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ABSTRACT

We provide a general framework for learning diffusion bridges that transport prior
to target distributions. It includes existing diffusion models for generative model-
ing, but also underdamped versions with degenerate diffusion matrices, where the
noise only acts in certain dimensions. Extending previous findings, our framework
allows to rigorously show that score matching in the underdamped case is indeed
equivalent to maximizing a lower bound on the likelihood. Motivated by superior
convergence properties and compatibility with sophisticated numerical integration
schemes of underdamped stochastic processes, we propose underdamped diffusion
bridges, where a general density evolution is learned rather than prescribed by a
fixed noising process. We apply our method to the challenging task of sampling
from unnormalized densities without access to samples from the target distribu-
tion. Across a diverse range of sampling problems, our approach demonstrates
state-of-the-art performance, notably outperforming alternative methods, while
requiring significantly fewer discretization steps and no hyperparameter tuning.

1 INTRODUCTION

In this paper we propose a general diffusion-based framework for sampling from a density

ptarget =
ρtarget
Z , Z :=

∫
Rd

ρtarget(x) dx, (1)

where ρtarget ∈ C(Rd,R≥0) can be evaluated pointwise, but the normalization constant Z is typi-
cally intractable. This task is of great practical relevance in the natural sciences, e.g., in fields such
as molecular dynamics and statistical physics (Stoltz et al., 2010; Schopmans & Friederich, 2025),
but also in Bayesian statistics (Gelman et al., 2013).

Recently, multiple approaches based on diffusion processes have been proposed, where the overall
idea is to learn a stochastic process in such a way that it transports an easy prior distribution to the
potentially complicated target over an artificial time. Typically, the process is defined as an ordinary
Itô diffusion, in particular, demanding non-degenerate noise. In this work, we aim to generalize this
setting to diffusion processes with degenerate noise. This is motivated by the following model from
statistical physics.

Classical sampling approaches based on stochastic processes have been extensively conducted using
some version of the overdamped Langevin dynamics

dXs = ∇ log ptarget(Xs) ds+
√
2 dWs, X0 ∼ pprior, (2)

whose stationary distribution is given by ptarget (under some rather mild technical assumptions on
the target and on the prior pprior). Furthermore, we can define an extended dynamics by introducing
an additional variable, bringing the so-called underdamped Langevin dynamics

dXs = Ys ds, X0 ∼ pprior, (3a)

dYs = (∇ log ptarget(Xs)− Ys) ds+
√
2 dWs, Y0 ∼ N (0, Id), (3b)

∗Equal contribution. †Work partially done at Caltech.
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Figure 1: Illustration of uncontrolled (see (2) and (3)) and controlled (see (4) and (13)) diffusion processes
in the overdamped and underdamped regime, transporting the Gaussian prior distribution to the target. For
the underdamped case, we show both the positional coordinate (left/blue) as well as the velocity (right/black).
While the underdamped version enjoys better convergence guarantees, both uncontrolled diffusions only con-
verge asymptotically. Learning the control, we can achieve convergence in finite time.

where now the stationary distribution is given by τ(x, y) := ptarget(x)N (y; 0, Id) (and π(x, y) :=
pprior(x)N (y; 0, Id) can be defined as an extended prior distribution). Intuitively, the y-variable can
be interpreted as a velocity, which is coupled to the space variable x via Hamiltonian dynamics.

While both (2) and (3) converge to the desired (extended) target distribution after infinite time, their
convergence speed can be exceedingly slow, in particular for multimodal targets (Eberle et al., 2019).
At the same time, it has been observed numerically that the underdamped version can be significantly
faster (Stoltz et al., 2010). This might be attributed to the fact that the Brownian motion is only
indirectly coupled to the space variable, leading to smoother paths of X and lower discretization
error in numerical integrators (since ∇ log ptarget only depends on X , but not on Y ). In particular,
for smooth and strongly log-concave1 targets, the number of steps to obtain KL divergence ε can be
reduced from Õ(d/ε2) to Õ(

√
d/ε) (Ma et al., 2021).

The idea of learned diffusion-based sampling is to reach convergence to multimodal targets after
finite time. In particular, for overdamped diffusion models, the convergence rate can be shown to
match the one of Langevin dynamics without the need for log-concavity assumptions as long as the
learned model exhibits sufficiently small approximation error (Chen et al., 2022). In the overdamped
setting, this can be readily formulated as adding a control function to the dynamics (2),

dXs = (∇ log ptarget(Xs) + u(Xs, s)) ds+
√
2 dWs, (4)

where the task is to learn u ∈ C(Rd × [0, T ],Rd) as to reach XT ∼ ptarget (Richter & Berner,
2024; Vargas et al., 2024); see Figure 1 for an illustration. It is now natural to ask the question
whether we can use the same control ideas to the (typically better behaved) underdamped dynamics
(3). Motivated by this guiding question this paper includes the following:

• Controlled diffusions with degenerate noise: Building on previous work based on path space
measures, we generalize diffusion-based sampling to processes with degenerate noise, in particular
including controlled underdamped Langevin equations (Section 2).

• Underdamped methods in generative modeling: This framework can be used to derive and
analyze underdamped methods in generative modeling. We derive the ELBO and variational gap
for diffusion bridges where both forward and reverse-time processes are learned (Appendix A.3).

• Novel underdamped samplers: Moreover, our framework culminates in underdamped versions
of existing sampling methods and in particular in the novel underdamped diffusion bridge sam-
pler (Section 3). In extensive numerical experiments, we can demonstrate significantly improved
performance of our method.

• Numerical integrators and ablation studies: We provide careful ablation studies of our im-
provements, including the benefits of the novel integrators for controlled diffusion bridges as well
as end-to-end training of hyperparameters (Section 4). We note that the latter eliminates the need
for tuning and also significantly improves existing methods in the overdamped regime.

1Or, more general, log-concave outside of a region.
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1.1 RELATED WORK

Many approaches to sampling problems build an augmented target by using a sequence of den-
sities bridging the prior and target distribution and defining forward and backward kernels to ap-
proximately transition between the densities, often referred to as annealed importance sampling
(AIS) (Neal, 2001). For instance, taking uncorrected overdamped Langevin kernels leads to Un-
adjusted Langevin Annealing (ULA) (Thin et al., 2021; Wu et al., 2020). Moreover, Monte Carlo
Diffusion (MCD) optimizes the extended target distribution in order to minimize the variance of the
marginal likelihood estimate (Doucet et al., 2022b). Going one step further, Controlled Monte Carlo
Diffusion (CMCD) (Vargas et al., 2024) proposes an objective for directly optimizing the transition
kernels to match the annealed density and Sequential Controlled Langevin Diffusion (SCLD) (Chen
et al., 2025) connects this attempt with resampling strategies.

Furthermore, methods relying on diffusion processes that prescribe the backward transition kernel
have recently been suggested. For instance, those include the Path Integral Sampler (PIS) (Zhang &
Chen, 2022; Vargas et al., 2023b; Richter, 2021), Time-Reversed Diffusion Sampler (DIS) (Berner
et al., 2024), Diffusion generative flow samplers (DGFS) (Zhang et al., 2024), Denoising Diffusion
Sampler (DDS) (Vargas et al., 2023a), as well as the Particle Denoising Diffusion Sampler (Phillips
et al., 2024). For those diffusion-based samplers, the optimal forward transition corresponds to the
score of the current density, which can also be learned via its associated Fokker-Planck equation (Sun
et al., 2024) or its representation via the Feynman-Kac formula (Akhound-Sadegh et al., 2024).
Finally, there are methods learning both kernels separately, e.g., the (Diffusion) Bridge2 Sampler
(DBS) (Richter & Berner, 2024).

For some of the above methods improved convergence has been observed when using underdamped
versions or Hamiltonian dynamics, which can be viewed as a form of momentum. In particular,
ULA has been extended to Uncorrected Hamiltonian Annealing (UHA) (Geffner & Domke, 2021;
Zhang et al., 2021), MCD has been extended to Langevin Diffusion Variational Inference (LDVI)
(Geffner & Domke, 2023), and the works on DDS and CMCD also proposed underdamped versions.

Our framework in principle encompasses all these works as special cases (see Table 2). Moreover,
we can easily derive novel algorithms using our framework, ranging from an underdamped version
of DIS to an underdamped version of the Diffusion Bridge Sampler (Appendix A.10). Further, our
unifying framework allows us to easily share integrators and training techniques for the different
methods. First, we improve tuning for all considered methods by learning hyperparameters end-to-
end, overall resulting in better performance (Figure 5). Second, we advance underdamped methods
with our novel integrator (Figure 4 and Figure 9). Third, we show how to scale DBS to more com-
plex targets by using a suitable parametrization (Table 4 & Figure 11) and divergence-free training
objective (Proposition 2.3 vs. Proposition A.13). This makes our underdamped version of DBS a
state-of-the-art method across a wide range of tasks (Table 1, Figure 3, & Table 3).

2 DIFFUSION BRIDGES WITH DEGENERATE NOISE

In this section, we lay the theoretical foundations for diffusion bridges with degenerate noise, ex-
tending the frameworks suggested in Richter & Berner (2024) and Vargas et al. (2024). Relating to
the example from the introduction, we note that this includes cases where the noise only appears in
certain dimensions of the stochastic process and in particular includes underdamped dynamics. We
refer to Appendices A.1 and A.2 for a summary of our notation and assumptions.

The general idea of diffusion bridges is to learn a stochastic process that transports a given prior
density to the prescribed target. This can be achieved via the concept of time-reversal (see, e.g.,
Figure 2). To this end, let us define the forward and reverse-time SDEs

dZs = (f + η u) (Zs, s) ds+ η(s) d⃗Ws, Z0 ∼ π, (5)

dZs = (f + η v) (Zs, s) ds+ η(s) ⃗dWs, ZT ∼ τ, (6)

on the state space RD, where d⃗Ws and ⃗dWs denote forward and backward Brownian motion incre-
ments (see Appendix A.1 for details), respectively, both living in dimension d ≤ D. The function
f ∈ C(RD × [0, T ],RD) is typically fixed and maps to the full space, whereas the control func-
tions u, v ∈ C(RD × [0, T ],Rd) will be learned as to approach the desired bridge. In our setting,

2We clarify the connection to Schrödinger bridges and other diffusion bridges in Remark A.3.
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L(u, v) = D(P⃗u,π| ⃗Pv,τ )

u∗, v∗ ∈ argminu,v L(u, v)

π

τ
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v

π
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Figure 2: Illustration of our general framework for learning diffusion bridges with degenerate noise. Left: We
consider forward and reverse-time SDEs (see (5) and (6)), starting at the (extended) prior π and target τ and
being controlled by u and v, respectively. Middle: We learn optimal controls u∗ and v∗ of the corresponding
SDEs (5) and (6), respectively, by minimizing a suitable divergence D between the associated path measures
P⃗

u,π and ⃗Pv,τ on the SDE trajectories (Problem 2.1). Right: In general, the optimal controls are not unique
and we depict an alternative solution (transparent). However, every solution leads to a perfect time-reversal
and, in particular, represents a diffusion bridge with the correct marginals π at time s = 0 and τ at time s = T .
We note that the trajectories can be smooth since we allow for degenerate diffusion coefficients, where the
Brownian motion noise only acts in certain dimensions.

the noise coefficient η ∈ C([0, T ],RD×d) may be degenerate in the sense that it has the shape
η = (0, σ)⊤, where 0 ∈ RD−d×d and σ ∈ C([0, T ],Rd×d) is assumed to be invertible for each
t ∈ [0, T ]. Importantly, the (scaled) control functions and the (scaled) Brownian motions operate in
the same dimensions. For simplicity, we assume that f = (f̂ , f̃)⊤ with f̃ ∈ C(RD× [0, T ],Rd) and
f̂ ∈ C(RD × [0, T ],RD−d), where f̂ only depends on the last d coordinates of its D-dimensional
inputs. Referring to the underdamped Langevin equation (3), we may think of Z = (X,Y )⊤.

The general idea is to learn the control functions u and v such that the two processes defined in (5)
and (6) are time reversals of each other. This task can be approached via measures on the space of
continuous trajectories C([0, T ],RD), also called path space (see Appendix A.1 for details). To this
end, let us denote by P⃗u,π the measure of the forward process (5) and by ⃗Pv,τ the measure of the
backward process (6). We may consider the following optimization problem; see also Figure 2.

Problem 2.1 (Time-reversal). Let D : P × P → R≥0 be a divergence and let U ⊂ C(RD ×
[0, T ],Rd) be the set of admissible controls3. We aim to identify optimal controls u∗, v∗ such that

u∗, v∗ ∈ argmin
u,v∈U×U

D
(
P⃗

u,π| ⃗Pv,τ
)
. (7)

Clearly, if we can drive the divergence in (7) to zero, we have solved the time-reversal task and it
readily follows for the time marginals4 that P⃗u∗,π

T = τ and ⃗Pv∗,τ
0 = π. We note that optimality

in Problem 2.1 can be expressed by a local condition on the level of time marginals for any time in
between prior and target.

Lemma 2.2 (Nelson’s relation). The following statements are equivalent:

(i) P⃗u,π = ⃗Pv,τ .

(ii) u(·, t)− v(·, t) = η⊤(t)∇ log P⃗u,π
t for all t ∈ (0, T ] and P⃗u,π

T = τ .

(iii) u(·, t)− v(·, t) = η⊤(t)∇ log ⃗Pv,τ
t for all t ∈ [0, T ) and ⃗Pv,τ

0 = π.

Proof. The equivalence follows from the classical Nelson relation (Nelson, 1967; Anderson, 1982;
Föllmer, 1986), which also holds for degenerate η; cf. Haussmann & Pardoux (1986); Millet et al.
(1989); Chen et al. (2022).

However, we cannot directly use Lemma 2.2 to approach Problem 2.1 since the marginals ⃗Pv,τ
t and

P⃗
u,π
t are typically intractable. To turn (7) into a feasible optimization problem, we need to explic-

itly compute divergences between path measures, which (in analogy to likelihood ratios) typically

3We refer to Appendix A.2 for assumptions on U . We note that a divergence D is zero if and only if both
its arguments coincide (in the space of probability measures P on C([0, T ],RD); see Appendix A.1).

4We denote the marginal of a path space measure P at time t ∈ [0, T ] by Pt. Similarly, we denote by Ps|t
the conditional distribution of Ps given Pt; see Appendix A.1.
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involves the Radon-Nikodym derivative between those measures. A key observation is that this can
indeed be achieved for forward and reverse-time processes, as stated in the following proposition.

Proposition 2.3 (Likelihood of path measures). Let η+(s) be the pseudoinverse of η(s) for each
s ∈ [0, T ]. Then for P⃗u,π-almost every Z ∈ C([0, T ],RD) it holds that

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

π(Z0)

τ(ZT )
− 1

2

∫ T

0

∥η+f + u∥2(Zs, s) ds+
1

2

∫ T

0

∥η+f + v∥2(Zs, s) ds

+

∫ T

0

(η+f + u)(Zs, s) · η+(s) d⃗Zs −
∫ T

0

(η+f + v)(Zs, s) · η+(s) ⃗dZs.

Proof. Following Vargas et al. (2024, proof of Proposition 2.2), the proof applies the Girsanov
theorem to the forward and reverse-time processes; see Appendix A.6.

We refer to Proposition A.13 in the appendix for an alternative version of Proposition 2.3, which, for
non-degenerate noise, has been used to define previous diffusion bridge samplers (Richter & Berner,
2024). However, this version relies on a divergence instead of backward stochastic processes, which
renders it prohibitive for high dimensions and does not guarantee an ELBO after discretization; see
also Remark A.7.

It is important to highlight that the optimization task in Problem 2.1 allows for infinitely many
solutions. For numerical applications one may either accept this non-uniqueness (cf. Richter &
Berner (2024)) or add additional constraints, such as regularizers (leading to, e.g., the so-called
Schrödinger bridge (Vargas et al., 2021; De Bortoli et al., 2021)), a prescribed density evolution
(Vargas et al., 2024) or a fixed noising process (Berner et al., 2024). Those different choices lead
to different algorithms, for which we can now readily state corresponding degenerate (and thus
underdamped) versions using our framework, see Appendix A.10.

Divergences and loss functions for sampling. In order to solve Problem 2.1, we need to choose
a divergence D, in turn leading to a loss function L : U × U → R≥0 via L(u, v) := D(P⃗u,π| ⃗Pv,τ ).
A common choice is the Kullback-Leibler (KL) divergence, which brings the loss

LKL(u, v) := DKL

(
P⃗

u,π| ⃗Pv,τ
)
= EZ∼P⃗u,π

[
log

dP⃗u,π

d ⃗Pv,τ
(Z)

]
. (8)

While we will focus on the KL divergence in our experiments, we mention that our framework can
be applied to arbitrary divergences. In particular, one can use divergences that allow for off-policy
training and improved mode exploration, such as the log-variance divergence (Nüsken & Richter,
2021; Richter et al., 2020), see Appendix A.4. Finally, we mention that our framework can also
be used to derive the ELBO and variational gap for underdamped methods in generative modeling,
where one has access to samples X ∼ ptarget, and we refer to Appendix A.3 for details.

3 UNDERDAMPED DIFFUSION BRIDGES

In order to approach Problem 2.1 and minimize divergences (such as the KL divergence) in practice,
we need to numerically approximate the Radon-Nikodym derivative in Proposition 2.3. Analogously
to Vargas et al. (2024, Proposition E.1), we can discretize the appearing integrals to show that

dP⃗u,π

d ⃗Pv,τ
(Z) ≈ π(Ẑ0)

∏N−1
n=0 p⃗n+1|n(Ẑn+1

∣∣Ẑn)

τ(ẐN )
∏N−1

n=0 ⃗pn|n+1(Ẑn

∣∣Ẑn+1)
, (9)

where the expressions for the forward and backward transition kernels p⃗ and ⃗p depend on the choice
of the integrator for Z. Since we have degenerate diffusion matrices, the backward kernel ⃗p can
exhibit vanishing values, which requires careful choice of the integrators for Z. In particular, naively
using an Euler-Maruyama scheme as an integrator is typically not well-suited (Leimkuhler & Reich,
2004; Neal, 2012; Doucet et al., 2022b); see also Figure 4.

We therefore consider alternative integration methods, specifically splitting schemes (Bou-Rabee &
Owhadi, 2010; Melchionna, 2007), which divide the SDE into simpler parts that can be integrated
individually before combining them. Such methods are particularly useful when certain parts can be
solved exactly. To formalize splitting schemes, we leverage the Fokker-Planck operator framework,
proposing a decomposition of the generator L for diffusion processes Z of the form (5).
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We can define L via the (kinetic) Fokker-Planck equation5

∂tp = Lp with Lp = −∇ ·
(
(f + ηu)p) + 1

2 Tr(ηη
⊤∇2p), (10)

governing the evolution of the density p(·, t) = P⃗
u,π
t of the solution to the SDE in (5). In order

to approximate the generator L, we want to assume a suitable structure for f and η, such that
we decompose L into simpler pieces. For this, we come back to the setting of the underdamped
Langevin equation stated in the introduction in equation (3). We can readily see that its controlled
counterpart can be incorporated in the framework presented in Section 2 by making the choices
D = 2d, Z = (X,Y )⊤, and

f(x, y, s) = (y, f̃(x, s)− 1
2σσ

⊤(s)y)⊤, η = (0, σ)⊤ (11)

in (5) and (6), where 0 ∈ Rd×d and f̃ ∈ C(Rd × [0, T ],Rd) is chosen appropriately. Follow-
ing Monmarché (2021); Geffner & Domke (2023) we split the generator as L = LA + LB + LO
(sometimes referred to as free transport, acceleration, and damping) with

LAp = −y · ∇xp, LBp = −f̃ · ∇yp, LOp = −∇y ·
(
gp) + 1

2 Tr(σσ
⊤∇2

yp), (12)

where g(x, y, s) := − 1
2σσ

⊤(s)y + σ(s)u(x, y, s), resulting in[
dXs

dYs

]
=

[
Ys

0

]
︸︷︷︸

A

ds+

[
0

f̃(Xs, s)

]
︸ ︷︷ ︸

B

ds+

[
0(

− 1
2σσ

⊤(s)Ys + σu(Zs, s)
)
ds+ σ(s)d⃗Ws

]
︸ ︷︷ ︸

O

, (13)

where we use a standard normal for the last d components of the initial and terminal distributions
following Geffner & Domke (2023), i.e.,

π(x, y) = pprior(x)N (y; 0, Id) and τ(x, y) = ptarget(x)N (y; 0, Id). (14)

According to the Trotter theorem (Trotter, 1959) and the Strang splitting formula (Strang, 1968), the
time evolution of the system can be approximated as:

e(LA+LB+LO)t ≈
[
eLA∆eLB∆eLO∆

]N
+O(N∆3), (15)

where a finite number of time steps of length ∆ approximates the system dynamics. For a higher
accuracy, symmetric splitting can be used:

e(LA+LB+LO)t ≈
[
eLO

∆
2 eLB

∆
2 eLA∆eLB

∆
2 eLO

∆
2

]N
+O(N∆2), (16)

which reduces the approximation error (Yoshida, 1990). The optimal composition of terms is
generally problem-dependent and has been extensively studied for uncontrolled Langevin dynam-
ics (Monmarché, 2021). For the controlled setting, prior works often use the OBAB ordering
(Geffner & Domke, 2023; Doucet et al., 2022a). In this work, we additionally consider OBABO
and BAOAB, which show improved performance (cf. Section 4).

Further details on the integrators for forward and backward kernels p⃗ and ⃗p corresponding to these
splitting schemes can be found in Appendix A.9. We refer to Algorithm 1 in the appendix for an
overview of our method and to Appendix A.11 for further details. Moreover, in Appendix A.4, we
comment on higher-order Langevin equations, mass matrices, discretizations of the Radon-Nikodym
derivative, as well as favorable properties of the score in the underdamped setting.

4 NUMERICAL EXPERIMENTS

In this section, we present a comparative analysis of underdamped approaches against their over-
damped counterparts. We consider five diffusion-based sampling methods, specifically, Unad-
justed Langevin Annealing (ULA) (Thin et al., 2021; Geffner & Domke, 2021), Monte Carlo Diffu-
sions (MCD) (Doucet et al., 2022b; Geffner & Domke, 2023), Controlled Monte Carlo Diffusions
(CMCD) (Vargas et al., 2024), Time-Reversed Diffusion Sampler (DIS)6 (Berner et al., 2024), and

5We denote by Tr the trace and by∇ the derivative operator w.r.t. spatial variable z; see Appendix A.1.
6It is worth noting that we do not separately consider the Denoising Diffusion Sampler (DDS) (Vargas et al.,

2023a), as it can be viewed as a special case of DIS (see Appendix A.10.1 in Berner et al. (2024)).
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Table 1: Results for benchmark problems of various dimensions d, averaged across four runs. Evaluation
criteria include importance-weighted errors for estimating the log-normalizing constant, ∆logZ , effective
sample size ESS, Sinkhorn distanceWγ

2 , and a lower bound (LB) on logZ; see Appendix A.11.5 for details
on the metrics. The best results are highlighted in bold. Arrows (↑, ↓) indicate whether higher or lower values
are preferable. Blue shading indicates that the method uses the underdamped Langevin equation.

Funnel (d = 10) ManyWell (d = 50) LGCP (d = 1600)

Method ∆logZ ↓ ESS ↑ Wγ
2 ↓ ∆logZ ↓ ESS ↑ logZ (LB) ↑ ESS× 10 ↑

ULA
0.310±0.020 0.140±0.003 169.859±0.195 0.016±0.003 0.179±0.008 482.024±0.009 0.029±0.003

0.130±0.021 0.151±0.016 159.212±0.093 0.009±0.002 0.418±0.002 484.087±0.063 0.030±0.004

MCD
0.173±0.046 0.206±0.026 164.967±0.334 0.005±0.002 0.737±0.002 483.137±0.368 0.031±0.004

0.088±0.008 0.375±0.016 144.753±0.153 0.005±0.000 0.866±0.012 484.933±0.298 0.032±0.006

CMCD
0.023±0.003 0.567±0.023 104.644±0.710 0.004±0.002 0.859±0.001 483.875±0.275 0.032±0.004

0.268±0.198 0.369±0.186 148.990±19.81 0.008±0.003 0.585±0.034 483.535±0.232 0.028±0.004

DIS
0.047±0.003 0.498±0.021 107.458±0.826 0.006±0.002 0.798±0.002 405.686±4.019 0.015±0.003

0.048±0.009 0.550±0.039 114.580±0.457 0.005±0.000 0.856±0.002 diverged diverged

DBS
0.021±0.003 0.603±0.014 102.653±0.586 0.005±0.001 0.887±0.004 486.376±1.020 0.032±0.002

0.010±0.001 0.779±0.009 101.418±0.425 0.005±0.000 0.898±0.002 497.545±0.183 0.174±0.017
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Figure 3: Effective sample size (ESS) for real-world benchmark problems of various dimensions d, averaged
across four seeds. Here, N refers to the number of discretization steps. Dashed and solid lines indicate the
usage of the overdamped (OD) and underdamped (UD) Langevin dynamics, respectively.

Diffusion Bridge Sampler (DBS) (Richter & Berner, 2024). We stress that the underdamped versions
of DIS and DBS have not been considered before.

To ensure a fair comparison, all experiments are conducted under identical settings. Our code is
publicly available7 and our evaluation methodology adheres to the protocol suggested in Blessing
et al. (2024). For a comprehensive overview of the considered benchmark problems and our ex-
perimental setup, we refer to Appendix A.11. Moreover, we provide further numerical results in
Appendix A.11.6, including the comparison to competing state-of-the-art methods. In the follow-
ing, we outline the main findings of our experiments.

Underdamped vs. overdamped. Our analysis of both real-world and synthetic benchmark prob-
lems reveals consistent improvements when using underdamped Langevin dynamics compared to its
overdamped counterpart, as illustrated in Table 1 and Figure 3. The underdamped diffusion bridge
sampler (DBS) demonstrates particularly impressive performance, consistently outperforming alter-
native methods. Remarkably, even with as few as N = 8 discretization steps, it often surpasses
competing methods that utilize significantly more steps.

7https://github.com/DenisBless/UnderdampedDiffusionBridges
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Figure 4: Effective sample size (ESS) and wallclock time (in seconds) of the diffusion bridge sampler (DBS)
for different integration schemes, averaged across multiple benchmark problems and four seeds. Integration
schemes include Euler-Maruyama (EM) for over- (OD) and underdamped (UD) Langevin dynamics and various
splitting schemes (OBAB, BAOAB, OBABO).
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Figure 5: Effective sample size (ESS) of the underdamped diffusion bridge sampler (DBS) for various com-
binations of learned parameters, averaged across multiple benchmark problems and four seeds using N = 64
discretization steps. Haperparameters include mass matrix M , diffusion matrix σ, terminal time T , and ex-
tended prior distribution π. See Figure 10 for the results with N = 8 discretization steps.

Numerical integration schemes. We further examine various numerical schemes for the diffusion
bridge sampler (DBS) introduced in Section 3. Results and a discussion for other methods can be
found in Appendix A.11.6. To provide a concise overview, we present the average effective sample
size (ESS) and wallclock time across all tasks, excluding LGCP, in Figure 4. Detailed results for
individual benchmarks can be found in Appendix A.11.6. While is is known that classical Euler
methods are not well-suited for underdamped dynamics (Leimkuhler & Reich, 2004), our findings
indicate that both OBAB and BAOAB schemes offer significant improvements without incurring
additional computational costs. The OBABO scheme yields the best results overall, albeit at the
expense of increased computational demands due to the need for double evaluation of the control
per discretization step. However, it is worth noting that in many real-world applications, target
evaluations often constitute the primary computational bottleneck. In such scenarios, OBABO may
be the preferred choice despite its higher computational requirements.

End-to-end hyperparameter learning. Finally, we examine the impact of end-to-end learning
of various hyperparameters on the performance of the underdamped diffusion bridge sampler. Our
investigation focuses on optimizing the (diagonal) mass matrix M (cf. Appendix A.8), diffusion
matrix σ, terminal time T , and prior distribution π. Figures 5 and 10 illustrate the effective sample
size, averaged across all tasks (excluding LGCP) for N = 64 and N = 8 diffusion steps, respec-
tively. The results reveal that learning these parameters, particularly the terminal time and prior
distribution, leads to substantial performance gains. We note that this feature improves the method’s
usability and accessibility by minimizing or eliminating the need for manual hyperparameter tuning.

5 CONCLUSION AND OUTLOOK

In this work we have formulated a general framework for diffusion bridges including degenerate
stochastic processes. In particular, we propose the novel underdamped diffusion bridge sampler,
which achieves state-of-the-art results on multiple sampling tasks without hyperparameter tuning
and only a few discretization steps. While a complete theoretical analysis is left for future work
(see Remark A.9), we provide careful ablation studies showing that our improvements are due to the
combination of underdamped dynamics, our novel numerical integrators, learning both the forward
and backward processes as well as end-to-end learned hyperparameters. Our results also suggest
to extend the method by Chen et al. (2021) and benchmark underdamped diffusion bridges for
generative modeling using the ELBO derived in Lemma A.1.
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Simo Särkkä and Tommi Sottinen. Application of Girsanov theorem to particle filtering of discretely
observed continuous-time non-linear systems. arXiv preprint arXiv:0705.1598, 2007.

Moritz Schauer, Frank van der Meulen, and Harry van Zanten. Guided proposals for simulating
multi-dimensional diffusion bridges. arXiv preprint arXiv:1311.3606, 2013.
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A.1 NOTATION

We denote by Tr(Σ) and Σ+ the trace and the (Moore-Penrose) pseudoinverse of a real-valued
matrix Σ, by ∥µ∥ the Euclidean norm of a vector µ, and by µ1 · µ2 the Euclidean inner product
between vectors µ1 and µ2.

For a function p ∈ C(RD × [0, T ],R), depending on the variables z = (x, y) ∈ Rd ×RD−d ≃ RD

and t ∈ [0, T ], we denote by ∂tp it partial derivative w.r.t. the time coordinate t and by ∇xp and
∇yp its gradients w.r.t. the spatial variables x and y, respectively. Here, C(A,B) denotes the set of
all continuous functions mapping from the set A to the set B. Moreover, we denote by

∇p =

[
∇xp
∇yp

]
(17)

the gradient w.r.t. both spatial variables z = (x, y). We analogously denote by ∇2p the Hessian of
p w.r.t. the spatial variables. Similarly, we define ∇ · f =

∑D
i=1 ∂xifi to be the divergence of a

(time-dependent) vector field f = (fi)
D
i=1 ∈ C(RD × [0, T ],RD) w.r.t. the spatial variables.

We denote by N (µ,Σ) a multivariate normal distribution with mean µ ∈ Rd and (positive semi-
definite matrix) covariance matrix Σ ∈ Rd×d and write N (x;µ,Σ) for the evaluation of its density
(w.r.t. the Lebesgue measure) at x ∈ Rd. Moreover, we denote by Unif([0, T ]) the uniform distri-
bution on [0, T ]. For an Rd-valued random variable X with law P and a function f ∈ (Rd,R), we
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denote by

EX∼P[f(X)] =

∫
f dP (18)

the expected value of the random variable f(X).

For suitable continuous stochastic processes Z = (Zt)t∈[0,T ] and Y = (Yt)t∈[0,T ], we define for-
ward and backward Itô integrals via the limits∫ t

t

Xs · d⃗Ys = lim
n→∞

kn∑
i=0

Xtni
· (Ytni+1

− Ytni
), (19)

∫ t

t

Xs · ⃗dYs = lim
n→∞

kn∑
i=0

Xtni+1
· (Ytni+1

− Ytni
), (20)

where t < tn0 < · · · < tnkn
= t is an increasing sequence of subdivisions of

[
t, t
]

with mesh size
tending to zero; see Vargas et al. (2024) for details. The relation between forward and backward
integrals is given in Lemma A.12.

We denote by P the set of probability measures on C([0, T ],RD), equipped with the Borel σ-field
associated with the topology of uniform convergence on compact sets. For suitable vector fields u,
v and distributions π, τ , we denote by Pu,π ∈ P and Pv,τ ∈ P the forward and reverse-time path
measures, i.e., the laws or pushforwards on C([0, T ],RD), of the solutions Z = (Zt)t∈[0,T ] to the
SDEs

Zt = Z0 +

∫ t

0

(f + η u) (Zs, s) ds+

∫ t

0

η(s) d⃗Ws, Z0 ∼ π, (21)

Zt = ZT −
∫ T

t

(f + η v) (Zs, s) ds−
∫ T

t

η(s) ⃗dWs, ZT ∼ τ, (22)

respectively. In the above, W denotes a standard d-dimensional Brownian motion satisfying the
usual conditions, see, e.g., Kunita (2019). Note that we consider degenerate diffusion coefficients η
of the form η = (0, σ)⊤.nMoreover, we assume that the first components of f = (f̂ , f̃)⊤, namely f̂ ,
satisfies ∇xf̂(z, ·) = 0 for every z = (x, y) ∈ RD, i.e., f̂ only depends on y but not on x. Finally,
we denote the marginal of a path space measureP at time t ∈ [0, T ] byPt, which can be interpreted
as the pushforward under the evaluation Z 7→ Zt. Moreover, we denote by Ps|t the conditional
distribution of Ps given Pt.

A.2 ASSUMPTIONS

Throughout the paper, we assume that all vector fields are smooth, i.e., for a vector field g it holds
g ∈ C∞(RD × [0, T ],Rd), and satisfy a global Lipschitz condition (uniformly in time), i.e., there
exists a constant C such that for all z1, z2 ∈ RD and t ∈ [0, T ] it holds that

∥g(z1, t)− g(z2, t)∥ ≤ C∥z1 − z2∥. (23)

These assumptions also define the set of admissible controls U ⊂ C∞(RD × [0, T ],Rd).

Moreover, we assume that the diffusion coefficients appearing in the dimensions with the control,
σ, are invertible for all t ∈ [0, T ] and satisfy that σ ∈ C∞([0, T ],Rd×d). Our continuity assump-
tions on the SDE coefficient functions and the global Lipschitz condition in (23) guarantee strong
solutions with pathwise uniqueness (see, e.g., Le Gall (2016, Section 8.2)) and are sufficient for
Girsanov’s theorem in Theorem A.10 to hold (see, e.g., Delyon & Hu (2006)). Moreover, our condi-
tions allow the definition of the forward and backward Itô integrals via limits of time discretizations
as in (19) and (20) that are independent of the specific sequence of refinements (Vargas et al., 2024).

Finally, we assume that all SDEs admit densities of their time marginals (w.r.t. the Lebesgue mea-
sure) that are sufficiently smooth8 such that we have strong solutions to the corresponding Fokker-

8Sufficient conditions for the existence of densities can be found in Millet et al. (1989, Proposition
4.1) and Haussmann & Pardoux (1986, Theorem 3.1). For time-independent SDE coefficient functions, a
result by Kolmogoroff (1931) guarantees that the Fokker-Planck equation is satisfied if the density is in
C2,1(Rd× [0, T ],R); see also Pavliotis (2014, Proposition 3.8). and Schilling & Partzsch (2014, 19.6 Proposi-

15



Accepted at the ICLR 2025 Workshop on Frontiers in Probabilistic Inference

Planck equations. The existence of continuously differentiable densities and our assumptions on the
SDE coefficient functions are sufficient for Nelson’s relation in Lemma 2.2 to hold; see, e.g., Millet
et al. (1989). While we use the above assumptions to simplify the presentation, we note they can be
significantly relaxed.

A.3 IMPLICATIONS FOR GENERATIVE MODELING: THE EVIDENCE LOWER BOUND

Contrary to the sampling setting described in Section 1, generative modeling typically assumes
that one has access to samples X ∼ ptarget, but cannot evaluate the (unnormalized) density. In
this section we show how our general setup from the previous section can also be applied in this
scenario. For instance, it readily brings an underdamped version of stochastic bridges (Chen et al.,
2021) and serves as a theoretical foundation for underdamped diffusion models stated in Dockhorn
et al. (2022).

To this end, we may approach Problem 2.1 with the forward9 KL divergence

DKL(P⃗
v,τ | ⃗Pu,π) = EZ∼P⃗v,τ

[
log

dP⃗v,τ

d ⃗Pu,π
(Z)

]
. (24)

For the sake of notation, we have reversed time, which can be viewed as interchanging τ and π. Since
the process corresponding to P⃗v,τ starts at the target measure τ , we indeed require samples from
this measure to compute the divergence in (24). At the same time, looking at Proposition 2.3, we
realize that the divergence cannot be computed directly, since τ cannot be evaluated. A workaround
is to instead consider an evidence lower bound (ELBO) (or, equivalently, a lower bound on the
log-likelihood). In our setting, we have the following decomposition.
Lemma A.1 (ELBO for generative modeling). It holds that

EZ0∼τ [log ⃗Pu,π
0 (Z0)]︸ ︷︷ ︸

evidence / log-likelihood

= DKL(P⃗
v,τ |P⃗ṽ,τ )︸ ︷︷ ︸

variational gap

+EZ0∼τ [log τ(Z0)]−DKL(P⃗
v,τ | ⃗Pu,π),︸ ︷︷ ︸

ELBO

(25)

where ṽ(·, t)− u(·, t) = η⊤(t)∇ log ⃗Pu,π
t .

Proof. This follows from Lemma 2.2 and the chain rule for KL divergences; see Appendix A.6.

Crucially, we observe that the ELBO in Lemma A.1 does not depend on the target τ anymore as the
dependency cancels between the two terms (cf. Proposition 2.3). Moreover, the variational gap is
zero if and only if v = ṽ almost everywhere, i.e., the path measures are time-reversals conditioned
on the same terminal condition due to Lemma 2.2. The ELBO is maximized when additionally ⃗Pu,π

0
equals the target measure τ , i.e., if and only if we found a minimizer (u∗, v∗) of Problem 2.1. In
consequence, it provides a viable objective to learn stochastic bridges in an underdamped setting (or,
more generally, with degenerate noise coefficients η) using samples from the target distribution τ .

We note that for non-degenerate coefficients η, the ELBO from Lemma A.1 has already been derived
in Chen et al. (2021); see also Richter & Berner (2024); Vargas et al. (2024). For diffusion models,
i.e., v = 0 and f such that P⃗0,τ

T ≈ π, this ELBO reduces to the one derived by Berner et al. (2024);
Huang et al. (2021). In particular, it has been shown that maximizing the ELBO is equivalent
to minimizing the denoising score matching objective (with a specific weighting of noise scales)
typically used in practice.

For general forward and backward processes, allowing for degenerate noise, as stated in (5) and (6),
the derivation of the ELBO is less explored. For (underdamped) diffusion models with degenerate
η, a corresponding (hybrid) score matching loss has been suggested and connected to likelihood
optimization by Dockhorn et al. (2022, Appendix B.3). In the following proposition, we show that
this also follows as a special case from Lemma A.1.

tion). However, we note that popular results by Friedman (1964, Section 1.6) (see also Friedman (1975, Section
5) and Durrett (1984, Section 9.7)) for showing existence and uniqueness of solutions to Fokker-Planck equa-
tions require uniform ellipticity assumptions, which are not satisfied for our degenerate diffusion coefficients.
We refer to Bogachev et al. (2022, Sections 6.7(ii) and 9.8(i)-(iii)) for existence and uniqueness in the degen-
erate case and note that we only make use of the Fokker-Planck equation for motivating our splitting schemes
in Section 3.

9While we optimize the measures in both arguments of the KL divergence, the measure P⃗u,π , corresponding
to the generative process, is in the second component, which is typically referred to as “forward” KL divergence.
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Proposition A.2 (Underdamped score matching maximizes the likelihood). For the ELBO defined
in (25) (setting v = 0) it holds

ELBO(u) = −T
2 EZ∼P⃗0,τ , s∼Unif([0,T ])

[∥∥u(Zs, s) + η⊤(s)∇ log P⃗0,τ
s|0 (Zs|Z0)

∥∥2]+ const.,

where the constant does not depend on u.

Proof. Following Huang et al. (2021, Appendix A), the proof combines Proposition 2.3 with Stokes’
theorem; see Appendix A.6. Note that in our notation u learns the negative and scaled score.

A.4 FURTHER REMARKS

Remark A.3 (Stochastic bridges and bridge sampling). By stochastic bridge or diffusion bridge
(also referred to as general bridge by Richter & Berner (2024)), we refer to an SDE that satisfies the
marginals pprior and ptarget at times t = 0 and t = T , respectively. For a given diffusion coefficient
of the SDE, there exist infinitely many drifts satisfying these constraints. In particular, for every
sufficiently regular density evolution between the prior and target, we can find a drift (given by
a unique gradient field) that establishes a corresponding stochastic bridge; see, e.g., Vargas et al.
(2024, Proposition 3.4) and Neklyudov et al. (2023, Appendix B.3).

However, any stochastic bridge solves our problem of sampling from ptarget and the non-uniqueness
can even lead to better performance in gradient-based optimization (Sun et al., 2024; Blessing et al.,
2024). Other previous methods have obtained unique objectives by prescribing the density evolution,
e.g., as diffusion process in DIS (Berner et al., 2024) or geometric annealing between prior and target
in CMCD (Vargas et al., 2024).

Another popular approach for obtaining uniqueness consists of minimizing the distance10 to a ref-
erence process (additionally to satisfying the marginals). In case the distance is measured via a
Kullback-Leibler divergence between the path measures of the bridge and reference process, this
setting is often referred to as (dynamical) Schrödinger bridge problem. In the context of samplers,
reference processes have been chosen as scaled Brownian motions in PIS (Zhang & Chen, 2022) and
ergodic processes in DDS (Vargas et al., 2023a); see also Richter & Berner (2024) for an overview.

A special case of such a Schrödinger bridge problem is given if the marginals pprior and ptarget are
Dirac measures. Sampling from the solution to such a problem is equivalent to sampling from the
reference SDE conditioned on the start and end point at the times t = 0 and t = T (specified by
the Dirac measures). For instance, if the reference measure is a Brownian motion, solutions are
commonly referred to as Brownian bridges. As special cases of our considered bridges, solutions
to such problems are also sometimes called diffusion bridges and we refer to Schauer et al. (2013);
Heng et al. (2021) for further details and numerical approaches. However, our sampling problem is
in some form orthogonal to such tasks: in case of a Dirac target distribution, sampling is trivial and
one is interested in the conditional trajectories. For the sampling problem, the trajectories are not
(directly) relevant and one is interested in samples from a general target distribution.

Remark A.4 (Log-variance loss). As an alternative to the KL divergence in (8), we can consider
the log-variance (LV) loss defined as

Lw
LV(u, v) := Dw

LV

(
P⃗

u,π, ⃗Pv,τ
)
= VarZ∼P⃗w,π

[
log

dP⃗u,π

d ⃗Pv,τ
(Z)

]
, (26)

where the expectation is taken with respect to a path space measure corresponding to a forward
process of the form (5), but with the control replaced by an arbitrary control w ∈ U . This allows for
off-policy training and avoids the need to differentiate through the simulation of the SDE. Moreover,
the estimator achieves zero variance at the optimum (u∗, v∗), see Richter et al. (2020); Nüsken &
Richter (2021); Richter & Berner (2024).

Remark A.5 (Higher order Langevin equations). We note that our general framework from Sec-
tion 2 can readily be used for higher order dynamics and in particular higher order Langevin equa-
tions, where next to a position and velocity variable one considers acceleration. As argued by Shi
& Liu (2024), corresponding trajectories become smoother the higher the order, which can lead

10In the context of generative modeling, also more general settings, referred to as mean-field games or gen-
eralized Schrödinger bridges, have been explored; see, e.g., Liu et al. (2022); Koshizuka & Sato (2023); Liu
et al. (2024).
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to improved performance of (uncontrolled) Langevin dynamics. Also, Mou et al. (2021) observed
improved convergence of third-order Langevin dynamics for convex potentials. We leave related
extensions to diffusion bridges for future work.

Remark A.6 (Mass matrix). Previous works, such as Geffner & Domke (2021) and Doucet et al.
(2022b), consider incorporating a mass matrix M ∈ C([0, T ],Rd×d) into the SDE formulation
in (13) and terminal conditions. For simplicity, we have omitted this consideration in the current
section. However, additional details on its inclusion and effects can be found in Appendix A.8.
Furthermore, we conduct experiments where we learn the mass matrix, as discussed in Section 4.

Remark A.7 (Discrete Radon-Nikodym derivative). We note that our discretization of the Radon-
Nikodym derivative in (9) corresponds to a (discrete-time) Radon-Nikodym derivative between the
joint distributions of the discretized forward and backward processes. In particular, we can anal-
ogously define a KL divergence which allows us to obtain a (guaranteed) lower bound for the
log-normalization constant logZ in discrete time. On the other hand, this is not the case if we
discretize the divergence-based Radon-Nikodym derivative in Proposition A.13 as done in previous
work (Berner et al., 2024; Richter & Berner, 2024). Moreover, we can still optimize the diver-
gences between the corresponding discrete path measures as presented in (8) and Appendix A.11.6.
Finally, we note that the discretized Radon-Nikodym derivative does not depend on f̃ for the inte-
grators considered in Appendix A.9. We thus choose f̃ to have a good initialization for the process
Z, see Appendix A.11.

Remark A.8 (Properties of the score). Since the target density ptarget in (14) only appears in the
coordinates where η vanishes, Nelson’s identity in Lemma 2.2 shows that

u∗(x, y, T )− v∗(x, y, T ) = σ⊤(T )∇y logN (y; 0, Id), (27)

i.e., the optimal controls u∗ and v∗ do not depend on the score of the target distribution,
∇x log ptarget, at terminal time T , as in the case of corresponding overdamped versions. This can
lead to numerical benefits in cases where this score would attain large values, e.g., when ptarget is
essentially supported on a lower dimensional manifold (Dockhorn et al., 2022; Chen et al., 2022).

Remark A.9 (Theoretical guarantees). Our favorable findings encourage further investigation of
the theoretical convergence rate of underdamped diffusion samplers. Similar to what has already
been observed in generative modeling by Dockhorn et al. (2022), we find significant and consistent
improvements over overdamped versions, in particular also for high-dimensional targets with only
a few discretization steps N . However, previous results showed that (for the case v = 0), the
improved convergence rates of underdamped Langevin dynamics do not carry over to the learned
setting, since (different from the score ∇ log ptarget in Langevin dynamics) the control u depends
not only on the smooth process X , but also on Y (Chen et al., 2022). Specifically, it can be shown
that a small KL divergence between the path measures generally requires the step size ∆ to scale at
least linearly in d (instead of

√
d). While the tightness of our lower bounds on logZ corresponds

to such KL divergences, we believe that the results can still can be reconciled with our empirical
findings due to the following reasons: (1) our samplers are initialized as Langevin dynamics (see
Appendix A.11) such that theoretical benefits of the underdamped case hold at least initially (2) the
learning problem becomes numerically better behaved (see (27)), leading to better approximation of
the optimal parameters, (3) learning both u and v as well as the prior π, diffusion coefficient σ, and
terminal time T (see Figure 5) can reduce the discretization error.

A.5 AUXILIARY RESULTS

Theorem A.10 (Girsanov theorem). For P⃗u,π-almost every Z ∈ C([0, T ],RD) it holds that

log
dP⃗u,π

dP⃗w,π
(Z) = −

∫ T

0

(
1

2
∥u− w∥2 + (η+f + w) · (u− w)

)
(Zs, s) ds+ S (28a)

=
1

2

∫ T

0

(
∥η+f + w∥2 − ∥η+f + u∥2

)
(Zs, s) ds+ S, (28b)

where

S =

∫ T

0

(u− w)(Zs, s) · η+(s) d⃗Zs. (29)
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In particular, for Z ∼ P⃗u,π we obtain that

log
dP⃗u,π

dP⃗w,π
(Z) = −1

2

∫ T

0

∥u− w∥2(Zs, s) ds+

∫ T

0

(u− w)(Zs, s) · d⃗Bs. (30)

Proof. See Särkkä & Sottinen (2007); Üstünel & Zakai (2013); Chen et al. (2022).

Theorem A.11 (Reverse-time Girsanov theorem). For P⃗u,π-almost every Z ∈ C([0, T ],RD) it
holds that

log
d ⃗Pu,π

d ⃗Pw,π
(Z) = log

dP⃗u,π

dP⃗w,π
(Z)−

∫ T

0

(u− w)(Zs, s) · η+(s) d⃗Zs (31)

+

∫ T

0

(u− w)(Zs, s) · η+(s) ⃗dZs. (32)

Proof. Using Theorem A.10 and the definitions in (19) and (20), we observe that d ⃗Pu,π

d ⃗Pw,π
(Z) equals

the Radon-Nikodym derivative between the path spaces measures corresponding to forward SDEs
as in (5) with initial conditions π and all functions f , u, w, and η reversed in time, evaluated at
t 7→ ZT−t. We can now substitute t 7→ T − t to proof the claim; see also Vargas et al. (2024, Proof
of Proposition 2.2).

Lemma A.12 (Conversion formula). For Z ∼ Pw,π and suitable g ∈ C(RD × [0, T ],RD) it holds
that ∫ t

t

g(Zs, s) · ⃗dZs =

∫ t

t

g(Zs, s) · d⃗Zs +

∫ t

t

∇ · (ηη⊤g)(Zs, s) ds. (33)

Proof. Similar to the conversion formula in Vargas et al. (2024, Remark 3), the result follows from
combining (19) and (20). First, we rewrite the problem by observing that∫ t

t

g(Zs, s) · ⃗dZs =

∫ t

t

g(Zs, s) · d⃗Zs +

∫ t

t

g̃(Zs, s) · ⃗dWs −
∫ t

t

g̃(Zs, s) · d⃗Ws,

where g̃ = η⊤g. Then we can compute∫ t

t

g̃(Zs, s) · ⃗dWs = lim
n→∞

kn∑
i=0

(g̃(Ztni+1
, tni+1) + g̃(Ztni

, tni )) · (Wtni+1
−Wtni

)−
∫ t

t

g̃(Zs, s) · d⃗Ws

= 2

∫ t

t

g̃(Zs, s) ◦ dWs −
∫ t

t

g̃(Zs, s) · d⃗Ws,

where ◦ denotes Stratonovich integration. The result now follows from the relationship between Itô
and Stratonovich stochastic integrals, i.e.,∫ t

t

g̃(Zs, s) ◦ dWs =

∫ t

t

g̃(Zs, s) · d⃗Ws +
1

2

∫ t

t

∇ · (ηg̃)(Zs, s) ds, (34)

see, e.g., Kloeden & Platen (1992, Section 4.9).

A.6 PROOFS

Proof of Proposition 2.3. The proof follows the one by Vargas et al. (2024, proof of Proposition 2.2).
Using disintegration (Léonard, 2014), we first observe that11 d ⃗Pw,τ

dP⃗w,π
(Z) = τ(ZT )

π(Z0)
for w = −η+f .

Thus, it holds that

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

dP⃗u,π

dP⃗w,π
(Z) + log

d ⃗Pw,τ

d ⃗Pv,τ
(Z) + log

π(Z0)

τ(ZT )
. (35)

11Considering the (kinetic) Fokker-Planck equation in (10), the Lebesgue measure is an invariant measure of
the SDE in (5) with control w = −η+f if and only if f̂ merely depends on the last d coordinates.
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The result now follows by applying the Girsanov theorem; see Theorem A.10 and Theorem A.11.

Proof of Lemma A.1. Using Lemma 2.2 and the chain rule for the KL divergence, we observe that

DKL(P⃗
v,τ | ⃗Pu,π) = DKL(P⃗

v,τ |P⃗ṽ,τ̃ ) = DKL(P⃗
v,τ |P⃗ṽ,τ ) +DKL(τ | ⃗Pu,π

0 ), (36)

where τ̃ = ⃗Pu,π
0 . We note that the Girsanov theorem (see Theorem A.10) implies that the variational

gap can equivalently be written as

DKL(P⃗
v,τ |P⃗ṽ,τ ) = EZ∼P⃗v,τ

[
1

2

∫ T

0

∥∥v(Zs, s)− u(Zs, s) + η⊤(s)∇ log ⃗Pu,π
s (Zs)

∥∥2 ds] ,
see also Vargas et al. (2024, Appendix C).

Proof of Proposition A.2. The proof extends the ones by Huang et al. (2021, Appendix A), Berner
et al. (2024, Lemma A.11), and (Vargas et al., 2024, Appendix C.2) to the case of degenerate diffu-
sion coefficients η. Using Proposition A.13 and a Monte Carlo approximation, we first observe that,
for the case v = 0, the ELBO can be represented as

ELBO = EZ∼P⃗0,τ

[
log π(ZT )−

∫ T

0

(
1

2
∥u∥2 −∇ · (ηu+ f)

)
(Zs, s) ds

]
(37)

= −T EZ∼P⃗0,τ , s∼Unif([0,T ])

[(
1

2
∥u∥2 −∇ · (ηu)

)
(Zs, s)

]
+ const., (38)

where the last expression can be viewed as an extension of implicit score matching (Hyvärinen &
Dayan, 2005) to degenerate η.

Completing the square and using the tower property in (37), it remains to show that

E[r(Zs)|Z0] = −E [∇ · (ηu)(Zs, s)|Z0] (39)

for fixed s ∈ [0, T ], where we used the abbreviations

p(z) := P0,τ
s|0 (z|Z0) and r(z) = u(z, s) ·

(
η⊤(s)∇ log p(z)

)
=
(
η(s)u(z, s)

)
· ∇p(z)

p(z)
. (40)

Under suitable assumptions, the statement in (39) follows from the computation

E[r(Zs)|Z0] =

∫
Rd

r(z)p(z) dz =

∫
Rd

∇ · (ηup)(z, s) dz︸ ︷︷ ︸
=0

−
∫
Rd

∇ ·
(
ηu
)
(z, s)p(z) dz (41)

= −E [∇ · (ηu)(Zs, s)|Z0] , (42)

where we used identities for divergences and Stokes’ theorem.

A.7 ADDITIONAL STATEMENTS ON DIFFUSION MODELS

The following proposition is an alternative version of Proposition 2.3, which, instead of backward
integrations, depends on the divergence operation and does not rely on computing the pseudoinverse
of η.

Proposition A.13 (Radon-Nikodym derivative). For a process Z ∼ P⃗w,π as defined in (5) it holds

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

π(Z0)

τ(ZT )
+

∫ T

0

(
(u− v) ·

(
w − u+ v

2

)
−∇ · (f + ηv)

)
(Zw

s , s) ds

+

∫ T

0

(u− v)(Zs, s) · d⃗Ws.
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Proof. This follows from combining Proposition 2.3 with Lemma A.12. In particular, note that for
Z ∼ P⃗w,π it holds that

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

π(Z0)

τ(ZT )
− 1

2

∫ T

0

∥(η+f + u)∥2(Zs, s) ds+
1

2

∫ T

0

∥(η+f + v)∥2(Zs, s) ds

+

∫ T

0

(η+f + u)(Zs, s) · η+(s) d⃗Zs −
∫ T

0

(η+f + v)(Zs, s) · η+(s) ⃗dZs

= log
π(Z0)

τ(ZT )
− 1

2

∫ T

0

∥(η+f + u)∥2(Zs, s) ds+
1

2

∫ T

0

∥(η+f + v)∥2(Zs, s) ds

+

∫ T

0

(u− v)(Zs, s) · η+(s) d⃗Zs −
∫ T

0

∇ · (ηη+f + ηv)(Zs, s) ds

= log
π(Z0)

τ(ZT )
+

∫ T

0

(
(u− v) ·

(
w − u+ v

2

)
−∇ · (ηη+f + ηv)

)
(Zw

s , s) ds

+

∫ T

0

(u− v)(Zs, s) · d⃗Ws.

We note that ηη+ =

(
0 0
0 Idd×d

)
. Together with our assumption that the first component f̂ of

f = (f̂ , f̃)⊤ only depends on the last d coordinates, we obtain that ∇ · (ηη+f) = ∇ · f , which
proves the claim.

Remark A.14 (PDE perspective). Similar to Berner et al. (2024); Sun et al. (2024), we can also
derive the expression in Proposition A.13 using the underlying PDEs. To this end, we recall that the
density p of the solution Z to the SDE in stated (5) is governed by the (kinetic) Fokker-Planck equa-
tion in (10). Using the Hopf-Cole transformation V := log p, we get the Hamilton–Jacobi–Bellman
equation

∂tV = −div(f + ηu)−∇V · (f + ηu) + 1
2∥η⊤∇V ∥2 + 1

2 Tr(ηη
⊤∇2V ).

Moreover, Itô’s formula implies that

V (ZT , T )− V (Z0, 0) =

∫ T

0

(
∂sV + 1

2 Tr(ηη
⊤∇2V ) + (f + ηw) · ∇V

)
(Zs, s) ds

+

∫ T

0

∇V (Zs, s) · η(s) dWs,

where Z ∼ P⃗w,π . Following the same computations as in Proposition 3.1 in Sun et al. (2024) and
minimizing the squared residual of the above Itô formula, we obtain the loss

Lw(u, v) = EZ∼P⃗w,π

(log dP⃗u,π

d ⃗Pv,τ
(Z)

)2
 ,

where the Radon-Nikodym derivative is equivalent to the one given in Proposition A.13.

A.8 INCLUDING A MASS MATRIX

In Section 3, we omitted the mass matrix M for simplicity. Here, we give further details on the
SDEs when the mass matrix is incorporated. It can be incorporated in the framework presented in
Section 2 by making the choices D = 2d, Z = (X,Y )⊤ and

f(x, y, s) = (y, f̃(x, y, s)− 1
2σσ

⊤(s)y)⊤, η = (0d, σM
1/2)⊤ (43)

in (5) and (6), where 0d ∈ Rd×d, f̃ ∈ C(Rd × [0, T ],Rd) is chosen appropriately and σ,M ∈
C([0, T ],Rd×d). For the terminal conditions, the standard normal for the last d components of the
initial and terminal distributions is replaced by a Gaussian whose covariance matrix is given by the
mass, i.e.,

π(x, y) = pprior(x)N (y; 0,M) and τ(x, y) = ptarget(x)N (y; 0,M). (44)
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We, therefore, get the forward and reverse-time processes

dXs = M−1Ys ds, X0 ∼ pprior, (45a)

dYs =
(
f̃(Zs, s)− 1

2σσ
⊤(s)Ys + σM1/2u(Zs, s)

)
ds+ σ(s)M1/2 d⃗Ws, Y0 ∼ N (0,M),

(45b)

and

dXs = M−1Ys ds, XT ∼ ptarget,

(46a)

dYs =
(
f̃(Zs, s)− 1

2σσ
⊤(s)Ys + σM1/2v(Zs, s)

)
ds+ σ(s)M1/2 ⃗dWs, YT ∼ N (0,M).

(46b)

In a similar spirit to the diffusion matrix σ, one can also learn the mass matrix. However, our
experiments (Section 4) showed little improvements when doing so.

A.9 NUMERICAL DISCRETIZATION SCHEMES

In this section we provide details on the numerical integration schemes discussed in this work, called
OBAB, BAOAB, and OBABO. In particular, we derive the transition kernels p⃗ and ⃗p for computing
the discrete-time approximation of the Radon-Nikodym derivative as

dP⃗u,π

d ⃗Pv,τ
(Z) ≈ π(Ẑ0)

∏N−1
n=0 p⃗n+1|n(Ẑn+1

∣∣Ẑn)

τ(ẐN )
∏N−1

n=0 ⃗pn|n+1(Ẑn

∣∣Ẑn+1)
. (47)

We note that such splitting schemes are well-studied in the uncontrolled setting, see, e.g., Section 7
in Leimkuhler & Matthews (2015) or Section 2.2.3.2 in Stoltz et al. (2010). The controlled setting,
and in particular the approximation of the Radon-Nikodym derivative between path space measures,
has to the best of our knowledge only been considered for OBAB yet Geffner & Domke (2023);
Doucet et al. (2022b).

For convenience, let us recall the following splitting for the forward SDE that is used throughout
this section, i.e.,[

dXs

dYs

]
=

[
Ys

0

]
︸︷︷︸

A⃗

ds+

[
0

f̃(Xs, s)

]
︸ ︷︷ ︸

B⃗

ds+

[
0(

− 1
2σσ

⊤(s)Ys + σu(Zs, s)
)
ds+ σ(s)d⃗Ws

]
︸ ︷︷ ︸

O⃗

, (48)

and let us use the following splitting for the reverse SDE[
dXs

dYs

]
=

[
Ys

0

]
︸︷︷ ︸⃗

A

ds+

[
0

f̃(Xs, s)

]
︸ ︷︷ ︸

⃗B

ds+

[
0(

− 1
2σσ

⊤(s)Ys + σv(Zs, s)
)
ds+ σ(s) ⃗dWs

]
︸ ︷︷ ︸

⃗O

. (49)

Here, we use arrows to indicate whether the corresponding splitting belongs to the generative or
inference SDE. To simplify the notation, we define σn := σ(n∆), f̃n := f̃(Xn∆, n∆), p⃗n+1|n :=

p⃗n+1|n(Ẑn+1|Ẑn) and analogously for the backward transition ⃗pn|n+1.

A.9.1 EULER-MARUYAMA

We follow Geffner & Domke (2023) and leverage a semi-implicit Euler-Maruyama (EM) scheme,
where the velocity update is computed first and then used to move the position, i.e.,

Ŷn+1 = Ŷn(1− 1
2σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆+ f̃n∆+ σn

√
∆ξn, (50)

X̂n+1 = X̂n + Ŷn+1∆, (51)

with ξn ∼ N (0, I) and step size ∆ > 0. We further define Ẑn+1 = Φ(X̂n, Ŷn+1) := (X̂n +

Ŷn+1∆, Ŷn+1)
⊤ which helps to simplify the discrete-time approximation of the Radon-Nikodym

derivative as shown in the following. We obtain the forward transition density

p⃗n+1|n =N
(
Ŷn+1

∣∣∣Ŷn(1− 1
2σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆+ f̃n∆, σnσ

⊤
n ∆
)
× δΦ(X̂n,Ŷn+1)

(Ẑn+1),
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where δ is the Dirac delta distribution. Integrating the reverse process (49) using the semi-implicit
EM scheme, we obtain

X̂n = X̂n+1 − Ŷn+1∆ (52)

Ŷn = Ŷn+1(1 +
1
2σn+1σ

⊤
n+1∆)− σn+1v(Ẑn+1, (n+ 1)∆)∆− f̃n+1∆+ σn+1

√
∆ξn+1, (53)

with corresponding transition density

⃗pn|n+1 =N
(
Ŷn

∣∣∣Ŷn+1(1 +
1
2σn+1σ

⊤
n+1∆)− σn+1v(Ẑn+1, (n+ 1)∆)∆− f̃n+1∆, σn+1σ

⊤
n+1∆

)
× δΦ−1(Ẑn+1)

(X̂n, Ŷn+1),

(54)

resulting in the following ratio between forward and backward transitions

p⃗n+1|n
⃗pn|n+1

=
N
(
Ŷn+1|Ŷn(1− 1

2σnσ
⊤
n ∆) + σnu(Ẑn, n∆)∆+ f̃n∆, σnσ

⊤
n ∆
)

N
(
Ŷn|Ŷn+1(1 +

1
2σn+1σ⊤

n+1∆)− σn+1v(Ẑn+1, (n+ 1)∆)∆− f̃n+1∆, σn+1σ⊤
n+1∆

) ,
(55)

as the ratio between the two Dirac delta distribution cancel.

A.9.2 OBAB

Composing the splitting terms as O⃗B⃗A⃗B⃗ yields the integrator

Ŷ
′

n = Ŷn(1− 1
2σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆+ σn

√
∆ξn, ξn ∼ N (0, I) (56a)

Ŷ
′′

n = Ŷ
′

n + f̃n
∆
2

X̂n+1 = X̂n + Ŷ
′′

n ∆

Ŷn+1 = Ŷ
′′

n + f̃n+1
∆
2

Φ (56b)

with Ẑn+1 = Φ(X̂n, Ŷ
′

n). The resulting forward transition is given by

p⃗n+1|n = δΦ(X̂n,Ŷ
′
n)
(Ẑn+1)N

(
Ŷ

′

n

∣∣∣Ŷn(1− 1
2σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆, σnσ

⊤
n ∆
)
.

The inference SDE, i.e., ⃗O ⃗B ⃗A ⃗B, is integrated as

Ŷ
′′

n = Ŷn+1 − f̃n+1
∆
2

X̂n = X̂n+1 − Ŷ
′′

n ∆

Ŷ
′

n = Ŷ
′′

n − f̃n
∆
2

Φ−1 (57)

Ŷn = Ŷ
′

n(1 +
1
2σnσ

⊤
n ∆)− σnv(Ẑ

′

n, n∆)∆+ σn

√
∆ξn, ξn ∼ N (0, I) , (58)

with (X̂n, Ŷ
′

n) = Φ−1(Ẑn+1), giving the backward transition

⃗pn|n+1 = δΦ−1(Ẑn+1)
(X̂n, Ŷ

′

n)N
(
Ŷn

∣∣∣Ŷ ′

n

(
1 + 1

2σnσ
⊤
n ∆
)
− σnv(Ẑ

′

n, n∆)∆, σnσ
⊤
n ∆
)
.

This results in the following ratio between forward and backward transitions

p⃗n+1|n
⃗pn|n+1

=
N
(
Ŷ

′

n

∣∣∣Ŷn(1− 1
2σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆, σnσ

⊤
n ∆
)

N
(
Ŷn

∣∣∣Ŷ ′
n

(
1 + 1

2σnσ⊤
n ∆
)
− σnv(Ẑ

′
n, n∆)∆, σnσ⊤

n ∆
) . (59)
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A.9.3 BAOAB

Composing the splitting terms as B⃗A⃗O⃗A⃗B⃗ yields the integrator

Ŷ
′

n = Ŷn + f̃n
∆
2

X̂
′

n = X̂n + Ŷ
′

n
∆
2

}
Φ1 (60)

Ŷ
′′

n = Ŷ
′

n(1− 1
2σnσ

⊤
n ∆) + σnu(X̂

′

n, Ŷ
′

n, n∆)∆+ σn

√
∆ξn (61)

X̂n+1 = X̂
′

n + Ŷ
′′

n
∆
2

Ŷn+1 = Ŷ
′′

n + f̃n+1
∆
2

}
Φ2 (62)

with ξn ∼ N (0, I), (X̂
′

n, Ŷ
′

n) = Φ1(Ẑn), and Ẑn+1 = Φ2(X̂
′

n, Ŷ
′′

n ). Hence, we obtain the forward
transition density

p⃗n+1|n =δΦ2(X̂
′
n,Ŷ

′′
n )(Ẑn+1)× δΦ1(Ẑn)

(X̂
′

n, Ŷ
′

n)

×N
(
Ŷ

′′

n

∣∣∣Ŷ ′

n(1− 1
2σnσ

⊤
n ∆) + σnu(X̂

′

n, Ŷ
′

n, n∆)∆, σnσ
⊤
n ∆
)
.

(63)

For ⃗B ⃗A ⃗O ⃗A ⃗B we obtain

Ŷ
′′

n = Ŷn+1 − f̃n+1
∆
2

X̂
′

n = X̂n+1 − Ŷ
′′

n
∆
2

}
Φ−1

2 (64)

Ŷ
′

n = Ŷ
′′

n (1 + 1
2σnσ

⊤
n ∆)− σnv(X̂

′

n, Ŷ
′′

n , n∆)∆+ σn

√
∆ξn (65)

X̂n = X̂
′

n − Ŷ
′

n
∆
2

Ŷn = Ŷ
′

n − f̃n
∆
2

}
Φ−1

1 (66)

with (X̂
′

n, Ŷ
′′

n ) = Φ−1
2 (Ẑn+1) and Ẑn = Φ−1

1 (X̂
′

n, Ŷ
′

n). Moreover, we have

⃗pn|n+1 =δΦ−1
1 (X̂′

n,Ŷ
′
n)
(Ẑn)× δΦ−1

2 (Ẑn+1)
(X̂

′

n, Ŷ
′′

n )

×N
(
Ŷ

′

n

∣∣∣Ŷ ′′

n (1 + 1
2σnσ

⊤
n ∆)− σnv(X̂

′

n, Ŷ
′′

n , n∆)∆, σnσ
⊤
n ∆
)
.

(67)

We therefore obtain the following ratio between forward and backward transitions as

p⃗n+1|n
⃗pn|n+1

=
N
(
Ŷ

′′

n

∣∣∣Ŷ ′

n(1− 1
2σnσ

⊤
n ∆) + σnu(X̂

′

n, Ŷ
′

n, n∆)∆, σnσ
⊤
n ∆
)

N
(
Ŷ ′
n

∣∣∣Ŷ ′′
n (1 + 1

2σnσ⊤
n ∆)− σnv(X̂

′
n, Ŷ

′′
n , n∆)∆, σnσ⊤

n ∆
) . (68)

A.9.4 OBABO

Composing the splitting terms as O⃗B⃗A⃗B⃗O⃗ yields the integrator

Ŷ
′

n = Ŷn(1− 1
4σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆2 + σn

√
∆
2 ξ

(1)
n (69)

Ŷ
′′

n = Ŷ
′

n + f̃n
∆
2

X̂n+1 = X̂n + Ŷ
′′

n ∆

Ŷ
′′′

n = Ŷ
′′

n + f̃n+1
∆
2

Φ (70)

Ŷn+1 = Ŷ
′′′

n (1− 1
4σnσ

⊤
n ∆) + σnu(X̂n+1, Ŷ

′′′

n , (n+ 1
2 )∆)∆2 + σn

√
∆
2 ξ

(2)
n (71)

with ξ
(1)
n , ξ

(2)
n ∼ N (0, I) and (X̂n+1, Ŷ

′′′

n ) = Φ(X̂n, Ŷ
′

n). The resulting forward transition density
is given by

p⃗n+1|n =N
(
Ŷn+1

∣∣∣Ŷ ′′′

n (1− 1
4σnσ

⊤
n ∆) + σnu(X̂n+1, Ŷ

′′′

n , (n+ 1
2 )∆)∆2 ,

1
2σnσ

⊤
n ∆
)

× δΦ(X̂n,Ŷ
′
n)
(X̂n+1, Ŷ

′′′

n )

×N
(
Ŷ

′

n

∣∣∣Ŷn(1− 1
4σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆2 ,

1
2σnσ

⊤
n ∆
)
.

(72)
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The inference SDE, i.e., ⃗O ⃗B ⃗A ⃗B ⃗O, is integrated as

Ŷ
′′′

n = Ŷn+1(1 +
1
4σnσ

⊤
n ∆)− σnv(Ẑn+1, (n+ 1)∆)∆2 + σn

√
∆
2 ξ

(2)
n (73)

Ŷ
′′

n = Ŷ
′′′

n − f̃n+1
∆
2

X̂n = X̂n+1 − Ŷ
′′

n ∆

Ŷ
′

n = Ŷ
′′

n − f̃n
∆
2

Φ−1 (74)

Ŷn = Ŷ
′

n(1 +
1
4σnσ

⊤
n ∆)− σnv(X̂n, Ŷ

′

n, (n+ 1
2 )∆)∆2 + σn

√
∆
2 ξ

(1)
n , (75)

with (X̂n, Ŷ
′

n) = Φ−1(X̂n+1, Ŷ
′′′

n ), and gives the following backward transition densties

⃗pn|n+1 =N
(
Ŷn

∣∣∣Ŷ ′

n(1 +
1
4σnσ

⊤
n ∆)− σnv(X̂n, Ŷ

′

n, (n+ 1
2 )∆)∆2 ,

1
2σnσ

⊤
n ∆
)

× δΦ−1(X̂n+1,Ŷ
′′′
n )(X̂n, Ŷ

′

n)

×N
(
Ŷ

′′′

n

∣∣∣Ŷn+1(1 +
1
4σnσ

⊤
n ∆)− σnv(Ẑn+1, (n+ 1)∆)∆2 ,

1
2σnσ

⊤
n ∆
)
,

(76)

resulting in the following ratio between forward and backward transitions

p⃗n+1|n
⃗pn|n+1

=
N
(
Ŷn+1

∣∣∣Ŷ ′′′

n (1− 1
4σnσ

⊤
n ∆) + σnu(X̂n+1, Ŷ

′′′

n , (n+ 1
2 )∆)∆2 ,

1
2σnσ

⊤
n ∆
)

N
(
Ŷ ′′′
n

∣∣∣Ŷn+1(1 +
1
4σnσ⊤

n ∆)− σnv(Ẑn+1, (n+ 1)∆)∆2 ,
1
2σnσ⊤

n ∆
)

×
N
(
Ŷ

′

n

∣∣∣Ŷn(1− 1
4σnσ

⊤
n ∆) + σnu(Ẑn, n∆)∆2 ,

1
2σnσ

⊤
n ∆
)

N
(
Ŷn

∣∣∣Ŷ ′
n(1 +

1
4σnσ⊤

n ∆)− σnv(X̂n, Ŷ
′
n, (n+ 1

2 )∆)∆2 ,
1
2σnσ⊤

n ∆
) .

A.10 UNDERDAMPED VERSION OF PREVIOUS DIFFUSION-BASED SAMPLING METHODS

In this section we outline how our framework in Section 2 includes previous diffusion-based sam-
pling methods. First, we note that setting the drift f̃ and controls u and v in (13) to specific values
recovers underdamped methods of ULA, MCD, and CMCD, see Table 2. Moreover, we can also
introduce reference processes with controls ũ and ṽ that satisfy

dP⃗ũ,π̃

d ⃗Pṽ,τ̃
≡ 1, (77)

where π̃ and τ̃ are known reference distributions. In other words, this assumes having knowledge
of a perfect time-reversal for specific controls ũ, ṽ and marginals π̃, τ̃ (cf. Section 3.3 in Richter &
Berner (2024)). We remark that these processes take a role similar to the Brownian motion used in
the proof of Proposition 2.3. In particular, by applying Proposition 2.3 twice, we obtain that

log
dP⃗u,π

d ⃗Pv,τ
(Z) = log

dP⃗u,π

d ⃗Pv,τ
(Z)− log

dP⃗ũ,π̃

d ⃗Pṽ,τ̃
(Z)

= log
π(Z0)

π̃(Z0)
− log

τ(ZT )

τ̃(ZT )

+
1

2

∫ T

0

(
(v − ṽ) · (2η+f + v + ṽ)− (u− ũ) · (2η+f + u+ ũ)

)
(Zs, s) ds

+

∫ T

0

(u− ũ)(Zs, s) · η+(s) d⃗Zs −
∫ T

0

(v − ṽ)(Zs, s) · η+(s) ⃗dZs.

Several previous methods, such as versions of PIS and DDS, can be recovered by fixing v and using
the choices ṽ = v as well as π̃ = π, which significantly simplifies the above expression (Vargas
et al., 2024; Richter & Berner, 2024).

A.11 FURTHER COMPUTATIONAL DETAILS

In this section we provide additional computational details.
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A.11.1 ALGORITHM

In Algorithm 1 we display the training process of our underdamped diffusion bridge sampler.

A.11.2 SDE PRECONDITIONING

Here, we introduce a preconditioning technique that modifies the SDEs to improve numerical be-
havior while preserving the optimal control for both overdamped and underdamped diffusions.

Overdamped diffusions. Consider the controlled forward and backward pair of SDEs given by

dXs = (f + σ u) (Xs, s) ds+ σ(s) d⃗Ws, X0 ∼ pprior, (78)

dXs = (f + σ v) (Xs, s) ds+ σ(s) ⃗dWs, XT ∼ ptarget, (79)

with forward and backward Brownian motion d⃗Ws and ⃗dWs , f ∈ C(Rd × [0, T ],Rd), dif-
fusion coefficient σ ∈ C([0, T ],Rd×d), control functions u, v ∈ C(Rd × [0, T ],Rd) and path
measures P⃗u,p0 and ⃗Pv,pT corresponding to (78) and (79), respectively, with p0 := pprior and
pT := ptarget. Note that for denoising diffusion sampler such as DIS, we have12 f(x, ·) = 2σσ⊤x
and v = 0, i.e., an Ornstein-Uhlenbeck (OU) process. While such a choice for f ensures for
a suitable σ that ⃗Pv,pT

0 ≈ N (0, I), it may lead to a poor initialization for the path measure
P⃗

u,p0 . Similarly, for DBS it helps significantly to choose f = ∇ log ptarget or f = ∇ log ν where
ν(x, s) ∝ p

1−β(s)
prior (x)p

β(s)
target(x); see Appendix A.11.6 to obtain a good initialization for P⃗u,p0 . How-

ever, this may again lead to a poor initialization for ⃗Pv,pT . We can alleviate these problems by
preconditioning of the SDEs: For DIS, we set σu = σũ − 2f with f(x, ·) = 2σσ⊤x, resulting in
the forward SDE

dXs = (−f + σ ũ) (Xs, s) ds+ σ(s) d⃗Ws, X0 ∼ pprior. (80)

Note that when initializing ũ = 0, we have P⃗ũ,p0

t = N (0, I) for all t ∈ [0, T ] which may lead
to more stable training. Similarly, for ULA, MCD, and DBS, we set σv = σṽ − 2f to obtain the
backward SDE

dXs = (−f + σ ṽ) (Xs, s) ds+ σ(s) ⃗dWs, XT ∼ ptarget, (81)

where f = ∇ log ν for ULA and MCD. Moreover, DBS uses preconditioning for all choices of
f discussed in Appendix A.11.6. The impact of preconditioning is illustrated in Figure 6. A few
remarks are in order.

Remark A.15 (Preconditioning for CMCD). The controlled Monte Carlo diffusion sampler
(CMCD, Vargas et al. (2024)) prescribes a path of densities (ν(·, t))t∈[0,T ] and uses f =
1
2σσ

⊤∇ log ν. Therefore, Nelsons relation (see Lemma 2.2) yields u− v = σ⊤∇ log ν resulting in
the pair of SDEs

dXs =
(
1
2σσ

⊤∇ log ν + σ u
)
(Xs, s) ds+ σ(s) d⃗Ws, X0 ∼ pprior, (82)

dXs =
(
− 1

2σσ
⊤∇ log ν + σ u

)
(Xs, s) ds+ σ(s) ⃗dWs, XT ∼ ptarget, (83)

by replacing v = u−σ⊤∇ log ν. As a consequence, CMCD does not require preconditioning as the
sign flip of f naturally occurs due to Nelsons relation.

Remark A.16 (Preconditioning for DIS). The time-reversed diffusion sampler (DIS, Berner et al.
(2024)) and related methods (Zhang & Chen, 2022; Vargas et al., 2023a) incorporate ∇ log ptarget (or
∇ log ν) into the SDE by treating it as part of the control, i.e.,

u(x, s) = u1(x, s) + u2(s)∇ log ρtarget(x). (84)

However, we found that this approach can lead to worse numerical behavior. As a result, we opted
not to use this form of preconditioning.

12Please note that the sign differs from most existing literature as the process initialized at the target starts at
t = T instead of t = 0.
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DIS (No preconditioning) DIS (With preconditioning)

DBS (No preconditioning) DBS (With preconditioning)

DBS-UD (No preconditioning) DBS-UD (With preconditioning)

Figure 6: Illustration of the effect of preconditioning as explained in Appendix A.11.2 at initialization, i.e.
with u, v = 0. The red trajectories start from the prior distribution (uni-modal Gaussian distribution) and
are integrated forward in time (from left to right), whereas the blue trajectories start at the target (bi-modal
distribution) and move backward in time (from right to left). The non-transparent trajectories correspond to the
SDE that is affected by preconditioning.

Underdamped diffusions. We consider the pair of SDEs given by (5) and (6) where the drift is
chosen as in (11), i.e.,

f(x, y, s) =
(
y, f̃(x, s)− 1

2σσ
⊤(s)y

)⊤
. (85)

In a similar fashion to the overdamped case, we can precondition the underdamped SDEs: Assume
for now that f̃ , u = 0. Then, (85) results in an OU process for Y which is desirable as both initial
and terminal density of the velocity are Gaussian, see (14). However, the sign flip when performing
the time-reversal may again lead to a bad initialization for the path measure ⃗Pv,τ . We therefore
transform the control in the backward process (6) as ηv(·, y, ·) = ηṽ(·, y, ·)+σσ⊤y, resulting in the
backward SDE

dYs =
(
f̃ + η ṽ

)
(Ys, s) ds+

1
2σ(s)σ

⊤(s)Ys ds+ η(s) ⃗dWs, YT ∼ N (0, Id). (86)

The impact of preconditioning for the underdamped setting is illustrated in Figure 6.

A.11.3 BENCHMARK PROBLEMS

In this section we describe the real-world and synthetic benchmark examples on which we evaluate
the different methods.

Real-world benchmark problems. We consider seven real-world benchmark problems: Four
Bayesian inference tasks, namely Credit (d = 25), Cancer (d = 31), Ionosphere (d = 35), and
Sonar (d = 61). Additionally, we choose Seeds (d = 26) and Brownian (d = 32), where the
goal is to perform inference over the parameters of a random effect regression model, and the time
discretization of a Brownian motion, respectively. Lastly, we consider LGCP (d = 1600), a high-
dimensional Log Gaussian Cox process (Møller et al., 1998).
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Algorithm 1 Training of underdamped diffusion bridge sampler
Require: ▷ See Appendix A.11 for details

• model: neural networks uθ, vγ with initial parameters θ(0), γ(0)

• fixed hyperparameters: number of gradient steps K, number of discretization steps N , batch size m,
optimizer method step, integrator method integrate

• learned hyperparameters: prior distribution pprior = N (ζµ,diag(softplus(ηΣ))), diffusion and
mass matrices σ = diag(softplus(ησ)) and M = diag(softplus(ηM )), and terminal time T =

N softplus(η∆) with initial parameters η(0)
µ , η

(0)
Σ , η

(0)
σ , η

(0)
M , η

(0)
∆

Θ(0) = {θ(0), γ(0), η
(0)
µ , η

(0)
Σ , η

(0)
σ , η

(0)
M , η

(0)
∆ }, π = pprior ⊗N (0,M), τ̃ = ρtarget ⊗N (0,M)

for k ← 0, . . . ,K − 1 do
for i← 1, . . . ,m do ▷ Approximate cost (batched in practice)

Ẑ0 ∼ π ▷ See (14)
rndi,0 ← log π(Ẑ0)
for n← 0, . . . , N − 1 do

Ẑn+1 ← integrate(Ẑn,Θ
(k)) ▷ See Appendix A.9

rndi,n+1 ← rndi,n + log p⃗n+1|n(Ẑn+1

∣∣Ẑn)− log ⃗pn|n+1(Ẑn

∣∣Ẑn+1) ▷ See (9)
rndi,N ← rndi,N − log τ̃(ẐN )

L̂ ← 1
m

∑m
i=1 rndi,N ▷ Compute loss

Θ(k+1) ← step
(
Θ(k),∇ΘL̂

)
▷ Gradient descent

return optimized parameters Θ(K)

Synthetic benchmark problems. We consider two synthetic benchmark problems in this work:
The challenging Funnel distribution (d = 10) introduced by Neal (2003), whose shape resembles
a funnel, where one part is tight and highly concentrated, while the other is spread out over a wide
region. Moreover, we choose the ManyWell (d = 50) target, a highly multi-modal distribution with
25 = 32 modes.

A.11.4 EXPERIMENTAL SETUP

Here, we provide further details on our experimental setup. Moreover, we provide an algorithmic
description of the training of an underdamped diffusion sampler in Algorithm 1.

General setting. All experiments are conducted using the Jax library (Bradbury et al., 2021). Our
default experimental setup, unless specified otherwise, is as follows: We use a batch size of 2000
(halved if memory-constrained) and train for 140k gradient steps to ensure approximate conver-
gence. We use the Adam optimizer (Kingma & Ba, 2015), gradient clipping with a value of 1,
and a learning rate scheduler that starts at 5 × 10−3 and uses a cosine decay starting at 60k gra-
dient steps. We utilized 128 discretization steps and the EM and OBABO schemes to integrate
the overdamped and underdamped Langevin equations, respectively. The control functions uθ and
vγ with parameters θ and γ, respectively, were parameterized as two-layer neural networks with
128 neurons. Unlike Zhang & Chen (2022), we did not include the score of the target density as
part of the parameterized control functions uθ and vγ . Inspired by Nichol & Dhariwal (2021), we
applied a cosine-square scheduler for the discretization step size, i.e., ∆ = a cos2

(
π
2

n
N

)
at step

n, where a : [0,∞) → (0,∞) is learned. Furthermore, we use preconditioning as explained in
Appendix A.11.2. The diffusion matrix σ and the mass matrix M were parameterized as diagonal
matrices, and we learned the parameters µ and Σ for the prior distribution pprior = N (µ,Σ), with
Σ also set as a diagonal matrix. We enforced non-negativity of a and made σ, M , and Σ positive
semidefinite via an element-wise softplus transformation.

For the methods that use geometric annealing (see Table 2), that is, ν(x, s) ∝ p
1−β(s)
prior (x)p

β(s)
target(x),

where β : [0, T ] → [0, 1] is a monotonically increasing function satisfying β(0) = 0 and β(T ) = 1,
we additionally learn the annealing schedule β. Similar to prior works (Doucet et al., 2022b), we
parameterize an increasing sequence of N steps using unconstrained parameters b(s). We map these
to our annealing schedule with

β(n∆) =

∑
n′≤n softplus(b(n

′∆))∑N
n=1 softplus(b(n∆))

, (87)
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Table 2: Comparison of different diffusion-based sampling methods based on f̃ , u, v, ν as defined in the text.

Method f̃ u v

ULA σσ⊤∇x log ν 0 0

MCD σσ⊤∇x log ν 0 learned

CMCD 1
2
σσ⊤∇x log ν learned σ⊤∇x log ν − u

DIS −σσ⊤∇x log pprior learned 0

DBS arbitrary learned learned

where softplus ensures non-negativity. Further, we fix β(0) = 0 and β(T ) = 1, ensuring β(n′∆) ≤
β(n∆) when n′ ≤ n. We initialized b such that β is a linear interpolation between 0 and 1.

Moreover, we initialized σ = M = Σ = Id and µ = 0 for all experiments. In the case of
the Brownian, LGCP, and ManyWell tasks, we set a = 0.1, while for the remaining benchmark
problems, we chose a = 0.01 to avoid numerical instabilities encountered with a = 0.1.

Evaluation protocol and model selection. We follow the evaluation protocol of prior work
(Blessing et al., 2024) and evaluate all performance criteria 100 times during training, using 2000
samples for each evaluation. To smooth out short-term fluctuations and to obtain more robust results
within a single run, we apply a running average with a window of 5 evaluations. We conduct each
experiment using four different random seeds and average the best results of each run.

Benchmark problem details. All benchmark problems, with the exception of ManyWell, were
taken from the benchmark suite of Blessing et al. (2024). In their work, the authors used an uninfor-
mative prior for the parameters in the Bayesian logistic regression models for the Credit and Cancer
tasks, which frequently caused numerical instabilities. To maintain the challenge of the tasks while
ensuring stability, we opted for a Gaussian prior with zero mean and variance of 100. For more
detailed descriptions of the tasks, we refer readers to Blessing et al. (2024).

The ManyWell target involves a d-dimensional double well potential, corresponding to the (unnor-
malized) density

ρtarget(x) = exp

(
−

m∑
i=1

(x2
i − δ)2 − 1

2

d∑
i=m+1

x2
i

)
,

with m ∈ N representing the number of combined double wells (resulting in 2m modes), and a
separation parameter δ ∈ (0,∞) (see also Wu et al. (2020)). In our experiments, we set d = 50,
m = 5 and δ = 2. Since ρtarget factorizes across dimensions, we can compute a reference solution
for logZ via numerical integration, as described in Midgley et al. (2023).

A.11.5 EVALUATION CRITERIA

Here, we provide further information on how our evaluation criteria are computed. To evaluate our
metrics, we consider n = 2× 103 samples (x(i))ni=1.

Effective sample size (ESS). We compute the (normalized) ESS as

ESS :=

(∑n
i=1 w

(i)
)2

n
∑n

i=1

(
w(i)

)2 , (88)

where (w(i))ni=1 are the unnormalized importance weights of the samples (Z(i))ni=1 in path space
given as

w(i) := Z d ⃗Pv,τ

dP⃗u,π
(Z(i)). (89)
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Table 3: Results for lower bounds on logZ for various real-world benchmark problems. Higher values indicate
better performance. The best results are highlighted in bold. Blue shading indicates that the method uses
underdamped Langevin dynamics. Red shading indicate competing state-of-the-art methods.

Method Credit Seeds Cancer Brownian Ionosphere Sonar

DBS
−585.524±0.414 −73.437±0.001 −83.395±4.184 1.081±0.004 −111.673±0.002 −108.595±0.006

−585.112±0.001 −73.423±0.001 −77.881±0.014 1.136±0.001 −111.636±0.001 −108.458±0.004

GMMVI −585.098±0.000 −73.415±0.002 −77.988±0.054 1.092±0.006 −111.832±0.007 −108.726±0.007

SMC −698.403±4.146 −74.699±0.100 −194.059±0.613 −1.874±0.622 −114.751±0.238 −111.355±1.177

CRAFT −594.795±0.411 −73.793±0.015 −95.737±1.067 0.886±0.053 −112.386±0.182 −115.618±1.316

FAB −585.102±0.001 −73.418±0.002 −78.287±0.835 1.031±0.010 −111.678±0.003 −108.593±0.008

Note that the dependence on Z vanishes when replacing d ⃗Pv,τ

dP⃗u,π
with the expression in Proposi-

tion 2.3.

Sinkhorn distance. We estimate the Sinkhorn distance W2
γ (Cuturi, 2013), i.e., an entropy regu-

larized optimal transport distance between a set of samples from the model and target using the Jax
ott library (Cuturi et al., 2022).

Log-normalizing constant. For the computation of the log-normalizing constant logZ in the gen-
eral diffusion bridge setting, we note that for any u, v ∈ U it holds that

EZ∼P⃗u,π

[
d ⃗Pv,τ

dP⃗u,π
(Z)

]
= 1. (90)

Together with Proposition 2.3, this shows that

logZ = EZ∼P⃗u,π

[
log

d ⃗Pv,τ
·|T

dP⃗u,π
·|0

(Z) +
τ̃(ZT )

π(Z0)

]
, (91)

where τ̃(ZT ) = ρtarget(XT )N (0, Id) and P⃗u,π
·|0 denotes the path space measure of the process Z

with initial condition Z0 = Ẑ0 ∈ R2d (analogously for ⃗Pv,τ
·|T ), see e.g. Léonard (2013).

If u = u∗ and v = v∗, the expression in the expectation is almost surely constant, which implies

logZ = log
d ⃗Pv∗,τ

·|T

dP⃗u∗,π
·|0

(Z) +
τ̃(ZT )

π(Z0)
(92)

If we only have approximations of u∗ and v∗, Jensen’s inequality shows that the right-hand side
in (92) yields a lower bound to logZ . For other methods, the log-normalizing constants can be
computed analogously, by replacing u, v accordingly, see e.g. Berner et al. (2024) for DIS. Our
experiments use the lower bound as an estimator for logZ when labeled with “LB”.

A.11.6 FURTHER EXPERIMENTS AND COMPARISONS

Comparison with competing methods. We extend our evaluation by comparing DBS against sev-
eral state-of-the-art techniques, including Gaussian Mixture Model Variational Inference (GMMVI)
(Arenz et al., 2022), Sequential Monte Carlo (SMC) (Del Moral et al., 2006), Continual Repeated
Annealed Flow Transport (CRAFT) (Arbel et al., 2021; Matthews et al., 2022), and Flow Annealed
Importance Sampling Bootstrap (FAB) (Midgley et al., 2023). The results, presented in Table 3,
are primarily drawn from Blessing et al. (2024), where hyperparameters were carefully optimized.
Since our experimental setup differs for the Credit and Cancer tasks (detailed in Section A.11),
we adhered to the tuning recommendations provided by Blessing et al. (2024). Across most tasks,
we observe that the underdamped variants of DBS and CMCD consistently yield similar or tighter
bounds on logZ compared to the competing methods, without the necessity for hyperparameter
tuning. Notably, the underdamped version of DBS consistently performs well across all tasks and
demonstrates robustness, as evidenced by the low variance between different random seeds.
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Figure 7: Effective sample size (ESS) for various methods (ULA, MCD, CMCD, DIS) and different integration
schemes, averaged across multiple benchmark problems and four seeds. Integration schemes include Euler-
Maruyama (EM) for over- (OD) and underdamped (OD) Langevin dynamics and various splitting schemes
(OBAB, BAOAB, OBABO).

Choice of integrator. To complement the results from Section 4, we conducted an ablation study
evaluating the performance and runtime of different integrators for ULA, MCD, CMCD, and DIS.
The results are presented in Figures 7 and 8. Consistent with previous findings, the OBABO inte-
grator delivers the best overall performance, with the exception of ULA. We hypothesize that in the
case of ULA, simulating the controlled part (O) twice offers little advantage, as both the forward
and backward processes are uncontrolled for this method.

Additional results for DBS. We present further details regarding the results discussed in Sec-
tion 4. Specifically, we provide a breakdown of the performance of different integration schemes
across all tasks in Figure 9 (ESS values) and Table 5 (logZ (LB) values). Overall, we observe
a notable improvement in performance with (symmetric) splitting schemes compared to Euler-
Maruyama discretization. However, as the number of discretization steps increases, the performance
differences between OBAB, BAOAB, and OBABO become less pronounced. Interestingly, OBABO
tends to yield substantial performance gains when the number of discretization steps is small. Fur-
thermore, we examine the impact of parameter learning for N = 8 discretization steps, with the
results shown in Figure 10. Surprisingly, while learning either the terminal time T or the parame-
ters of the prior distribution yields modest improvements, learning both leads to a remarkable 5×
performance increase.

Choice of drift for DBS. The drift term f̃ in the diffusion bridge sampler (DBS) can be freely
chosen. To explore the impact of different drift choices, we conducted an ablation study. We tested
several options: no drift, ∇x log pprior, ∇x log ptarget, and a geometric annealing path, represented
by ∇x log ν, where ν(x, s) ∝ p

1−β(s)
prior (x)p

β(s)
target(x). We also tested using a learned function for

β. The results of these experiments are presented in Table 4 and Figure 11. The findings suggest
that the most consistent performance is achieved when using the learned geometric annealing path
as the drift f̃ . Interestingly, using the score of the target distribution, ∇x log ptarget, resulted in
worse performance compared to no drift for overdamped DBS and only marginal improvements for
underdamped DBS.
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Figure 8: Effective sample size (ESS) over wallclock time of the diffusion bridge sampler (DBS) with 128
diffusion steps for different integration schemes, multiple benchmark problems, and four seeds. Integration
schemes include Euler-Maruyama (EM) for over- (OD) and underdamped (UD) Langevin dynamics and various
splitting schemes (OBAB, BAOAB, OBABO).
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Figure 9: Effective sample size (ESS) of the diffusion bridge sampler (DBS) for different integration schemes,
multiple benchmark problems, and four seeds. Integration schemes include Euler-Maruyama (EM) for over-
(OD) and underdamped (UD) Langevin dynamics and various splitting schemes (OBAB, BAOAB, OBABO).
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Figure 11: Effective sample size (ESS) and wallclock time for various drifts f̃ of the underdamped and
overdamped diffusion bridge sampler, averaged across multiple benchmark problems and four seeds. Here,
ν(x, s) ∝ p
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prior (x)p

β(s)
target(x), where “learned” indicates that β is learned (end-to-end).

Table 4: Lower bounds on logZ for different drift function f̃ for DBS on various benchmark problems.
Higher values indicate better performance. The best results are highlighted in bold. Here, ν(x, s) ∝
p
1−β(s)
prior (x)p

β(s)
target(x), where “learned” indicates that β is learned (end-to-end). Blue shading indicates that

the method uses underdamped Langevin dynamics.

f̃ Funnel Credit Seeds Cancer Brownian Ionosphere ManyWell Sonar

0
−0.212±0.001 −585.208±0.008 −73.501±0.001 −81.712±0.151 0.466±0.096 −111.778±0.005 38.609±0.829 −108.936±0.014

−0.155±0.004 −585.155±0.007 −73.505±0.009 −81.307±0.114 0.449±0.042 −111.845±0.007 42.771±0.002 −109.718±0.013

∇x log pprior
−0.216±0.001 −585.173±0.005 −73.483±0.001 −81.792±0.142 0.787±0.011 −111.741±0.002 42.772±0.000 −108.893±0.050

−0.145±0.005 −585.146±0.004 −73.460±0.000 −81.080±0.520 0.972±0.004 −111.760±0.003 42.787±0.001 −109.035±0.025

∇x log ptarget
−0.186±0.001 −685.852±2.400 −73.467±0.000 −126.194±15.528 0.901±0.004 −111.979±0.018 N/A −109.463±0.010

−0.096±0.004 −585.271±0.022 −73.445±0.006 −81.250±0.219 1.061±0.004 −111.826±0.005 42.782±0.000 −109.264±0.025

∇x log ν
−0.183±0.002 −4990.364±4405.152 −73.442±0.000 −83.981±2.105 1.055±0.010 −111.678±0.000 42.772±0.003 −108.616±0.005

−0.110±0.000 −585.127±0.000 −73.432±0.000 −78.086±0.015 1.106±0.001 −111.661±0.001 42.756±0.013 −108.530±0.002

∇x log ν −0.175±0.003 −585.166±0.017 −73.438±0.000 −78.853±0.168 1.074±0.005 −111.673±0.001 42.769±0.002 −108.593±0.008

(learned) −0.102±0.003 −585.112±0.000 −73.422±0.001 −77.866±0.007 1.137±0.001 −111.636±0.000 42.765±0.005 −108.454±0.003
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Table 5: Results for lower bounds on logZ for various benchmark problems, integration methods, and dis-
cretization steps N for DBS. Higher values indicate better performance. The best results are highlighted in
bold. Blue shading indicates that the method uses underdamped Langevin dynamics.

Integrator Funnel (d = 10) Credit (d = 25) Seeds (d = 26) Cancer (d = 31) Brownian (d = 32) Ionosphere (d = 35) ManyWell (d = 50) Sonar (d = 61)

N = 8

EM (OD) −0.860±0.010 −585.400±0.054 −73.643±0.003 −80.960±0.169 0.198±0.074 −111.858±0.003 42.162±0.002 −109.046±0.017

EM (UD) −0.725±0.001 −590.417±0.859 −73.852±0.036 −96.286±2.349 −3.185±1.159 −123.426±0.022 42.002±0.018 −137.601±0.025

OBAB −0.670±0.003 −585.168±0.004 −73.607±0.005 −79.167±0.176 0.801±0.004 −111.822±0.005 42.502±0.008 −108.937±0.015

BAOAB −0.674±0.008 −585.164±0.010 −73.603±0.011 −79.252±0.183 0.807±0.003 −111.811±0.007 42.497±0.004 −108.906±0.019

OBABO −0.557±0.004 −585.179±0.005 −73.560±0.008 −78.951±0.050 0.835±0.017 −111.818±0.009 42.625±0.002 −108.933±0.007

N = 16

EM (OD) −0.645±0.002 −585.792±0.243 −73.561±0.003 −81.628±0.345 0.683±0.010 −111.780±0.005 42.460±0.004 −108.902±0.009

EM (UD) −0.568±0.007 −587.429±0.323 −73.752±0.018 −82.696±2.850 0.421±0.036 −123.426±0.022 42.354±0.013 −137.601±0.025

OBAB −0.491±0.004 −585.153±0.004 −73.520±0.004 −79.118±0.723 0.943±0.004 −111.735±0.006 42.546±0.048 −108.766±0.010

BAOAB −0.490±0.003 −585.149±0.003 −73.516±0.003 −78.685±0.261 0.944±0.004 −111.726±0.007 42.548±0.037 −108.754±0.009

OBABO −0.381±0.007 −585.149±0.002 −73.491±0.003 −78.454±0.027 0.977±0.003 −111.725±0.002 42.685±0.009 −108.760±0.010

N = 32

EM (OD) −0.452±0.002 −585.941±0.778 −73.503±0.001 −84.032±2.197 0.898±0.008 −111.730±0.005 42.626±0.004 −108.758±0.005

EM (UD) −0.425±0.006 −585.388±0.120 −73.627±0.003 −80.207±0.338 0.595±0.014 −111.973±0.009 42.552±0.009 −109.378±0.026

OBAB −0.346±0.003 −585.126±0.002 −73.465±0.005 −78.224±0.014 1.024±0.004 −111.680±0.002 42.665±0.005 −108.612±0.006

BAOAB −0.347±0.003 −585.127±0.002 −73.463±0.003 −78.206±0.008 1.035±0.004 −111.677±0.003 42.661±0.006 −108.602±0.006

OBABO −0.249±0.003 −585.129±0.004 −73.448±0.002 −78.189±0.069 1.048±0.005 −111.673±0.004 42.729±0.002 −108.601±0.008

N = 64

EM (OD) −0.295±0.002 −586.567±1.871 −73.463±0.002 −80.890±1.226 1.027±0.001 −111.692±0.004 42.718±0.004 −108.661±0.005

EM (UD) −0.328±0.009 −585.231±0.012 −73.554±0.003 −79.747±0.382 0.702±0.017 −111.837±0.009 42.661±0.006 −109.410±0.019

OBAB −0.228±0.002 −585.116±0.001 −73.441±0.002 −77.968±0.005 1.082±0.002 −111.652±0.002 42.683±0.003 −108.517±0.005

BAOAB −0.606±0.643 −585.116±0.001 −73.441±0.001 −77.979±0.011 1.091±0.002 −111.650±0.002 42.684±0.004 −108.509±0.003

OBABO −0.164±0.005 −585.113±0.002 −73.431±0.003 −77.945±0.010 1.104±0.003 −111.648±0.002 42.730±0.004 −108.501±0.003

N = 128

EM (OD) −0.187±0.003 −585.524±0.414 −73.437±0.001 −83.395±4.184 1.081±0.004 −111.673±0.002 42.760±0.003 −108.595±0.006

EM (UD) −0.249±0.003 −585.235±0.009 −73.508±0.005 −79.704±0.177 0.684±0.038 −111.786±0.006 42.731±0.002 −109.351±0.075

OBAB −0.151±0.003 −585.112±0.001 −73.428±0.001 −77.856±0.007 1.121±0.004 −111.637±0.001 42.731±0.002 −108.459±0.001

BAOAB −0.159±0.005 −585.112±0.001 −73.428±0.001 −77.874±0.010 1.131±0.002 −111.637±0.002 42.733±0.006 −108.457±0.004

OBABO −0.103±0.003 −585.112±0.001 −73.423±0.001 −77.881±0.014 1.136±0.001 −111.636±0.001 42.763±0.002 −108.458±0.004
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