i − x

t+ 1
2

i ⟩,
(38)

where the second line comes from

Dψ(x
t+ 1

2
i ,θti)−Dψ(x

t+ 1
2

i ,θ
t+ 1

2
i )−Dψ(θ

t+ 1
2

i ,θti)

=
∥xt+

1
2

i ∥22
2

−⟨xt+
1
2

i ,θti⟩+
∥θti∥22
2
−∥x

t+ 1
2

i ∥22
2

+⟨xt+
1
2

i ,θ
t+ 1

2
i ⟩−∥θ

t+ 1
2

i ∥22
2

−∥θ
t+ 1

2
i ∥22
2

+⟨θt+
1
2

i ,θti⟩−
∥θti∥22
2

=⟨θti−θ
t+ 1

2
i ,θ

t+ 1
2

i −xt+
1
2

i ⟩.
Substituting θi = x∗

i ∈ X ∗ that satisfies the weak MVI and Eq. (38) into Lemma G.3, and using the

fact that ⟨Fi(θt+
1
2 ),θ

t+ 1
2

i ⟩ = ⟨⟨ℓt+
1
2

i ,x
t+ 1

2
i ⟩1 − ℓ

t+ 1
2

i ,θ
t+ 1

2
i ⟩ = 0 (xit+

1
2 = θ

t+ 1
2

i /∥θt+
1
2

i ∥1) and

⟨Fi(θt+
1
2 ),xi

t+ 1
2 ⟩ = ⟨⟨ℓt+

1
2

i ,x
t+ 1

2
i ⟩1− ℓ

t+ 1
2

i ,xi
t+ 1

2 ⟩ = 0, we get

Dψ(x
∗
i ,θ

t+1
i )−Dψ(x

∗
i ,θ

t
i)

≤⟨θti − θ
t+ 1

2
i + ηFi(θ

t− 1
2 )− ηFi(θt+

1
2 ),x∗

i − xi
t+ 1

2 ⟩+Dψ(θ
t+1
i ,θ

t+ 1
2

i )−Dψ(θ
t+ 1

2
i ,θti).

(39)
Since θt+1

i = θ
t+ 1

2
i − ηFi(θt−

1
2 ) + ηFi(θ

t+ 1
2 ), we have

θti − θt+1
i

η
=
θti − θ

t+ 1
2

i

η
+ Fi(θ

t− 1
2 )− Fi(θ

t+ 1
2 ). (40)

From Eq. (10), we have
θt − θt+1

η
− ℓt+

1
2 ∈ NX (xt+

1
2 ). (41)

From the definition of weak MVI (⟨ℓx + z,x − x∗⟩ ≥ ρ∥ℓx + z∥22,∀z ∈ NX (x)) and setting
x = xt+

1
2 and z = θt−θt+1

η − ℓt+
1
2 ∈ NX (xt+

1
2 ) (Eq. (41)), we have

⟨θt − θt+1,x∗ − xt+
1
2 ⟩ =η⟨ℓt+ 1

2 +
θt − θt+1

η
− ℓt+

1
2 ,x∗ − xt+

1
2 ⟩

≤ − ρη∥θ
t − θt+1

η
∥22 = −2ρ

η
Dψ(θ

t+1,θt).

(42)

Now, we define c = 1
2 − 2η2D2L2

u > 0. Combining Eq. (39), (40) and (42), we have

Dψ(x
∗,θt+1)−Dψ(x

∗,θt)≤Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt)−2ρ

η
Dψ(θ

t+1,θt)

≤Dψ(θ
t+1,θt+

1
2 )−Dψ(θ

t+ 1
2 ,θt)+cDψ(θ

t+1,θt)−(2ρ
η
+c)Dψ(θ

t+1,θt)

≤(1+2c)Dψ(θ
t+1,θt+

1
2 )−(1−2c)Dψ(θ

t+ 1
2 ,θt)−(2ρ

η
+c)Dψ(θ

t+1,θt),

(43)
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where the last line comes from Dψ(θ
t+1,θt) ≤ 2Dψ(θ

t+1,θt+
1
2 ) + 2Dψ(θ

t+ 1
2 ,θt).

By using the fact that θt+1
i = θ

t+ 1
2

i − ηFi(θt−
1
2 ) + ηFi(θ

t+ 1
2 ), Lemma 5.2 of Farina et al. [2023]

(∥F (θ)−F (θ′)∥2 ≤ DLu∥θ−θ′∥2,∀θ,θ′ ∈ R|X |
≥1 , where D,Lu are defined in Theorem 6.1), and

Dψ(a, b) = ∥a− b∥22/2, we have

Dψ(θ
t+1,θt+

1
2 ) = Dψ(ηF (θt−

1
2 ), ηF (θt+

1
2 )) ≤ η2D2L2

uDψ(θ
t− 1

2 ,θt+
1
2 ). (44)

By using Eq. (44), we get

Dψ(θ
t+ 1

2 ,θt−
1
2 ) ≤ 2Dψ(θ

t+ 1
2 ,θt) + 2Dψ(θ

t,θt−
1
2 ) ≤ 2Dψ(θ

t+ 1
2 ,θt) + 2η2D2L2

uDψ(θ
t− 1

2 ,θt−
3
2 ),

which implies

Dψ(θ
t+ 1

2 ,θt) ≥ 1

2
Dψ(θ

t+ 1
2 ,θt−

1
2 )− η2D2L2

uDψ(θ
t− 1

2 ,θt−
3
2 ), (45)

Combining Eq. (43), (44), and (45), we have

Dψ(x
∗,θt+1)−Dψ(x

∗,θt)

≤(1 + 2c)Dψ(θ
t+1,θt+

1
2 )− (1− 2c)Dψ(θ

t+ 1
2 ,θt)− (

2ρ

η
+ c)Dψ(θ

t+1,θt)

≤− (
1

2
− c− (1 + 2c)η2D2L2

u)Dψ(θ
t+ 1

2 ,θt−
1
2 ) + (1− 2c)η2D2L2

uDψ(θ
t− 1

2 ,θt−
3
2 )−

(
2ρ

η
+ c)Dψ(θ

t+1,θt)

≤− (
2ρ

η
+ c)Dψ(θ

t+1,θt) + 4η4D4L4
u

(
Dψ(θ

t− 1
2 ,θt−

3
2 )−Dψ(θ

t+ 1
2 ,θt−

1
2 )
)
.

Telescoping the above inequality, and using c = 1
2 − 2η2D2L2

u with Dψ(a, b) = ∥a− b∥22/2, we
have

T∑
t=1

(
1

2
+

2ρ

η
− 2η2D2L2

u

)
∥θt+1 − θt∥22 ≤∥θ1 − x∗∥22 + 4η4D4L4

u∥θ
1
2 − θ− 1

2 ∥22

≤∥θ1 − x∗∥22 +
1

4
∥θ 1

2 − θ− 1
2 ∥22,

where the last line comes from 4η4D4L4
u ≤ 1

4 (note that c > 0, which implies 2η2D2L2
u <

1
2 , thus

4η4D4L4
u ≤ 1

4 ).

H Proof of Lemma 6.3

From the definition of
∑
i∈N ⟨ℓ

t− 1
2

i − θt−θt+1
2

η ,xi − x
t+ 1

2
i ⟩, we have

∑
i∈N
⟨ℓt−

1
2

i − θti − θ
t+ 1

2
i

η
,xi − x

t+ 1
2

i ⟩

=
∑
i∈N
⟨ℓt−

1
2

i − θti − θt+1
i

η
+ Fi(θ

t− 1
2 )− Fi(θ

t+ 1
2 ),xi − x

t+ 1
2

i ⟩

=
∑
i∈N
⟨ℓt−

1
2

i − θti − θt+1
i

η
+ ⟨ℓt−

1
2

i ,x
t− 1

2
i ⟩1− ℓ

t− 1
2

i − ⟨ℓt+
1
2

i ,x
t+ 1

2
i ⟩1+ ℓ

t+ 1
2

i ,xi − x
t+ 1

2
i ⟩

=
∑
i∈N
⟨ℓt+

1
2

i − θti − θt+1
i

η
,xi − x

t+ 1
2

i ⟩,

(46)

where the last line is from ⟨⟨ℓt−
1
2

i ,x
t− 1

2
i ⟩1,xi − x

t+ 1
2

i ⟩ = 0 and ⟨⟨ℓt+
1
2

i ,x
t+ 1

2
i ⟩1,xi − x

t+ 1
2

i ⟩ = 0.
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I How to Obtain Eq. (8), (20), and (21) via the Analysis in Section 4

We now detail how to derive Eq. (8), (20), and (21) from Eq. (7), (2), and (3), respectively. This
derivation follows from the analysis provided in Section 4. Specifically, from the analysis in Section
4, we have that ∀ θt2i ,θ

t1
i ,θ

t0
i ∈ R|Ai|

≥1 , η > 0 and ψ(·) as the quadratic regularizer, the update rule in
Eq. (47) can be written as the form in Eq. (48).

xt2i =
θt2i
∥θt2i ∥1

, θt2i ∈ argmin
θi∈R|Ai|

≥1

{⟨−Fi(θt1),θi⟩+
1

η
Dψ(θi,θ

t0
i )},

Fi(θ
t1) = ⟨ θt1i

∥θt1i ∥1
, ℓt1i ⟩1− ℓt1i ,

(47)


xt2i ∈ argmin

xi∈X i

{⟨ℓt1i ,xi⟩+ fi(xi) +Dhi(xi,x
t0
i )},

hi(xi) + fi(xi) =
∥θt2i ∥1
η

ψ(xi), hi(xi) =
∥θt0i ∥1
η

ψ(xi),
(48)

where t0, t1, t2 refer to different iterations, xt2i = θt2i /∥θ
t2
i ∥1, xt0i = θt0i /∥θ

t0
i ∥1.

Consider the update rule of SOGRM+ as shown in the following:

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

θt+1
i = θ

t+ 1
2

i − ηFi(θt−
1
2 ) + ηFi(θ

t+ 1
2 ).

(49)

Substituting θt2i = θ
t+ 1

2
i ,θt1i = θ

t− 1
2

i ,θt0i = θti into Eq. (47), we have that

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

Fi(θ
t− 1

2 ) = ⟨ θ
t− 1

2
i

∥θt−
1
2

i ∥1
, ℓ
t− 1

2
i ⟩1− ℓ

t− 1
2

i ,

which is consistent with the first prox-mapping operator in Eq. (49). Therefore, according to the
relationship between Eq. (47) and Eq. (48), we have that the first prox-mapping operator in Eq. (49)
and x

t+ 1
2

i = θ
t+ 1

2
i /∥θt+

1
2

i ∥1 can be rewritten as

x
t+ 1

2
i ∈ argmin

xi∈X i

{⟨ℓt−
1
2

i ,xi⟩+ q
t− 1

2
i (xi) +Dq0:t−1

i
(xi,x

t
i)},

q0:t−1
i (xi) =

∥θti∥1
η

ψ(xi), q0:t−1
i (xi) + q

t− 1
2

i (xi) =
∥θt+

1
2

i ∥1
η

ψ(xi).

In this case, hi(xi), fi(xi) in Eq. (48) are q0:t−1
i (xi) and qt−

1
2

i (xi), respectively. Therefore, we get
Eq. (8).

Consider the update rule of SExRM+ as shown in the following

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

θt+1
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

.

(50)
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Substituting θt2i = θ
t+ 1

2
i ,θt1i = θ

t− 1
2

i ,θt0i = θti into Eq. (47), we have that

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt),θi⟩+
1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

Fi(θ
t) = ⟨ θti

∥θti∥1
, ℓti⟩1− ℓti,

which is consistent with the first prox-mapping operator in Eq. (50). Therefore, according to the
relationship between Eq. (47) and Eq. (48), we have that the first prox-mapping operator in Eq. (50)
and x

t+ 1
2

i = θ
t+ 1

2
i /∥θt+

1
2

i ∥1 can be rewritten as

x
t+ 1

2
i ∈ argmin

xi∈X i

{⟨ℓt−
1
2

i ,xi⟩+ q
t− 1

2
i (xi) +Dq0:t−1

i
(xi,x

t
i)},

q0:t−1
i (xi) =

∥θti∥1
η

ψ(xi), q0:t−1
i (xi) + q

t− 1
2

i (xi) =
∥θt+

1
2

i ∥1
η

ψ(xi).

(51)

In this case, hi(xi), fi(xi) in Eq. (48) are q0:t−1
i (xi) and q

t− 1
2

i (xi), respectively. Similarly,

substituting θt2i = θt+1
i ,θt1i = θ

t+ 1
2

i ,θt0i = θti into Eq. (47), we have that

θt+1
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

,

Fi(θ
t+ 1

2 ) = ⟨ θ
t+ 1

2
i

∥θt+
1
2

i ∥1
, ℓ
t+ 1

2
i ⟩1− ℓ

t+ 1
2

i ,

which is consistent with the second prox-mapping operator in Eq. (50). Therefore, according to the
relationship between Eq. (47) and Eq. (48), we have that the second prox-mapping operator in Eq.
(50) and xt+1

i = θt+1
i /∥θt+1

i ∥1 can be rewritten as

xt+1
i ∈ argmin

xi∈X i

{⟨ℓt+
1
2

i ,xi⟩+ qti(xi) +Dq0:t−1
i

(xi,x
t
i)},

q0:t−1
i (xi) =

∥θti∥1
η

ψ(xi), q0:t−1
i (xi) + qti(xi) =

∥θt+1
i ∥1
η

ψ(xi).

(52)

In this case, hi(xi), fi(xi) in Eq. (48) are q0:t−1
i (xi) and qti(xi), respectively. Combining Eq. (51)

with (52), we get Eq. (20).

Consider the update rule of SPRM+ as shown in the following

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

θt+1
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

.

(53)

Substituting θt2i = θ
t+ 1

2
i ,θt1i = θ

t− 1
2

i ,θt0i = θti into Eq. (47), we have that

θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+ 1

2
i

∥θt+
1
2

i ∥1
,

Fi(θ
t− 1

2 ) = ⟨ θ
t− 1

2
i

∥θt−
1
2

i ∥1
, ℓ
t− 1

2
i ⟩1− ℓ

t− 1
2

i ,

which is consistent with the first prox-mapping operator in Eq. (53). Therefore, according to the
relationship between Eq. (47) and Eq. (48), we have that the first prox-mapping operator in Eq. (53)
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and x
t+ 1

2
i = θ

t+ 1
2

i /∥θt+
1
2

i ∥1 can be rewritten as

x
t+ 1

2
i ∈ argmin

xi∈X i

{⟨ℓt−
1
2

i ,xi⟩+ q
t− 1

2
i (xi) +Dq0:t−1

i
(xi,x

t
i)},

q0:t−1
i (xi) =

∥θti∥1
η

ψ(xi), q0:t−1
i (xi) + q

t− 1
2

i (xi) =
∥θt+

1
2

i ∥1
η

ψ(xi).

(54)

In this case, hi(xi), fi(xi) in Eq. (48) are q0:t−1
i (xi) and q

t− 1
2

i (xi), respectively. Similarly,

substituting θt2i = θt+1
i ,θt1i = θ

t+ 1
2

i ,θt0i = θti into Eq. (47), we have that

θt+1
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt+
1
2 ),θi⟩+

1

η
Dψ(θi,θ

t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

,

Fi(θ
t+ 1

2 ) = ⟨ θ
t+ 1

2
i

∥θt+
1
2

i ∥1
, ℓ
t+ 1

2
i ⟩1− ℓ

t+ 1
2

i ,

which is consistent with the second prox-mapping operator in Eq. (53). Therefore, according to the
relationship between Eq. (47) and Eq. (48), we have that the second prox-mapping operator in Eq.
(53) and xt+1

i = θt+1
i /∥θt+1

i ∥1 can be rewritten as

xt+1
i ∈ argmin

xi∈X i

{⟨ℓt+
1
2

i ,xi⟩+ qti(xi) +Dq0:t−1
i

(xi,x
t
i)},

q0:t−1
i (xi) =

∥θti∥1
η

ψ(xi), q0:t−1
i (xi) + qti(xi) =

∥θt+1
i ∥1
η

ψ(xi).

(55)

In this case, hi(xi), fi(xi) in Eq. (48) are q0:t−1
i (xi) and qti(xi), respectively. Combining Eq. (54)

with (55), we get Eq. (21).

J Example of Different Game Types

In this section, we provide examples of smooth games that satisfy the MVI and weak MVI, respec-
tively. We do not provide the example of smooth games satisfying monotonicity as any two-player
zero-sum matrix game is a smooth game and satisfies monotonicity. Note that in this section, we
focus on two-player normal-form game, whose utility function is convex and represented by payoff
matrices. Any two-player normal-form game is a smooth game. For each two-player normal-form
game, the utility functions of player 0 and 1 are presented by payoff matrices A and B, respectively.
Formally, u0(x) = xT

0Ax1 and u1(x) = xT
1B

Tx0, which implies ℓx0 = −Ax1 and ℓx1 = −BTx0.

J.1 Example of Games Satisfying the MVI

The example is defined as following

A =

(
2 0
0 0

)
, B =

(
2 0
0 0

)
.

This game violates monotonicity when

x0 =

(
0
1

)
, x1 =

(
0
1

)
, x′

0 =

(
0.1
0.9

)
, x′

1 =

(
0.1
0.9

)
.

Formally, in this case, we have

ℓx0 =

(
0
0

)
, ℓx1 =

(
−2
0

)
, ℓx

′

0 =

(
0
0

)
, ℓx

′

1 =

(
−2
0

)
.

⟨ℓx − ℓx
′
,x− x′⟩ =

(
2
0

)
·
(
−0.1
0.1

)
+

(
2
0

)
·
(
−0.1
0.1

)
= −0.4 < 0

which violates monotonicity.
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Now, we show that the provided example satisfies the MVI. An NE of this game (learned by
”Nashpy” [Knight and Campbell, 2018]) is

x∗
0 =

(
1
0

)
, x∗

1 =

(
1
0

)
.

We define the strategies of players as following

x0 =

(
a

1− a

)
, x1 =

(
b

1− b

)
,

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. The loss gradient ℓxi of player i is

ℓx0 = −Ax1, ℓx1 = −BTx0.

Formally, for player 0, we have

Ax1 =

(
2 0
0 0

)(
b

1− b

)
=

(
2b
0

)
,

ℓx0 = −Ax1 =

(
−2b
0

)
.

Similarly, for player 1, we have

BT =

(
2 0
0 0

)
,

BTx0 =

(
2 0
0 0

)(
a

1− a

)
=

(
−2a
0

)
,

ℓx1 = −BTx0 =

(
−2a
0

)
.

In this case, we have

⟨ℓx,x− x∗⟩ =
(
−2b
0

)
·
(
a− 1
1− a

)
+

(
−2a
0

)
·
(
b− 1
1− b

)
= −4ab+ 2a+ 2b = (−4a+ 2)b+ 2a.

We can find that (−4a+2)b+2a is linear function w.r.t b given fixed a. If 1 ≥ a ≥ 1
2 , (−4a+2)b+2a

decreases as b increases. Therefore, given 1 ≥ a ≥ 1
2 , min0≤b≤1(−4a+2)b+2a = (−4a+2)+2a =

2 − 2a ≥ 0. Similarly, if 0 ≤ a < 1
2 (−4a + 2)b + 2a decreases as b decreases. Therefore, given

0 ≤ a < 1
2 , min0≤b≤1(−4a + 2)b + 2a = 2a ≥ 0. Hence, we get −4ab + 2b + 2a ≥ 0, which

implies −4ab+ 2a+ 2b ≥ 0. Therefore, we get

⟨ℓx,x− x∗⟩ = −4ab+ 2a+ 2b ≥ 0.

Then, we have ⟨ℓx,x− x∗⟩ ≥ 0,∀x ∈ X and ∃x∗ ∈ X ∗, which means the MVI holds in this game.

J.2 Example of Games Satisfying the Weak MVI

The example is defined as following

A =

(
1 0
−1 1

)
, B =

(
0 1
−1 1

)
.

The unique NE of this game (learned by ”Nashpy” [Knight and Campbell, 2018]) is

x∗
0 =

(
0
1

)
, x∗

1 =

(
0
1

)
.

This game violates the MVI when

x0 =

(
0.7
0.3

)
, x1 =

(
0.9
0.1

)
.
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Formally, in this case, we have

⟨ℓx,x− x∗⟩ =
(
−0.9
0.8

)
·
(
0.7− 0
0.3− 1

)
+

(
0.3
−1

)
·
(
0.9− 0
0.1− 1

)
= −0.02 < 0,

which violates the MVI.

Now, we show that the provided example satisfies the weak MVI. From Meng et al. [2025], for any
smooth game, we have

rdg(x) = max
x′∈X

⟨ℓx,x− x′⟩ ≤ C1r
tan(x) = C1 min

z∈NX (x)
∥ℓx + z∥2,

where C1 is a game-dependent constant. Recall the definition of the weak MVI

⟨ℓx + z,x− x∗⟩ ≥ ρ∥ℓx + z∥22,∀z ∈ NX (x).

Therefore, if we can show that

⟨ℓx,x− x∗⟩ ≥ −(rdg(x))2,

we can always find a ρ = −C2
1 < 0 to ensure the weak MVI holds since ∀z ∈ NX (x),

⟨ℓx,x−x∗⟩≥−(rdg(x))2=−(max
x′∈X

⟨ℓx,x−x′⟩)2≥−(C1r
tan(x))2=−C2

1 min
z′∈NX (x)

∥ℓx+z′∥22≥−C2
1∥ℓx+z∥22,

and
⟨z,x− x∗⟩ ≥ 0.

Now, we show that ⟨ℓx,x − x∗⟩ ≥ −(rdg(x))2 holds in this game. We define the strategies of
players as following

x0 =

(
a

1− a

)
, x1 =

(
b

1− b

)
,

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. The loss gradient ℓxi of player i is

ℓx0 = −Ax1, ℓx1 = −BTx0.

Formally, for player 0, we have

Ax1 =

(
1 0
−1 1

)(
b

1− b

)
=

(
b

−b+ 1− b

)
=

(
b

1− 2b

)
,

ℓx0 = −Ax1 =

(
−b

−(1− 2b)

)
=

(
−b

2b− 1

)
.

Similarly, for player 1, we have

BT =

(
0 −1
1 1

)
,

BTx0 =

(
0 −1
1 1

)(
a

1− a

)
=

(
−(1− a)
a+ (1− a)

)
=

(
a− 1
1

)
,

ℓx1 = −BTx0 =

(
1− a
−1

)
.

Now, we show ⟨ℓx,x− x∗⟩ ≥ −(rdg(x))2 by showing ⟨ℓx,x− x∗⟩+ (rdg(x))2 ≥ 0 holds. We
first compute ⟨ℓx,x− x∗⟩. Formally, we get

x0 − x∗
0 =

(
a

1− a

)
−
(
0
1

)
=

(
a
−a

)
,

x1 − x∗
1 =

(
b

1− b

)
−
(
0
1

)
=

(
b
−b

)
.

Next, calculate the dot products

⟨ℓx0 ,x0 − x∗
0⟩ =

(
−b

2b− 1

)
·
(
a
−a

)
= −ab− a(2b− 1) = −3ab+ a,
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⟨ℓx1 ,x1 − x∗
1⟩ =

(
1− a
−1

)
·
(
b
−b

)
= b(1− a) + b = b(1− a+ 1) = b(2− a).

Combine the results

⟨ℓx,x− x∗⟩ = ⟨ℓx0 ,x0 − x∗
0⟩+ ⟨ℓx1 ,x1 − x∗

1⟩ = −3ab+ a+ b(2− a).

This simplifies to:

⟨ℓx,x− x∗⟩ = −3ab+ a+ 2b− ab = −4ab+ 2b+ a.

Similarly, for rdg(x) = maxx′∈X ⟨ℓx,x− x′⟩, we get

max
x′∈X

⟨ℓx,x− x′⟩ = ⟨ℓx0 ,x0⟩ −min(ℓx0 [0], ℓ
x
0 [1]) + ⟨ℓx1 ,x1⟩ −min(ℓx1 [0], ℓ

x
1 [1]),

which results in

max
x′∈X

⟨ℓx,x−x′⟩=−4ab+4b−2+a−min(−b,2b−1)−min(1−a,−1)=−4ab+4b−1+a−min(−b,2b−1)

Case 1: If 0 ≤ b ≤ 1
3 ,

⟨ℓx,x−x∗⟩+(rdg(x))2 = −4ab+2b+a+(−4ab+4b−1+a−2b+1)2 = −4ab+2b+a+(−4ab+2b+a)2.

It is obviously if −4ab + 2b + a ≥ 0, −4ab + 2b + a + (−4ab + 4b − 1 + a − 2b + 1)2 =
−4ab+ 2b+ a+ (−4ab+ 2b+ a)2 ≥ 0. Now, we show −4ab+ 2b+ a ≥ 0. Formally, we get

−4ab+ 2b+ a = (−4a+ 2)b+ a.

We can find that (−4a+2)b+a is linear function w.r.t b given fixed a. If 1 ≥ a ≥ 1
2 , (−4a+2)b+a

decreases as b increases. Therefore, given 1 ≥ a ≥ 1
2 , min0≤b≤ 1

3
(−4a+2)b+a = (−4a+2) 13 +a =

2
3 −

a
3 ≥

1
3 . Similarly, if 0 ≤ a < 1

2 , (−4a + 2)b + a decreases as b decreases. Therefore, given
0 ≤ a < 1

2 , min0≤b≤ 1
3
(−4a+ 2)b+ a = a ≥ 0. Hence, we get −4ab+ 2b+ a ≥ 0, which implies

−4ab+ 2b+ a+ (−4ab+ 4b− 1 + a− 2b+ 1)2 = −4ab+ 2b+ a+ (−4ab+ 2b+ a)2 ≥ 0.

Case 2: If 1
3 ≤ b ≤ 1,

⟨ℓx,x−x∗⟩+(rdg(x))2 = −4ab+2b+a+(−4ab+4b−1+a+b)2 = −4ab+2b+a+(−4ab+5b+a−1)2.

Now, we simplify the expression

−4ab+ 2b+ a+ (−4ab+ 5b+ a− 1)2.

Then,

(−4ab+5b+a−1)2

=(−4ab+5b+a−1)(−4ab+5b+a−1)
=(−4ab)2+(5b)2+a2+(−1)2+2(−4ab·5b)+2(−4ab·a)+2(−4ab·−1)+2(5b·a)+2(5b·−1)+2(a·−1)
=16a2b2+25b2+a2+1−40ab2−8a2b+8ab+10ab−10b−2a
=16a2b2+25b2+a2−40ab2−8a2b+18ab−10b−2a+1.

So the full expression is

−4ab+ 2b+ a+ 16a2b2 + 25b2 + a2 − 40ab2 − 8a2b+ 18ab− 10b− 2a+ 1.

Therefore, we define

f(a) = (16b2 − 8b+ 1)a2 + (−40b2 + 14b− 1)a+ 25b2 − 8b+ 1.

For f(a), given a fixed b, it is a quadratic function with respect to a. For the term 32b2 − 16b+ 2, as
it takes the minimum value when b = 16

64 = 1
4 , we have that the value of 32b2 − 16b+ 2 increases as

b increases when 1
3 ≤ b ≤ 1. Therefore, the minimum and maximum values of 32b2 − 16b+ 2 when

1
3 ≤ b ≤ 1 are 32 1

9 −
16
3 + 2 = 2

9 and 32− 16 + 2 = 18, respectively. As 32b2 − 16b+ 2 > 0, for
f(a), given a fixed b, so it takes the minimum value in the following case

a =
40b2 − 14b+ 1

32b2 − 16b+ 2
=

32b2 − 16b+ 2 + 8b2 + 2b− 1

32b2 − 16b+ 2
= 1 +

8b2 + 2b− 1

32b2 − 16b+ 2
.
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Algorithm 1 SExRM+

Require: Step size η ∈
(
0, 1

DLu

)
.

1: Initialize: θ1
i ← 1/|Ai|,∀i ∈ N

2: for t = 1, 2, . . . do
3: for i ∈ N do

4: θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt),θi⟩+ 1
ηDψ(θi,θ

t
i)}, x

t+ 1
2

i =
θ
t+1

2
i

∥θ
t+1

2
i ∥1

5: end for
6: for i ∈ N do
7: θt+1

i ∈ argmin
θi∈R|Ai|

≥1

{⟨−Fi(θt+
1
2 ),θi⟩+ 1

ηDψ(θi,θ
t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

8: end for
9: end for

For the term 8b2+2b− 1, as it takes the minimum value when b = −2
16 ≤ 0, we have that the value of

8b2+2b− 1 increases as b increases when 1
3 ≤ b ≤ 1. Therefore, the minimum value of 8b2+2b− 1

when 1
3 ≤ b ≤ 1 is 8 1

9 + 2
3 − 1 = 5

9 . Combining 8b2 + 2b− 1 ≥ 5
9 and 18 ≥ 32b2 − 16b+ 2 ≥ 2

9 ,
we have

1 +
8b2 + 2b− 1

32b2 − 16b+ 2
≥ 1.

Therefore, given a fixed b, f(a) takes the minimum value when a = 1. Therefore, we get

f(1) = 16b2 − 8b+ 1− 40b2 + 14b− 1 + 25b2 − 8b+ 1 = b2 − 2b+ 1 ≥ 0,∀1
3
≤ b ≤ 1.

Conclusion: Combining the results in Case 1 and Case 2, we have

⟨ℓx,x−x∗⟩+(rdg(x))2≥0.

Therefore, we get ∀z ∈ NX (x),

⟨ℓx,x−x∗⟩≥−(rdg(x))2=−(max
x′∈X

⟨ℓx,x−x′⟩)2≥−(C1r
tan(x))2=−C2

1 min
z′∈NX (x)

∥ℓx+z′∥22

≥−C2
1∥ℓx+z∥22.

In addition, from the definition of the normal cone, we have

⟨z,x− x∗⟩ ≥ 0,∀z ∈ NX (x).

Combining the above results, we obtain

⟨ℓx + z,x− x∗⟩ ≥ −(rdg(x))2 ≥ −C2
1∥ℓx + z∥22,∀z ∈ NX (x),

which means the weak MVI holds in this game with ρ = −C2
1 .

K Pseudocode of RM+ Variants Mentioned in This Paper

Now, we provide the pseudocode of RM+ variants mentioned in this paper. Specifically, the pseu-
docode of SExRM+, SPRM+, and SOGRM+ are shown in Algorithms 1, 2, and 3, respectively.

L Experiments

Configurations. We conduct experiments on (i) randomly generated two-player zero-sum matrix
games with sizes [10, 20, 50], (ii) the normal-form representation of two extensive-form games,
Kuhn Poker and Goofspiel, (iii) randomly generated three-player zero-sum polymatrix games with
sizes [10, 20, 50], (iv) the games presented in Appendix J.1 and J.2, as well as (v) two Leduc Poker
variants. The first three game types satisfy monotonicity [Pérolat et al., 2021], while the games
discussed in Appendix J.1 and J.2 satisfy MVI and weak MVI, respectively. The normal-form
representations of the two extensive-form games are derived from the open-source code provided by
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Algorithm 2 SPRM+

Require: Step size η ∈
(
0, 1

8DLu

)
.

1: Initialize: θ
1
2
i ← 1/|Ai|, θ1

i ← 1/|Ai|,∀i ∈ N
2: for t = 1, 2, . . . do
3: for i ∈ N do

4: θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+ 1

ηDψ(θi,θ
t
i)}, x

t+ 1
2

i =
θ
t+1

2
i

∥θ
t+1

2
i ∥1

5: end for
6: for i ∈ N do
7: θt+1

i ∈ argmin
θi∈R|Ai|

≥1

{⟨−Fi(θt+
1
2 ),θi⟩+ 1

ηDψ(θi,θ
t
i)}, xt+1

i =
θt+1
i

∥θt+1
i ∥1

8: end for
9: end for

Algorithm 3 SOGRM+

Require: Step size η ∈
(
0, 1

2DLu

)
such that satisfies 1

2 + 2ρ
η − 2η2D2L2

u > 0.

1: Initialize: θ
1
2
i ← 1/|Ai|, θ1

i ← 1/|Ai|,∀i ∈ N
2: for t = 1, 2, . . . do
3: for i ∈ N do

4: θ
t+ 1

2
i ∈ argmin

θi∈R|Ai|
≥1

{⟨−Fi(θt−
1
2 ),θi⟩+ 1

ηDψ(θi,θ
t
i)}, x

t+ 1
2

i =
θ
t+1

2
i

∥θ
t+1

2
i ∥1

5: end for
6: for i ∈ N do
7: θt+1

i = θ
t+ 1

2
i − ηFi(θt−

1
2 ) + ηFi(θ

t+ 1
2 )

8: end for
9: end for

Cai et al. [2025] (https://openreview.net/forum?id=LWeVVPuIx0&noteId=4vbVJryMNi&referrer=
%5BTasks%5D(%2Ftasks)). The payoff matrices for Kuhn Poker and Goofspiel are of sizes [27,
64] and [72, 7808], respectively. The final game type is utilized to explore the performance of
smooth RM+ variants in combination with counterfactual regret minimization (CFR) for solving
extensive-form games (EFGs). We conduct the evaluation on Leduc Poker variants because PCFR+,
the combination of PRM+ with the CFR framework, is found to perform suboptimally in poker games
such as Leduc Poker [Farina et al., 2021].

In the randomly generated three-player zero-sum, the payoff matrix for each pair of players is a
diagonal matrix, with each diagonal element sampled from a standard normal distribution. For
randomly generated two-player zero-sum matrix and three-player zero-sum polymatrix games, each
element of the payoff matrix is uniformly sampled from [−1, 1]. For each game size, we generate
20 instances and report the average duality gaps with variances. The duality gap, rdg(x), is used
to evaluate the distance to NE, defined as rdg(x) =

∑
i∈N maxx′

i
⟨ℓxi ,xi − x′

i⟩. As analyzed in
Meng et al. [2025], the duality gap involves a lower bound of the tangent residual in smooth games,
rdg(x) ≤ C1r

tan(x), whereC1 is a game-dependent constant. Thus, if the tangent residual converges
to 0, the duality gap also converges to 0. Due to the difficulty in precisely calculating the tangent
residual, we do not use it as the metric. We compare smooth RM+ variants (SExRM+, SPRM+,
and SOGRM+) with existing RM+ variants (ExRM+, PRM+, and RM+), as well as traditional
last-iterate convergence OMD based algorithms—OGDA, EG, and OG4. For initialization, we set θi
to 1|X i|/|X i| and 0 for smooth and other RM+ variants, respectively. For OGDA, EG, and OG, the
initial strategy is the uniform strategy. For all tested algorithm, we use simultaneous updates since to
our knowledge, the theoretical analysis of last-iterate convergence is based on simultaneous updates.
All experiments are performed on a machine with an i9-13900K CPU and 128 GB of memory.

4OGDA and OG are different algorithms. OGDA is an instance of Optimistic OMD [Rakhlin and Sridharan,
2013] where the regularizer is the Squared L2 norm. The meaning of ”optimistic” varies in different papers.
Using the terminology in Hsieh et al. [2019], OGDA is PEG and OG is OG.
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Figure 1: Performance of different algorithms on 10× 10 (top), 20× 20 (middle), 50× 50 (bottom)
randomly generated two-player zero-sum matrix games.
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Figure 2: Performance of different algorithms on Kuhn Poker (top) and Goofspiel (bottom).

Convergence performance on randomly generated two-player zero-sum games. The results are
shown in Figure 1, smooth RM+ variants generally achieve at least similar performance compared
to other algorithms. Specifically, OGDA, EG, and OG underperform relative to their smooth RM+

counterparts (SPRM+, SExRM+, and SOGRM+, respectively) and are more sensitive to parameters.
For larger η values (η = 1 and η = 10), OGDA, EG, and OG consistently diverge, while smooth
RM+ variants maintain last-iterate convergence. Additionally, we observe that SPRM+ and SExRM+

consistently achieve comparable performance to their corresponding non-smooth RM+ variants,
namely PRM+ and ExRM+, respectively. Under optimal parameter settings, SPRM+ and SExRM+

significantly outperform PRM+ and ExRM+, respectively. More importantly, we find that our
algorithm, SOGRM+, exhibits the fastest convergence rate and shows the least sensitivity to parameter
changes. Moreover, for the reason why SOGRM+ allows large η compared to other RM+ variants,
we hypothesize that it arises because our proposed algorithm, SOGRM+, performs only a single
prox-mapping operator per update step, unlike other smooth RM+ algorithms, which involve two
prox-mapping operations at each iteration (the prox-mapping operator is introduced in Section 3).
The prox-mapping operator in smooth RM+ variants involves a projection onto the simplex at some
time (not always), which may lead to significant changes in θ depending on the choice of η. See
more details in Appendix M.
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Figure 3: Performance of different algorithms on 10× 10 (top), 20× 20 (middle), 50× 50 (bottom)
randomly generated three-player zero-sum polymatrix games.
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Figure 4: Performance of different algorithms on the game satisfying the MVI provided in Ap-
pendix J.1. Notably, this games is very small, e.g., only two actions for each player.

Convergence performance on the normal-form representation of Kuhn Poker and Goofspiel.
The results are shown in Figure 2. OGDA, EG, and OG exhibit poorer convergence performance
and higher sensitivity to hyperparameters compared to their corresponding smooth RM+ variants
(SPRM+, SExRM+, and SOGRM+, respectively). Moreover, we observe that OG fails to converge
in Goofspiel for any set of parameters. We hypothesize that this is due to the significantly larger
scale of Goofspiel compared to the other games tested, requiring OG to use a much smaller learning
rate η for convergence. In contrast, SOGRM+ demonstrates lower sensitivity to hyperparameters,
consistently exhibiting convergence across all parameter settings.

Convergence performance on randomly generated three-player zero-sum polymatrix games.
The experimental results are shown in Figure 3. Consistent with the results in Figure 1 and Figure 2,
the smooth RM+ variants generally exhibit superior convergence performance and reduced sensitivity
to hyperparameters compared to their corresponding OMD algorithms. However, we also observe that
the OG tends to diverge significantly when η ≥ 1. In contrast, SOGRM+, consistent with previous
experimental findings, demonstrates low sensitivity to parameters and retains strong convergence
even for η ≥ 1.

Convergence performance on the games presented in Appendix J.1 and J.2. The experimental
results are shown in Figures 4 and 5. Specifically, Figures 4 and 5 are related to the performance on
the games that satisfy the MVI and weak MVI, respectively. Since these games are too small, all
algorithms converge quickly. Note that we cannot test on larger games that only satisfy the MVI or
weak MVI. This is because we need to prove that the game satisfies the MVI or weak MVI while
failing to meet monotonicity. As shown in Appendix J, even for games with only two actions for each
player, this proof is quite challenging.
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Figure 5: Performance of different algorithms on the game satisfying the weak MVI provided in
Appendix J.2. Notably, this games is very small, e.g., only two actions for each player.
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Figure 6: Performance of different algorithms on Leduc Poker and Leduc Poker (5).

Convergence performance on Leduc Poker variants. RM+ variants are commonly integrated
within the CFR framework to tackle EFGs. Consequently, we evaluate the performance of our
algorithm, SOGRM+, when combined with the CFR framework. This integrated method is referred
to as SOGCFR+. To validate its efficiency, SOGCFR+ is compared against algorithms that PCFR+,
SPCFR+, and SExCFR+, the combinations of CFR framework with PRM+, SPRM+, and SExRM+,
respectively. The Leduc Poker variants we tested are Leduc Poker and Leduc Poker (5). In Leduc
Poker (5), the number of ranks is 5, whereas in Leduc Poker, it is 3. The experimental results are
shown in Figure 6. We observe that SOGCFR+ demonstrates superior robustness to varying step
sizes compared to SPCFR+ and SExCFR+.

M Discussion of the Reason Why SOGRM+ Allows Large η Compared to
Other RM+ Variants

For the reason why SOGRM+ allows large η compared to other RM+ variants, we hypothesize that
it arises because our proposed algorithm, SOGRM+, performs only a single prox-mapping operator
per update step, unlike other smooth RM+ algorithms, which involve two prox-mapping operations
at each iteration (the first occurrence of the prox-mapping operator is in the introduction of OMD,
Section 3).

Specifically, the prox-mapping operator in smooth RM+ variants (such as SExRM+, SPRM+, and
SOGRM+) involves a projection onto the simplex at some time [Farina et al., 2023] (not always
as in OMD algorithms), which may lead to significant changes in θ depending on the choice of
η. In contrast, the update rule of SOGRM+ (in the second line) omits this prox-mapping operator
and instead relies solely on simple addition and subtraction operations. As a result, the initial
parameter θ0 may become negligible compared to the term ηFi(θ). Thus, the values of θi in
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Table 3: The sequence of strategies generated by SExRM+.

eta=0.01------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.098491, 0.100056, 0.109717, 0.106483, 0.096661, 0.091065, 0.094224, 0.101697, 0.107110, 0.094496]

iteration 100

[0.115888, 0.047996, 0.172965, 0.159585, 0.078764, 0.017972, 0.063801, 0.116942, 0.204308, 0.021778]

iteration 1000

[0.247108, 0.000000, 0.114474, 0.070481, 0.000000, 0.000000, 0.082859, 0.185139, 0.299941, 0.000000]

iteration 10000

[0.269960, 0.000000, 0.144571, 0.049592, 0.024670, 0.000000, 0.080797, 0.145601, 0.284809, 0.000000]

iteration 100000

[0.277022, 0.000000, 0.141075, 0.056758, 0.011324, 0.000000, 0.081395, 0.152016, 0.280411, 0.000000]

eta=0.1------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.115382, 0.045286, 0.170913, 0.159142, 0.080181, 0.018597, 0.065633, 0.117780, 0.205713, 0.021372]

iteration 100

[0.244384, 0.000000, 0.121762, 0.065640, 0.000000, 0.000000, 0.088998, 0.180417, 0.298800, 0.000000]

iteration 1000

[0.271157, 0.000000, 0.144291, 0.052641, 0.017717, 0.000000, 0.084207, 0.145175, 0.284811, 0.000000]

iteration 10000

[0.271794, 0.000000, 0.142475, 0.054832, 0.012438, 0.000000, 0.083277, 0.150720, 0.284463, 0.000000]

iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

eta=1------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.250238, 0.000000, 0.141786, 0.047503, 0.000000, 0.000000, 0.071202, 0.174680, 0.314590, 0.000000]

iteration 100

[0.272172, 0.000000, 0.107236, 0.031325, 0.012185, 0.000000, 0.098432, 0.173866, 0.304784, 0.000000]

iteration 1000

[0.271736, 0.000000, 0.149928, 0.056319, 0.012477, 0.000000, 0.078212, 0.149291, 0.282037, 0.000000]

iteration 10000

[0.271736, 0.000000, 0.151644, 0.057013, 0.012477, 0.000000, 0.076993, 0.148728, 0.281409, 0.000000]

iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

eta=10------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.269329, 0.000000, 0.000000, 0.040992, 0.028389, 0.000000, 0.153818, 0.197411, 0.310061, 0.000000]

iteration 100

[0.267860, 0.000000, 0.142353, 0.054205, 0.019992, 0.000000, 0.066032, 0.178721, 0.270838, 0.000000]

iteration 1000

[0.282710, 0.000000, 0.142474, 0.054823, 0.006415, 0.000000, 0.095782, 0.118767, 0.299029, 0.000000]

iteration 10000

[0.270484, 0.000000, 0.142474, 0.054823, 0.013252, 0.000000, 0.082598, 0.153161, 0.283207, 0.000000]

iteration 100000

[0.280316, 0.000000, 0.142474, 0.054823, 0.006891, 0.000000, 0.095685, 0.118429, 0.301383, 0.000000]

SOGRM+ are likely to vary in direct proportion to η, and the resulting strategy xi = θi/∥θi∥1 will
exhibit a more stable behavior with respect to changes in η. Therefore, for different values of η,the
sequence of strategies generated by SOGRM+ exhibits small differences. Moreover, when η is small,
Theorem 6.1 guarantees thatthe sequence of strategies produced by SOGRM+ converges to the set of
NE. Consequently, SOGRM+ permits the use of larger η values compared to other algorithms.

To validate our statement, as demonstrated in Appendix L, we conducted evaluations on 20 randomly
generated 10-dimensional two-player zero-sum matrix games. Specifically, we analyzed the strategies
of Player 0 output by SExRM+, SPRM+, and SOGRM+ at iterations 1, 10, 100, 1000, and 10,000.
To mitigate randomness, we averaged the strategies across the 20 instances. The results clearly show
that for different values of η,the sequence of strategies generated by SOGRM+ exhibits minimal
variation. Notably, when η ≥ 1 and the number of iterations ≥ 1000, the strategies produced by
SOGRM+ are nearly identical across different values of η. This behavior is not observed in the other
two RM+ variants.
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Table 4: The sequence of strategies generated by SPRM+.

eta=0.01------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.098491, 0.100056, 0.109718, 0.106484, 0.096661, 0.091065, 0.094224, 0.101697, 0.107110, 0.094496]

iteration 100

[0.115888, 0.047996, 0.172965, 0.159585, 0.078764, 0.017972, 0.063801, 0.116942, 0.204308, 0.021778]

iteration 1000

[0.247107, 0.000000, 0.114474, 0.070481, 0.000000, 0.000000, 0.082859, 0.185139, 0.299941, 0.000000]

iteration 10000

[0.269960, 0.000000, 0.144571, 0.049592, 0.024670, 0.000000, 0.080797, 0.145601, 0.284810, 0.000000]

iteration 100000

[0.277022, 0.000000, 0.141075, 0.056758, 0.011324, 0.000000, 0.081394, 0.152016, 0.280411, 0.000000]

eta=0.1------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.115372, 0.045123, 0.170807, 0.159184, 0.080205, 0.018616, 0.065781, 0.117766, 0.205911, 0.021235]

iteration 100

[0.244321, 0.000000, 0.121870, 0.065578, 0.000000, 0.000000, 0.089146, 0.180253, 0.298833, 0.000000]

iteration 1000

[0.271172, 0.000000, 0.144289, 0.052646, 0.017681, 0.000000, 0.084196, 0.145199, 0.284817, 0.000000]

iteration 10000

[0.271796, 0.000000, 0.142475, 0.054831, 0.012437, 0.000000, 0.083275, 0.150721, 0.284465, 0.000000]

iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

eta=1------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.237655, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.236226, 0.203216, 0.322903, 0.000000]

iteration 100

[0.275397, 0.000000, 0.137955, 0.053723, 0.009448, 0.000000, 0.085151, 0.122804, 0.315521, 0.000000]

iteration 1000

[0.261815, 0.000000, 0.142474, 0.054823, 0.019802, 0.000000, 0.068201, 0.186105, 0.266779, 0.000000]

iteration 10000

[0.265631, 0.000000, 0.142474, 0.054823, 0.016390, 0.000000, 0.069668, 0.180080, 0.270934, 0.000000]

iteration 100000

[0.266516, 0.000000, 0.142474, 0.054823, 0.015538, 0.000000, 0.072873, 0.173694, 0.274082, 0.000000]

eta=10------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.227614, 0.000000, 0.000000, 0.000000, 0.035267, 0.000000, 0.172873, 0.288558, 0.275688, 0.000000]

iteration 100

[0.271127, 0.000000, 0.138072, 0.053705, 0.000000, 0.000000, 0.098440, 0.122633, 0.316024, 0.000000]

iteration 1000

[0.272132, 0.000000, 0.142474, 0.054823, 0.013019, 0.000000, 0.083662, 0.145232, 0.288658, 0.000000]

iteration 10000

[0.265599, 0.000000, 0.142474, 0.054823, 0.016434, 0.000000, 0.069693, 0.180184, 0.270793, 0.000000]

iteration 100000

[0.267444, 0.000000, 0.142474, 0.054823, 0.015058, 0.000000, 0.079408, 0.161766, 0.279027, 0.000000]
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Table 5: The sequence of strategies generated by SOGRM+.

eta=0.01------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.098649, 0.100078, 0.108744, 0.105828, 0.096983, 0.091963, 0.094790, 0.101526, 0.106359, 0.095079]

iteration 100

[0.115373, 0.048574, 0.172920, 0.159312, 0.079077, 0.018314, 0.063757, 0.117009, 0.203262, 0.022401]

iteration 1000

[0.247102, 0.000000, 0.114400, 0.070508, 0.000000, 0.000000, 0.082918, 0.185222, 0.299849, 0.000000]

iteration 10000

[0.269951, 0.000000, 0.144571, 0.049631, 0.024661, 0.000000, 0.080760, 0.145596, 0.284830, 0.000000]

iteration 100000

[0.277013, 0.000000, 0.141074, 0.056758, 0.011325, 0.000000, 0.081401, 0.152020, 0.280409, 0.000000]

eta=0.1------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.109695, 0.054811, 0.168579, 0.154984, 0.082590, 0.023255, 0.067513, 0.117496, 0.194750, 0.026325]

iteration 100

[0.244066, 0.000000, 0.121463, 0.065806, 0.000000, 0.000000, 0.089626, 0.180912, 0.298127, 0.000000]

iteration 1000

[0.271160, 0.000000, 0.144287, 0.052636, 0.017740, 0.000000, 0.084047, 0.145153, 0.284977, 0.000000]

iteration 10000

[0.271809, 0.000000, 0.142475, 0.054831, 0.012428, 0.000000, 0.083271, 0.150721, 0.284465, 0.000000]

iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

eta=1------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.143554, 0.000000, 0.000000, 0.019365, 0.081302, 0.059547, 0.165077, 0.274010, 0.246277, 0.010868]

iteration 100

[0.272928, 0.000000, 0.140918, 0.055096, 0.011850, 0.000000, 0.079330, 0.152495, 0.287383, 0.000000]

iteration 1000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083267, 0.150733, 0.284489, 0.000000]

iteration 10000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

eta=10------------------------------------------------------

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]

iteration 10

[0.139452, 0.013191, 0.089558, 0.134699, 0.099862, 0.016938, 0.047250, 0.174526, 0.271009, 0.013515]

iteration 100

[0.267804, 0.000000, 0.142767, 0.053852, 0.014696, 0.000000, 0.083433, 0.150929, 0.286519, 0.000000]

iteration 1000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

iteration 10000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]

iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]
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