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Abstract

Submodular functions and variants, through their ability to characterize diversity
and coverage, have emerged as a key tool for data selection and summarization.
Many recent approaches to learn submodular functions suffer from limited ex-
pressiveness. In this work, we propose FLEXSUBNET, a family of flexible neural
models for both monotone and non-monotone submodular functions. To fit a
latent submodular function from (set, value) observations, FLEXSUBNET applies a
concave function on modular functions in a recursive manner. We do not draw the
concave function from a restricted family, but rather learn from data using a highly
expressive neural network that implements a differentiable quadrature procedure.
Such an expressive neural model for concave functions may be of independent
interest. Next, we extend this setup to provide a novel characterization of monotone
α-submodular functions, a recently introduced notion of approximate submodular
functions. We then use this characterization to design a novel neural model for such
functions. Finally, we consider learning submodular set functions under distant
supervision in the form of (perimeter-set, high-value-subset) pairs. This yields a
novel subset selection method based on an order-invariant, yet greedy sampler built
around the above neural set functions. Our experiments on synthetic and real data
show that FLEXSUBNET outperforms several baselines.

1 Introduction

Owing to their strong characterization of diversity and coverage, submodular functions and their
extensions, viz., weak and approximate submodular functions, have emerged as a powerful machinery
in data selection tasks [46, 84, 35, 66, 91, 63, 5, 23, 75]. We propose trainable parameterized families
of submodular functions under two supervision regimes. In the first setting, the goal is to estimate the
submodular function based on (set, value) pairs, where the function outputs the value of an input set.
This problem is hard in the worst case for poly(n) value oracle queries [31]. This has applications in
auction design where one may like to learn a player’s valuation function based on her bids [6]. In the
second setting, the task is to learn the submodular function under the supervision of (perimeter-set,
high-value-subset) pairs, where high-value-subset potentially maximizes the underlying function
against all other subsets of perimeter-set. The trained function is expected to extract high-value
subsets from freshly-specified perimeter sets. This scenario has applications in itemset prediction in
recommendation [78, 79], data summarization [50, 2, 4, 10, 74], etc.

1.1 Our contributions

Driven by the above motivations, we propose (i) a novel family of highly expressive neural models
for submodular and α-submodular functions which can be estimated under the supervisions of both
(set, value) and (perimeter-set, high-value-subset) pairs; (ii) a novel permutation adversarial training
method for differentiable subset selection, which efficiently trains submodular and α-submodular
functions based on (perimeter-set, high-value-subset) pairs. We provide more details below.
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Neural models for submodular functions. We design FLEXSUBNET, a family of flexible neural
models for monotone, non-monotone submodular functions and monotone α-submodular functions.

— Monotone submodular functions. We model a monotone submodular function using a recursive
neural model which outputs a concave composed submodular function [27, 76, 52] at every step of
recursion. Specifically, it first computes a linear combination of the submodular function computed in
the previous step and a modular function and, then applies a concave function to the result to output
the next submodular function.

— Monotone α-submodular function. Our proposed model for submodular function rests on the
principle that a concave composed submodular function is always submodular. However, to the
best of our knowledge, there is no known result for an α-submodular function. We address this
gap by showing that an α-submodular function can be represented by applying a mapping ϕ on a
positive modular set function, where ϕ satisfies a second-order differential inequality. Subsequently,
we provide a neural model representing the universal approximator of ϕ, which in turn is used for
modeling an α-submodular function.

— Non-monotone submodular functions. By applying a non-monotone concave function on modular
function, we extend our model to non-monotone submodular functions.

Several recent models learn subclasses of submodular functions [53, 77, 79]. Bilmes and Bai [7]
present a thorough theoretical characterization of the benefits of network depth with fixed concave
functions, in a general framework called deep submodular functions (DSF). DSF leaves open all
design choices: the number of layers, their widths, the DAG topology, and the choice of concave
functions. All-to-all attention has replaced domain-driven topology design in much of NLP [18]. Set
transformers [51] would therefore be a natural alternative to compare against DSF, but need more
memory and computation. Here we explore the following third, somewhat extreme trade-off: we
restrict the topology to a single recursive chain, thus providing an effectively plug-and-play model
with no topology and minimal hyperparameter choices (mainly the length of the chain). However,
we compensate with a more expressive, trainable concave function that is shared across all nodes of
the chain. Our experiments show that our strategy improves ease of training and predictive accuracy
beyond both set transformers and various DSF instantiations with fixed concave functions.

Permutation insensitive differentiable subset selection. It is common [77, 70, 63] to select a
subset from a given dataset by sequentially sampling elements using a softmax distribution obtained
from the outputs of a set function on various sets of elements. At the time of learning set functions
based on (perimeter-set, high-value-subset) pairs, this protocol naturally results in order-sensitivity
in the training process for learning set functions. To mitigate this, we propose a novel max-min
optimization. Such a formulation sets forth a game between an adversarial permutation generator
and the set function learner — where the former generates the worst-case permutations to induce
minimum likelihood of training subsets and the latter keeps maximizing the likelihood function until
the estimated parameters become permutation-agnostic. To this end, we use a Gumbel-Sinkhorn
neural network [57, 68, 17, 69] as a neural surrogate of hard permutations, that expedites the
underlying training process and allows us to avoid combinatorial search on large permutation spaces.

Experiments. We first experiment with several submodular set functions and synthetically gener-
ated examples, which show that FLEXSUBNET recovers the function more accurately than several
baselines. Later experiments with several real datasets on product recommendation reveal that
FLEXSUBNET can predict the purchased items more effectively and efficiently than several baselines.

2 Related work
Deep set functions. Recent years have witnessed a surge of interest in deep learning of set functions.
Zaheer et al. [86] showed that any set function can be modeled using a symmteric aggregator
on the feature vectors associated with the underlying set members. Lee et al. [51] proposed a
transformer based neural architecture to model set functions. However, their work do not focus on
modeling or learning submodular functions in particular. Deep set functions enforce permutation
invariance by using symmetric aggregators [86, 65, 64], which have several applications, e.g.,
character counting [51], set anomaly detection [51], graph embedding design [34, 47, 80, 71], etc.
However, they often suffer from limited expressiveness as shown by Wagstaff et al. [82]. Some work
aims to overcome this limitations by sequence encoder followed by learning a permutation invariant
network structure [62, 68]. However, none of them learns an underlying submodular model in the
context of subset selection.
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Learning functions with shape constraints. Our double-quadrature strategy for concavity is in-
spired by a series of recent efforts to fit functions with shape constraints to suit various learning tasks.
Wehenkel and Louppe [83] proposed universal monotone neural networks (UMNN) was a significant
early step in learning univariate monotone functions by numerical integration of a non-negative
integrand returned by a ‘universal’ network — this paved the path for universal monotone function
modeling. Gupta et al. [33] extended to multidimensional shape constraints for supervised learning
tasks, for situations were features complemented or dominated others, or a learnt function y = f(x)
should be unimodal. Such constraints could be expressed as linear inequalities, and therefore possible
to optimize using projected stochastic gradient descent. Gupta et al. [32] widened the scope further to
situations where more general constraints had to be enforced on gradients. In the context of density
estimation and variational inference, a popular technique is to transform between simple and complex
distributions via invertible and differentiable mappings using normalizing flows [48], where coupling
functions can be implemented as monotone networks. Our work provides a bridge between shape
constraints, universal concavity and differentiable subset selection.

Deep submodular functions (DSF). Early work predominantly modeled a trainable submodular
function as a mixture of fixed submodular functions [53, 77]. If training instances do not fit their
‘basis’ of hand-picked submodular functions, limited expressiveness results. In the quest for ‘universal’
submodular function networks, Bilmes and Bai [7] and Bai et al. [3] undertook a thorough theoretical
inquiry into the effect of network structure on expressiveness. Specifically, they modeled submodular
functions as an aggregate of concave functions of modular functions, computed in a topological
order along a directed acyclic graph (DAG), driven by the fact that a concave function of a monotone
submodular function is a submodular function [26, 27, 76]. But DSF provides no practical prescription
for picking the concave functions. Each application of DSF will need an extensive search over these
design spaces.

Subset selection. Subset selection especially under submodular or approximate submodular profit
enjoys an efficient greedy maximization routine which admits an approximation guarantee. Con-
sequently, a wide variety of set function optimization tasks focus on representing the underlying
objective as an instance of a submodular function. At large, subset selection has a myriad of applica-
tions in machine learning, e.g., data summarization [4], feature selection [44], influence maximization
in social networks [43, 13, 14, 87], opinion dynamics [11, 12, 14, 89, 49], efficient learning [20, 45],
human assisted learning [16, 15, 60], etc. However, these works do not aim to learn the underlying
submodular function from training subsets.

Set prediction. Our work is also related to set prediction. Zhang et al. [90] use a encoder-decoder
architecture for set prediction. Rezatofighi et al. [67] provide a deep probabilistic model for set
prediction. However, they aim to predict an output set rather than the set function.

Differentiable subset selection. Existing trainable subset selection methods [77, 50] often adopt
a max-margin optimization approach. However, it requires solving one submodular optimization
problem at each epoch, which renders it computationally expensive. On the other hand, Tschi-
atschek et al. [79] provide a probabilistic soft-greedy model which can generate and be trained on
a permutation of subset elements. But then, the trained model becomes sensitive to this specific
permutations. Tschiatschek et al. [79] overcome this challenge by presenting several permutations to
the learner, which can be inefficient.

One sided smoothness. We would like to highlight that our characterization for α-submodular
function is a special case of one-sided smoothness (OSS) proposed in [29, 28]. However, the
significance of these characterizations are different between their and our work. First, they consider
γ-meta submodular function which is a different generalisation of submodular functions compared
to α-submodular functions. Second, the OSS characterization they provide is for the multilinear
extension of γ-meta submodular function, whereas we provide the characterization of α-submodular
functions itself, which allows direct construction of our neural models.

Sample complexity in the context of learning submodular functions. Goemans et al. [31] pro-
vided an algorithm which outputs a function f̂(S) that approximates an arbitrary monotone sub-
modular function f(S) within a factor O(

√
n log n) using poly(n) queries on f . Their algorithm

considers a powerful active probe setting where f can be queried with arbitrary sets. In contrast,
Balcan and Harvey [6] consider a more realistic passive setup used in a supervised learning scenario,
and designed an algorithm which obtains an approximation of f(S) within factor O(

√
n).
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3 Design of FLEXSUBNET

In this section, we first present our notations and then propose a family of flexible neural network
models for monotone and non-monotone submodular functions and α-submodular functions.

3.1 Notation and preliminary results

We denote V = {1, 2, .., |V |} as the ground set or universal set of elements and S, T ⊆ V as
subsets of V . Each element s ∈ V may be associated with a feature vector zs. Given a set function
F : 2V → R, we define the marginal utility F (s |S) := F (S ∪ {s}) − F (S). The function F is
called monotone if F (s |S) ≥ 0 whenever S ⊂ V and s ∈ V \S; F is called α-submodular with
α > 0 if F (s |S) ≥ αF (s |T ) whenever S ⊆ T and s ∈ V \T [35, 88, 21]. As a special case, F is
submodular if α = 1 and F is modular if F (s |S) = F (s |T ). Here, F (·) is called normalized if
F (∅) = 0. Similarly, a real function f : R→ R is normalized if f(0) = 0. Unless otherwise stated,
we only consider normalized set functions in this paper. We quote a key result often used for neural
modeling for submodular functions [27, 76, 52].

Proposition 1. Given the set function F : 2V → R+ and a real valued function φ : R→ R, (i) the
set function φ(F (·)) is monotone submodular if F is monotone submodular and φ is an increasing
concave function; and, (ii) φ(F (·)) is non-monotone submodular if F is positive modular and φ is
non-monotone.

3.2 Monotone submodular functions

Overview. Our model for monotone submodular functions consists of a neural network which
cascades the underlying functions in a recursive manner for N steps. Specifically, to compute the
submodular function F (n)(·) at step n, it first linearly combines the submodular function F (n−1)(·)
computed in the previous step and a trainable positive modular function m(n)(·) and then, applies a
monotone concave activation function φ on it.

Recursive model. We model the submodular function Fθ(·) as follows:

F (0)(S) = m
(0)
θ (S); F (n)(S) = φθ

(
λF (n−1)(S) + (1− λ)m

(n)
θ (S)

)
; Fθ(S) = F (N)(S); (1)

where the iterations are indexed by 1 ≤ n ≤ N , {m(n)
θ (·)} is a sequence of positive modular

functions, driven by a neural network with parameter θ. λ ∈ [0, 1] is a tunable or trained parameter.
We apply a linear layer with positive weights on the each feature vector zs to compute the value
of m(n)

θ (·) and then compute m(n)
θ (S) =

∑
s∈Sm

(n)
θ (s). Moreover, φθ is an increasing concave

function which, as we shall see later, is modeled using neural networks. Under these conditions, one
can use Proposition 1(i) to easily show that Fθ(S) is a monotone submodular function (Appendix B).

3.3 Monotone-α-submodular functions

Our characterization for submodular functions in Eq. (1) are based on Proposition 1(i), which implies
that a concave composed submodular function is submodular. However, to the best of our knowledge,
a similar characterization of α-submodular functions is lacking in the literature. To address this gap,
we first introduce a novel characterization of monotone α-submodular functions and then use it to
design a recursive model for such functions.

Novel characterization of α-submodular function. In the following, we show how we can charac-
terize an α-submodular function using a differential inequality (proven in Appendix B).

Theorem 2. Given the function ϕ : R → R+ and a modular function m : V → [0, 1], the set
function F (S) = ϕ(

∑
s∈Sm(s)) is monotone α-submodular for |S| ≤ k, if ϕ(x) is increasing in x

and d2ϕ(x)
dx2 ≤ 1

k log
(

1
α

) dϕ(x)
dx .

The above theorem also implies that given α = 1, then F (S) = ϕ(
∑
s∈Sm(s)) is monotone

submodular if ϕ(x) is concave in x, which reduces to a particular case of Proposition 1(i). Once we
design F (S) by applying ϕ on a modular function, our next goal is to design more expressive and
flexible modeling in a recursive manner similar to Eq. (1). To this end, we extend Proposition 1 to the
case for α-submodular functions.
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Proposition 3. Given a monotone α-submodular function F (·), φ(F (S)) is monotone α-submodular,
if φ(·) is an increasing concave function. Here, α remains the same for F and φ(F (·)).

Note that, when F (S) is submodular, i.e., α = 1, the above result reduces to Proposition 1 in the
context of concave composed modular functions.

Recursive model. Similar to Eq. (1) for submodular functions, our model for α-submodular functions
is also driven by an recursive model which maintains an α-submodular function and updates its
value recursively for N iterations. However, in contrast to FLEXSUBNET, where the underlying
submodular function is initialized with a positive modular function, we initialize the corresponding
α-submodular function F (0)(S) with ϕθ(m

(0)
θ (S)), where ϕθ is a trainable function satisfying the

conditions of Theorem 2. Then we recursively apply a trainable monotone concave function on
F (n−1)(S) for n ∈ [N ] to build a flexible model for α-submodular function. Formally, we have:

F (0)(S) = ϕθ(m
(0)
θ (S)); F (n)(S) = φθ

(
λF (n−1)(S) + (1− λ)m

(n)
θ (S)

)
; Fθ(S) = F (N)(S);

(2)
with λ ∈ [0, 1]. Here, mθ, ϕθ and φθ are realized using neural networks parameterized by θ. Then,
using Proposition 3 and Theorem 2, we can show that Fθ(S) is α-submodular in S (proven in
Proposition 6 in Appendix B).

3.4 Non-monotone submodular functions

In contrast to monotone set functions, non monotone submodular functions can be built by applying
concave function on top of only one modular function rather than submodular function (Proposition 1
(i) vs. (ii)). To this end, we model a non-monotone submodular function Fθ(·) as follows:

Fθ(S) = ψθ(mθ(S)) (3)
where mθ(·) is positive modular function but ψθ(·) can be a non-monotone concave function. Both
mθ and ψθ are trainable functions realized using neural networks parameterized by θ. One can use
Proposition 1(ii) to show that Fθ(S) is a non-monotone submodular function.

3.5 Neural parameterization of mθ, φθ, ψθ, ϕθ

We complete the neural parameterization introduced in Sections 3.2–3.4. Each model has two types
of component functions: (i) the modular set function mθ; and, (ii) the concave functions φθ (Eq. (1)
and (2)) and ψθ (Eq. (3)) and the non-concave function ϕθ (Eq. (2)). While modeling mθ is simple
and straightforward, designing neural models for the other components, i.e., φθ, ψθ and ϕθ is non-
trivial. As mentioned before, because we cannot rely on the structural complexity of our ‘network’
(which is a simple linear recursion) or a judiciously pre-selected library of concave functions [7], we
need to invest more capacity in the concave function, effectively making it universal.

Monotone submodular function. Our model for monotone submodular function described in Eq. (1)
consists of two neural components: the sequence of modular functions {m(n)

θ } and φθ.

— Parameterization of mθ. We model the modular function m
(n)
θ : 2V → R+ in Eq. (1) as

m
(n)
θ (S) =

∑
s∈S θ · zs, where zs is the feature vector for each element s ∈ S and both θ,zs are

non-negative.

— Parameterization of φθ. Recall that φθ is an increasing concave function. We model it using
the fact that a differentiable function is concave if its second derivative is negative. We focus on
capturing the second derivative of the underlying function using a complex neural network of arbitrary
capacity, providing a negative output. Hence, we use a positive neural network hθ to model the
second derivative

d2φθ(x)

dx2
= −hθ(x) ≤ 0. (4)

Now, since φθ is increasing, we have:
dφθ(x)

dx
=

∫ b=∞

b=x

hθ(b) db ≥ 0 =⇒ φθ(x) =

∫ a=x

a=0

∫ b=∞

b=a

hθ(b) dbda. (5)

Here, φθ(·) is normalized, i.e., φθ(0) = 0, which ensures that {F (n)
θ } in Eq. (1) are also normalized.

An offset in Eq. (5) allows a nonzero initial value of φθ(·), if required. Note that monotonicity and
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concavity of φθ can be achieved by the restricting positivity of hθ. Such a constraint can be ensured
by setting hθ(·) = ReLU(Λ

(h)
θ (·)), where Λ

(h)
θ (·) is any complex neural network. Hence, φθ(·)

represents a class of universal approximators of normalized increasing concave functions, if Λ
(h)
θ (·) is

an universal approximator of continuous functions [36]. For a monotone submodular function of the
form of concave composed modular function, we have the following result (Proven in Appendix B).

Proposition 4. Given an universal set V , a constant ε > 0 and a submodular function F (S) =
φ(
∑
s∈Sm(zs)) where zs ∈ Rd, S ⊂ V , 0 ≤ m(z) < ∞ for all z ∈ Rd. Then there exists two

fully connected neural networks mθ1 and hθ2 of width d + 4 and 5 respectively, each with ReLU
activation function, such that the following conditions hold:∥∥∥∥∥F (S)−

∫ a=
∑
s∈Smθ1 (zs)

a=0

∫ b=∞

b=a

hθ2(b) dbda.

∥∥∥∥∥ ≤ ε ∀ S ⊂ V (6)

Monotone α-submodular model. An α-submodular model described in Eq. (2) has three trainable
components: (i) the sequence of modular functions {m(n)

θ (·)}, (ii) the concave function φθ(·)
and (iii) ϕθ(·). For the first two components, we reuse the parameterizations used for monotone
submodular functions. In the following, we describe our proposed neural parameterization of ϕθ.

— Parameterization ofϕθ(·). From Theorem 2, we note thatϕθ(·) is increasing and satisfies d2ϕθ(x)
dx2 ≤

κ(α)dϕθ(x)
dx where, κ(α) = 1

k log (1/α). It implies that

e−xκ(α) d2ϕθ(x)

dx2
− κ(α)e−xκ(α) dϕθ(x)

dx
≤ 0 =⇒ d

dx

(
e−xκ(α) dϕθ(x)

dx

)
≤ 0 (7)

Driven by the last inequality, we have

e−xκ(α) dϕθ(x)

dx
=

∫ ∞
x

gθ(b) db =⇒ ϕθ(x) =

∫ a=x

a=0

eaκ(α)

∫ b=∞

b=a

gθ(b) dbda (8)

Parameterizing non-monotone submodular model. As suggested by Eq. (3), our model for non-
monotone submodular function contains a non-monotone concave function ψθ and a modular function
mθ. We model mθ using the same parameterization used for the monotone set functions. We
parameterize the ψθ as follows.

— Parameterization of ψθ. Modeling a generic (possibly non-monotone) submodular function requires
a general form of concave function ψθ which is not necessarily increasing. The trick is to design
ψθ(·) in such a way that its second derivative is negative everywhere, whereas its first derivative can
have any sign. For x ∈ [0, xmax], we have:

ψθ(x) =

∫ a=x

a=0

∫ b=∞

b=a

hθ(b) dbda−
∫ a=xmax

a=xmax−x

∫ b=∞

b=a

gθ(b) dbda, (9)

where hθ, gθ ≥ 0. Moreover, we assume that
∫∞

0
hθ(b) db and

∫∞
0
gθ(b) db are convergent. We use

xmax in the upper limit of the second integral to ensure that ψθ is normalized, i.e., ψθ(0) = 0. Next,
we compute the first derivative of ψθ(x) as:

dψθ(x)

dx
=

∫ b=∞

b=x

hθ(b) db−
∫ b=∞

b=xmax−x
gθ(b) db, (10)

which can have any sign, since both integrals are positive. Here, the second derivative of ψθ becomes
d2ψθ(x)

dx2
= −hθ(x)− gθ(xmax − x) ≤ 0 (11)

which implies that ψθ is concave. Similar to hθ(·), we can model gθ(·) = ReLU(Λgθ(·)). Such a
representation makes ψθ(·) a universal approximator of normalized concave functions. As suggested
by Eq. (3), ψθ takes mθ(S) as input. Therefore, in practice, we set xmax = maxSmθ(S).

3.6 Parameter estimation from (set, value) pairs

In this section, our goal is to learn θ from a set of pairs {(Si, yi) | i ∈ [I]}, such that yi ≈ Fθ(Si).
Hence, our task is to solve the following optimization problem:

minθ
∑
i∈[I](yi − Fθ(Si))2 (12)

In the following, we discuss methods to solve this problem.
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Backpropagation through double integral. Each of our proposed set function models consists of
one or more double integrals. Thus computation of the gradients of the loss function in Eq. (12) re-
quires gradients of these integrals. To compute them, we leverage the methods proposed by Wehenkel
and Louppe [83], which specifically provide forward and backward procedures for neural networks
involving integration. Specifically, we use the Clenshaw-Curtis (CC) quadrature or Trapezoidal Rule
for numerical computation of φθ(·) and ψθ(·). On the other hand, we compute the gradients∇θ φθ(·)
and∇θ ψθ(·) by leveraging Leibniz integral rule [24]. In practice, we replace the upper limit (b =∞)
of the inner integral in Eqs. (5), (8) and (9) with bmax = xmax during training.

Decoupling into independent integrals. The aforementioned end-to-end training can be challenging
in practice, since the gradients are also integrals which can make loss convergence elusive. Moreover,
it is also inefficient, since for each step of CC quadrature of the outer integral, we need to perform
numerical integration of the entire inner integral. To tackle this limitation, we decouple the underlying
double integral into two single integrals, parameterized using two neural networks.

— Monotone submodular functions. During training our monotone submodular function model in
Eq. (1), we model φθ in Eq. (5) as:

φθ(x) =

∫ x

0

φ′θ(a) da, φ′θ(x) =

∫ ∞
x

hβ(a) da (13)

In contrast to end-to-end training of θ where φθ was realized only via neural network of hθ, here we
use two decoupled networks, i.e., φ′θ and hβ . Then, we learn θ and β by minimizing the regularized
sum of squared error, i.e.,

min
θ,β

∑
i∈[I]

∑
n∈[N ]

[
ρ
(
φ′θ(G

(n)(Si))−
∫ ∞
G(n)(Si)

hβ(a) da
)2

+
(
yi − Fθ(Si)

)2]
. (14)

Here, G(n)(S) = λF (n−1)(S) + (1− λ)m
(n)
θ (S) is the input to φθ in the recursion (1). Recall that

N is the number of steps in the recursion. Since φθ is monotone, we need φ′θ ≥ 0 which is ensured by
φ′θ(x) = ReLU(Λφ

′

θ (x)). In principle, we would like to have φ′θ(x) =
∫∞
x
hβ(a) da for all x ∈ R.

In practice, we approximate this by penalizing the regularizer values in the domain of interest—the
values which are fed as input to φθ.

While there are potential hazards to such an approximation, in our experiments, the benefits out-
weighed the risks. The above parameterization involves only single integrals. The use of an auxiliary
network hβ allows more flexibility, leading to improved robustness during training optimization. The
above minimization task achieves approximate concavity of φ via training, whereas backpropagat-
ing through double integrals enforces concavity by design. Appendix C extends this method for
α-submodular and non-monotone submodular functions.

4 Differentiable subset selection

In Section 3.6, we tackled the problem of learning Fθ from (set, value) pairs. In this section, we
consider learning Fθ from a given set of (perimeter-set, high-value-subset) pair instances.

4.1 Learning Fθ from (perimeter-set, high-value-subset)

Let us assume that the training set U consists of {(V, S)} pairs, where V is some arbitrary subset
of the universe of element, and S ⊆ V is a high-value subset of V . Given a set function model Fθ,
our goal is to estimate θ so that, across all possible cardinality constrained subsets in S′ ⊆ V with
|S′| = |S|, Fθ(·) attains its maximum value at S. Formally, we wish to estimate θ so that, for all
possible (V, S) ∈ U , we have:

S = argmaxS′⊂V Fθ(S
′), subject to |S′| = |S|. (15)

4.2 Probabilistic greedy model

The problems of maximizing both monotone submodular and monotone α-submodular functions
rely on a greedy heuristic [59]. It sequentially chooses elements maximizing the marginal gain and
hence, cannot directly support backpropagation. Tschiatschek et al. [79] tackle this challenge with a
probabilistic model which greedily samples elements from a softmax distribution with the marginal
gains as input. Having chosen the first j elements of high-value-subset from perimeter-set V , it
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draws the (j + 1)th element from the remaining candidates in V with probability proportional to the
marginal utility of the candidate. If the elements of S under permutation π are written as π(S)j for
j ∈ [|S|], then the probability of selecting the elements of the set S in the sequence π(S) is given by

Pr θ(π(S) |V ) =

|S|−1∏
j=0

exp(τFθ(π(S)j+1 |π(S)≤j))∑
s∈V \π(S)≤j

exp(τFθ(s |π(S)≤j))
(16)

Here, Fθ is the underlying submodular function, τ is a temperature parameter and S0 = ∅.
Bottleneck in estimating θ. Note that, the above model (16) generates the elements in a sequential
manner and is sensitive to π. Tschiatschek et al. [79] attempt to remove this sensitivity by maximizing
the sum of probability (16) over all possible π:

θ∗ = argmax
θ

∑
(V,S)∈U

log
∑

π∈Π|S|

Pr θ(π(S) |V ). (17)

However, enumerating all such permutations for even a medium-sized subset is expensive both
in terms of time and space. They attempt to tackle this problem by approximating the mode and
the mean of Pr(·) over the permutation space Π|S|. But, it still require searching over the entire
permutation space, which is extremely time consuming.

4.3 Proposed approach

Here, we describe our proposed method of permutation adversarial parameter estimation that avoids
enumerating all possible permutations of the subset elements, while ensuring that the learned parame-
ter θ∗ remains permutation invariant.

Max-min optimization problem. We first set up a max-min game between a permutation generator
and the maximum likelihood estimator (MLE) of θ, similar to other applications [68, 62]. Here,
for each subset S, the permutation generator produces an adversarial permutation π ∈ Π|S| which
induces a low value of the underlying likelihood. On the other hand, MLE learns θ in the face of
these adversarial permutations. Hence, we have the following optimization problem:

max
θ

min
π∈Π|S|

∑
(V,S)∈U log Pr θ(π(S) |V ) (18)

Differentiable surrogate for permutations. Solving the inner minimization in (18) requires search-
ing for π over Π|S|, which appears to confer no benefit beyond (17). To sidestep this limitation, we
relax the inner optimization problem by using a doubly stochastic matrix P ∈ P|S| as an approxima-
tion for the corresponding permutation π. Suppose ZS = [zs]s∈S is the feature matrix where each
row corresponds to an element of S. Then Zπ(S) ≈ PZS . Thus, Prθ(π(S)|V ) can be evaluated
by iterating down the rows of PZS and, therefore, written in the form Prθ(P , S). Thus, we get a
continuous approximation to (18):

max
θ

min
P∈P|S|

∑
(V,S)∈U log Pr θ(P , S |V ) (19)

so that we can learn θ by continuous optimization. We generate the soft permutation matrices P
using a Gumbel-Sinkhorn network [57]. Given a subset S, it takes a seed matrix BS as input and
generates P S in a recursive manner:

P 0 = exp(BS/t); P k = Dc
(
Dr
(
P (k−1)

))
(20)

Here, t is a temperature parameter; and, Dc and Dr provide column-wise and row-wise normalization.
Thanks to these two operations, P k tends to a doubly stochastic matrix for sufficiently large k.
Denoting P∞ = limk→∞P k, one can show [57] that

P∞ = argmax
P∈P|S|

Tr(P>BS)− t
∑
i,j

P (i, j) logP (i, j)

where the temperature t controls the ‘hardness’ of the “soft permutation” P . As t→ 0, P tends to
be a hard permutation matrix [9]. The above procedure demands different seeds BS across different
pairs of (V, S) ∈ U , which makes the training computationally expensive in terms of both time
and space. Therefore, we model BS by feeding the feature matrix ZS into an additional neural
network Gω which is shared across different (V, S) pairs. Then the optimization (19) reduces to
maxθ minω

∑
(V,S)∈U log Prθ(ω, S), with ω taking the place of P .
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Log LogDet FL Gcutσ=0.1 Log×Sqrt Log×LogDet Gcutσ=0.8

FLEXSUBNET 0.015 ± 0.000 0.013 ± 0.000 0.022 ± 0.000 0.004 ± 0.000 0.032 ± 0.000 0.025 ± 0.000 0.068 ± 0.001
Set-transformer 0.060 ± 0.001 0.029 ± 0.000 0.063 ± 0.001 0.014 ± 0.000 0.037 ± 0.000 0.051 ± 0.001 0.171 ± 0.002
Deep-set 0.113 ± 0.002 0.044 ± 0.000 0.179 ± 0.003 0.058 ± 0.001 0.079 ± 0.001 0.070 ± 0.001 0.075 ± 0.001
DSF 0.258 ± 0.003 0.684 ± 0.007 0.189 ± 0.003 0.778 ± 0.009 0.240 ± 0.003 0.274 ± 0.003 0.970 ± 0.010
SubMix 0.148 ± 0.002 0.063 ± 0.001 0.172 ± 0.002 0.018 ± 0.000 0.158 ± 0.002 0.154 ± 0.002 1.722 ± 0.015

Table 1: Performance measured in terms of RMSE on synthetically generated examples using several
set functions. Number in bold font (underline) indicate the best (second best) performers.

5 Experiments
In this section, we first evaluate FLEXSUBNET using a variety of synthesized set functions and
show that it is able to fit them under the supervision of (set, value) pairs more accurately than
the state-of-the-art methods. Next, we use datasets gathered from Amazon baby registry [30] to
show that FLEXSUBNET can learn to select data from (perimeter-set, high-value-subset) pairs more
effectively than several baselines. Our code is in https://tinyurl.com/flexsubnet.

5.1 Training by (set, value) pairs

Dataset generation. We generate |V |=104 samples, where we draw the feature vector zs for each
sample s∈V uniformly at random, i.e., zs∈Unif[0, 1]d with d=10. Then, we generate subsets S of dif-
ferent sizes by randomly gathering elements from the set V . Finally, we compute the values of F (S)
for different submodular functions F . Specifically, we consider seven planted set functions: (i) Log:
F (S)= log(

∑
s∈S 1

>zs), (ii) LogDet: F (S) = log det(I +
∑
s∈S zsz

>
s ) [73, 8], (iii) Facility lo-

cation (FL): F (S) =
∑
s′∈V maxs∈S z

>
s zs′/(||zs||||zs′ ||) [58, 25, 19, 61], (iv) Monotone graph

cut (Gcutσ=0.1): In general, Gcutσ is computed using F (S) :=
∑
u∈V,v∈S z

>
u zv−σ

∑
u,v∈S z

>
u zv .

It measures the weighted cut across (S, V \S) when the weight of the edge (u, v) is com-
puted as z>u zv [37, 72, 39, 40, 41]. Here, σ trades off between diversity and representa-
tion. We set σ = 0.1. Note that Gcutσ is monotone (non-monotone) submodular when
σ<0.5 (σ>0.5). (v) Log×Sqrt: F (S) = [log(

∑
s∈S 1

>zs)]·[
∑
s∈S 1

>zs]
1/2, (vi) Log×LogDet:

F (S) = [log(
∑
s∈S 1

>zs)] · [log det(I +
∑
s∈S zsz

>
s )] and (vii) Non monotone graph cut

(Gcutσ=0.8): It is the graph cut function in (iv) with σ = 0.8. Among above set functions, (i)–
(iv) are monotone submodular functions, (v)–(vi) are monotone α-submodular functions and (vii) is a
non-monotone submodular function. We set the number of steps in the recursions (1), (2) as N = 2.

Evaluation protocol. We sample |V |=10000 (set,value) instances as described above and split them
into train, dev and test folds of equal size. We present the train and dev folds to the set function
model and measure the performance in terms of RMSE on test fold instances. In the first four
datasets, we used our monotone submodular model described in Eq. (1); in case of Log×Sqrt and
Log×LogDet, we used our α-submodular model described in Eq. (2); and, for Gcutσ=0.8, we used
our non-monotone submodular model in Eq. (3). For α-submodular model, we tuned α using cross
validation. Appendix D provides hyperparameter tuning details for all methods.

Baselines. We compare FLEXSUBNET against four state-of-the-art models, viz., Set-transformer [51],
Deep-set [86], deep submodular function (DSF) [7] and mixture submodular function (SubMix) [77].
In principle, set transformer shows high expressivity due to its ability to effectively incorporate the
interaction between elements. No other method including FLEXSUBNET is able to incorporate such
interaction. Thus, given sufficient network depth and width, Set-transformer should show higher
accuracy than any other method. However, Set-transformer consumes significantly higher GPU
memory even with a small number of parameters. Therefore, to have a fair comparison with the
rest non-interaction methods, we kept the parameters of Set-transformer to be low enough so that it
consumes same amount of GPU memory, as with other non-interaction based methods.

Results. We compare the performance of FLEXSUBNET against the above four baselines in terms
of RMSE on the test fold. Table 1 summarizes the results. We make the following observations.
(1) FLEXSUBNET outperforms the baselines by a substantial margin across all datasets. (2) Even with
reduced number of parameters, Set-transformer outperforms all the other baselines. Set-transformer
allows explicit interactions between set elements via all-to-all attention layers. As a result, it
outperforms all other baselines even without explicitly using the knowledge of submodularity in its
network architecture. Note that, like Deep-set, FLEXSUBNET does not directly model any interaction
between the elements. However, it explicitly models submodularity or α-submodularity in the
network architecture, which helps it outperform the baselines. We observe improvement of the
performance of Set-transformer, if we allow more number of parameters (and higher GPU memory).
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Mean Jaccard Coefficient (MJC) Mean NDCG@10
FLEXSUBNET DSF SubMix FL DPP DisMin FLEXSUBNET DSF SubMix FL DPP DisMin

Gear 0.101 0.099 0.028 0.019 0.014 0.013 0.539 0.538 0.449 0.433 0.425 0.426
Bath 0.091 0.087 0.038 0.020 0.012 0.010 0.520 0.500 0.447 0.433 0.427 0.422
Health 0.153 0.142 0.022 0.084 0.011 0.015 0.597 0.549 0.449 0.540 0.425 0.435
Diaper 0.134 0.115 0.023 0.018 0.013 0.012 0.562 0.546 0.447 0.440 0.435 0.435
Toys 0.157 0.150 0.025 0.064 0.029 0.029 0.591 0.577 0.446 0.472 0.448 0.449
Bedding 0.203 0.191 0.028 0.015 0.043 0.047 0.643 0.623 0.437 0.438 0.456 0.461
Feeding 0.100 0.091 0.026 0.023 0.020 0.019 0.550 0.547 0.459 0.453 0.454 0.452
Apparel 0.101 0.093 0.036 0.022 0.016 0.016 0.558 0.550 0.459 0.452 0.446 0.444
Media 0.135 0.130 0.029 0.035 0.029 0.025 0.578 0.578 0.474 0.470 0.461 0.461

Table 2: Prediction of subsets in product recommendation task. Numbers in bold (underline) indicate
best (second best) performer.

(3) While, in principle, DSF function family contains that of FLEXSUBNET, standard multilayer
instantations of DSF with fixed concave functions cannot learn well from (set,value) training.

5.2 Training by (perimeter-set, high-value-subset)

Datasets. We use the Amazon baby registry dataset [30] which contains 17 product categories.
Among them, we only consider those categories where |V | > 50, where V is the total number of
items in the universal set. These categories are: (i) Gear, (ii) Bath, (iii) Health, (iv) Diaper, (v) Toys,
(vi) Bedding, (vii) Feeding, (viii) Apparel and (ix) Media. They are also summarized in Appendix F.

Evaluation protocol. Each dataset contains a universal set V and a set of subsets S = {S}. Each
item s is characterized by a short textual description such as “bath: Skip Hop Moby Bathtub Elbow
Rest, Blue : Bathtub Side Bumpers : Baby”. From this text, we compute zs using BERT [18]. We
split S into equal-sized training (Strain), dev (Sdev) and test (Stest) folds. We disclose the training
and dev sets to the submodular function models, which are trained using our proposed permutation
adversarial approach (Section 4). Then the trained model is used to sample item sequence S′ with
prefix S′≤K = {s1, . . . , sK}. Here, si is the item selected at the ith step of the greedy algorithm. We
assess the quality of the sampled sequence using two metrics.

Mean Jaccard coefficient (MJC). Given a set T in the test set, we first measure the overlap between T
and the first |T | elements of S′ using Jaccard coefficient, i.e., JC(T ) = |S′≤|T | ∩T |/|S

′
≤|T | ∪T | and

then average over all subsets in the test set, i.e., T ∈ Stest to compute mean Jaccard coefficient [38].

Mean NDCG@10. The greedy sampler outputs item sequence S′. For each T ∈ Stest, we compute the
NDCG given by the order of first 10 elements of S′, where i ∈ S′ is assigned a gold relevance label
1, if i ∈ T and 0, otherwise. Finally, we average over all test subsets to compute Mean NDCG@10.

Our method vs. baselines. We compare the subset selection ability of FLEXSUBNET against several
baselines which include two trainable submodular models: (i) Deep submodular function (DSF) and
(ii) Mixture of submodular functions (SubMix) described in Section 5.1; two popular non-trainable
submodular functions which include (iii) Facility location (FL) [58, 25], (iv) Determinantal point
process (DPP) [8]; and, a non-submodular function (v) Disparity Min (DisMin) which is often
used in data summarization [10]. Here, we use the monotone submodular model of FLEXSUBNET.
Appendix F contains more details about the baselines. We did not consider general purpose set
functions, e.g., Set-transformer, Deep-set, etc., because they cannot be maximized using greedy-like
algorithms and therefore, we cannot apply our proposed method in Section 4.

Results. Table 2 provides a comparative analysis across all candidate set functions, which shows that:
(i) FLEXSUBNET outperforms all the baselines across all the datasets; (ii) DSF is the second best
performer across all datasets; and, (iii) the performance of non-trainable set functions is poor, as they
are not trained to mimic the set selection process.

6 Conclusion
We introduced FLEXSUBNET: a family of submodular functions, represented by neural networks
that implement quadrature-based numerical integration, and supports end-to-end backpropagation
through these integration operators. We designed a permutation adversarial subset selection method,
which ensures that the estimated parameters are independent of greedy item selection order. On
both synthetic and real datasets, FLEXSUBNET improves upon recent competitive formulations. Our
work opens up several avenues of future work. One can extend our work for γ-weakly submodular
functions [22]. Another extension of our work is to leverage other connections to convexity, e.g., the
Lovasz extension [54, 1] similar to Karalias et al. [42].
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