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Abstract

Transferring knowledge across diverse data
modalities is receiving increasing attention in ma-
chine learning. This paper tackles the task of
leveraging expert-derived, yet expensive, tabular
data to enhance image-based predictions when
tabular data is unavailable during inference. The
primary challenges stem from the inherent com-
plexity of accurately mapping diverse tabular data
to visual contexts, coupled with the necessity to
devise distinct strategies for numerical and cat-
egorical tabular attributes. We propose CHan-
nel tAbulaR alignment with optiMal tranSport
(CHARMS), which establishes an alignment be-
tween image channels and tabular attributes, en-
abling selective knowledge transfer that is perti-
nent to visual features. Specifically, CHARMS
measures similarity distributions across modal-
ities to effectively differentiate and transfer rel-
evant tabular features, with a focus on morpho-
logical characteristics, enhancing the capabilities
of visual classifiers. By maximizing the mutual
information between image channels and tabu-
lar features, knowledge from both numerical and
categorical tabular attributes are extracted. Ex-
perimental results demonstrate that CHARMS not
only enhances the performance of image classi-
fiers but also improves their interpretability by
effectively utilizing tabular knowledge.
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1. Introduction
Data in modern machine learning applications can take
various forms, including images, text, video, and audio,
providing rich and diverse sources of information. Multi-
modal learning seeks to fuse information from these dif-
ferent modalities (Ngiam et al., 2011; Ye et al., 2016; Ra-
machandram & Taylor, 2017; Baltrušaitis et al., 2018; Yang
et al., 2020), has demonstrated enhanced model accuracy
and comprehensiveness across several domains such as rec-
ommender systems (Huang et al., 2019; Salah et al., 2020;
Baltescu et al., 2022), healthcare (Zhang et al., 2022; Han
et al., 2022), and visual question answering (Li et al., 2019;
Zheng et al., 2020; Jing et al., 2020).

Despite its potential, different modalities not only contribute
distinctively but also vary significantly in their acquisition
costs (Zhou, 2018). For example, in the healthcare field,
acquiring medical images relies on specialized equipment,
while the extraction of detailed and accurate diagnoses re-
quires expert medical knowledge, often a more challenging
and costly endeavor. A practical solution involves leverag-
ing multiple modalities during the training phase to facili-
tate the transfer of expert knowledge from one modality to
another, subsequently enhancing the performance of single-
modality models during the inference phase (Karpathy &
Fei-Fei, 2015; Wang et al., 2016; Radford et al., 2021).

Tabular data, characterized by its structured format of rows
and columns (McKinney et al., 2010), often encapsulates
expert knowledge that is crucial yet underutilized in image-
based machine learning tasks. Continuing with the health-
care example, a doctor’s diagnosis, typically recorded in tab-
ular format, can provide critical insights, such as specific an-
notations in MRI images essential for accurate interpretation.
Since the structured nature of tabular data significantly dif-
fers from unstructured data like images, existing crossmodal
transfer methods are unsuitable for tabular data (Kimball
& Ross, 2011; Shwartz-Ziv & Armon, 2022; Hager et al.,
2023). This paper focuses on leveraging expert-derived, yet
expensive, tabular data to enhance image-based predictions
when tabular data is unavailable during inference.

Although the main idea is to incorporate the tabular at-
tributes as auxiliary information when training the visual
model, there are several challenges when making the learned
visual embeddings aligned with the tabular data due to the
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heterogeneity between these two modalities. Not all the
tabular attributes are relevant to the corresponding image.
For example, in a pet adoption scenario, the tabular data
contains not only the type of the pet but also information
such as whether the pet is vaccinated or not. Transferring
irrelevant information from the tabular data to the image
model can create challenges and hinder the learning pro-
cess of the image model. We expect that by identifying
“which subset of attributes to transfer” and transferring the
selected tabular knowledge to the visual model, the visual
model can learn more accurate information with rich hu-
man expert guidance. Moreover, the tabular data has both
categorical and numerical features, which usually require di-
verse processing strategies. A knowledge transfer approach
should be able to deal with these two features and keep the
interpretability of the model.

To overcome the aforementioned challenges, we pro-
pose CHannel tAbulaR alignment with optiMal tranSport
(CHARMS) that selectively aligns tabular data attributes with
image channels, which may have different semantics (Zeiler
& Fergus, 2014). By maximizing the mutual information be-
tween visual predictions and the selected tabular attributes,
CHARMS effectively transfers relevant expert knowledge
from tabular data to images for two types of attributes.

Specifically, the challenge arises from the inconsistent di-
mensions between tabular attributes and image channels,
making it difficult to align them directly. To overcome this,
we utilize sample-wise similarity as an intermedium. Sub-
sequently, we employ the optimal transport algorithm (Caf-
farelli & McCann, 2010; Bonneel et al., 2011; Ye et al.,
2018) to align the two modalities effectively. We strengthen
the image channels to ensure they capture the relevant tabu-
lar knowledge. By incorporating the tabular data as auxiliary
information, we maximize the mutual information between
image channels and corresponding tabular attributes. Ex-
periments prove the effectiveness of our CHARMS method
and visualization experiments provide evidence that our
method successfully transfers expert knowledge from the
table into the image model. As a result, the visual model
becomes more discriminative and effective. To summarize,
our contribution is three-fold:

• We emphasize the importance of knowledge transfer from
table to images, as this can lead to improved performance
and better understanding when tabular data is missing.

• We propose CHARMS to transfer relevant tabular knowl-
edge to images. It aligns attributes and channels by lever-
aging optimal transport and utilizes tabular data as auxil-
iary information during transfer.

• Experimental results demonstrate that CHARMS effec-
tively reuses tabular knowledge to improve the visual
classifiers. Moreover, our approach offers insightful ex-
planations of the learned visual embedding space.

2. Related Work
Multimodal learning. Data of different modalities, such as
image, video, audio, and text, usually overlap in some con-
tent, while some information is complementary. Multimodal
learning aims to leverage the information in different modal-
ities to learn a better representation and improve the perfor-
mance for different scenarios. An important task in multi-
modal learning is multimodal fusion. Previous work used
BERT (Su et al., 2019; Li et al., 2020a) or co-attention (Li
et al., 2019; Tan & Bansal, 2019) to fuse different modal in-
formation. Subsequently, some large models (Li et al., 2021;
Jia et al., 2021; Li et al., 2022) were created to align the
information of different modalities in terms of their seman-
tic relationships using contrastive learning approach (Tsai
et al., 2018). Different pre-training approaches have also
been extensively studied (Liang et al., 2020; Huang et al.,
2021; Yao et al., 2021; Bao et al., 2022).

Crossmodal transfer. The modality fusion approach di-
rectly depends on the integrity of the data from different
modalities. However, the reality is often that we do not have
access to the data of all modalities. Therefore, another direc-
tion of multimodal learning is to construct robust models to
cope with missing modalities or crossmodal transfer (Yang
et al., 2024). For example, knowledge in missing modali-
ties can be complemented using autoencoders or generative
adversarial approaches (Cai et al., 2018; Li et al., 2020b;
Pan et al., 2021). Wang et al. (2020) proposed a framework
based on knowledge distillation, utilizing the supplementary
information from all modalities, and avoiding imputation
and noise associated with it. Ma et al. (2021) improves
the robustness of Transformer models by automatically
searching for an optimal fusion strategy regarding input
data. Hager et al. (2023) proposes the first self-supervised
contrastive learning framework that takes advantage of im-
ages and tabular data to train unimodal encoders. But most
of these approaches consider Vision-Language scenarios,
audio or video, which have been well investigated and are
not suitable for tabular data due to their structured character
and the difference between numerical and categorical vari-
ables. Our approach fills the gap of multimodal learning on
tabular modality by taking it into account.

Learning with tabular data. The learning of tabular data
has become an important research direction in the field of
machine learning and data science for a long time. Tradi-
tional machine learning methods have been widely used
on some tabular data, such as decision trees (Quinlan,
1986), support vector machines (Vapnik, 1999), and ran-
dom forests (Breiman, 2001). These methods usually rely
on pre-processing steps such as manual feature engineering
and data cleaning, followed by model training and predic-
tion using supervised learning. With the development of
deep learning, tabular modeling approach using deep learn-
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ing (Huang et al., 2020; Gorishniy et al., 2021; Wang &
Sun, 2022) is very appealing because this allows tabular
data to be used as input to a single modality and trained end-
to-end by gradient optimization, which is competitive with
GDBT methods (Chen & Guestrin, 2016; Ke et al., 2017;
Prokhorenkova et al., 2018). In recent years, more and more
approaches for tabular data have been proposed (Arik &
Pfister, 2021; Hollmann et al., 2022; Yan et al., 2023; Jef-
fares et al., 2023). However, tabular data usually contains
expert knowledge, such as medical diagnosis information of
doctors and seismic waveform information, making it costly
to acquire. So we consider such a scenario: expert knowl-
edge from the tabular data is used to guide the learning of
the image data during training, with the expectation that
good performance can be efficiently obtained even when the
tabular data is missing during testing.

3. Preliminaries
In this section, we first introduce the crossmodal transfer
task, followed by some existing methods and analyses.

3.1. Transfer Knowledge from Table to Images

In a training set D = {xT
i ,x

I
i , yi}Ni=1, yi is the label for

the ith instance which have two modalities. xI
i represents

the image, and xT
i represents tabular description. Each im-

age xI
i has three channels (RGB), and for a tabular data

xT
i ∈ RD, each of its D dimensions corresponds to an at-

tribute. There are two kinds of attributes, i.e., the numerical
one (such as the “body temperature of a patient”) and the cat-
egorical one (e.g., the “types of tumors”). Assume there are
Y classes in total, and yi ∈ [Y ] = {1, . . . , Y }. We mainly
use classification tasks as examples, and our discussions
could be extended to regression tasks when yi ∈ R.

We aim to construct an image predictor f which maps the
input image xI

i to a certain class. The model f can be
decomposed into two parts, i.e., f(xI

i ) = W⊤ϕ(xI
i ). The

feature extractor ϕ(·) transforms a raw image into a C-
dimensional vector. In the following of this paper, we denote
the dimensions of the visual embedding space as “channels”.
The linear classifier W ∈ RC×Y predicts the label of an
image, and we omit the bias term for discussion simplicity.
So as the tabular predictor g(xT

i ) = V ⊤ψ(xT
i ), where

attribute extractor ψ(·) transforms a tabular data into a E-
dimensional vector. During the training phase, we minimize
the empirical risk of the model via:

min
f

N∑
i=1

ℓ(f(xI
i , yi | xT

i )) . (1)

ℓ is the loss function that measures the discrepancy between
prediction and ground-truth, such as the cross-entropy loss.
“|” indicates that the objective is calculated conditioned on

the corresponding tabular part xT
i of xI

i . Our objective is to
transfer relevant tabular information into the image predictor
f , which may lead to a more discriminative model. In
situations where expert knowledge is not available due to its
high collection cost, we expect f can still provide accurate
predictions given only the image data xI . Therefore, during
the test phase, we measure the performance of f based on
its prediction accuracy given any test image xI

i .

3.2. Methods for Crossmodal Transfer

One intuitive idea of transferring the tabular knowledge to
the image model is to align the two modalities. We review
methods designing the alignment from different perspec-
tives, including parameter-based transfer, embedding-based
transfer, and output-based transfer.

Parameter-based transfer. Since the model parameters
also contain the learned knowledge, the knowledge transfer
can also be conducted from the parameter level. This type of
method uses a projection matrix to match the parameters of
two modalities. Such as Fixed Model Reuse (FMR) (Yang
et al., 2017) optimizes both the visual and tabular models
during the training phase and learns an auxiliary mapping
from the visual embedding to the tabular data.

L =

N∑
i=1

ℓ
(
f
(
xI
i

)
+ g

(
xT
i

)
, yi

)
+ Lreg, (2)

where Lreg = 1
2

∥∥xT
i − ϕ(xI

i )U
∥∥2
F

, U is the linear pro-
jection between the tabular features and the embedding of
images. FMR removes those connected parts correspond-
ing to features xT gradually and finally vanishes all related
components. However, the method in question transfers all
parameters from the tabular data to the image model without
incorporating modal alignment and selection, resulting in a
rather coarse transfer process.

Embedding-based transfer. The method expects to find
a subspace in which the embedding of similar images and
tabular data is as close as possible, while the embedding of
dissimilar images is as far as possible. For example, Multi-
modal Contrastive Learning (MMCL) (Hager et al., 2023)
proposes the self-supervised contrastive learning framework
that takes advantage of images and tabular data to train
unimodal encoders:

L = λℓI,T + (1− λ)ℓT,I , zjI = fϕI

(
ϕ(xI

j )
)
, (3)

ℓI,T = −
∑
j∈N

log
exp (cos (zjI , zjT ))∑

k∈N ,k ̸=j exp (cos (zjI , zkT
))
, (4)

where embeddings are propagated through separate pro-
jection heads fϕI

and fϕT
and brought into a shared latent

space as projections zjI , zjT . ℓI,T is calculated analagously.
cos means cosine similarity. N denotes all samples in a
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Figure 1: Flowchart of CHARMS method. Our approach combines the learning of image and tabular data, leveraging the
specific characteristics of each modality to effectively transfer knowledge from one to the other. We use Optimal Transport
methods to match tabular attributes to image channels, effectively learning the correlation attribute of the tabular data with
the focused channels as a means of transferring expert knowledge to the images and solving the crossmodal transfer problem.

batch. Then MMCL uses linear probing of frozen networks
to evaluate the quality of the learned representations. The
embedding-based approach attempts to find a common sub-
space for alignment but may lose some attribute information
in the tabular data when changing the space, potentially
ignoring valuable expert knowledge during transfer. Fur-
thermore, not all attributes in the table have corresponding
counterparts in the image, making it inappropriate to directly
align the entire tabular representation with the image.

Output-based transfer. To transfer knowledge from tabular
data to image models, we aim to ensure that the predictions
of the image model f and the tabular model g are aligned,
so that f is learned to mimic the expert’s predictions. The
tabular model g such as LightGBM (Ke et al., 2017) is
learned on the tabular part of the training set at first. Then
in addition to minimizing the discrepancy with labels, an
additional distillation term between the predictions of f and
g is considered (Hinton et al., 2015):

L =

N∑
i=1

(
(1− λ)ℓ(xI

i , y) + λLKD(f(x
I
i ), g(x

T
i ))

)
. (5)

LKD measures the similarity between the predictions of
two models, e.g., the Kullback-Leibler (KL) divergence.
We usually denote g as the “teacher”, which transfers the
knowledge to the “student” f by aligning its output with g.
In Modality Focus Hypothesis (MFH) (Xue et al., 2022), the
important attributes from the tabular datasets are selected at
first via the off-the-shelf methods. Then the LKD is equipped
with such modality general decisive information and the
distillation is implemented based on the predictions over a
subset of the tabular attributes. Such subset comes out to be
image-independent, thus the information transfer between

the two modalities is also difficult to guarantee.

In summary, the parameter-based approach directly trans-
fers the complete knowledge from the table to the image
model, which can potentially overwhelm the image model.
Similarly, the embedding-based approach overlooks the fact
that different attributes in the table may require distinct pro-
cessing. While the output-based approach performs feature
selection, it does not consider the image-specific context in
this selection process.

4. Seeking Alignment for Knowledge Transfer
To tackle the question of “which subset to transfer”, it’s
essential to investigate the influence of various attributes
of tabular data on knowledge transfer. To measure the rel-
evance of table attributes and images, we employ mutual
information as an evaluation metric. Subsequently, leverag-
ing the alignment, we execute efficient knowledge transfer.
The flowchart is shown in Figure 1.

4.1. Preliminary Experiments

First, we want to explore what kind of impact different
attributes have on image data. Mutual information is a
measure used in information theory to quantify the level
of interdependence between two random variables. In this
article, it specifically represents the correlation between the
information content of the tabular modality and the image
modality. To compute mutual information, we employ the
MINE (Belghazi et al., 2018) method. If an image model ac-
quires an image representation that incorporates knowledge
transferred from the tabular data, the mutual information
between this representation and models trained solely on
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Figure 2: Mutual information with different modality in
multimodal models. A good crossmodal transfer model
should be able to effectively combine both image and tabular
information, resulting in higher mutual information between
the two modalities. Ideally, the model should be positioned
in the upper right corner. CHARMS is the result of our
method, which will be introduced later.

the tabular or image modalities will be high respectively.

To evaluate our approach, we perform experiments on the
MFEAT dataset (van Breukelen et al., 1998), which con-
tains two types of tabular data. The first type consists of 76
Fourier coefficients that represent character shapes and lack
a direct counterpart in the image. The second type includes
6 morphological features that can be associated with a corre-
sponding part in the image. According to (Artemiou, 2021),
there is a positive correlation between mutual information
and predictability. Thus, we consider the model trained
exclusively on a single modality as the modality optimal
model, where mutual information has the largest value. We
employ various cross-modal transfer methods to obtain an
image model and compute the corresponding image rep-
resentation. By comparing this with the representations
obtained from optimal models, we calculate the respective
mutual information. The result is shown in Figure 2.

Our experiments indicate that existing methods for transfer-
ring tabular knowledge to image models yield low mutual
information between the representations and tabular data.
This suggests that these methods are not effective at trans-
ferring all types of tabular knowledge to the image modality
and that feature selection is crucial. To validate this hypoth-
esis, we perform knowledge distillation of the image model
using two models trained on different parts of the tabular
data. We find that morphological features in the tabular data
can effectively promote image information, while other non-
morphological features can make the tabular information
more comprehensive.

These results highlight the importance of the selection of
different tabular attributes and their relationship with the im-
age modality. Similarly, different channels in image model

have different semantics (Zeiler & Fergus, 2014). Through
the experiments, we can observe that images and tables
exhibit heterogeneity, with not all table attributes being vi-
sually apparent in images. Additionally, we can enhance
the correlation between the two modalities by focusing on
mutual information as a means of facilitating knowledge
transfer. Based on these findings, we propose our method
for transferring knowledge between modalities, which takes
into account the specific characteristics of each modality
and transfers expert knowledge to guide the image model.

4.2. Channel Table Alignment

Building upon the previous findings, it becomes apparent
that different attributes have varying effects on the image,
and different channels of the image hold distinct semantics.
This realization serves as motivation to establish correspon-
dences between these channels and the attributes of the table.
To proceed with alignment, we need to vectorize the tabular
attributes and image channels. However, the challenge lies
in establishing the relationship between each channel and
attribute. Consequently, it becomes essential to define a
measure of similarity that captures their correspondence.

Extract channel representation. To extract representations
of the different channels, we use convolutional neural net-
works (CNNs). CNNs leverage convolutional filters to scan
over the input data and extract local features. By stacking
multiple convolutional layers, CNNs can learn increasingly
complex and abstract features, allowing us to obtain dif-
ferent channels that capture different aspects of the image.
Specifically, the channels of image data xI

i are defined as
ϕ−1(x

I
i ) ∈ RH×W×C , where C is the number of channels.

Prior to average pooling, ϕ−1 extracts high-level features,
resulting in a shape of H ×W . Specifically, to address the
issue that different channels of an image may have repeated
semantics with some redundancy, we use K-Means cluster-
ing to group similar channels together. This allows us to
obtain fewer distinct C ′ channels, each capturing a distinct
aspect of the image data.

Extract tabular representation. Currently, modern deep
tabular data methods employ tokenization and embedding
techniques to construct feature representations for tabular
data. We use a neural network to obtain the representation of
each attribute of the tabular data. This involves transforming
all features, including both categorical and numerical vari-
ables, into embeddings. The resulting attributes are defined
as ψ(xT ) ∈ RD×E , where D is the number of attributes
and E is the embedding dimension. We assume that the first
p attributes are numerical variables xT

num, and the remaining
q attributes are categorical variables xT

cat.

Align two modalities. Directly establishing the correla-
tion between two modalities is not feasible due to potential
differences in dimensionality and semantic inconsistency
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between them. If two examples exhibit similarity in their
representations on a specific attribute as well as a channel,
it implies that the semantics of that table attribute and the
image channel are also similar. Specifically, for the ith chan-
nel and the jth attribute, considering a total of N samples,
we can calculate the sample cosine similarity on the channel
SI

i and on the attribute ST
j independently. Both SI

i and ST
j

have a shape of RN×N . Subsequently, we construct the cost
matrix C by evaluating the channel-wise similarity against

the attribute-wise similarity, where Cij =
∥∥∥SI

i − ST
j

∥∥∥2
2
.

Based on the cost matrix, we construct a semantic
map through the employment of the optimal transport
method (Benamou et al., 2015) to minimize the similar-
ity between samples from different modalities. OT is a
mathematical framework for measuring the similarity be-
tween probability distributions and finding the optimal way
to transport mass from one distribution to another. Then the
OT transfer matrix is calculated:

T̂ = argmin
T̂

⟨T̂ ,C⟩F

s.t. T̂1 ≤ a, T̂
⊤
1 ≤ b, T̂ ≥ 0. (6)

Where ⟨·⟩F denotes the Frobenius norm. a and b are source
and target distributions. Here source represents the tabular
attribute and target represents the image channel. They are
both uniformly distributed. After aligning the distributions
of the image and tabular data using optimal transport, we
obtain the transfer matrix T̂ ∈ RD×C′

. Based on the clus-
tering results, we can restore the corresponding relationship
between the tabular attributes and the original channels of
the image as T ∈ RD×C . Then the channels and attributes
are aligned and relevant features are selected.

4.3. Learning with Auxiliary Information

By utilizing OT, we successfully address the feature selec-
tion problem by aligning channels with attributes. Building
upon the findings from previous experiments in section 4.1,
our next objective is to maximize mutual information be-
tween two modalities. Since mutual information and pre-
dictability exhibit a positive correlation, we aim to enhance
the mutual information between the two modalities by par-
tially predicting the corresponding attributes from channels.

Specifically, we employ the transfer matrix T to assign
weights to the image channels. This enables us to direct
the attention of the relevant tabular attributes towards their
corresponding image channels. Utilizing the feature extrac-
tor of an existing image network ϕ(·), we train a classifier
that maps from the image channels to the corresponding
attributes. By doing so, we enhance the image network’s un-
derstanding of the tabular attributes and transfer this knowl-
edge into the image modality. This enables the learned

model to effectively handle missing tabular modalities and
enhance its performance on complex tasks.

In summary, the loss can be written in the following form

L =

N∑
i=1

ℓ(f(xI
i ), yi) + ℓ(g(xT

i ), yi) + Li2t, (7)

Li2t =
∑
p

ℓMSE(T p · ϕ(xI
i ),x

T
nump)

+
∑
q

ℓCE(T q · ϕ(xI
i ),x

T
catq). (8)

Here, ℓ is the label prediction loss function. ℓCE is cross
entropy loss for categorical attributes and ℓMSE is mean
square error loss for numerical attributes. T p is the image
channels corresponding to the pth numerica attribute, while
T q represents the same for qth categorical attribute.

In our loss function, the first two components correspond
to the separate training of the two modalities. The third
component Li2t aims to transfer knowledge from the table
attributes to the image channels. The tabular model g is up-
dated to improve the accuracy of representing each tabular
attribute in order to calculate ST , thereby facilitating the
generation of a more precise transfer matrix for aligning at-
tributes and channels. We update cost matrix every 5 epochs,
which ensures that the model learns increasingly accurate
channel-attribute correspondences, allowing the tabular data
to guide the image data with increasing precision.

To sum up, our approach tackles the challenge of align-
ing image channels and table attributes by leveraging inter-
sample similarity and OT methods. Subsequently, we aim to
transfer the knowledge from the table into the image model
by maximizing the mutual information between the two
modalities. We handle numerical and categorical variables
in the tabular data differently, both in terms of computational
representation and final learning processes.

5. Experiments
In this section, we compare CHARMS with crossmodal trans-
fer methods on several datasets. The analysis experiment
and ablations verify the effectiveness of our method. More-
over, we visualized the alignment of attributes and channels.

5.1. Experiments and Results

Dataset. Totally six datasets are used in the experiment:
Data Visual Marketing (DVM) (Huang et al., 2022) is
created from 335,562 used car advertisements. The tabular
data includes some car parameters such as the number of
doors and some advertising data such as the year. Differ-
ent from (Hager et al., 2023), only the new version DVM
dataset is available. Car models with less than 700 samples
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Table 1: Comparisons with baseline methods on DVM, SUN, CelebA, Adoption, Pawpularity, and Avito datasets. The first
four are classification tasks while the last two are regression tasks. RTDL means the FT-transformer (Gorishniy et al., 2021)
model trained on the tabular modality.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
LGB 0.9748 0.8501 0.7963 0.4101 20.0720 0.2290
RTDL 0.9682 0.8563 0.7936 0.4107 20.0844 0.2317
Resnet 0.8743 0.8361 0.8146 0.3477 18.6150 0.2512

KD 0.8390 0.8382 0.8118 0.3532 19.0683 0.2499
MFH – 0.8312 0.7507 0.3041 43.1455 0.2873
FMR 0.8427 0.8347 0.8003 0.3526 19.3517 0.2937
MMCL 0.8203 0.8431 0.8041 0.2981 – –

CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

Table 2: Visualization by GradCAM. We conducted experiments on CelebA dataset and PetFinder-adoption. The results
show that the OT algorithm can indeed align the tabular attributes with the image channels automatically.

Tabular Attribute 5 o Clock Shadow Arched Eyebrows Big Nose Blond Hair

Aligned Channel 65, 87, 119, 236. . . 33, 76, 78, 115, . . . 50, 224, 258, . . . 684

Visualization

Tabular Attribute Type Color

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization

were removed, resulting in 129 target classes, a classifica-
tion task. SUNAttribute (Patterson et al., 2014): We use
the table modality in this experiment to help images more
accurately predict whether a scene is an open space, which
is a binary classification task. CelebA (Liu et al., 2015) is
the abbreviation of CelebFaces Attribute, meaning celebrity
face attribute dataset. It’s a large-scale dataset with more
than 200K celebrity images, each with 40 attribute anno-
tations. We use Attractive as the label, which is a binary
classification task. PetFinder-adoption dataset comes from
a kaggle competition where the task is to predict the speed
at which a pet is adopted, which is a five-class classification
task. Tabular data contains information about the pet such
as the type and vaccination status. PetFinder-pawpularity
dataset also comes from a kaggle competition where the
task was to predict the popularity of a pet based on that pet’s
profile and photo. Avito is a challenge to predict demand
for an online advertisement based on its full description,
its context and historical demand for similar ads in similar
contexts. The target deal probability can be any float from
zero to one. It’s also a regression task.

Evaluation metrics. For classification tasks, we use accu-
racy to measure the performance. For the regression task,
we use root mean square error for performance evaluation.

Implementation Details. In the course of the experiment,
we implement CHRAMS with PyTorch and conduct ex-
periments with a single GPU. Moreover, we utilize the
grid search to find the hyper-parameters and we choose
the best models from the validation set by using early stop-
ping. Specifically, the batch size k is searched in {32, 64,
128} and the learning rate is searched in {1e-5, 5e-5, 1e-4,
5e-4, 1e-3, 5e-3}. More details can be seen in Appendix A.

Results. To demonstrate the superiority of CHARMS, we
compare it with other popular methods on six datasets as
shown in Table 1. The result in the form of mean plus stan-
dard deviation are shown in Appendix Table 6. Our results
show that CHARMS consistently achieves the best perfor-
mance on all datasets. In contrast, the baseline methods we
evaluated fail to yield significant improvements when com-
pared to direct image training. Some of the baseline meth-
ods even exhibit a decline in performance. This outcome
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can likely be attributed to the limited guidance provided by
these methods, which solely rely on tabular data to offer
coarse-level guidance to the image model. Consequently,
the complex relationships and interactions between modali-
ties are not adequately considered, leading to confusion and
subpar results in the image model’s learning process.

The MFH approach only learns the KL divergence between
the teacher and student networks, which may not be suffi-
cient for handling complex tasks, as evidenced by its poor
performance on the DVM 129 classification task. The exper-
iment on the regression task is one of MMCL’s limitations
according to (Hager et al., 2023).

What is particularly surprising about our approach is that it
can outperform the tabular modality on the SUNAttribute
dataset. Similarly, on the CelebA and Pawpularity datasets,
our approach can improve the performance of the image
modality, even though the tabular data is weaker than images.
It is possible that our approach can outperform the tabular
modality even if it is a strong modality. These findings
suggest that we indeed transfer tabular knowledge to images.

Visualization. To verify the effectiveness of OT in matching
attributes and channels, we used GradCAM (Selvaraju et al.,
2017) to visualize the results of OT, as shown in Table 2.
On the CelebA dataset, our model can accurately capture
various attributes for the same image. On the PetFinder-
adoption dataset, we demonstrate our model’s ability to
recognize the same attribute across different images.

Our results unequivocally showcase the capability of OT
to precisely align image channels with their corresponding
tabular attributes, thus affirming the soundness of our ap-
proach in seamlessly transferring tabular knowledge into the
image model. This finding provides substantial support for
the underlying rationale of our approach and emphasizes the
criticality of precisely aligning the distributions of diverse
modalities to facilitate effective knowledge transfer.

5.2. Experiments Analysis

Comparison for CHARMS and other methods. Through-
out the training process, to observe the changes in mutual
information, we select ten models at different stages, rang-
ing from the initial training phase to convergence. The
outcomes are illustrated in Figure 3. Our findings clearly
indicate a consistent and progressive increase in mutual
information within CHARMS. This compelling evidence at-
tests to the efficacy of knowledge transfer and substantiates
the model’s enhanced accuracy and interpretability.

Comparing our approach to the MFH and FMR methods, we
observed distinct patterns. Initially, the MFH method, which
prioritizes important features, shows higher mutual infor-
mation with the table. However, as the model increasingly
emphasizes image information, the mutual information with
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Figure 3: Mutual information during training on MVFEAT
dataset. We calculate mutual information from the begin-
ning to the convergence process in order to better understand
the training process of each method.

Table 3: Comparison for our CHARMS with CLIP method.

DVM↑ SUN ↑ CelebA ↑ Adoption ↑
CLIP-LP 0.7619 0.6918 0.7590 0.3047
CLIP-FT 0.8417 0.8333 0.8165 0.2935

CHARMS 0.9175 0.8661 0.8220 0.3603

the table diminishes. Conversely, the FMR method benefits
from a favorable tabular data initialization. Nevertheless, as
the table modality is gradually de-emphasized, the mutual
information with both the table and image decreases.

Overall, the visualization of mutual information plays a
pivotal role in gaining valuable insights into the learning
process of knowledge transfer. It not only enhances the
interpretability but also emphasizes the criticality of aligning
different modalities and facilitating knowledge transfer.

Comparison with CLIP. CLIP (Radford et al., 2021) is
pre-trained on a large amount of text and image pairs, which
makes it able to map from text to images. Some previ-
ous studies have demonstrated that CLIP is able to trans-
form tabular data to text for classification given the column
names (Wang & Sun, 2022; Hegselmann et al., 2023).

In this experiment, we converted the tabular data into text
format, such as ”length: 16”. To ensure a fair compari-
son, we utilize CLIP from (Radford et al., 2021) with the
ResNet50 backbone. The CLIP model consists of an image
encoder and a textual encoder, and we connect a one-layer
linear head for classification or regression after the image
encoder. CLIP-LP denotes the scenario where the two en-
coders are fixed, and only the classification head is trained.
CLIP-FT involves fine-tuning the entire CLIP network. By
transforming the task into a language-to-vision knowledge
transfer, the results are obtained in Table 3.
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Figure 4: Impact of different network structures on the
method on Adoption dataset. It is worth noting that our
approach remains unaffected by backbone model.

Table 4: Ablation study on cluster number on SUNAttribute
dataset.

cluster 20 40 60 80 100

Accuracy 0.8494 0.8661 0.8494 0.8556 0.8522

From the experiments, we can see that the performance of
CLIP is not ideal. This is probably due to the fact that in
tabular data, each column holds its own distinct meaning,
and directly utilizing it as input to CLIP can lead to the loss
of certain information. For instance, on the SUN dataset, the
attribute ”wood (not part of a tree)” might not be a highly
significant feature. However, when this attribute is converted
to text format, its character length tends to be relatively long,
which can introduce redundancy in the information.

From another perspective, previous work has pointed out
that there is a modality gap in the CLIP’s embedding
space (Liang et al., 2022). This gap is caused by a com-
bination of model initialization and contrastive learning
optimization. This gap makes the CLIP method fail in our
task. For further comparisons on the attention method and
CLIP method, please refer to Appendix B.

The ablation study of components in CHARMS. To
demonstrate the applicability and robustness of our pro-
posed method, CHARMS, we conducted experiments us-
ing different network structures, including Densenet-121,
Inception-v1, and MobileNet-v2, in addition to ResNet50.
Our results, shown in Figure 4, demonstrate that the perfor-
mance improvements achieved by our method are consistent
across different network structures, highlighting the robust-
ness of our approach. More visualisation and interpretative
experiments are provided in Appendix C.

In the CHARMS method, we use the K-Means (Lloyd, 1982;
MacQueen, 1967) method to cluster the 2048-dimensional
features extracted from ResNet. We discuss the number
of clusters on the SUNAttribute dataset, and the results
in Table 10 show that the performance of CHARMS is not
affected by the number of clusters taken, demonstrating the
robustness of the method to hyperparameter choices. This
robustness makes the method more flexible and reliable
in practical applications, as it does not require excessive
hyperparameter tuning or fine-tuning, saving time and effort.

6. Conclusion
In this work, we propose the CHARMS, a new method that
automatically transfers relevant tabular knowledge to im-
ages. Our method leverages tabular data as auxiliary in-
formation during transfer, enabling the transfer of expert
knowledge in tabular data to images. Since not all attributes
contained in tabular data are relevant to the corresponding
image, we utilize optimal transport to align the attributes
with channels, strengthening the correlated channels during
transfer. Experimental results demonstrate that CHARMS
outperforms previous methods in crossmodal transfer and
our method enables insightful explanations of the learned vi-
sual embedding space with tabular instruction. We hope this
work motivates future research on the challenges of multi-
modal encountered in real-world problems, with a particular
focus on tabular data and knowledge transfer.
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Peyré, G. Iterative bregman projections for regularized
transportation problems. SIAM Journal on Scientific Com-
puting, 37:A1111–A1138, 2015.

Bonneel, N., Van De Panne, M., Paris, S., and Heidrich,
W. Displacement interpolation using lagrangian mass
transport. In Proceedings of the 2011 SIGGRAPH Asia
conference, pp. 1–12, 2011.

Breiman, L. Random forests. Machine learning, 45:5–32,
2001.

Caffarelli, L. A. and McCann, R. J. Free boundaries in
optimal transport and monge-ampere obstacle problems.
Annals of Mathematics, 171:673–730, 2010.

Cai, L., Wang, Z., Gao, H., Shen, D., and Ji, S. Deep
adversarial learning for multi-modality missing data com-
pletion. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, pp. 1158–1166, 2018.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko,
A. Revisiting deep learning models for tabular data. Ad-
vances in Neural Information Processing Systems, 34:
18932–18943, 2021.

Hager, P., Menten, M. J., and Rueckert, D. Best of both
worlds: Multimodal contrastive learning with tabular and
imaging data. arXiv preprint arXiv:2303.14080, 2023.

Han, Z., Yang, F., Huang, J., Zhang, C., and Yao, J. Multi-
modal dynamics: Dynamical fusion for trustworthy mul-
timodal classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 20707–20717, 2022.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. Tabllm: Few-shot classification of
tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp.
5549–5581, 2023.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hollmann, N., Müller, S., Eggensperger, K., and Hut-
ter, F. Tabpfn: A transformer that solves small tabu-
lar classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

Huang, J., Chen, B., Luo, L., Yue, S., and Ounis, I. Dvm-
car: A large-scale automotive dataset for visual marketing
research and applications. In 2022 IEEE International
Conference on Big Data, pp. 4140–4147, 2022.

Huang, X., Khetan, A., Cvitkovic, M., and Karnin, Z. Tab-
transformer: Tabular data modeling using contextual em-
beddings. arXiv preprint arXiv:2012.06678, 2020.

Huang, Z., Xu, X., Ni, J., Zhu, H., and Wang, C. Multimodal
representation learning for recommendation in internet of
things. IEEE Internet of Things Journal, 6:10675–10685,
2019.

Huang, Z., Zeng, Z., Huang, Y., Liu, B., Fu, D., and Fu,
J. Seeing out of the box: End-to-end pre-training for
vision-language representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12976–12985, 2021.

Jeffares, A., Liu, T., Crabbé, J., Imrie, F., and van der
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A. Experiment Details
A.1. Dataset Details

The datasets used in our experiments are MFEAT (van Breukelen et al., 1998), Data Visual Marketing (DVM) (Huang et al.,
2022), SUNAttribute (Patterson et al., 2014), CelebA (Liu et al., 2015), PetFinder-adoption, PetFinder-pawpularity and
Avito.

MFEAT. This dataset consists of features of handwritten numerals (‘0’–‘9’) extracted from a collection of Dutch utility
maps. 200 patterns per class (for a total of 2, 000 patterns) have been digitized in binary images. These digits are represented
in terms of the following six feature sets. We use only 76 fourier coefficients of the character shapes and 6 morphological
features for tabular data. The image modality is reconstructed from 240 pixel averages of images from 2× 3 windows.

DVM. DVM dataset aims to facilitate business related research and applications in automotive industry such as car
appearance design, consumer analytics and sales modeling. The dataset contains car images, model specifications and sales
information about 899 car models that have been sold in the UK market over the last 20 years. which comprises two data
parts: the image data and the table data. The former contains 1, 451,784 car images that have been deliberately cleaned
and organized. While the latter includes six CSV tables that cover the non-visual attributes such as brand, price, sales, etc.
Different from MMCL, only the new version DVM dataset is available (Hager et al., 2023). We pair this tabular data with a
single random image from each advertisement, yielding a dataset of 70, 580 train pairs, 17, 645 validation pairs, and 88, 226
test pairs. Car models with less than 700 samples were removed, resulting in 129 target classes, classification task. There
are total of 13 numerical variables and 3 categorical variables in this dataset. We expect that under the guidance of tabular
data, images can learn more knowledge and make classification better.

The DVM dataset utilized in the original paper is an earlier version, and unfortunately, we don’t have access to the
dataset after the official update. This discrepancy in dataset versions may introduce variations in the data distribution and
characteristics. Specifically, all the images are resized to 300x300 resolutions; Segment results are no longer provided
directly; Image data of 2019 registered car models is added and the non-visual feature data is updated to 2020.

We follow the steps in (Hager et al., 2023) in Section 4.1 to preprocess the data. In detail, the car models with less than
700 samples were removed, resulting in 129 target classes. This process ensures that the amount of data remain largely
consistent with (Hager et al., 2023).

Lastly, to maintain uniformity and facilitate fair comparisons, we employed a fixed batch size of 64 across all methods,
whereas the original paper employed a larger 512. Additionally, we conducted MMCL method on our dataset with a batch
size of 512. The result was 0.8869/0.9070. This is still somewhat different from the values reported in (Hager et al., 2023)
and performs worse than our method 0.9207 with a batch size of 512.

Furthermore, we conducted a comparison of GPU usage with batch size 64. Our method uses 8 GB of memory while theirs
uses 20 GB. The results revealed that the MMCL method remains resource-intensive. Conversely, our method achieves
superior performance with lower computational costs, further highlighting the efficiency of our approach.

SUNAttribute. SUNAttribute annotates 20 scenes from each of the 717 SUN categories. Each scene has 102 attributes and
each attribute will have multiple annotations. For simplicity, we divide each attribute into zero and one and our goal is to
predict whether a scene is an open space, which is a binary classification task. The dataset contains 14, 340 images and the
corresponding table feature, each attribute of the table feature represents a scene and takes the value of 1 if the attribute
is present in the image. we use 8 : 1 : 1 to divide the training set, validation set, and testing set. There are total of 101
categorical variables in this dataset.

CelebA. CelebA is the abbreviation of CelebFaces Attribute, meaning celebrity face attribute dataset, which contains
202, 599 face images of 10, 177 celebrities, each image is well marked with features, including 40 attribute markers such
as Big Nose. We use Attractive as the label, which is a binary classification task. We use 8 : 1 : 1 to divide the training
set, validation set, and testing set. There are total of 39 categorical variables in this dataset. We expect to introduce more
detailed face information in the table, allowing the image to perform better on downstream tasks.

PetFinder-adoption. Animal adoption rates are strongly correlated to the metadata associated with their online profiles,
such as descriptive text and photo characteristics. This dataset comes from a kaggle competition where the task is to predict
the speed at which a pet is adopted, which is a five-class classification task. There are total of 10 numerical variables and 14
categorical variables in this dataset. Tabular data contains information about the pet such as the type and vaccination status.
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We also use the same division for the dataset.

PetFinder-pawpularity. This dataset also comes from a kaggle competition where the task was to predict the popularity of
a pet based on that pet’s profile and photo, which is a regression task. Each pet photo is labeled with the value of 1 (Yes) or
0 (No) for each of features. For example, “Face” represents whether the face of the pet in the picture is frontal. There are 12
categorical variables in tabular data.

Avito. Avito, Russia’s largest classified advertisements website, is deeply familiar with this problem. Sellers on their
platform sometimes feel frustrated with both too little demand (indicating something is wrong with the product or the product
listing) or too much demand (indicating a hot item with a good description was underpriced). This dataset is challenging
you to predict demand for an online advertisement based on its full description, its context and historical demand for similar
ads in similar contexts. The target deal probability can be any float from zero to one. It’s also a regression task. There are
total of 2 numerical variables such as and 11 categorical variables such as in this dataset.

Table 5: Introduction to the dataset. Here we introduce image data and tabular data in each dataset, and numerical and
categorical variables are introduced separately in the tabular data. An example is given for each dataset.

Dataset Numerical Attribute Categorical Attribute Image

MFEAT
Fourier coefficient 1

0.13839 -

DVM
Length
4865.0

Fuel type
9

SUNAttribute -
Warm

1

CelebA -
Big Nose

0

PetFinder-adoption
Fee
100

Type
0

PetFinder-pawpularity -
Focus

0

Avito
Price
1290

Category name
4
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Table 6: Comparisons with baseline methods on DVM, SUN, CelebA, Adoption, Pawpularity, and Avito datasets on five
random seeds.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
LGB 0.9748±0.0014 0.8501±0.0003 0.7963±0.0005 0.4101±0.0053 20.0720±0.0072 0.2290±0.0011
RTDL 0.9682±0.0018 0.8563±0.0011 0.7936±0.0004 0.4107±0.0048 20.0844±0.0098 0.2317±0.0034
ResNet 0.8743±0.0183 0.8361±0.0144 0.8146±0.0092 0.3477±0.0048 18.6150±1.4559 0.2512±0.0034

KD 0.8390±0.0076 0.8382±0.0063 0.8118±0.0046 0.3532±0.0035 19.0683±1.7642 0.2499±0.0015
MFH – 0.8312±0.0022 0.7507±0.0034 0.3401±0.0027 43.1455±2.0843 0.2873±0.0047
FMR 0.8427±0.0151 0.8347±0.0119 0.8003±0.0143 0.3526±0.0088 19.3517±1.5837 0.2937±0.0084
MMCL 0.8203±0.0040 0.8431±0.0012 0.8041±0.0017 0.2981±0.0026 – –
CHARMS 0.9175±0.0052 0.8661±0.0032 0.8220±0.0022 0.3603±0.0037 18.4314±0.7427 0.2495±0.0025

A.2. Training Details

We use ResNet50 with weight pretrained on ImageNet-1k (Russakovsky et al., 2015) as image feature extractor for all
methods mentioned in this paper. The classifier is built from an MLP with one hidden layer of size 1024.

For baseline methods, the numerical tabular data fields are standardized using z-score normalization with a mean value of 0
and standard deviation of 1. For our method CHARMS, we use FT-Transformer (Gorishniy et al., 2021) to get the embedding
of tabular data, which can process continuous and categorical variables separately.

• KD (Hinton et al., 2015): For KD method, we search the temperatures in {1.0, 2.0, 4.0, 6.0, 8.0} and λ in
{0.2, 0.4, 0.6, 0.8}.

• KD-Fou: This means that we use only 76 fourier coefficients of the character shapes features when training the teacher
network.

• KD-Mor: This means that we use only 6 morphological features when training the teacher network, which can be
revealed in images.

• FMR (Yang et al., 2017): We set ten percent of the fixed features to be knockdown in each epoch in FMR method. We
search the knockdown num in {0.1, 0.2, 0.3, 0.3}. The fixed feature classifier is a linear connection between tabular
data and the corresponding image.

• MFH (Xue et al., 2022): For MFH method, we set modality general decisive information according to the feature
ranking algorithm. The number of the features is fifty percent of that for all features.

• MMCL (Hager et al., 2023): The same parameters are set for MMCL method according to (Hager et al., 2023). We
use the frozen version after pretrain and only train the classifier for downstream task.

• CHARMS: For FT-Transformer, the number of Transformer blocks is set to 2. We use the K-Means method to cluster
the representations obtained by ResNet50 and n cluster is 40. Embedding dimension E is set according to the data
distribution. Adam optimizer with weight decay is used to train the models. We choose to update cost matrix every 5
epochs, striking a balance between updating them without stable knowledge and minimizing the computational burden.
However, we continuously update ϕ throughout the training process to enhance the representation.

We experiment on five random seeds and the results in the form of mean plus standard deviation are shown in the Table 6.

A.3. Figure Details

We explain some figures in detail.

• For Figure 5, we calculated the amount of information contained in different modality data for different methods with
the MINE method (Belghazi et al., 2018). The image data are simple handwritten digits, we process them simply using
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Figure 5: Mutual Information with Different Modality in
Multimodal Models. A good model should be able to effec-
tively combine both image and tabular information, resulting
in higher mutual information between the two modalities.
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Figure 6: Mutual Information During Training on MVFEAT
dataset. We calculate mutual information from the beginning
to the convergence process in order to better understand the
training process of each method.

a two-layer convolutional neural network, followed by a max pooling layer, and a Dropout layer to prevent overfitting.
When calculating the mutual information, we use the mine method as the loss function for approximating the mutual
information. The network we choose is a three layer MLP with two hidden layers of size 100, the method we choose is
concat, and the batch size is 16.

• For Figure 6, we do not calculate the mutual information change process for the MMCL method because the MMCL
method already performs much less well in Figure 8 than the other baseline models. We hypothesize that MMCL maps
the tabular and image representations to another space and therefore the mutual information is lower.

• In the ablation study for different nets, we experimentally validated the impact of different neural network as backbone
models on our approach. The accuracy in ORIGIN is {34.77, 34.05, 34.49, 33.98}. The accuracy in out CHARMS is
{35.74, 35.52, 35.82, 35.45}.

A.4. Task Details

The usage of knowledge from table to images could be explained from three aspects:

In our setting, the goal is to transfer knowledge from the tabular data to the image model. Both classification and regression
tasks are vital and commonly encountered in our setting, where both of them are investigated in our experiments. For
instance, on the Adoption dataset, the pet type and size attributes are crucial for the adoption time classification. Guidance
on these features in an image would lead to better learning of the image model. Similarly, on the Pawpularity dataset, the
eyes and face attributes have a positive assignment on the regression of the popularity of the pet. Therefore, it makes sense
to do knowledge transfer from tabular data to image for both classification and regression tasks.

CHARMS is a general method for both classification and regression tasks, in detail, we use cross entropy loss for
classification task and mean square error loss for regression task. We achieved an improved image representation by
employing the CHARMS method, which leverages the guidance of tabular data on the image data. Specifically, for the
classification task, our approach facilitated the representation with a more discerning distribution over the target categories.
On the other hand, the regression task enabled us to learn an image representation that better approximated the target values
during prediction. The fact that our method performs well on both tasks underscores its generalizability and effectiveness.

Additionally, our visualization experiments provide further evidence of the effectiveness of our method. These experiments
reveal that the attributes and channels selected by our approach are appropriately matched, leading to an enhancement in the
performance of the image model. This alignment between the attributes and channels serves as strong evidence that we have
successfully transferred the relevant knowledge from the table to the image model.
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Table 7: Comparison with Attention method. Here Attention means we directly conduct the attention mechanism on the
feature extracted by ϕ and learn an attention mask for all tabular attributes.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
Attention 0.4757 0.8550 0.8180 0.3454 18.7401 0.2544
CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

In summary, our approach demonstrates its versatility by excelling in both classification and regression tasks, showcasing its
ability to enhance image representations using guidance from tabular data.

B. Analysis on Our CHARMS Method
B.1. Comparison with attention method

Our method employs the transfer matrix obtained by OT to weigh the images, with the weights of the corresponding channels
raised to learn the tabular attributes. An alternative approach is to use the attention method to weigh the image channels
differently and learn each tabular attribute separately, which is a more intuitive approach:

ϕ(xT )att = T (ϕ(xT )) · ϕ(xT ) (9)

where T is a two layer MLP that first downscales the image representation obtained by ϕ before rescaling it to its original
dimension, thereby weighting the different channels of the image.

In contrast to our method CHARMS, this method assigns a weight to each input element so that the model can pay more
attention to those input elements that are more important for the task at hand. The attention method constructs a learnable
mask for each attribute and learns each attribute separately based on the backbone network. However, this approach may
result in unequal impacts of different masks on the main task. In contrast, our method weights the attention of different
channels in the representation obtained by the main task, which essentially corrects the main task while avoiding potential
inconsistency issues caused by the attention method.

We compare the performance of our method CHARMS with the attention method in all experiments and summarized
the results in Table 7. The table shows that the attention method did not perform as well as our method on all datasets.
Specifically, on the DVM dataset, which involves a complex downstream task of 129 classification tasks, the attention
method constructed different attentions for different attributes, which confused the backbone network and led to a decrease
in overall task performance.

This finding highlights the impracticality of using the attention mechanism alone to integrate the abundant information in
tabular data into the image model. This further supports the effectiveness of our proposed approach.

B.2. Comparison with CLIP method

CLIP is pre-trained on a large amount of text and image pairs, which makes it able to map from text to images. Some
previous studies have demonstrated that CLIP is able to transform tabular data to text for classification given the column
names (Wang & Sun, 2022; Hegselmann et al., 2023). However, CLIP is heavily reliant on the semantic information
contained within the text, so the semantics of attributes are inevitable.

Indeed, the setting of this paper is more general. We expect to transfer the tabular knowledge to the image modality during
training to cope with the absence of expert knowledge during testing. Our method CHARMS aims to automatically extract
the semantic information from the tabular and align it with the corresponding image channels without requiring explicit
knowledge of the attribute’s precise meaning. Specifically, as we show in Section 4.2, based on measuring the similarity
across attributes and channels, OT discovers and aligns the attribute semantic automatically.

We conducted an experiment with CLIP. In this experiment, we converted the tabular data into text format, such as ”length:
16”. To ensure a fair comparison, we utilized CLIP from (Radford et al., 2021) with the ResNet50 backbone. The CLIP
model consists of an image encoder and a textual encoder, and we connected a one-layer linear head for classification or
regression after the image encoder. Two versions of CLIP were trained in our experiment. CLIP-LP means CLIP-LinearProb,
which denotes the scenario where the two encoders are fixed, and only the classification head is trained. CLIP-FT means
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Table 8: Comparison with CLIP method. Here CLIP-LP means two encoders are fixed, and only the classification head is
trained. CLIP-FT means fine-tuning the entire CLIP network.

DVM↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
CLIP-LP 0.7619 0.6918 0.7590 0.3047 20.1537 0.2972
CLIP-FT 0.8417 0.8333 0.8165 0.2935 42.9489 0.2940

CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

CLIP-FineTune, on the other hand, involves fine-tuning the entire CLIP network. With the contrastive learning of the two
modalities of the CLIP model, tabular knowledge is transferred to the image modality. By transforming the task into a
language-to-vision knowledge transfer, the results were obtained in Table 8.

From the experiments, we can see that the performance of CLIP is not ideal. This is probably due to the fact that in tabular
data, each column holds its own distinct meaning, and directly utilizing it as input to CLIP can lead to the loss of certain
information. For instance, on the CelebA dataset, the attribute ”wood (not part of a tree)” might not be a highly significant
feature. However, when this attribute is converted to text format, its character length tends to be relatively long, which can
introduce redundancy in the information.

From another perspective, previous work has pointed out that there is a modality gap in the CLIP’s embedding space (Liang
et al., 2022). This gap is caused by a combination of model initialization and contrastive learning optimization. In a
multi-modal model with two encoders, the representations of the two modalities are clearly apart when the model is
initialized. During optimization, contrastive learning keeps the different modalities separate by a certain distance. This gap
makes the CLIP method fail in our task.

In summary, the loss of information and the modality gap that arises when transferring tabular data to images can hinder
the performance of the CLIP method in our setting. However, our method addresses these challenges by automatically
discovering and establishing the matching relationship between the two modalities, thereby facilitating effective knowledge
transfer, which is a more general method.

C. More Experiments
C.1. More Visualization

We provide more visualizations in Table 9 to validate the ability of CHARMS to match the corresponding attributes and
channels. We apply GradCAM on various datasets, which show similar visualization results, where the channels could be
matched to a certain attribute with semantic meaning.

For the Adoption dataset, all tabular attributes are inherently more abstract in nature. However, for the purpose of
visualization, we have specifically selected features that are visually recognizable by humans from images. For instance,
attributes such as the type of pet and the color of the pet highlight more general aspects that are of interest.

From the visualization, we can see that the judgment of the pet type focuses more on the pet’s head, whereas the judgment
of the color takes into account the whole body of the pet, and from this point of view we believe that our approach does
achieve knowledge transfer.

C.2. Visualization with t-SNE

To visualize the impact of our method on the distribution of image features, we conducted experiments using the t-SNE
method (Van der Maaten & Hinton, 2008). t-SNE can map high-dimensional data to a two- or three-dimensional space,
enabling better visualization and interpretation of the data structure. The method employs a nonlinear mapping approach
that minimizes the difference between the distances of points in high-dimensional space and those in low-dimensional
space. Specifically, it represents high-dimensional data points as probability distributions and generates corresponding
probability distributions in the low-dimensional space. Then, it uses KL divergence to measure the difference between the
two probability distributions and minimizes it to achieve the best mapping effect.

The experimental results are presented in Figure 7, where the ORIGIN method refers to training with image modalities only.
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Table 9: More Visualization by GradCAM.

Tabular Attribute 5 o Clock Shadow Arched Eyebrows Big Nose Blond Hair

Aligned Channel 65, 87, 119, 236. . . 33, 76, 78, 115, . . . 50, 224, 258, . . . 684

Visualization

Tabular Attribute High Cheekbones Smiling Oval Face Rosy Cheeks

Aligned Channel 2, 26, 41, 85,. . . 11, 12, 28, 57, . . . 52, 646, 924, . . . 4, 47, 88,...

Visualization

Tabular Attribute Type Color

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization
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Figure 7: Visualization of t-SNE on the MFEAT dataset. the ORIGIN method represents training on image modalities
only. As can be seen from the figure, our method makes the intra-class distance smaller and the inter-class distance larger.
Therefore the transfer of expert knowledge from tabular data to the image model is effective. The red circles mean that our
method makes the intra-class distance smaller, and the green circles indicate that our method makes the inter-class distance
larger.

The figure shows that the ORIGIN method achieved good segmentation results due to the task’s simplicity. However, due to
the lack of expert knowledge, the intra-class distance is still large, particularly for samples with label 7, while the inter-class
distances remain small, such as for samples with labels 2 and 9. In contrast, our method compensates for these deficiencies
by transferring expert knowledge.

C.3. More Mutual Information experiments

We chose the MFEAT dataset for the Mutual Information experiments since, in this dataset, the formal features of each
category are simple and easily distinguishable. For example, morphological features and non-morphological features. And
the images are all digital images, which are relatively simple and easy to understand. The experiment mainly helps us
understand. More mutual information experiments can be obtained in Figure 8 9.

The experiments in PetFinder-adoption dataset also indicate that existing methods for transferring tabular knowledge to
image models yield low mutual information between the representations and tabular data. Our CHARMS method, on the
other hand, maximises the mutual information of tabular and images to achieve better results.

C.4. More Ablation Studies

In the CHARMS method, we use the K-Means (Lloyd, 1982; MacQueen, 1967) method to cluster the 2048-dimensional
features extracted from ResNet. We discuss the number of clusters on the SUNAttribute dataset, and the results in Table 10
show that the performance of CHARMS is not affected by the number of clusters taken, demonstrating the robustness of the
method to hyperparameter choices. This robustness makes the method more flexible and reliable in practical applications, as
it does not require excessive hyperparameter tuning or fine-tuning, saving time and effort.

To investigate the effectiveness of the OT method in our proposed approach, CHARMS, we conducted experiments where we
reversed the transfer matrix of OT, expecting the image channels to learn the unaligned tabular attributes. We denote this
approach as CHARMS-reverse. The results of this experiment are shown in Table 11, which demonstrate that the performance
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Figure 8: Mutual Information with Different Modality on the
Adoption Dataset.
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Figure 9: Mutual Information During Training on the Adop-
tion dataset.

Table 10: Ablation study on cluster number on SUNAttribute dataset.

n cluster 20 40 60 80 100

Accuracy 0.8494 0.8661 0.8494 0.8556 0.8522

of CHARMS-reverse is significantly lower than that of our original method, CHARMS, highlighting the importance of OT in
alignment.

To further demonstrate the applicability and robustness of our proposed method, CHARMS, we conducted experiments using
different network structures on DVM dataset with results shown in Table 12. The result also shows that the performance
improvements achieved by our method are consistent across different network structures.

D. Limitations and Future Works
Our approach relies on leveraging mutual information between the two modalities, which establishes the feasibility of
knowledge transfer. When there is a significant amount of mutual information present between the tabular and image
modalities, our approach can effectively transfer relevant knowledge and insights between them. On the other hand,
converting text into tables is indeed a viable approach, but this approach results in the loss of some of the textual information
and it is challenging to handle such a conversion well. The problem of testing data drift also exists in real life. We will
consider this problem deeply in future work. In terms of social impact, we think that our approach holds potential for
application in the medical field, where it can assist doctors in making rapid and accurate diagnoses. There should be no
negative social impact of our method.

Our work demonstrates the effectiveness of our method in both classification and regression tasks. In future work, it would
be valuable to investigate the applicability of our method to other tasks, such as semantic segmentation. These types of tasks
may require additional domain-specific knowledge, such as precise object localization within images, to achieve optimal

Table 11: Ablation study on Optimal Transport. CHARMS-reverse means that we reverse the transfer matrix of OT and make
channels and attributes misaligned. The performance degradation proves that alignment is important.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

CHARMS-reverse 0.8865 0.8459 0.8165 0.3440 18.8068 0.2568
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Table 12: Impact of different network structures on the method on DVM dataset.

ResNet DenseNet Inception MobileNet

Model Size / M 25.8 8.2 6.8 3.7

ORIGIN 0.8743 0.8671 0.7492 0.8206

CHARMS 0.9175 0.9115 0.9012 0.8961

performance. Nonetheless, we believe that our approach is still applicable for such tasks.

On the other hand, the high cost of annotating expert data often leads to imbalanced datasets, which pose a challenge for
improving image model performance using a limited amount of tabular data. Therefore, addressing this data imbalance is
crucial for future work.
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