
Outlier Gradient Analysis:
Efficiently Identifying Detrimental Training Samples for Deep Learning Models

Anshuman Chhabra 1 Bo Li 2 Jian Chen 2 Prasant Mohapatra 1 Hongfu Liu 3

Abstract
A core data-centric learning challenge is the iden-
tification of training samples that are detrimental
to model performance. Influence functions serve
as a prominent tool for this task and offer a robust
framework for assessing training data influence
on model predictions. Despite their widespread
use, their high computational cost associated with
calculating the inverse of the Hessian matrix pose
constraints, particularly when analyzing large-
sized deep models. In this paper, we establish
a bridge between identifying detrimental train-
ing samples via influence functions and outlier
gradient detection. This transformation not only
presents a straightforward and Hessian-free for-
mulation but also provides insights into the role
of the gradient in sample impact. Through sys-
tematic empirical evaluations, we first validate
the hypothesis of our proposed outlier gradient
analysis approach on synthetic datasets. We then
demonstrate its effectiveness in detecting misla-
beled samples in vision models and selecting data
samples for improving performance of natural lan-
guage processing transformer models. We also
extend its use to influential sample identification
for fine-tuning Large Language Models.

1. Introduction
Data-centric learning focuses on enhancing algorithmic
performance from the perspective of the training data (Oala
et al., 2023). In contrast to model-centric learning, which
designs novel algorithms or optimization techniques for per-
formance improvement with fixed training data, data-centric
learning operates with a fixed learning algorithm while
modifying the training data through trimming, augmenting,

1University of South Florida, Tampa, FL, USA 2Tsinghua
University 3Brandeis University, Waltham, MA, USA. Correspon-
dence to: Hongfu Liu <hongfuliu@brandeis.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

or other processing for improving utility (Zha et al., 2023).
Data-centric learning holds significant potential in many
areas such as model interpretation, subset training set selec-
tion, data generation, noisy label detection, active learning,
and others (Chhabra et al., 2024; Kwon et al., 2024).

The essence of data-centric learning lies in estimating data
influence, also known as data valuation in the context of
a learning task (Hammoudeh & Lowd, 2022). Intuitively,
the impact of an individual data sample can be measured
by assessing the change in learning utility when training
with and without that specific sample. This leave-one-out
influence (Cook & Weisberg, 1982) provides a rough gauge
of the relative data influence of the specific sample on the
otherwise full fixed training set. Shapley value (Ghorbani
& Zou, 2019; Jia et al., 2019), originating from cooperative
game theory, quantifies the increase in value when a group
of samples collaborates to achieve the learning goal. Unlike
leave-one-out influence, Shapley value represents the
weighted average utility change resulting from adding the
sample to different training subsets. Despite the absence
of assumptions on the learning model, the aforementioned
retraining-based methods incur significant computational
costs, especially for large-scale data analysis and deep
models (Schioppa et al., 2022).

A popular choice for data valuation applications, such as
identifying training samples detrimental to model perfor-
mance, are influence functions (Koh & Liang, 2017). Es-
sentially, influence functions assess data influence without
requiring model retraining. They measure the effect of
changing an infinitesimal weight of training samples based
on a utility-evaluating function. While influence functions
can be accurate or acceptable proxies for convex and cer-
tain shallow models, their applicability to deep models is
constrained by the strong convexity assumption and the
computational cost linked to calculating the inverse of the
Hessian matrix (Basu et al., 2020a).

Our Contributions. In this paper, we delve into the classi-
cal data-centric problem: identifying/trimming detrimental
samples. We tackle the computational challenge of the
inverse of the Hessian matrix in influence functions in the
context of detrimental sample identification and removal.
Our major contributions are as follows:

1

Outlier Gradient Analysis

• We build a bridge between identifying detrimental train-
ing samples via influence functions and outlier detec-
tion on the gradient space of samples, and propose our
outlier gradient analysis approach. The transformation
features a straightforward and Hessian-free formula-
tion, and reduces the computational cost associated
with the Hessian matrix and its inverse.

• Empirically, we utilize both linear and non-linear syn-
thetic datasets to illustrate the ineffectiveness of the cur-
rent Hessian approximation and to validate our hypoth-
esis regarding outlier gradient analysis, showcasing
our method’s high accuracy in identifying mislabeled
detrimental samples.

• Subsequently, we demonstrate the effectiveness of out-
lier gradient analysis in trimming mislabeled samples
from vision datasets across various noise regimes. Ad-
ditionally, we explore textual applications on data se-
lection for fine-tuning deep transformer models and
identifying influential data for text generation tasks
using fine-tuned Large Language Models.

2. Related Work
Retraining-Based Influence Estimation. Influence esti-
mation approaches can be generally categorized as either
retraining-based or gradient-based (Hammoudeh & Lowd,
2022). Retraining-based methods consist of the classical
leave-one-out influence approach (Cook & Weisberg, 1982),
which consists of removing one training sample at a time,
and retraining the model to measure sample influence via
performance change. Other representative methods include
Shapley value approaches (Ghorbani & Zou, 2019; Jia et al.,
2019; Kwon & Zou, 2022), which are model agnostic, but
also computationally untenable for large datasets and deep
models due to exponential time complexity. Computation-
ally efficient approaches such as KNN-Shap (Jia et al., 2018)
can only employ KNN classifiers and hence are not directly
applicable to the deep models.

Gradient-Based Influence Estimation. For models trained
using gradient descent, gradient-based influence approaches
can be used to approximately estimate influence without
requiring retraining. The seminal work in this category is
that of (Koh & Liang, 2017), which utilizes a Taylor-series
approximation and LiSSA optimization (Agarwal et al.,
2017) to compute sample influences. However, the limiting
underlying assumption in the formulation is that the model
and loss function are convex, which is not true for deep
models. Follow-up works such as representer point (Yeh
et al., 2018) and Hydra (Chen et al., 2021) inherit these
convexity assumptions and suffer from similar issues of
applicability. While influence functions have been used for
numerous applications in data-centric learning (Feldman &

Zhang, 2020; Chhabra et al., 2024; Richardson et al., 2023),
they tend to be too computationally expensive for large
models, and cannot run in reasonable time. More recently,
efficient influence estimation methods such as DataInf
(Kwon et al., 2024), Arnoldi iteration (Schioppa et al.,
2022), and Kronecker-factored approximation curvature
(Grosse et al., 2023) have been proposed which can be em-
ployed for large models. Some approaches simply consider
the gradients directly as a measure of influence (Pruthi et al.,
2020; Charpiat et al., 2019), followed by some ensemble
strategies (Bae et al., 2024; Kim et al., 2024). Recent work
has also investigated the role of the Hessian and convexity in
influence estimation (Schioppa et al., 2024). In contrast, our
work aims to circumvent these issues for detrimental sample
identification by operating on the gradient space in a skillful
manner. Hence, our work paves the way for an efficient and
accurate detrimental sample identification framework and
adds to the “influence function toolset” for deep models
and large datasets. Finally, recent work has also found that
self-influence (influence computed on training samples) can
be beneficial in detecting detrimental samples (Bejan et al.,
2023; Thakkar et al., 2023). For related works on miscel-
laneous data-centric learning, please refer to Appendix A.

3. Proposed Approach
We first introduce influence functions conceptually and
outline how they are applied to the task of detrimental
samples identification. We then detail our transformation
by converting the original formulation into a gradient space
outlier analysis problem. Subsequently, we provide insights
for extending influence functions to non-convex learning
models and propose our outlier gradient analysis approach.

3.1. Preliminaries on Influence Functions

Let T={zi}ni=1 be a training set, where zi =(xi, yi) in-
cludes the input space feature xi and output space la-
bel yi. A classifier trained using empirical risk min-
imization on the empirical loss ℓ can be written as:
θ̂=argminθ∈Θ

1
n

∑n
i=1 ℓ(zi; θ). Influence functions (Cook

& Weisberg, 1982; Hampel, 1974; Martin & Yohai, 1986)
measure the effect of changing an infinitesimal weight of
training samples, based on a function that evaluates model
utility. Downweighting a training sample zj by a very
small fraction ϵ leads to a model parameter: θ̂(zj ;−ϵ) =
argminθ∈Θ

1
n (

∑n
i=1 ℓ(zi; θ)−ϵℓ(zj ; θ)). By evaluating

the limit as ϵ approaches 1, the seminal work of Koh &
Liang (2017) provides an estimation for the influence score
associated with the removal of zj from the training set in
terms of training/validation loss as follows:

I(zj) = −
∑

z∈T/V

∇θ̂ℓ(z; θ̂)
⊤H−1

θ̂
∇θ̂ℓ(zj ; θ̂), (1)

2

Outlier Gradient Analysis

where T/V denotes the training/validation set,∇θ̂ℓ(zj ; θ̂) is
the gradient of the loss with respect to network parameters,
and Hθ̂=

∑n
i=1∇2

θ̂
ℓ(zi; θ̂) denotes the Hessian matrix.

One key application of influence functions lies in identify-
ing detrimental samples. This is because an intuitive way
of assessing whether a sample is detrimental is by training
the model both with and without the specific training sam-
ple and computing metrics like training/validation loss. In
other words, if the performance improves when excluding a
particular sample, it is deemed detrimental to the learning
task. By computing the influence score without needing to
retrain the model, one can estimate the impact of a sample
to assess if it is beneficial or detrimental, as follows:

Ĩ(zj) =

{
0 (Detrimental Sample) I(zj) < 0.

1 (Beneficial Sample) I(zj) ≥ 0.
(2)

Ĩ(zj) can be regarded as the discrete version of I(zj).
Specifically, a value of 0 for Ĩ(zj) means that removing
the sample zj enhances the model’s utility, and that zj is a
detrimental sample.

Remark. While influence functions offer a swift estimation
for identifying detrimental training samples without
the need for costly model retraining, their practical
applications to large models are constrained by two
prominent drawbacks. The first limitation lies in the
necessity of a strictly convex loss function to guarantee
the existence of the inverse of the Hessian matrix. The
second challenge pertains to the considerable computational
expense associated with calculating the inverse of the
Hessian. For the first challenge, several possible solutions
have been proposed: (1) a convex surrogate model can
be used instead of the non-convex model (Chhabra et al.,
2024); (2) a damping term can be added to the Hessian
to ensure it is positive definite and invertible (Han et al.,
2020); and (3) alternative formulations (Basu et al., 2020b;
Alaa & Van Der Schaar, 2020) can be used (e.g. the Gauss
Newton Hessian (Grosse et al., 2023) instead of the standard
Hessian). Note that some studies bypass the convexity
assumption and directly apply influence functions to deep
models, yielding effective results. (Grosse et al., 2023). For
the second challenge, various matrix inverse techniques are
employed to expedite the computation process, including
LiSSA optimization (Koh & Liang, 2017) and swapping the
order of the matrix inversion (Kwon et al., 2024), among
several others. Considerable efforts have been dedicated to
addressing the aforementioned challenges with promising
results– however, in this paper we target the second
challenge for identifying/removing detrimental samples.

3.2. Bridging Influence Estimation and Outlier Analysis

We transform the problem of identifying detrimental sam-
ples via influence estimation to an outlier analysis problem

in the gradient space. Upon scrutinizing the influence esti-
mation of zj in Eq. (1), it becomes evident that the influence
score is the result of three terms, with the first two remaining
the same across all training samples and not solely depen-
dent on zj . While all three terms contribute to the concrete
value of the influence score, it is the final term ∇θ̂ℓ(zj ; θ̂)
that assumes a decisive role in determining whether zj is
a beneficial or detrimental sample. This is because the third
term has zj as the only training sample as an input. With the
following observation below regarding detrimental samples,
we can build the connection between identifying detrimental
samples via influence estimation and outlier analysis:

Observation 3.1. For a converged model trained using
empirical risk minimization, the majority of training sam-
ples positively contribute to the model’s utility, and a much
smaller subset than beneficial samples (with respect to the
overall size of the training set) exhibits detrimental effects.

Clearly, Observation 3.1 holds true as the empirical loss is
an average of error between predictive and true values over
all training samples. Hence, detrimental samples can be
regarded as a minority outlier set compared to the beneficial
sample majority. Based on Observation 3.1 and the deci-
sive role of ∇θ̂ℓ(zj ; θ̂) in influence estimation, we have the
following hypothesis:

Hypothesis 3.2. There exist outlier analysis algorithms ca-
pable of detecting detrimental samples in the gradient space.
This algorithm would enable us to evaluate whether a train-
ing sample positively or negatively impacts model utility
through influence estimation, effectively equating this evalu-
ation with the application of the outlier analysis algorithm
in the gradient space.

Hypothesis 3.2 establishes a conceptual transformation be-
tween the identification of detrimental training samples via
influence estimation and the detection of outliers in the gra-
dient space. The outlying nature of detrimental samples
has also been observed in past work (Kim et al., 2024).
This transformation not only features a straightforward and
Hessian-free formulation, reducing the computational cost
associated with the Hessian matrix and its inverse, but also
yields insights into the role of the gradient in sample impact
beyond model optimization.

3.3. Our Approach: Outlier Gradient Analysis

As demonstrated in Hypothesis 3.2, outlier analysis can
effectively be used to evaluate the discrete influence of
training samples. Notably, we can circumvent the need
for computing and inverting the Hessian for non-convex
deep models by measuring discrete influence via Eq. (2).
The primary contribution and discovery of our work lies
in the realization that simple and efficient outlier analysis
techniques can be applied to the gradient space for a
discrete estimation of which samples are beneficial or

3

Outlier Gradient Analysis

Algorithm 1 : Outlier Gradient Analysis and Trimming

1: Input: Training set T , loss function ℓ, model parameter
θ̂, outlier analysis algorithm A, trimming budget k

2: Output: Set L containing beneficial/detrimental sample
labels, Trimmed training set T ∗

3: initialize G ← ∅, T ∗ ← ∅.
4: G ← G ∪ {∇θ̂ℓ(xi, yi; θ̂)};∀(xi, yi) ∈ T .
5: L← A(G, k).
6: T ∗ ← T ∗ ∪ {xi};∀Li is not an outlier.
7: return L, T ∗.

detrimental to the model’s utility.

As Hypothesis 3.2 cannot prescribe a specific outlier
detection algorithm, one of our choices for outlier analysis
is the Isolation Forest (iForest) algorithm (Liu et al., 2008),
owing to several factors. Firstly, iForest boasts a linear time
complexity with a low constant, requiring minimal memory,
rendering it well-suited for handling the high-dimensional
gradient space inherent in deep models. Secondly, iForest
constructs an ensemble of iTrees, where each iTree builds
partial models and employs sub-sampling, demonstrating
the ability to identify a suitable subspace for the detection
of detrimental samples. Thirdly, iForest is known for its
simplicity and effectiveness in identifying outliers that are
non-linearly separated from inliers. Along with iForest, we
also consider two simple outlier analysis approaches based
on L1-norm and L2-norm thresholding, that work well in
practice (Knorr et al., 2000).

Upon obtaining outlyingness labels through the application
of an outlier detection algorithm to the gradient space, de-
noted as the set L, we can assess the influence of training
samples on model performance. Subsequently, we then trim
k (the designated deletion budget) detrimental training sam-
ples. Retraining the model on this pruned sample set leads
to potential performance improvements. The approach is
outlined in Algorithm 1.

4. Hypothesis Verification on Synthetic Data
We seek to validate the hypothesis of our proposed idea
and showcase the effectiveness of our outlier gradient
analysis method on two synthetic 2D toy datasets1 and
two models for binary classification in Figure 1. In this
figure, subfigures A-D present a linear dataset employing
a Logistic Regression model, while subfigures E-H exhibit
a non-linear dataset utilizing a non-convex Multilayer
Perceptron (MLP) model as the base model. Specifically,
subfigures A and B depict the training and test sets of a
linearly separable dataset comprising 150 and 100 samples,

1Comprehensive details regarding datasets and model training
for experiments are provided in Appendix B.

Table 1. Outlier detection and classification performance of noisy
label correction and influence-based approaches including our
proposed outlier gradient trimming on the two half moons dataset
(top performer in bold).

Method
Outlier Detection

Accuracy (%)
Classification

Post-Trimming (%)

Multilayer Perceptron - 90.0

Normalized Margin 82.0 89.0
Self-Confidence 82.0 89.0
Confidence Entropy 82.0 89.0

Exact Hessian 90.0 90.0
Gradient Tracing 82.0 91.0
LiSSA 82.0 91.0
DataInf 82.0 91.0
Self-LiSSA 82.0 90.0
Self-DataInf 90.0 87.0
Outlier Gradient (iForest) 96.0 96.0
Outlier Gradient (L1) 98.0 87.0
Outlier Gradient (L2) 98.0 87.0

respectively. Notably, the training set includes 10 manually
generated noisy samples with misspecified labels. Subfigure
C displays the influence score of each training sample,
computed using Eq. (1), and subfigure D provides a visu-
alization of the gradient space. Similarly, subfigures E and
F represent the training and test sets of the two half moons
dataset, with the training set consisting of 250 samples and
the test set of 100 samples, equally distributed between two
classes. The training set in this case also contains 20 noisy
samples. Subfigures G and H showcase the influence score
and gradient space of the non-convex case.

In the linear case, as illustrated in subfigure C, the influence
score proves to be a reliable indicator for distinguishing
detrimental samples from beneficial ones. Notably, detri-
mental samples exhibit large negative scores, while other
samples display positive or nearly zero values. Additionally,
subfigure D affirms that these detrimental samples are
distinctly separated in the gradient space, confirming
the validity of the equivalent transformation outlined in
Hypothesis 3.2. However, the limitations of influence
scores become evident in the context of non-convex models,
as observed in subfigure G, where the influence scores
of detrimental samples are mixed with those of normal
ones. Nevertheless, in the gradient space illustrated in
subfigure H, the detrimental samples are effectively isolated
from inliers. Notably, our method does not rely on the
Hessian for computing influence and operates directly on
the gradient space using outlier analysis.

We also conduct a quantitative evaluation to assess the
advantages of our approach compared to three recently
proposed noisy label correction methods and six influence
function-based approaches, as detailed in Table 1. Specif-
ically, we measure ground-truth outlier predictive accuracy
and the performance gain achieved by removing detrimental
samples. For noisy label correction approaches we consider:

4

Outlier Gradient Analysis

Figure 1. Illustrating our outlier gradient analysis approach on two synthetic datasets and convex/non-convex models. A-D showcase
our outlier gradient analysis approach on a 2D linearly separable synthetic dataset. This dataset includes a small subset of detrimental
samples with incorrect labels used to train a Logistic Regression binary classification model. Meanwhile, E-H depict our outlier gradient
analysis on a non-linear synthetic dataset with mislabeled samples employed in training a Multilayer Perceptron (MLP) neural network. In
subfigures A and E, the training sets are represented with class labels 0 (red) and 1 (blue) in the convex and non-convex cases, respectively.
Detrimental samples with incorrect class labels are marked with ×, while regular samples are marked with ◦. B and F denote the test
sets used to evaluate model performance. C and G display the influence scores calculated by Eq. (1). Note that G demonstrates that
influence scores are not reliable indicators for detecting detrimental samples in the non-convex case. After applying outlier analysis
on the gradient space of the non-convex MLP model, most detrimental samples are detected. D and H showcase the gradient space
obtained for each sample from the Logistic Regression and MLP models, respectively. It is evident that the outlier samples correspond to
detrimental samples with mislabeled classes, which are linearly or non-linearly separated from inliers. Note that the benefits of outlier
gradient trimming can be clearly observed—removing predicted outlier samples via iForest and retraining the MLP enhances classification
performance from 90% → 96% on the test set (refer to Table 1).

Normalized Margin (Northcutt et al., 2021), Self-Confidence
(Müller & Markert, 2019), and Confidence-Weighted En-
tropy (Kuan & Mueller, 2022). The influence function
approaches include computing the Hessian exactly (Cook
& Weisberg, 1982), using the Hessian-free gradient tracing
approach by (Pruthi et al., 2020), LiSSA-based optimization
(Koh & Liang, 2017), the recently proposed influence esti-
mation approach DataInf (Kwon et al., 2024), self-influence
using LiSSA as in Bejan et al. (2023), and self-influence us-
ing DataInf. We compute influences only using the training
samples and performance is measured on the test set.

Our outlier gradient analysis approaches demonstrate high
accuracy in identifying mislabeled outliers (96-98%), out-
performing all three noisy label correction baselines (only
82% accuracy) and among influence baselines, all exhibit
similar performance except for exact Hessian computation,
which attains 90% accuracy. Next, we evaluate model
performance gain by removing detected outlier samples and
retraining the MLP on the trimmed dataset. Here the benefits
of our iForest outlier gradient analysis can be observed, as it
increases performance from 90% to 96% while the overtly
simple L1/L2-norm outlier analysis approaches are not as
effective. The other baselines attain performance between
89-91%. This emphasizes the effectiveness of our iForest
approach, while exhibiting low time complexity (refer to
Appendix C.3 for details on computational complexity).

5. Noisy Label Correction for Vision Datasets
We now demonstrate the effectiveness of our approach in
addressing noisy label correction using the CIFAR-10N and
CIFAR-100N real-world noisy label datasets (Wei et al.,
2022). These datasets stem from the original CIFAR-10 and
CIFAR-100 datasets (Krizhevsky et al., 2009), but introduce
label inaccuracies due to crowdsourced labeling. CIFAR-
10N has 3 different noise settings: Aggregate, Random, and
Worst– these correspond to using majority voting across 3
annotators, first annotator label, and worst annotator label,
respectively. CIFAR-100N only has one noise setting.

Table 2 shows the accuracy performance of outlier gradient
analysis (L1/L2-norm, iForest) compared to label correction
approaches and influence-based baselines covered in the pre-
vious section. Exact Hessian computation is excluded due
to its computational intractability for large datasets. Our out-
lier gradient analysis methods consistently outperform other
baselines across diverse noise settings and datasets. Notably,
even in challenging scenarios like the Worst noise setting in
CIFAR-10N (40.21% noise rate), our approaches are the top
performers– L1-norm based outlier analysis achieves high-
est accuracy gain, improving from 82.27% (vanilla ResNet-
34) to 84.20%. Similar superior performance is observed
in the Random noise setting (17.23% noise rate), where L2-
norm outlier analysis achieves a final accuracy of 90.25%
compared to original cross-entropy accuracy of 89.17% and

5

Outlier Gradient Analysis

Table 2. Accuracy (5 runs) on CIFAR-10N and CIFAR-100N for a
ResNet-34 model trained via cross entropy and performance post
trimming using noisy label correction approaches and influence-
based methods, including our outlier gradient analysis (top-2 per-
formers in bold).

Method CIFAR-10N CIFAR-100N
Aggregate Random Worst Noisy100

Cross Entropy 90.87 89.17 82.27 57.36

Normalized Margin 91.33 90.06 83.57 60.94
Self-Confidence 91.38 90.09 83.65 60.51
Confidence Entropy 91.11 90.05 83.63 60.62

Gradient Tracing 91.47 89.98 83.38 60.73
LiSSA 91.49 90.05 83.38 60.48
DataInf 91.46 90.05 83.40 60.70
Self-LiSSA 92.07 89.58 83.01 59.48
Self-DataInf 91.41 89.81 83.15 60.56
Outlier Gradient (L1) 91.86 90.66 84.20 60.32
Outlier Gradient (L2) 92.21 90.25 82.99 61.40
Outlier Gradient (iForest) 91.36 90.20 83.72 60.99

Figure 2. Detrimental samples detected using our outlier gradient
analysis. Top row: CIFAR-10N; bottom row: CIFAR-100N. Top
label (red): noisy label; bottom label (green): correct class.

in CIFAR-100N, where it attains the highest performance
of 61.40%, surpassing the cross-entropy performance of
57.36%. In the CIFAR-10N Aggregate noise setting (noise
rate 9.03%), outlier gradient analysis is again the top per-
former. Due to space constraints, we omit standard devia-
tions from Table 2, but these are provided in Appendix C.1.

Additionally, visual examples of mislabeled samples
detected by our outlier gradient analysis approach (iForest)
are provided in Figure 2. All displayed images contain
mislabeled samples, and their removal from the training set
contributes to improved model performance on the test set.
In Table 2, we set the trimming budget for outlier gradient
analysis (k) at 5% of the training data size. An empirical
analysis for the choice of k is undertaken in Appendix C.2,
where we vary the outlier budget (from 2.5% to 12.5%) and
measure test set accuracy across the CIFAR-10N dataset.

Additional Analyses. We conduct ablations on the iForest
parameters in Appendix C.4. Further, we provide running
time experiments on CIFAR-10N and CIFAR-100N in Ap-
pendix C.3 along with the other baselines. We also provide
results with ResNet-18 as the base model in Appendix C.5
and on ImageNet (Deng et al., 2009) in Appendix C.6,

showing similar trends. Finally, approaches for noisy learn-
ing can be categorized into methods that either change the
loss function or model architecture or methods that iden-
tify noisy samples and remove/relabel them for improving
performance (Algan & Ulusoy, 2021). Since our approach
belongs to the latter category, we only compare against other
approaches from this category. For completeness, we also
present results comparing our approach with some others
in the former category in Appendix C.7. We would like to
emphasize that this is not an exhaustive list of baselines and
noisy learning by adjusting the loss/model is not the focus of
our work (but detecting detrimental samples is). Moreover,
our algorithm could also be combined with approaches from
both categories for additional gains. Finally, we also con-
ducted experiments using two new influence function meth-
ods: TRAK (Park et al., 2023) and GEX (Kim et al., 2024).
While we were able to obtain results for CIFAR-10N (please
refer to Appendix C.8 for results), both methods got out-of-
memory errors on CIFAR-100N for the same experimental
set-up as other influence methods. Given their shortcomings,
we did not consider them for the other experiments.

6. Data Selection for Fine-tuning NLP Models
We conduct experiments on data selection for fine-tuning
on NLP models, following the experimental setup by Kwon
et al. (2024) for DataInf, where the RoBERTa transformer
model (Liu et al., 2019) is fine-tuned on four binary GLUE
datasets (Wang et al., 2018): QNLI, SST2, QQP, and MRPC.
To assess if influence-based methods can enhance NLP
model performance via Low Rank Adaptation (LoRA) (Hu
et al., 2022) fine-tuning, Kwon et al. (2024) introduce noisy
versions of all four datasets by flipping the binary label for
20% randomly chosen training data samples. The goal of
the data selection task is to select the best representative
subset of the training data so that performance is maximized
on an unseen test set. Specifically, 70% of the most
beneficial samples are selected according to each influence
computation approach, and the model is fine-tuned for 10
epochs and rank of LoRA matrix is set to 4. Then, as the
model trains over each epoch, performance is measured
on the unseen test set. Clearly, for fairness, the sample
influence is computed only using the training set, and the
test set remains unknown until inference.

The results over three runs are presented in Figure 3 for
all four GLUE datasets. We only show trends for iForest
based outlier gradient analysis to aid visualization since per-
formance is similar for the L1/L2-norm methods. It can be
seen that our outlier gradient trimming approach markedly
outperforms all other baselines– more specifically, outlier
gradient analysis achieves the best test set results on QNLI,
SST2, QQP, and on MRPC, Self-LiSSA (Bejan et al., 2023)
and outlier gradient analysis are on par with each other.
Despite this competitive performance, our outlier gradient

6

Outlier Gradient Analysis

Figure 3. Performance of the data selection task using outlier gradient trimming and other influence baselines for fine-tuning RoBERTa.

Figure 4. Results for outlier gradient analysis on LLM influential data identification benchmarks.

analysis is orders of magnitude faster than Self-LiSSA, as
shown in experiments of Appendix C.3. This highlights
the effectiveness of our proposed outlier gradient analysis
approach in selecting relevant data for fine-tuning NLP
models while being more computationally efficient.

7. Extending to Influential Data Identification
for LLMs

We now consider an alternate task– demonstrating the effec-
tiveness of our proposed outlier gradient analysis in iden-
tifying influential data samples for Large Language Mod-
els (LLMs), using the proposed benchmarks from DataInf
(Kwon et al., 2024). The LLM influential data identifica-
tion task at its core is a similarity measurement task, as
it seeks to ascertain which fine-tuning prompts are most
similar to a given test sample (Askari et al., 2025). More
specifically, the goal is to assess what training set prompts
(used for LoRA fine-tuning) are most influential for a given
unseen test prompt. The robustness and effectiveness of
influence estimation are gauged based on whether the iden-
tified training set prompts belong to the same class category
as the given test prompt. We utilize the three benchmark
datasets introduced in DataInf (Kwon et al., 2024): Sen-

tence Transformations, Math Without Reasoning, and Math
With Reasoning, to conduct the influential data identifica-
tion experiment on the Llama-2-13B-chat LLM (Touvron
et al., 2023). For each of the influence identification bench-
mark datasets, there are 900 training samples for LoRA
fine-tuning, and 10 categories or classes of task types with
90 samples belonging to each class. For each dataset there
are 100 test set prompts with 10 test set prompts per class
category.

In (Kwon et al., 2024), to predict the most influential train-
ing samples given a test set prompt, the authors assign a
pseudo label to every data point in the training set (1 if it is in
the same class/task category as the test data prompt, or 0 oth-
erwise). This set serves as a ground-truth for measuring per-
formance of identifying influential data samples. Next, they
calculate the Area Under the Curve (AUC) by comparing the
absolute values of the influence function (for each training
set prompt corresponding to a given test prompt) with these
pseudo labels. Clearly, a high AUC signifies that training
data samples from the same category have a significant influ-
ence on the given test prompt. The average AUC across all
test data points is then recorded, and is denoted as the Class
Detection (AUC) metric. Additionally, another metric is
used– for every test data prompt, the authors determine if the

7

Outlier Gradient Analysis

Table 3. AUC/Recall for outlier gradient analysis and baselines for
influential class detection for three tasks on Llama2-13B LLM.

Task Method
Class Detection

(AUC)
Class Detection

(Recall)

Sentence
Transformations

Gradient Tracing 0.999 ± 0.001 0.982 ± 0.032
DataInf 1.000 ± 0.000 0.996 ± 0.012
Outlier Gradient 1.000 ± 0.000 1.000 ± 0.000

Math Problems
Without Reasoning

Gradient Tracing 0.724 ± 0.192 0.241 ± 0.385
DataInf 0.999 ± 0.005 0.993 ± 0.046
Outlier Gradient 1.000 ± 0.000 1.000 ± 0.000

Math Problems
With Reasoning

Gradient Tracing 0.722 ± 0.192 0.226 ± 0.376
DataInf 0.999 ± 0.004 0.990 ± 0.049
Outlier Gradient 1.000 ± 0.000 1.000 ± 0.000

proportion of training data prompts belonging to the same
class/category are within the top 90 (# of training prompts
in each category) influential samples. The average % across
all test data points is calculated and this metric is denoted
as Class Detection (Recall), where higher recall is better.

As part of this task, we need to measure similarity between
train and test set samples. Note that for our experiments
on identifying detrimental samples outlier gradient analysis
only operated on the training set (i.e., it uses the training
set gradients). However, to extend outlier analysis to this
task while maintaining consistency with the previous ex-
periments and methods, we will train 10 individual iForest
estimators for each class prompt category, as the ultimate
objective is to use outlier gradient analysis for prompt class
detection. Each class’s iForest estimator is trained solely
on the gradient space of training prompts from that cate-
gory. Subsequently, for each test set prompt, we utilize each
iForest estimator to generate an outlier score based on the
gradient space of that test sample, enabling us to conduct
the influential data identification experiment. Note that the
other baseline influence methods already have access to the
given test set sample and can use that information directly
for analyzing which training sample is most influential.

Our outlier gradient analysis performs exceptionally well on
this task, achieving perfect scores for both AUC and Recall
in Table 3. It outperforms DataInf and Gradient Tracing,
with LiSSA omitted as it fails to converge due to instability
on LLMs (Kwon et al., 2024). Self-influence baselines
also cannot be used since a similarity matrix with the full
set of test prompts needs to be constructed (information
leakage). Figure 4 further illustrates the individual influence
predictions, with darker colors indicating lower outlier score
magnitudes. The heatmaps correspond to three benchmark
datasets, with test samples ordered sequentially based on
their categories. The accurate influence estimation is evident
from the highest influence values along the diagonal. The
most influential sample identified by our approach closely
resembles the given test prompts.

8. Discussion
Computational complexity and running time. Through-
out, we have emphasized that outlier gradient analysis is effi-
cient while being highly accurate at identifying detrimental

training samples. We also conduct experiments to validate
this empirically. In Table 6 (Appendix C.3), we benchmark
the running time for all the methods considered for the vari-
ous noise settings of CIFAR-10N and CIFAR-100N. It can
be observed that outlier gradient analysis features in the top-
performing methods in terms of computational efficiency,
while simultaneously also featuring as a top-performing
method for accurately detecting detrimental samples (as
seen in Table 2). We observe similar trends for the Ima-
geNet dataset in Table 10 (Appendix C.6). Note that this
is also evident in terms of worst-case computational com-
plexity, as outlier gradient analysis possesses linear (in both
number of samples and parameters) time complexity (see
Table 7 in Appendix C.3 for more details).

Adapting outlier gradient analysis to a validation/test set
distribution. In some scenarios we might wish to utilize
a validation set distribution to accurately adjust influence
estimation. This is especially true for distribution shift sce-
narios, where the training and validation distributions are
different. In the original influence formulation, the first
term provides this information. For outlier gradient analysis,
we only use training set gradients. To rectify this, we can
instead employ a semi-supervised outlier analysis algorithm
A with validation samples provided as inliers. We utilize
the semi-supervised OneClassSVM (Li et al., 2003) outlier
analysis algorithm and the distribution shift experimental
framework from Chhabra et al. (2024) to assess performance.
These results indicate that outlier gradient analysis is the
top-performer across baselines, as can be seen in Table 13
(Appendix C.9). While a full extensive analysis of valida-
tion set adaptation is beyond the scope of this paper, these
preliminary experiments showcase the benefits of outlier
gradient analysis beyond just the training distribution.

9. Conclusion
We focused on the key data-centric learning task of iden-
tifying detrimental training samples. Influence functions
are a leading approach often used for this problem, but pos-
sess certain deficiencies when applied to deep models, such
as the computational demands for inverting the Hessian
matrix. We propose a novel solution for detrimental sam-
ple detection that does not rely on the Hessian matrix, and
hence eliminates this major limitation. Our approach, outlier
gradient analysis, is based on a conceptual transformation
between the influence function formulation and outlier anal-
ysis in the gradient space. This transformation results in
a computationally efficient method that possesses high de-
tection accuracy. Through comprehensive experiments on
synthetic datasets and various application domains (code
details in Appendix D), including noisy label correction for
vision models, data selection for NLP models, and even in-
fluential data identification in LLMs, we demonstrated that

8

Outlier Gradient Analysis

our method outperformed many existing influence-based
approaches and baselines in deep learning scenarios.

Impact Statement
Our work and proposed techniques aim to address the data-
centric task of identifying detrimental samples. We im-
prove upon the influence function analysis framework that
is used to undertake this problem, but possesses deficiencies
when applied to deep learning models. Enabling influence
estimation for deep models allows practitioners to assess
whether training samples are beneficial or detrimental to
performance, and can make models more interpretable and
performant. As we show through extensive experiments
on multiple problem settings, our proposed outlier gradi-
ent analysis approach outperforms existing baselines and
can augment model performance by identifying/trimming
detrimental samples in a computationally efficient manner.
As a result, our work paves the way for significant positive
societal impact, especially with the increased adoption of
larger and deeper neural networks such as LLMs. However,
as with any work, there are limitations to our approaches
that can be overcome in future work. For instance, it might
be possible to derive specific outlier analysis algorithms
that are computationally more efficient than iForest or norm
thresholding, and significantly more performant. Another
limitation that can be overcome is the further study and
benchmarks for influence based analysis in LLMs– going
beyond the datasets and approaches we used in this work.
Further, while outlier gradient analysis is useful in cases
where training data can be noisy, it might not be as useful if
the data is very high quality and there are no outlying gradi-
ent samples. However, it is unlikely that this will be the case
in the real-world unless some steps have been taken prior to
training to ensure high data quality. Finally, outlier analysis
algorithms have a fundamental limitation of how to spec-
ify the budget for outlier detection, which is a non-trivial
hyperparameter optimization problem. While this is a com-
mon problem with little consensus across the entire field of
outlier analysis, our methods inherit this limitation as well
(although we note that outlier gradient analysis performs
well for different budget thresholds, as shown in additional
experiments in the Appendix C.2).

Acknowledgments
The authors would like to thank Han Yue for aiding with
experiment design and implementation, and the anonymous
reviewers for their feedback in helping strengthen the work.
Bo Li was supported by the National Natural Science Foun-
dation of China (No. 72171131, 72133002). Anshuman
Chhabra was supported by the USF CSE department faculty
startup fund for the duration of this project.

References
Agarwal, N., Bullins, B., and Hazan, E. Second-order

stochastic optimization for machine learning in linear
time. The Journal of Machine Learning Research, 2017.

Alaa, A. and Van Der Schaar, M. Discriminative jackknife:
Quantifying uncertainty in deep learning via higher-order
influence functions. In International Conference on Ma-
chine Learning, 2020.

Algan, G. and Ulusoy, I. Image classification with deep
learning in the presence of noisy labels: A survey.
Knowledge-Based Systems, 215:106771, 2021.

Askari, H., Gupta, S., Tong, T., Wang, F., Chhabra, A., and
Chen, M. Unraveling Indirect In-Context Learning Using
Influence Functions. arXiv preprint arXiv:2501.01473,
2025.

Bae, J., Lin, W., Lorraine, J., and Grosse, R. Training data
attribution via approximate unrolled differentation. arXiv
preprint arXiv:2405.12186, 2024.

Basu, S., Pope, P., and Feizi, S. Influence Functions in Deep
Learning Are Fragile. In International Conference on
Learning Representations, 2020a.

Basu, S., You, X., and Feizi, S. On second-order group influ-
ence functions for black-box predictions. In International
Conference on Machine Learning, 2020b.

Bejan, I., Sokolov, A., and Filippova, K. Make every exam-
ple count: On the stability and utility of self-influence for
learning from noisy nlp datasets. In Conference on Em-
pirical Methods in Natural Language Processing, 2023.

Cai, J., Luo, J., Wang, S., and Yang, S. Feature selection in
machine learning: A new perspective. Neurocomputing,
2018.

Charpiat, G., Girard, N., Felardos, L., and Tarabalka, Y.
Input similarity from the neural network perspective. Ad-
vances in Neural Information Processing Systems, 2019.

Chen, Y., Li, B., Yu, H., Wu, P., and Miao, C. Hydra:
Hypergradient data relevance analysis for interpreting
deep neural networks. In AAAI Conference on Artificial
Intelligence, 2021.

Chhabra, A., Singla, A., and Mohapatra, P. Fair clustering
using antidote data. In Algorithmic Fairness through the
Lens of Causality and Robustness Workshop, 2022.

Chhabra, A., Li, P., Mohapatra, P., and Liu, H. Robust fair
clustering: A novel fairness attack and defense frame-
work. In International Conference on Learning Repre-
sentations, 2023.

9

Outlier Gradient Analysis

Chhabra, A., Li, P., Mohapatra, P., and Liu, H. What Data
Benefits My Classifier? Enhancing Model Performance
and Interpretability through Influence-Based Data Selec-
tion. In International Conference on Learning Represen-
tations, 2024.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. Active
learning with statistical models. Journal of Artificial
Intelligence Research, 1996.

Cook, R. D. and Weisberg, S. Residuals and influence in
regression. New York: Chapman and Hall, 1982.

Dai, Z. and Gifford, D. K. Training data attribution for dif-
fusion models. arXiv preprint arXiv:2306.02174, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring
adult: New datasets for fair machine learning. In Ad-
vances in Neural Information Processing Systems, 2021.

Dolan, B. and Brockett, C. Automatically constructing a cor-
pus of sentential paraphrases. In International Workshop
on Paraphrasing, 2005.

Feldman, V. and Zhang, C. What neural networks mem-
orize and why: Discovering the long tail via influence
estimation. Advances in Neural Information Processing
Systems, 2020.

Ghorbani, A. and Zou, J. Data shapley: Equitable valuation
of data for machine learning. In International Conference
on Machine Learning, 2019.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini,
A., Steiner, B., Li, D., Durmus, E., Perez, E., et al. Study-
ing large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Hall, M. A. Correlation-based feature selection for machine
learning. PhD thesis, The University of Waikato, 1999.

Hammoudeh, Z. and Lowd, D. Training data influence
analysis and estimation: A survey. arXiv preprint
arXiv:2212.04612, 2022.

Hampel, F. R. The influence curve and its role in robust es-
timation. Journal of the American Statistical Association,
1974.

Han, X., Wallace, B. C., and Tsvetkov, Y. Explaining black
box predictions and unveiling data artifacts through influ-
ence functions. In Annual Meeting of the Association for
Computational Linguistics, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2016.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-Rank
Adaptation of Large Language Models. In International
Conference on Learning Representations, 2022.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training data.
arXiv preprint arXiv:2202.00622, 2022.

Jain, E., Nandy, T., Aggarwal, G., Tendulkar, A. V., Iyer,
R. K., and De, A. Efficient Data Subset Selection to
Generalize Training Across Models: Transductive and
Inductive Networks. Advances in Neural Information
Processing Systems, 2023.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Gurel, N. M., Li,
B., Zhang, C., Spanos, C., and Song, D. Efficient task
specific data valuation for nearest neighbor algorithms.
Proceedings of the VLDB Endowment, 2018.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gürel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C. J. To-
wards efficient data valuation based on the shapley value.
In International Conference on Artificial Intelligence and
Statistics, 2019.

Killamsetty, K., Zhao, X., Chen, F., and Iyer, R. Retrieve:
Coreset selection for efficient and robust semi-supervised
learning. Advances in Neural Information Processing
Systems, 2021.

Kim, S., Kim, K., and Yang, E. Gex: A flexible method
for approximating influence via geometric ensemble. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Knorr, E. M., Ng, R. T., and Tucakov, V. Distance-based
outliers: algorithms and applications. The VLDB Journal,
2000.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International Conference
on Machine Learning, 2017.

Kong, S., Shen, Y., and Huang, L. Resolving training bi-
ases via influence-based data relabeling. In International
Conference on Learning Representations, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. University of Toronto, 2009.

Kuan, J. and Mueller, J. Model-agnostic label quality scor-
ing to detect real-world label errors. In ICML DataPerf
Workshop, 2022.

10

Outlier Gradient Analysis

Kwon, Y. and Zou, J. Beta Shapley: a unified and noise-
reduced data valuation framework for machine learning.
In International Conference on Artificial Intelligence and
Statistics, 2022.

Kwon, Y., Wu, E., Wu, K., and Zou, J. DataInf: Efficiently
Estimating Data Influence in LoRA-tuned LLMs and Dif-
fusion Models. In International Conference on Learning
Representations, 2024.

Li, K.-L., Huang, H.-K., Tian, S.-F., and Xu, W. Improving
one-class svm for anomaly detection. In International
Conference on Machine Learning and Cybernetics, 2003.

Li, P., Hastie, T. J., and Church, K. W. Very sparse random
projections. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2006.

Li, P., Xia, E., and Liu, H. Learning antidote data to individ-
ual unfairness. In International Conference on Machine
Learning, 2023.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. In
IEEE International Conference on Data Mining, 2008.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Liu, Z., Ding, H., Zhong, H., Li, W., Dai, J., and He, C.
Influence selection for active learning. In IEEE/CVF
International Conference on Computer Vision, 2021.

Lyu, H., Jang, J., Ryu, S., and Yang, H. J. Deeper under-
standing of black-box predictions via generalized influ-
ence functions. arXiv preprint arXiv:2312.05586, 2023.

Martin, R. D. and Yohai, V. J. Influence functionals for time
series. The Annals of Statistics, 1986.

Mehrabi, N., Naveed, M., Morstatter, F., and Galstyan, A.
Exacerbating algorithmic bias through fairness attacks.
In AAAI Conference on Artificial Intelligence, 2021.

Müller, N. M. and Markert, K. Identifying mislabeled in-
stances in classification datasets. In International Joint
Conference on Neural Networks, 2019.

Nguyen, V.-L., Shaker, M. H., and Hüllermeier, E. How to
measure uncertainty in uncertainty sampling for active
learning. Machine Learning, 2022.

Northcutt, C., Jiang, L., and Chuang, I. Confident learn-
ing: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research, 2021.

Oala, L., Maskey, M., Bat-Leah, L., Parrish, A., Gürel,
N. M., Kuo, T.-S., Liu, Y., Dror, R., Brajovic, D., Yao, X.,
et al. Dmlr: Data-centric machine learning research–past,
present and future. arXiv preprint arXiv:2311.13028,
2023.

Park, S. M., Georgiev, K., Ilyas, A., Leclerc, G., and Madry,
A. Trak: Attributing model behavior at scale. arXiv
preprint arXiv:2303.14186, 2023.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning
on a data diet: Finding important examples early in train-
ing. Advances in Neural Information Processing Systems,
2021.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent. Ad-
vances in Neural Information Processing Systems, 2020.

Richardson, B., Sattigeri, P., Wei, D., Ramamurthy, K. N.,
Varshney, K., Dhurandhar, A., and Gilbert, J. E. Add-
remove-or-relabel: Practitioner-friendly bias mitigation
via influential fairness. In ACM Conference on Fairness,
Accountability, and Transparency, 2023.

Schioppa, A., Zablotskaia, P., Vilar, D., and Sokolov, A.
Scaling up influence functions. In AAAI Conference on
Artificial Intelligence, 2022.

Schioppa, A., Filippova, K., Titov, I., and Zablotskaia, P.
Theoretical and practical perspectives on what influence
functions do. Advances in Neural Information Processing
Systems, 2024.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Conference on Empirical Methods in Natural Language
Processing, 2013.

Solans, D., Biggio, B., and Castillo, C. Poisoning attacks
on algorithmic fairness. In Machine Learning and Knowl-
edge Discovery in Databases: European Conference,
2021.

Tan, H., Wu, S., Du, F., Chen, Y., Wang, Z., Wang, F., and
Qi, X. Data pruning via moving-one-sample-out. Ad-
vances in Neural Information Processing Systems, 2024.

Thakkar, M., Bolukbasi, T., Ganapathy, S., Vashishth, S.,
Chandar, S., and Talukdar, P. Self-influence guided data

11

Outlier Gradient Analysis

reweighting for language model pre-training. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. GLUE: A Multi-Task Benchmark and Anal-
ysis Platform for Natural Language Understanding. arXiv
preprint arXiv:1804.07461., 2018.

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu, Y.
Learning with noisy labels revisited: A study using real-
world human annotations. In International Conference
on Learning Representations, 2022.

Wei, K., Iyer, R., and Bilmes, J. Submodularity in data
subset selection and active learning. In International
Conference on Machine Learning, 2015.

Yang, S., Xie, Z., Peng, H., Xu, M., Sun, M., and Li, P.
Dataset pruning: Reducing training data by examining
generalization influence. In International Conference on
Learning Representations, 2022.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K.
Representer point selection for explaining deep neural
networks. Advances in Neural Information Processing
Systems, 2018.

Zha, D., Bhat, Z. P., Lai, K.-H., Yang, F., Jiang, Z., Zhong,
S., and Hu, X. Data-centric artificial intelligence: A
survey. arXiv preprint arXiv:2303.10158, 2023.

12

Outlier Gradient Analysis

Appendix

A. Additional Related Work on Miscellaneous Data-Centric Learning
Many works in the data-centric learning domain study other relevant research questions beyond detrimental sample identifi-
cation and influence estimation. For instance, datamodels (Ilyas et al., 2022) also estimate training sample contributions, but
only for one test sample at a time. Data efficiency approaches (Jain et al., 2023; Paul et al., 2021; Killamsetty et al., 2021)
aim to accelerate deep learning training time via subset selection. Data pruning approaches based on novel approximations
for leave-one-out influence estimation (Tan et al., 2024) and the model’s generalization gap (Yang et al., 2022) have also
been proposed. Model pruning via generalized influence functions has also been studied in (Lyu et al., 2023). Note that
after identifying detrimental training samples, one can adopt multiple strategies for recourse. While we focus on removal in
this paper, other alternatives could also be used, such as relabeling (Richardson et al., 2023; Kong et al., 2021). Antidote
data augmentation (Chhabra et al., 2022; Li et al., 2023) methods aim to generate synthetic data samples to improve model
performance, whereas feature selection approaches (Hall, 1999; Cai et al., 2018) seek to optimize the feature space to only
those important for model performance. Active learning (Cohn et al., 1996) methods aim to iteratively identify optimal
samples to annotate given a large unlabeled training data pool (Liu et al., 2021; Nguyen et al., 2022; Wei et al., 2015).
Finally, works on poisoning attacks seek to analyze model robustness by perturbing training set samples (Solans et al., 2021;
Mehrabi et al., 2021; Chhabra et al., 2023) under natural input constraints. The study of training sample influence has also
been extended to recent generative models, such as diffusion models (Dai & Gifford, 2023), through the use of ensembles.

B. Detailed Information on Datasets and Model Training
We describe dataset details as well as model training and other information used in the main paper.

B.1. Datasets

We first cover our generated synthetic datasets, then the vision datasets– CIFAR-10N and CIFAR-100N, then provide more
details on the four GLUE binary classification NLP datasets, and finally discuss details regarding the benchmark datasets for
influential data identification in LLMs– Sentence Transformations, Math Without Reasoning, and Math With Reasoning.

B.1.1. SYNTHETIC DATASETS

We conduct experiments for our proposed outlier gradient analysis and other baselines on two synthetic datasets. The first
dataset is linearly separable for logistic regression classification and consists of 150 training samples and 100 test samples.
These are created using the scikit-learn (Pedregosa et al., 2011) library’s make blobs function. For each of the two binary
classes, we manually flip the labels of 10 samples (5 for each class) to add noise to the dataset. The second dataset is the
non-linear half moons dataset so that we can train an MLP network with two hidden layers with ReLU activations. The
training set has 250 samples and the test set has 100 samples, and the dataset is generated using the scikit-learn library’s
make moons function. Here too, we manually flip the labels of 20 samples (10 from each class) to add noise to the data.

B.1.2. CIFAR-10N AND CIFAR-100N

Both the CIFAR-10N and CIFAR-100N datasets (Wei et al., 2022) consist of the same input images that make up the
CIFAR-10 (10 classes) and CIFAR-100 (100 classes) datasets (Krizhevsky et al., 2009), respectively. Each input is a 32x32
RGB image with dimension (3,32,32). However, for CIFAR-10N and CIFAR-100N, the labels are noisy, as they contain
real-world human annotation errors collected using 3 annotators on Amazon Mechanical Turk. As these datasets are based
on human-annotated noise, they model noisy real-world datasets more realistically, compared to synthetic data alternatives.
The training set for both datasets contains 50,000 image-label pairs, and the test set contains 10,000 image-label pairs that
are free from noise. For CIFAR-10N we utilize three noise settings for experiments in the paper– (1) Worst, which is the
dataset version with the highest noise rate (40.21%) as the worst possible annotation label for the image is chosen, (2)
Aggregate, which is the least noisy dataset (9.03%) as labels are chosen via majority voting amongst the annotations, and
(3) Random which has intermediate noise (17.23%) and consists of picking one of the annotators’ labels. We use the first
annotator for the random labels. For CIFAR-100N there is only a single noisy setting (Noisy100) due to the large number of
labeling classes, and the overall noise rate is 40.20%.

13

Outlier Gradient Analysis

B.1.3. GLUE DATASETS

The GLUE or the General Language Understanding Evaluation (Wang et al., 2018) benchmark datasets consist of a number
of benchmarks for training, evaluating, and analyzing natural language models. As in the DataInf paper (Kwon et al., 2024),
we utilize the four binary classification subset datasets: QNLI, SST2, QQP, and MRPC for experiments. Here, these datasets
cover a wide variety of natural language task domains. For instance, QNLI (Wang et al., 2018) covers natural language
inference, SST2 (Socher et al., 2013) covers sentiment analysis, QQP 2 covers question answering, and MRPC (Dolan &
Brockett, 2005) covers paraphrase detection. We use the same datasets as in Kwon et al. (2024), where the training and
test splits are obtained from the Huggingface datasets3 library. For QQP and SST2 in Kwon et al. (2024) 4500 training
samples and 500 test samples were randomly sampled from the full sets, so we utilize these in our experiments for a fair
comparison.

B.1.4. Sentence Transformations

For this benchmark dataset proposed in (Kwon et al., 2024), the LLM is required to perform a specific transformation on an
input sentence. There are 10 different sentence transformations. To help the model learn different transformations, “chatbot”
name identifiers are used and each is uniquely associated with each transformation. These are the categories of sentence
transformations (taking an example input sentence as “Welcome to the real world.”):

• Reverse Order of Words: world. real the to Welcome
• Capitalize Every Other Letter: wElCoMe To ThE rEaL wOrLd.
• Insert Number 1 Between Every Word: Welcome 1to 1the 1real 1world.
• Replace Vowels with * : W*lc*m* t* th* r**l w*rld.
• Double Every Consonant: Wwellccomme tto tthhe rreall wworrlldd.
• Capitalize Every Word: Welcome To The Real World.
• Remove All Vowels: Wlcm t th rl wrld.
• Add ly To End of Each Word: Welcomely toly thely really world.ly
• Remove All Consonants: eoe o e ea o.
• Repeat Each Word Twice: Welcome Welcome to to the the real real world. world.

B.1.5. Math With/Without Reasoning

Both these datasets consist of the same math problems that the LLM is tasked to solve, with the only difference being
whether or not an intermediate reasoning step is used in prompting the model. More specifically the LLM is asked to provide
a direct answer to an arithmetic math word problem. There are 10 types of word problems and random positive integers are
used to construct unique prompts. These are as follows:

• Pizza: Jane ate A slices of pizza and her brother ate B slices from a pizza that originally had C slices. How many slices
of the pizza are left? Reason: Combined slices eaten = A + B. Left = C - (A + B).

• Chaperones: For every A students going on a field trip, there are B adults needed as chaperones. If C students are
attending, how many adults are needed? Reason: Adults needed = (B * C) // A.

• Purchase: In an aquarium, there are A sharks and B dolphins. If they bought C more sharks, how many sharks would
be there in total? Reason: Total sharks = A + C.

• Game: John scored A points in the first game, B points in the second, C in the third, and D in the fourth game. What is
his total points? Reason: Total points = A + B + C + D.

• Reading: Elise reads for A hours each day. How many hours does she read in total in B days? Reason: Total hours
read = A * B.

• Discount: A shirt costs A. There’s a B-dollar off sale. How much does the shirt cost after the discount? Reason: Cost
after discount = A - B.

• Area: A rectangular garden has a length of A meters and a width of B meters. What is its area? Reason: Area = A * B.
• Savings: If James saves A each week, how much will he save after B weeks? Reason: Total savings = A * B.
• Cupcakes: A bakery sells cupcakes in boxes of A. If they have B cupcakes, how many boxes can they fill? Reason:

Boxes filled = B // A.
• Interest: Jake invests A at an annual interest rate of B%. How much interest will he earn after C years? Reason:

2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
3https://huggingface.co/docs/datasets

14

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://huggingface.co/docs/datasets

Outlier Gradient Analysis

Interest = (A * B * C) // 100.

B.2. Models and Methods

We now describe the models and the methods used in our experiments throughout the main paper. First, we describe the
ResNet-34 (He et al., 2016) architecture used as the base model for the noisy vision datasets, then the RoBERTa (Liu et al.,
2019) NLP transformer model, and then the Llama-2 LLM.4 We also describe implementation details and parameter values
for the label correction baselines in Sections 4 and 5 and the influence-based baselines used throughout the paper. Finally,
we also describe some key implementation details regarding our outlier gradient analysis approach.

B.2.1. RESNET-34

The ResNet-34 model was proposed in (He et al., 2016) and is a 34-layer convolutional neural network pretrained on
the ImageNet-1K dataset at resolution 224 × 224. The pretrained model block is fine-tuned on the CIFAR-10N/CIFAR-
100N training set experiments with default parameters– minibatch size (128), optimizer (SGD), initial learning rate (0.1),
momentum (0.9), weight decay (0.0005), and number of epochs (100), for all experiments. Moreover, we directly used the
implementation provided by Wei et al. (2022) and made modifications to their code.

B.2.2. ROBERTA

As in (Kwon et al., 2024), we utilize LoRA fine-tuning to fine-tune the RoBERTa-large model, a 355M parameter transformer
language model that improves upon the original BERT model in key ways such as implementation and hyperparameter
selection. LoRA is applied to every value matrix of the attention layers of the RoBERTa model. The pre-trained model from
Huggingface is used.5 A learning rate of 0.0003 and a batch size of 32 is used. The model is fine-tuned over 10 epochs using
LoRA and dropout is set to be 0.05 while the rank of the LoRA matrix is set to 4, as recommended in Kwon et al. (2024).
The loss function used is a negative log-likelihood as the datasets are all for binary classification. The LoRA training is
enabled using the Huggingface PEFT library.6 For the influence experiments we have utilized the code provided in (Kwon
et al., 2024) and adapted it for our experiments. Moreover, we only compute influences using the training set gradients, and
keep the test set hidden from the learning model for fair evaluation.

B.2.3. LLAMA2-13B-CHAT LLM

We fine-tune the Llama2 13B parameter instruction tuned LLM using LoRA fine-tuning (applied to every query and value
matrix of the attention layer) as in Kwon et al. (2024). The LoRA parameters are as follows: learning rate is set to be 0.0003,
rank of LoRA matrix is set to 8, α = 32 in 8-bit quantization, and the batch size is set to 32 across 25 fine-tuning epochs. A
negative log-likelihood of the generated response is used as the loss function for fine-tuning as before. Here too, we adapt
the code provided by Kwon et al. (2024) for our use cases.

B.2.4. LABEL CORRECTION BASELINES

For label correction baselines in Sections 4 and 5– Normalized Margin (Northcutt et al., 2021), Self-Confidence (Müller &
Markert, 2019), and Confidence-Weighted Entropy (Kuan & Mueller, 2022), we utilize the implementation provided in the
Cleanlab7 library. We use default parameters for all three baselines. Note that the baselines are model agnostic and only
require predicted labels and associated probabilities for predictions, which we can easily obtain from classifiers.

B.2.5. INFLUENCE-BASED BASELINES

We utilize three influence-based baselines in experiments: LiSSA (Koh & Liang, 2017), Gradient Tracing (Pruthi et al.,
2020), DataInf (Kwon et al., 2024). For each of these baselines, we utilize the implementation provided in Kwon et al.
(2024) and adapt it to our application scenarios. For each baseline influence estimation is undertaken only on the training set
(except for additional results in adapting to the test set, provided in Appendix C.9 below). We only use the last checkpoint in
Gradient Tracing (Pruthi et al., 2020) for fair comparisons.

4https://huggingface.co/meta-llama/Llama-2-13b-chat-hf.
5https://huggingface.co/docs/transformers/model_doc/roberta.
6https://huggingface.co/docs/peft/index.
7https://github.com/cleanlab/cleanlab/.

15

https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/docs/transformers/model_doc/roberta
https://huggingface.co/docs/peft/index
https://github.com/cleanlab/cleanlab/.

Outlier Gradient Analysis

B.2.6. OUTLIER GRADIENT ANALYSIS

We now discuss implementation details regarding outlier gradient analysis. Owing to the simplicity of our approach, the
implementation is straightforward and follows directly from the algorithm. In most cases, we directly utilize the gradients
obtained from the last layer of the model being considered. However, in some cases, the gradient space of samples can be
high dimensional. For instance, for CIFAR-100N, the gradient space is of dimension 50000 × 51200 which unnecessarily
increases memory and time complexity of outlier detection. As a result, we reduce the gradient space dimensionality by
employing a sparse random projection step (Li et al., 2006) where the reduced dimension is ascertained using the scikit-learn
library. We also utilize sparse random projection in this manner for the Llama-2-13B-chat LLM model experiments to
reduce the dimensionality of the gradient space obtained.

C. Additional Results and Experiments
We now provide details on additional experiments. We first provide results for the noisy label datasets and vision models
shown in the main paper, but with standard deviation included. Then we conduct ablation experiments on the outlier
detection threshold k for the outlier gradient analysis algorithm. We also provide experiments on running time of our
proposed approach (as well as details on computational complexity), ablation experiments on varying iForest parameters,
results on ImageNet, experiments with ResNet-18 as the base model instead of ResNet-34, among others.

Table 4. Accuracy ± Standard Deviation results obtained for 5 runs on the CIFAR-10N and CIFAR-100N datasets for a ResNet-34 model
trained via cross entropy as well performance post trimming using noisy label correction approaches and influence-based methods,
including our proposed outlier gradient analysis methods.

Method CIFAR-10N CIFAR-100N
Aggregate Random Worst Noisy100

Cross Entropy 90.87 ± 0.23 89.17 ± 0.31 82.27 ± 0.37 57.36 ± 0.43
Normalized Margin (Northcutt et al., 2021) 91.33 ± 0.11 90.06 ± 0.14 83.57 ± 0.32 60.94 ± 0.59
Self-Confidence (Müller & Markert, 2019) 91.38 ± 0.19 90.09 ± 0.17 83.65 ± 0.21 60.51 ± 0.51
Confidence Entropy (Kuan & Mueller, 2022) 91.11 ± 0.34 90.05 ± 0.26 83.63 ± 0.41 60.62 ± 0.26
Gradient Tracing (Pruthi et al., 2020) 91.47 ± 0.21 89.98 ± 0.20 83.38 ± 0.58 60.73 ± 0.38
LiSSA (Koh & Liang, 2017) 91.49 ± 0.34 90.05 ± 0.31 83.38 ± 0.58 60.48 ± 0.29
DataInf (Kwon et al., 2024) 91.46 ± 0.17 90.05 ± 0.38 83.40 ± 0.56 60.70 ± 0.31
Self-LiSSA (Bejan et al., 2023) 92.07 ± 0.15 89.58 ± 0.11 83.01 ± 0.34 59.48 ± 0.43
Self-DataInf 91.41 ± 0.17 89.81 ± 0.37 83.15 ± 0.22 60.56 ± 0.28
Outlier Gradient Analysis (L1) 91.86 ± 0.14 90.66 ± 0.33 84.20 ± 0.19 60.32 ± 0.42
Outlier Gradient Analysis (L2) 92.21 ± 0.14 90.25 ± 0.22 82.99 ± 0.54 61.40 ± 0.22
Outlier Gradient Analysis (iForest) 91.36 ± 0.09 90.20 ± 0.07 83.72 ± 0.18 60.99 ± 0.27

C.1. Full Results with Standard Deviation for Vision Model Experiments

In the main paper results of Section 5 we provide accuracy values without the standard deviation listed, due to space
constraints. Here, we augment those results by also providing the standard deviation obtained over the 5 runs. These results
are denoted in Table 4. It can be seen that the standard deviations are in general low, and overall, outlier gradient trimming
has low variance.

C.2. Additional Results for Different Trimming Budget k

We now conduct experiments varying k from 2.5% to 12.5% for all three noise settings and baselines in the CIFAR-10N
dataset. These results are shown in Table 5. As can be observed, our outlier analysis approaches features in the top-2
irrespective of the value of k. Moreover, the highest values across each noise regime are obtained by outlier gradient analysis
(L2 norm at 12.5% for Aggregate and Random; and L2 norm at 2.5% for Worst). Finally, we find that setting k as 5% and
12.5% are good overall choices leading to consistently desirable performance. Hence, we select 5% as the outlier budget in
experiments.

C.3. Experiments on Running Time and Computational Complexity

We now present running time experiments for outlier gradient analysis on both the CIFAR-10N and CIFAR-100N datasets
compared to the other baselines compared in the paper in Table 6. It can be seen that outlier gradient analysis is

16

Outlier Gradient Analysis

Table 5. Varying the trimming budget k and measuring test set performance across noisy datasets (top-2 performers at each k in bold).
CIFAR10N (Aggregate) 2.5% 5% 7.5% 10% 12.5%
Gradient Tracing 92.11 91.47 92.17 91.99 91.98
LiSSA 92.08 91.49 91.83 92.27 91.74
DataInf 92.34 91.46 91.81 91.80 92.07
Self-LiSSA 91.71 92.07 91.32 91.72 91.33
Self-DataInf 91.22 91.41 91.37 91.29 91.15
Outlier Gradient (L1) 91.39 91.86 92.05 92.36 92.21
Outlier Gradient (L2) 92.10 92.21 92.70 92.63 92.78
Outlier Gradient (iForest) 91.77 91.36 91.57 91.92 92.08
CIFAR10N (Random) 2.5% 5% 7.5% 10% 12.5%
Gradient Tracing 90.71 89.98 90.41 90.75 90.96
LiSSA 90.21 90.05 91.09 90.88 90.00
DataInf 90.77 90.05 90.30 90.26 90.80
Self-LiSSA 89.76 89.58 89.50 88.94 89.49
Self-DataInf 89.91 89.81 90.32 89.91 90.00
Outlier Gradient (L1) 90.51 90.66 90.24 90.45 91.17
Outlier Gradient (L2) 90.72 90.25 90.63 90.50 91.21
Outlier Gradient (iForest) 90.03 90.20 90.06 90.38 90.62
CIFAR10N (Worst) 2.5% 5% 7.5% 10% 12.5%
Gradient Tracing 83.56 83.38 83.61 84.12 84.49
LiSSA 84.51 83.38 84.25 83.63 83.89
DataInf 84.31 83.40 83.45 84.01 84.12
Self-LiSSA 82.65 83.01 82.75 82.71 82.66
Self-DataInf 83.70 83.15 83.53 82.96 83.84
Outlier Gradient (L1) 84.26 84.20 84.12 84.32 84.25
Outlier Gradient (L2) 84.48 82.99 84.09 84.35 84.43
Outlier Gradient (iForest) 83.74 83.72 84.22 84.44 83.25

computationally efficient and a fraction of the original running time of the model. Moreover, it is order of magnitudes
faster than the other baselines. Thus, our outlier gradient analysis approach is computationally efficient as an option for
trimming detrimental samples and improving model performance. Most notably, only Gradient Tracing is faster than outlier
gradient analysis, but as we demonstrated in the main paper results, it seldom as accurate in detecting detrimental samples
as outlier analysis. Thus, outlier gradient analysis is ideal for balancing performance with computational efficiency. We also
provide analytical time complexity comparisons in Table 7. Although, it is important to note that in practice, outlier gradient
analysis is much faster than the worst case time complexity, as can be seen in Table 6.

Table 6. Running time for our outlier gradient analysis approaches and other baselines (top-2 in bold).
Method Time Taken (seconds)

CIFAR-10N (Aggregate) CIFAR-10N (Random) CIFAR-10N (Worst) CIFAR-100N (Noisy100)
Gradient Tracing 0.30 0.30 0.39 5.45
DataInf 3.89 3.99 4.01 15.22
LiSSA 23.75 23.25 23.26 115.19
Self-DataInf 5.29 5.51 5.5 12.1
Self-LiSSA 30.44 31.64 31.07 94.93
Outlier Gradient Analysis (L1) 0.54 0.54 0.74 10.3
Outlier Gradient Analysis (L2) 0.55 0.55 0.8 8.99
Outlier Gradient Analysis (iForest) 2.09 2.15 2.19 8.46

C.4. Experiments with Varying Tree Estimators

We conduct further ablations for our iForest outlier gradient analysis approach. The main parameter (other than the trimming
budget k, which we investigate in Appendix C.2) of iForest based outlier gradient analysis is the number of tree estimators
being used. As a result, we vary the number of these estimators, and measure performance. We observe that test set

17

Outlier Gradient Analysis

Table 7. Computational complexity of outlier gradient analysis methods and other baseline approaches (n is #training samples, v is
#validation/test samples, p is #model parameters, m is #inputs for LLM and o is #outputs for LLM).

Method Type Time Complexity
Exact (Eq 1) Hessian-based O(nv3)
LiSSA (Koh & Liang, 2017) Hessian-based O(nvp)
DataInf (Kwon et al., 2024) Hessian-based O(nvp)
EK-FAC (Grosse et al., 2023) Hessian-based O(m2o+ p2o)
Self-LiSSA (Bejan et al., 2023) Self-influence O(np)
Self-DataInf (Bejan et al., 2023) Self-influence O(np)
Gradient Tracing (Pruthi et al., 2020), Hessian-free O(nvp)
Ours (Outlier Gradient Analysis) Hessian-free O(np)

performance on CIFAR-10N (Worst noise setting) for outlier gradient analysis remains stable across the board when the
number of estimators are varied, as can be seen in Table 8.

Table 8. Results on varying the number of tree estimators used in iForest outlier gradient analysis.
Tree Estimators 25 50 75 100 125 150 175 200
Accuracy on Test Set (%) 83.70 84.38 83.71 83.72 83.66 83.97 83.84 83.42

C.5. Experiments on ResNet-18 Architecture

We also provide results for ResNet-18 (He et al., 2016) being used as the base model IN Table 9 instead of the ResNet-34
model. The overall performance of the ResNet-18 model is lower than ResNet-34 for all datasets and noise settings, since
the ResNet-18 model has fewer residual connections than the ResNet-34 model. Moreover, it can be observed that outlier
gradient analysis leads to improved performance post trimming, compared to the cross entropy baseline. Outlier gradient
trimming is advantageous as a data selection strategy irrespective of the base model.

Table 9. Accuracy ± Standard Deviation results for 5 runs on the CIFAR-10N and CIFAR-100N datasets for a ResNet-18 model trained via
cross entropy as well performance post trimming using noisy label correction approaches and our proposed outlier gradient analysis.

Method CIFAR-10N CIFAR-100N
Aggregate Random Worst Noisy100

Cross Entropy 90.78 ± 0.12 89.01 ± 0.31 81.85 ± 0.45 57.22 ± 0.12
Outlier Gradient Trimming (Ours) 91.17 ± 0.14 89.91 ± 0.21 83.08 ± 0.26 60.58 ± 0.28

C.6. Experiments on ImageNet

Although noisy label experiments have not been conducted on ImageNet (Deng et al., 2009), we decided to undertake a
simple experiment on a subset of ImageNet. We created a subset of ImageNet containing 50000 images (50 images from
each of the 1000 classes) as the training set, and flipped 40% of the corresponding image labels to create noisy labels (20
images from each class). The validation set is the same as ImageNet with 50000 images. We obtain results for performance
on this set for a baseline ResNet-18 (He et al., 2016) model, DataInf, Gradient Tracing, iForest based outlier gradient
analysis, as well as simple L1-norm and L2-norm thresholding based outlier gradient analysis. The models are trained for
10 epochs. In this limited experimental setting, we obtain the following results in Table 10 and find that outlier gradient
analysis methods achieve competitive performance to other methods while being highly computationally efficient.

C.7. Experiments on Other Noisy Learning Baselines

As we discussed previously, approaches for noisy learning can be categorized into (1) methods that either change the
loss function or model architecture or (2) those that identify noisy samples and remove/relabel them for improving model
performance (Algan & Ulusoy, 2021). Since our approach belongs to the latter category, we only compared against other
approaches from this category in the main paper. For completeness we now present results comparing our approach with

18

Outlier Gradient Analysis

Table 10. Results on ImageNet (top-3 performers based on performance and time taken are in bold).
Method Accuracy (%) Time Taken (s)
Cross Entropy 49.2 -
Gradient Tracing 51.0 23.51
DataInf 51.5 182.3
Outlier Gradient Analysis (iForest) 50.3 103.5
Outlier Gradient Analysis (L1) 51.5 44.81
Outlier Gradient Analysis (L2) 51.2 44.68

Table 11. Comparing with the alternate category of noisy learning baselines.
Method CIFAR-10N (Aggregate) CIFAR-10N (Random) CIFAR-10N (Worst)
Backward-T (Patrini et al, 2017) 88.13 ± 0.29 87.14 ± 0.34 77.61 ± 1.05
Forward-T (Patrini et al, 2017) 88.24 ± 0.22 86.88 ± 0.50 79.79 ± 0.46
T-Revision (Xia et al, 2019) 88.52 ± 0.17 88.33 ± 0.32 80.48 ± 1.20
VolMinNet (Li et al, 2021) 89.70 ± 0.21 88.30 ± 0.12 80.53 ± 0.20
GCE (Zhang and Sabuncu, 2018) 87.85 ± 0.70 87.61 ± 0.28 80.66 ± 0.35
Peer Loss (Liu and Guo, 2020) 90.75 ± 0.25 89.06 ± 0.11 82.00 ± 0.60
F-Div (Wei and Liu, 2020) 91.64 ± 0.34 89.70 ± 0.40 82.53 ± 0.52
Positive-LS (Lukasik et al, 2020) 91.57 ± 0.07 89.80 ± 0.28 82.76 ± 0.53
Negative-LS (Wei et al, 2021) 91.97 ± 0.46 90.29 ± 0.32 82.99 ± 0.36
Co-teaching+ (Yu et al, 2019) 90.61 ± 0.22 89.70 ± 0.27 83.26 ± 0.17
JoCoR (Wei et al, 2020) 91.44 ± 0.05 90.30 ± 0.20 83.37 ± 0.30
ELR (Liu et al, 2020) 92.38 ± 0.64 91.46 ± 0.38 83.58 ± 1.13
CORES-2 (Cheng et al, 2020) 91.23 ± 0.11 89.66 ± 0.32 83.60 ± 0.53
Outlier Gradient Analysis (L1) 91.86 ± 0.14 90.66 ± 0.33 84.20 ± 0.19
Outlier Gradient Analysis (L2) 92.21 ± 0.14 90.25 ± 0.22 82.99 ± 0.54
Outlier Gradient Analysis (iForest) 91.36 ± 0.09 90.20 ± 0.07 83.72 ± 0.18

some others in the former category for the ResNet-34 architecture and CIFAR-10N dataset. As can be seen in Table 11,
outlier gradient analysis features in the top-2 performers compared to the other noisy learning baselines. We would like to
emphasize that this is not an exhaustive list of baselines and noisy learning by adjusting the loss/model is not the primary
focus of our work (but detecting detrimental samples is). Note that our algorithm could also be combined with approaches
from this other category for additional gains.

C.8. Comparison with GEX (Kim et al., 2024) and TRAK (Park et al., 2023)

We also compare the performance of our outlier gradient analysis methods with GEX (Kim et al., 2024) and TRAK (Park
et al., 2023) , two new influence function methods. As mentioned in the main paper, we were able to obtain results for
CIFAR-10N but obtained out-of-memory (OOM) errors for CIFAR-100N. This computational memory overhead highlights
the shortcomings of these approaches. Furthermore, the results on CIFAR-10N for all three noise settings are shown in
Table 12. As can be seen, our outlier gradient analysis approaches outperform these new influence function baselines for the
detrimental data identification task.

C.9. Experiments on Adapting Outlier Gradient Analysis to Validation/Test Set

We also conduct experiments for the distribution shift benchmark from the influence function work by (Chhabra et al.,
2024). These experiments will showcase the applicability of outlier gradient analysis in adapting to a validation/test set
distribution (instead of solely relying on the training set distribution). In (Chhabra et al., 2024), three distribution shift
scenarios are considered on the Folktables ACS-Income (Ding et al., 2021) dataset: time-shifted, location-shifted, and
time+location-shifted. Essentially, in each of these settings, either the train/test distribution are time-shifted (e.g. 2014/2018),
location-shifted (e.g. CA/MI), or both (e.g. 2014 & CA / 2018 & MI). We undertake the same experiments but using the
OneClassSVM semi-supervised outlier analysis approach (Li et al., 2003) instead of iForest, L1/L2 norm, and provide the
test set as inliers to correct the distribution of the training set influence estimation. Then, we utilize outlier gradient analysis
for each setting, with results shown in Table 13. Our approach is highly adaptable to differing test/validation set distributions
(concept drift) and can significantly outperform other baselines in this setting as well.

19

Outlier Gradient Analysis

Table 12. Performance comparison of our outlier gradient analysis methods with GEX (Kim et al., 2024) and TRAK (Park et al., 2023)
influence function baselines.

Method CIFAR-10N (Aggregate) CIFAR-10N (Random) CIFAR-10N (Worst)
GEX (Kim et al., 2024) 90.67 89.13 80.30
TRAK (Park et al., 2023) 91.73 90.07 83.52
Outlier Gradient (L1) 91.86 90.66 84.20
Outlier Gradient (L2) 92.21 90.25 82.99
Outlier Gradient (iForest) 91.36 90.20 83.72

Table 13. Using OneClassSVM as the outlier analysis approach in the distribution shift experiments of (Chhabra et al., 2024) on the
Folktables ACS-Income dataset.

Method Time Loc Time + Loc
Gradient Tracing 0.7523 0.7628 0.7483
DataInf 0.7390 0.7830 0.7547
LiSSA 0.7490 0.7657 0.7498
Self-DataInf 0.7783 0.7797 0.7812
Self-LiSSA 0.7782 0.7798 0.7782
Outlier Gradient Analysis (L1) 0.7683 0.7797 0.7742
Outlier Gradient Analysis (L2) 0.7687 0.7760 0.7690
Outlier Gradient Analysis (iForest) 0.7708 0.7892 0.7750
Outlier Gradient Analysis (OneClassSVM) 0.7765 0.8063 0.7840

D. Code and Reproducibility
We provide our code, instructions, and implementation in an open-source repository: https://github.com/
anshuman23/outlier-gradient-analysis. The experiments were conducted on two separate Linux (Ubuntu
20.04.6 LTS) servers– the experiments of Sections 6 and 7 were conducted on NVIDIA GeForce RTX A6000 GPUs with
50GB VRAM running CUDA version 12.0 and all other experiments were conducted on an NVIDIA Tesla V100 with 32GB
VRAM and CUDA version 11.4.

20

https://github.com/anshuman23/outlier-gradient-analysis
https://github.com/anshuman23/outlier-gradient-analysis

