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Abstract

In-context learning, the ability of large language models to perform tasks using
only examples provided in the prompt, has recently been adapted for time series
forecasting. This paradigm enables zero-shot prediction, where past values serve as
context for forecasting future values, making powerful forecasting tools accessible
to non-experts and increasing the performance when training data are scarce. Most
existing zero-shot forecasting approaches rely on transformer architectures, which,
despite their success in language, often fall short of expectations in time series fore-
casting, where recurrent models like LSTMs frequently have the edge. Conversely,
while LSTMs are well-suited for time series modeling due to their state-tracking
capabilities, they lack strong in-context learning abilities. We introduce TiRex
that closes this gap by leveraging xXLSTM, an enhanced LSTM with competitive
in-context learning skills. Unlike transformers, state-space models, or paralleliz-
able RNNs such as RWKYV, TiRex retains state-tracking, a critical property for
long-horizon forecasting. To further facilitate its state-tracking ability, we propose
a training-time masking strategy called CPM. TiRex sets a new state of the art
in zero-shot time series forecasting on the HuggingFace benchmarks GiftEval
and Chronos-ZS, outperforming significantly larger models including 7abPFN-TS
(Prior Labs), Chronos Bolt (Amazon), TimesFM (Google), and Moirai (Salesforce)
across both short- and long-term forecasts.

1 Introduction

Recent research in time series forecasting has adopted in-context learning through large-scale pre-
trained models, analogous to large language models (Woo et al., [2024; |Ansari et al.| [2024a; |Das
et al.| [2024). These models enable zero-shot forecasting, allowing them to generalize to unseen
datasets without parameter updates, akin to meta-learning [Hochreiter et al.|(2001)). This capability
empowers practitioners without machine learning expertise to use advanced forecasting tools. More
importantly, zero-shot forecasting significantly improves performance in data-scarce settings, where
training task-specific models often fail to generalize. As a result, in-context learning models hold
promise for broad adoption in domains such as energy, retail, or healthcare.

Most pre-trained time series models are based on transformer architectures (Vaswani et al., [2017)),
which are well suited for in-context learning, but despite their success in language, often fall short of
expectations in time series forecasting (e.g., Zeng et al.| 2023). In contrast, LSTMs (Hochreiter, [1991;
Hochreiter & Schmidhuber;|1997) have demonstrated strong results in time series forecasting due to
their recurrence and effective state-tracking (e.g.,|Nearing et al., [ 2024)). Therefore, LSTMs are more
expressive than state-space models (SSMs), parallelizable RNNs like RWKYV (Peng et al., 2023)), and
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Figure 1: Two exemplary time series from the GiftEval benchmark. For both examples, we show
one plot with the full context and TiRex’s prediction, as well as zoomed-in forecasts of the best-
performing zero-shot models. Each plot shows the ground truth signal in blue, the model’s (median)
prediction in orange, and the uncertainty bounds in gray. (a) A time series that exhibits strong peaks.
Only TiRex is capable of predicting the periodic short spikes. (b) A time series with strong but noisy
periodical behavior. TiRex predicts a meaningful uncertainty estimate (quantile range) over the long
forecast horizon, while TimesFM and Chronos Bolt struggle because of collapsing quantiles.

transformers (Merrill & Sabharwal, [2023; [Merrill et al., 2024; Delétang et al., [2023). However, they
lack strong in-context learning capabilities. To bridge this gap, we adopt xLSTM (Beck et al., [2024),
a modern LSTM variant that incorporates architectural enhancements for scalability and improved
generalization. In particular, XLSTM has demonstrated in-context learning performance comparable
to that of transformer-based large language models (Beck et al., [2025)).

To fully unlock xXLSTM’s state-tracking abilities, we introduce Contiguous Patch Masking (CPM),
a novel training-time masking strategy. CPM enhances xLSTM’s ability to produce coherent long-
horizon predictions by mitigating degradation common in autoregressive multi-step forecasting, as
illustrated in Figure[T]

While synthetic datasets are frequently used for pre-training forecasting models, the potential of data
augmentation strategies remains largely untapped, unlike their established role in vision pre-training
(Tian et al.;|2020). To address this, we design and utilize a suite of augmentations.

QOur key contributions are:

* TiRex: We present TiRex, a pre-trained time series model based on xLSTM, which sets
a new state of the art in zero-shot forecasting. It achieves superior performance across
standardized benchmarks, improving both short- and long-term forecasting accuracy.

* Contiguous Patch Masking (CPM): We propose a novel masking strategy that enhances
state-tracking abilities, therefore enabling pre-trained time series models to produce reliable
uncertainty estimates over long prediction horizons, effectively addressing autoregressive
error accumulation.

» Data Augmentation Strategies: We introduce three augmentation techniques for time series
model pre-training and demonstrate their effectiveness in enhancing the robustness and
overall performance of TiRex.

After introducing the problem setup and a review of related work, the paper is structured as follows:
Section|2|introduces TiRex, its architecture, inference strategy, and Contiguous Patch Masking utilized
for training. Section [3|describes the proposed training augmentations. Section ] evaluates TiRex on
two standardized real-world benchmarks and examines the impact of the individual components. In
Section[5] we discuss limitations of our approach and conclude the paper.

1.1 Problem Setup: Zero-Shot Forecasting

Time series forecasting aims to predict future values of a time series based on its past values. Formally,
given a time series (y1,¥a,...,yr), with y; € R denoting the value at time ¢, the forecasting
objective is to predict its future horizon (yr1, - - .,yr+n), Where h is the forecast horizon’s length.



Throughout the paper, we adopt Python-style array notation and denote a contiguous sequence
of values by y1.7 := (yt)i—; = (Y1,¥2,...,yr). Probabilistic forecasting extends this setup by
modeling the uncertainty inherent in most time series data. Instead of producing point estimates, the
model learns to approximate the conditional distribution over future outcomes:

P(yr+1.74k | Y1.7)- (D

In a zero-shot forecasting setting, the prediction model is pre-trained on a corpus of time series
datasets C' = {D1, D5, ..., Dy}, where each D,,, 1 < n < N, is a time series dataset, e.g., a set of
time series from a particular domain. At inference the model is applied directly to time series of new,

unseen dataset, i.e.,y € D" and y ¢ Ufil D;, without any fine-tuning or task-specific supervision.

1.2 Related Work

Statistical models such as ARIMA (Box & Jenkins, |[1968) and exponential smoothing (Hyndman
et al.| 2008)) are classical approaches in time series forecasting. In the last decades, however, neural
network-based models have emerged as effective alternatives: Notable examples include DeepAR
(Salinas et al.l [2020), based on a LSTM with a mixture density head; N-BEATS (Oreshkin et al.|
2019), the first approach that employed a deep block architecture; PatchTST(Nie et al., |2022), a
patch-based attention approach; and TFT(Lim et al.||2021), which combines LSTM and transformer
components. These models are trained on multiple time series from a single dataset and require
retraining when applied to new tasks.

Currently, pre-trained time series models, with the capability of zero-shot generalization across
datasets, predominantly adopt different transformer architectures. For instance, Chronos (Ansari
et al., 2024a)), Chronos-Bolt (Ansari et al.| 2024b)), and COSMIC (Auer et al., 2025b) use an encoder-
decoder variant. Moirai (Woo et al., 2024)) adopts an encoder-only design with a masked modeling
objective, and TimesFM (Das et al.| 2024) follows a decoder-only causal modeling strategy for
autoregressive generation. TabPFN (Hollmann et al.,[2025) and its adaptation to time series TabPFN-
TS (Hoo et al.| [2025) use a modified transformer encoder and pre-train only on synthetic data. A
notable exception is TTM (Ekambaram et al., 2024), since it builds on the MLP-based TSMixer
architecture (Chen et al., [2023)).

The dominance of transformer architectures echoes their strong in-context learning capabilities (an
essential property for zero-shot forecasting) which are known from the language domain (Brown
et al., [2020). However, despite their success in language, they often fall short of expectations in time
series forecasting. For example, |Zeng et al.[(2023) show that DLinear, a simple linear model, can
outperform transformers in multiple scenarios. Classical models, like LSTMs, are still widely used
and remain competitive. While LSTMs are well-suited for time series, they lack strong in-context
learning capabilities. Recent advancements in recurrent architectures — such as the xXLSTM (Beck
et al.}[2025) — closed this gap. xXLSTM shows promise in task-specific time series applications (Kraus
et al., [2024)), yet its potential for pre-trained, general-purpose models remains underexplored.

2 TiRex

TiRex utilizes xXLSTM as its backbone architecture, and adopts a decoder-only mode, which allows
for efficient training. It stacks multiple XLSTM blocks between a lightweight input and output layer.
The input layer preprocesses the time series via scaling and patching operations, producing tokens
that are subsequently processed by the xLSTM blocks. The output tokens correspond to forecasted
patches of the target series and are mapped back to the forecast horizon. For multi-patch forecasting,
additional inputs are encoded as missing values. An overview of the architecture is provided in
Figure [2| with individual components being described in detail below.

xLSTM Block TiRex adpots the block design proposed by |Beck et al.| (2025)), but substitutes the
mLSTM with a sSLSTM module as the sequence mixing component. Both module options were
introduced in the original publication, but only SLSTM allows for state-tracking (by trading it for
reduced memory capacity [Beck et al.||2024). Each block comprises a SLSTM module followed by a
feed-forward network, with both components preceded by RMSNorm (Zhang & Sennrich| 2019).
Additionally, all SLSTM and feedforward layers include residual skip connections. SLSTM supports
real recurrence, to enable state-tracking, yet is still efficient in training and inference due to an
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Figure 2: Architecture overview of TiRex. The model comprises two main components: the xXLSTM

blocks and a residual block in the input and output layers. The illustrated forecast shows the forecasted

series is in blue and the forecast of TiRex in orange. During inference, only the last three output
windows are of interest.

optimized kernel architecture (Poppel et al., |2024). TiRex stacks multiple of these blocks, depending
on the model size. After the last block, an additional RMSNorm is applied. More details on the
general XLSTM architecture are provided in Appendix [A]

Input/Output Layer and Loss TiRex is designed to generalize across diverse time series domains,
which often exhibit significant variation in scale. To ensure robustness, TiRex applies instance
normalization to each time series (Kim et al., 2021). Specifically, z-score normalization is used. That
is, yo.r = YEL=Y0T where, § and, oy denote the mean and standard deviation of the time series

yo.T

sample.

TiRex segments time series into non-overlapping windows, and maps each window to the input space
of the xXLSTM using a two-layer residual block (He et al.|[2016} Srivastava et al.|[2015)). This patching
mechanism is inspired by vision transformers (Dosovitskiy et al.,[2020) and was adapted for time
series by [Nie et al.| (2022) and Woo et al.| (2024). It reduces the effective sequence length of the
xLSTM blocks by a factor defined by the window size. To account for missing values, a binary mask
indicating presence or absence is concatenated to the time series values before the residual block.
Given an input window of size m;, and xLSTM hidden dimension d, the patching block defines a
mapping R?"™» — R, The same residual block is shared across all time windows.

Mirroring the input layer, the decoder’s output tokens are transformed back to the dimensions of the
output-patch window using a residual block and subsequently scaled back to the original target space.
Hereby, the model outputs provides |@Q)| quantile values for each time step of the output-patch window,
rather than single-point predictions. Hence, the output block defines a mapping R% — R™oux QI
Specifically, TiRex predicts nine equidistant quantile levels, @ = {0.1,0.2,...,0.9}. The model’s
parameters are optimized by minimizing the quantile loss. The loss is calculated for each output
token, therefore, the loss does not distinguish context and forecast for a training sample, but implicitly
“forecast after each input token”. Formally, the loss for an output window, given the true value y; at
time ¢ and its corresponding quantile predictions ¢ for quantile level g is computed as:
1N q (e — 97) if 9f <y
Qe 2 2 ) ) else @
out t—=1 qeQ q yt Yt
The losses of all output tokens of a training sample are averaged — missing values in the output
window are ignored for the loss calculation.

Multi-Patch Horizon Forecasts When the forecast horizon h exceeds the output patch length,
multiple future patches must be predicted. We refer to this as multi-patch prediction. Existing
pre-trained models (Das et al.,[2024; |Ansari et al.| [2024b)) typically address multi-patch prediction via
autoregressive generation, using point estimates (say, mean or median) of previous outputs as inputs
for subsequent patches. However, this approach reinitializes the probabilistic forecast at each step,
disrupting the propagation of uncertainty. In contrast, TiRex treats future inputs as missing values,
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Figure 3: Illustration of Contiguous Patch Masking and the different training augmentations.
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allowing the internal memory to propagate both predictive state and uncertainty across patches. This
results in more coherent probabilistic and overall better forecasts, as our quantitative and qualitative
experiments show (Section @ and Figure ).

2.1 Contiguous Patch Masking

To facilitate the stable multi-patch prediction capability of TiRex, we propose Contiguous Patch
Masking (CPM), illustrated in Figure [3] CPM randomly masks full and consecutive patches in
pre-training. Such a masked patch is represented as “missing values” in the model input, hence
corresponds to the structure of the input when multi-patch forecasts are used in the inference. The
procedure is as follows: For each training sample, we first uniformly sample the amount of consecutive
patches cmask ~ U(1, X ) and the masking probability pmask ~ U (0, pmaX ). Afterwards, we mask

) “mask
the time series: For a time series of length 7" we sample a binary mask of length Lcmafmomj with
Bernoulli probability pn,sk and repeat each element cp,sk - Moy SO that the mask has a length of T°
too. Note that when neighboring elements are masked, the actual maximum of consecutive masked
patches can be greater than c)%, . Further, while CPM incorporates elements from BERT-style (Devlin
et al.,2019) masked-modeling, our training is still more similar to the typical causal-style masking of
decoder-only approaches (Radford et al.l 2018) since the target is shifted and the information flow is

uni-directional. Appendixprovides a sensitivity analysis of the parameters pm2Y and ch2%

mask ‘mask*

3 Data Augmentation

To facilitate more diverse time series patterns and enhance the model’s exposure to a wider range
of potentially relevant dynamics, we propose three augmentations for pre-training. This is inspired
by the successful application of augmentation techniques in pre-training of other modalities, e.g.,
vision (Tian et al.,2020). The employed augmentations, illustrated in Figure[3] are: (1) Amplitude
Modulation, which introduces trends and change points in the scale of the time series. Formally, a
time series y is transformed by y; = y; - a;, where a; follows a linear trend (potentially with change
points). (2) Censor Augmentation, which censors values within the time series at a random threshold.
The augmented respective series is computed by y; = max/min(y;, c), The censor threshold c is
sampled by uniformly drawing a quantile from the empirical distribution of the signal. (3) Spike
Injection, which adds short, periodic spike signals to the time series. The augmented time series is
computed by y; = y; + s, where s, represents the added spike signals. The shape of each spike is
defined by a kernel, which can be a tophat, a radial basis function (RBF), or a linear kernel. The
periodicity and the specific parameters of the kernel (e.g., width, height for tophat; center, variance
for RBF) are sampled from predefined distributions for each sample. This randomization is designed
to encourage the model to learn a general concept of transient events, rather than memorizing specific
periodic patterns. The augmentations are applied with a probability of 0.5 for amplitude modulation
and censor augmentation and 0.05 for spike augmentation. Appendix [B|provides a more detailed
description of the augmentation procedures.

4 Experiments

This section outlines the experimental setup, including training procedures, evaluation benchmarks,
and comparison models. We further report the main results demonstrating the effectiveness of TiRex



in general (Section [4.1)) and the specific components — the XLSTM backbone, Contiguous Patch
Masking, and the proposed augmentations (Section[4.2). Full experimental details are provided in
Appendix [C} while extended results are presented in Appendix [D]

TiRex Training Our training data comprises three components: (1) We utilize the training datasets
from Chronos (Ansari et al.,[2024a), and adopt their TSMixup procedure to augment this data. (2)
We enrich our training data with synthetic time series data generated through a procedure closely
inspired by KernelSynth (Ansari et al.| [2024a). (3) We add parts of the pre-training dataset proposed
by GiftEval (Aksu et al., 2024])). In total, our training dataset encompasses 47.5 million time series
samples. Details regarding the specific datasets employed, as well as the implementation of the
TSMixup and synthetic data generation procedures, can be found in Appendix During training,
we augment the samples with the proposed training augmentations and apply Contiguous Patch
Masking as described in Section[3] We train TiRex with a context length of 2048 and a window size
of 32 for input and output patches.

Evaluation Benchmarks We evaluate TiRex on two standardized benchmarks with public leader-
boards: (1) the Chronos Zero-Shot Benchmark[l, comprising 27 diverse datasets, each in one evalua-
tion setting, primarily for short-term horizons (Ansari et al.,|2024a), and (2) the GiftEval benchmarkﬂ
(Aksu et al} |2024)), which includes 24 datasets that are evaluated in different settings, and covers
short-, medium-, and long-term horizons, as well as different frequencies — in sum 97 evaluation
settings. The training data of TiRex has no overlap with this data, hence TiRex operates in zero-shot.
We denote this benchmark as Chronos-ZS benchmark. To also ensure zero-shot conditions on the
GiftEval benchmark, we exclude 16 of the 97 evaluation settings, which overlap with our training
data, and denote this benchmark as GiftEval-ZS benchmark; complete results for GiftEval are reported
in Appendix[D.T} We note that all Chronos models do have the same overlap as TiRex; TimesFM, and
Moirai have additional overlapping datasets and additionally also have overlaps with the Chronos-ZS
benchmark.

The evaluation follows the respective benchmark protocols using mean absolute scaled error (MASE)
for point forecast performance and the continuous ranked probability score (CRPS) for probabilistic
forecast performance. Practically, the CRPS is approximated by the mean weighted quantile loss
(WQL) over nine quantiles: 0.1 to 0.9 in increments of O.IEI Aggregated performance is computed
by normalizing each evaluation setting’s score by that of a seasonal naive baseline, followed by the
geometric mean across evaluation settingﬂ Additionally, the average rank across evaluation settings
is reported to ensure robustness against outlier performance.

Compared Models We compare TiRex against a broad set of state-of-the-art models, including
zero-shot pre-trained models and task-specific models. The zero-shot models include Chronos and
Chronos-Bolt (Ansari et al.| [2024alb), TimesFM (v1.0, v2.0) (Das et al., 2024}, Moirai 1.1 (Woo et al.}
2024)), TabPFN-TS (Hollmann et al.| [2025), and Tiny Time Mixer (TTM) (Ekambaram et al., 2024).
The task-specific models are PatchTST (Nie et al.| 2022), TFT (Lim et al., 2021), DLinear (Zeng
et al.,|2023)), DeepAR (Salinas et al.,[2020), and N-BEATS (Oreshkin et al.,[2019). These models are
trained individually on each dataset. Hence, they do not operate in ‘zero-shot‘ and only provide an
asymmetric comparison. Reporting their result is useful to contextualize the current strengths and
limitations of zero-shot approaches. We report the results of the public leaderboards if available and
replicate the outcomes of pre-trained models within our evaluation pipeline to ensure validity.

4.1 Zero-Shot Forecasting

GiftEval-ZS Benchmark In this benchmark TiRex consistently outperforms all competing methods
across both short- and long-term forecasting tasks (Figure[d). In terms of CRPS, TiRex achieves a
score of 0.411 (with standard deviation over training with 6 seeds of +0.002), notably surpassing

'HuggingFace.co/spaces/autogluon/fev-leaderboard

’HuggingFace.co/spaces/Salesforce/GIFT-Eval

3In the Chronos-ZS benchmark, the mean weighted quantile loss (WQL) is used directly, hence, essentially
both benchmarks evaluate on the same metric

*GiftEval benchmark scores are reported based on the leaderboard computation at the time of our submission.
A subsequent update to the seasonal naive baseline affects the absolute aggregated scores but does not change
any discussed model ranking, result, or conclusion.
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Figure 4: Results of the GiftEval-ZS benchmark: Aggregated scores of the overall benchmark and
the short- and long-term performances. Additionally, the average rank in terms of CRPS, as in the
public leaderboard, is presented. Lower values are better. “Zero-shot Leak” refers to models which
are partly trained on the benchmark datasets (Overlap:: Moirai 19%, TimesFM 10%, TTM: 16%).
We trained TiRex with 6 different seeds and report the observed standard deviation in the plot.

the next best zero-shot models (0.459, 0.463, 0.481). This performance gap is also reflected in the
average rank, where TiRex shows a substantial lead over the second-best model, while the three
models that following in the ranking (TimesFM-2.0, TabPFN, and Chronos-Bolt-Base) achieve very
similar scores among themselves. Importantly, while other models tend to peak either in short-
(e.g., Chronos-Bolt) or long-term (e.g., TabPFN-TS) forecasting, TiRex is the only model to excel
simultaneously at both. Moreover, TiRex attains these results with significantly fewer parameters
(35M) compared to Chronos-Bolt-Base (200M) and TimesFM-2.0 (500M). The advantage is most
pronounced in long-term forecasting, where TiRex becomes the first zero-shot model to surpass the
performance of PatchTST and TFT.

Chronos-ZS Benchmark The main results on the Chronos-ZS benchmark exhibit similar perfor-
mance patterns to those observed on the GiftEval-ZS benchmark (Figure[5)). TiRex again achieves the
best results in terms of WQL score and rank. In the MASE score TiRex has second best score, closely
behind TabPFN-TS. Notably, Moirai performs substantially better on the Chronos-ZS benchmark
(compared to the GiftEval-ZS benchmark). However, this improvement is likely due to the substantial
overlap of 82% between its pre-training data and the Chronos-ZS test set. These results highlight the
robustness of TiRex in zero-shot generalization. The full results, including task-specific models are
presented in Appendix [D.2]

Qualitative Analysis We also qualitatively analyzed the predictions of TiRex and compared them
against current state-of-the-art methods. Beyond its generally higher forecasting accuracy, the
analysis shows that TiRex demonstrates robust multi-patch prediction capabilities, maintaining
coherent uncertainty estimates across different forecast horizons — and more accurately forecasts
short periodic spikes, which are often missed or smoothed out by other models (Figure [I] and
Appendix [D.5). We hypothesize that these improvements mainly stem from (i) the effective multi-
patch forecasting due to CPM, (ii) the SLSTM architecture that provides state-tracking for uncertainty
propagation and strong periodicity modeling, and (iii) the spike augmentation strategy enhancing the
model’s sensitivity to rare, sharp events during training.
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Inference Speed & Memory Apart from the forecasting performance, we analyze the GPU memory
consumption and inference runtime across all models. Specifically, we evaluate samples with a context
length of 2048 and a prediction length of 32 over multiple batch sizes. As expected, given TiRex
substantially smaller size compared to the next best models (TimesFM-2.0 and Chronos-Bolt-Base),
TiRex requires significantly less GPU memory and achieves faster inference speeds. Specifically,
TiRex is over 11 x faster than TimesFM-2.0, over 4 x faster than Chronos-Bolt Base, and over 2176 x
faster than TabPFN-TS. Furthermore, TiRex even outperforms Chronos-Bolt Small, a similarly sized
transformer-based architecture for larger batch sizes. The differences in maximum GPU memory
consumption follow a similar order.

4.2 Ablations

We conduct ablation studies to analyze the impact of key components in TiRex. Specifically, this
section focuses on Contiguous Patch Masking (CPM), the proposed data augmentations, and the
xLSTM backbone architecture.

Contiguous Patch Masking and Multi-Patch-Inference We analyze the effectiveness of the pro-
posed Contiguous Patch Masking (CPM) procedure by comparing three configurations: (1) standard
decoder-only training with autoregressive inference — this setting is similar e.g., to TimesFM; (2)
training with a naive multiple-patch procedure where we place the “rollout” always at the end of the
sequence; and (3) training with CPM. Configurations (2) and (3) use the same inference procedure
with masked tokens for multi-step forecasting, whereas (1) relies on patch-wise autoregressive de-
coding. As shown in Table[TJonly CPM enables strong long-term performance without degrading
short-term performance. In contrast, naive multi-patch training diminishes the short-term forecasting
performance, and standard next token training combined with autoregressive inference harms the
long-term forecasting performance. These findings suggest that CPM is essential for training and
inference behaviors under multi-patch prediction.

Augmentation To assess the impact of our augmentations, we trained our model excluding each
augmentation and with no augmentations at all. The results, detailed in Table[T} indicate that including
the augmentations is beneficial, i.e., improves the performance of the model. Performance consistently
decreased in at least one benchmark metric when any single augmentation was removed. The most
substantial decline occurs when no augmentations were applied. This underscores the effectiveness
of each augmentation and their combined positive impact on the model’s generalization capabilities.
Appendix [D-4] provides a sensitivity analysis in terms of application probability.

Backbone To assess the architectural choice of XLSTM with sSLSTM modules, we replace it with
mLSTM (Beck et al.,[2024) and transformer blocks (Touvron et al.,[2023) while keeping the patching



and training procedure unchanged. For the transformer variant, rotary positional embeddings (Su
et al., 2024) are added to mitigate the absence of inherent positional information, due to their
permutation-invariance property. We also analyze mLSTM and sLSTM mix architectures as proposed
in the original xXLSTM paper. We denote xLSTM][i:j] for an architecture where ? SLSTM blocks are
combined with 7 mLSTM blocks. Additionally, we ablate our overall architecture by comparing
it to a Chronos-Bolt architecture (Base and Small) that we train with our training procedure, using
the same datasets and augmentations as for TiRex. Table [T] summarizes the results. TiRex with
only sLSTM blocks yields the best performance, especially on long-term forecasts. We hypothesize
that this is because its explicit state-tracking capabilities (Beck et al., [2024), which might facilitate
uncertainty propagation and enable accurate modeling of periodic temporal structures over extended
horizons. Using only mLSTM performs worst. However, switching just one of these blocks back to a
sLSTM improves the results close to the SLSTM-only architecture of TiRex. The comparison to a
Chronos Bolt architecture, which is consistently outperformed by TiRex, highlights that our overall
architecture is critical to achieve good performance on both long and short-term forecasting. A more
detailed comparison to the Chronos Bolt architecture is presented in Appendix [D.4]

Table 1: Ablation study of individual components. The top two rows report the mean and standard
deviation of TiRex over six runs with different random seeds. For the ablation variants, results
that degrade performance by more than 3 x the standard deviation relative to TiRex are underlined.
Columns correspond to evaluation settings: GiftEval-ZS benchmark (overall, short-term, and long-
term) and Chronos-ZS benchmark. Lower values indicate better performance.

Benchmark Gift-ZS Overall  Gift-ZS Long Gift-ZS Short Chronos-ZS
CRPS MASE CRPS MASE CRPS MASE WQL MASE
TiRex 0.411 0.647 0.325 045 0.455 0.696 0.592 0.776
+6 seeds 0.002 0.004 0.003 0.003 0.001 0.004 0.007 0.003
naive
S . 0.424 0.662 0.335 0.460 0.475 0.718 0.650 0.817
A  multi-patch
O w/o multi-patch  0.445 0.704 0.370 0.518 0.471 0.719 0.589 0.777
. Ww/oany 0.430 0.682 0.339 0.478 0.473 0.722 0.623 0.800
S w/ocensor 0.417 0.652 0.336 0.457 0.458 0.699 0.595 0.767
go w/o spike 0.415 0.660 0.328 0.459 0.462 0.710 0.591 0.773
o . —— —_—= =
& Wwhoamplidude 09 g6u4 0323 0448 0455  0.694 0.618  0.798
modulation
Transformer 0.422 0.662 0.342 0.472 0.461 0.702 0.597 0.768
¢ mLSTM 0.457 0.718 0.430 0.589 0.456 0.699 0.588 0.775
£ xLSTMJ1:11] 0.414 0.652 0.330 0.456  0.455 0.698 0.631 0.807
f‘% xLSTM[1:5] 0.412 0.651 0.330 0.460 0.450 0.693 0.611 0.791
oS- o - oIS oo Col oo

Chronos BoltS  0.456  0.676 0.413 0.498 0.463 0.705 0.609 0.791
Chronos Bolt B 0.454  0.670 0.418 0.493 0458 0.701 0.627  0.807

5 Conclusion

This work introduces TiRex, a pre-trained time series forecasting model based on xXLSTM. To fully
unlock the state-tracking capabilities of XLSTM, we further propose Contiguous Patch Masking, a
training-time masking strategy tailored for in-context learning. Contiguous Patch Masking is a crucial
component in our modeling pipeline, since it enables strong long-term forecasting performance
without sacrificing short-term capabilities. TiRex establishes a new state-of-the-art in zero-shot
forecasting, outperforming prior methods on both short- and long-term horizons across the Chronos-
ZS and GiftEval benchmarks. Our ablation studies highlight the individual contributions of each
component to overall performance.

Limitations & Future Work Like most pre-trained forecasting models, TiRex focuses on univariate
time series. Although modeling multivariate series as independent univariate signals often performs
well — as reflected in the GiftEval results and, for example, shown in [Nie et al.| (2022) — future



work could incorporate multivariate data, for example in the form of extended contexts or modified
input layers. Due to computational constraints, we did not extensively tune hyperparameters and only
conducted a sensitivity analysis on key parameters. Future work should explore more comprehensive
tuning for additional performance gains and investigate leveraging the model’s learned representations
for other downstream tasks, such as classification (Auer et al.| 2025a) or anomaly detection.
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A xLSTM

TiRex utilizes XLSTM (Beck et al.l [2024)) as its backbone architecture. XLSTM extends the classi-
cal LSTM (Hochreiter] (1991} [Hochreiter & Schmidhuber] [1997) by incorporating modern design
principles to improve its scalability, parallelization, and in-context modeling capabilities.

xLSTM introduces two cell types: the matrix LSTM (mLSTM) and the scalar LSTM (sLSTM). The
mLSTM is designed to increase memory capacity through a matrix-based memory representation,
and enables efficient parallel computation. In contrast, the SLSTM preserves a true recurrent pathway
as in the original LSTM, enabling strong state-tracking capabilities 2024). The recurrent
pathway makes LSTM more expressive than State Space Models (SSMs), parallelizable RNNs
like RWKYV, and transformers (Merrill & Sabharwall, 2023} Merrill et al, 2024} [Delétang et all,
[2023). Figure[7)illustrates the respective expressivity hierarchies. We hypothesize that this advantage
in expressivity allows TiRex to better model complex temporal dynamics, leading to improved
forecasting performance, especially over long horizons. [Delétang et al.| (2023) demonstrate on
synthetic language tasks that this state-tracking capability of LSTMs yields empirical advantages.
(2024) show that SLSTM retains these advantages. sSLSTM employs a multi-head strategy
along the recurrent pathway to improve efficiency.

TiRex exclusively employs sSLSTM cells. Given a sequence of 7' embedded input patches X 1.7 =
(x1,T2,...,x7) € R¥T, the forward computation of an SLSTM cells for a given time step is
defined as follows:
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¢ = fi0c 1 + 102, cell state  (3)
n, = f,on_1 + i, normalizer state  (4)
7 1

h; = 0, ® izt , hy = ¢, On; hidden state  (5)
zr = o(Z), zZzi =W,z + R, hy_1 + b, cell input  (6)
iy = exp (It> , it = Wiz, + Ry hy_1 + b; input gate  (7)
f; = exp (f't) , f't = Wraxy, + Rehy_1 + bg forget gate  (8)
oy = 0'(675) y 6t = Wo Ty + Ro htfl + bo Olltpllt gate, (9)

where h; € R? denotes the hidden state, ¢; € R denotes the cell states and, n; € R¢ denotes
a normalizer state. Further, is,0;,f; € RY are the input, output and forget gate, respectively,
W., Wi, We, W, € R™*P R_ R;, R¢, R, € R™? and b, b;, bg, b, € R? are trainable weight
matrices and biases. The matrices R, R;, Rs, R, are block-diagonal, where each block represents
one head. This way, the parameters reduce to d/ (NN}, ), where NN}, is the number of heads, limiting the
cell interactions to individual heads. The input-, output-, and forget-gates are activated by exponential
(exp) or sigmoid functions (o); The cell inputs use a hyperbolic tangent function ().

To enable deep modeling, XLSTM organizes its recurrent layers into blocks that combine sLSTM
and/or mLSTM layers with additional architectural components. Specifically, TiRex uses the block
structure from|Beck et al.| (2025)) that consists of

1. an sLSTM module

2. afeed forward network

3. residual connections around each subcomponent,
4. and pre-normalization layers (RMSNorm)

This block architecture is illustrated in Figure [2]and allows for the training of deep networks. To
achieve scalability, xLSTM employs custom CUDA kernels that enable high-throughput training and
inference on modern hardware (Poppel et al., [2024).

infinite tape
recursively enumerable
context-sensitive
< i T.HP?-RNN . linear tape AN
1 11 text-
e ermnslgc}(c_ 151?1111\1 ext-free D:l:l:l:'
-
regular stack
RNN
o T
FENN Transformer finite-state
counter controller
counter
LSTM
Grammar type (low — high) Automaton Memory
Regular (R) Finite-state automaton (FSA) Automaton state
Context-free (CF) Push-down automaton (PDA) + infinite stack
Context-sensitive (CS) Linear bounded automaton (LBA) + bounded tape
Recursively enumerable (RE)  Turing machine (TM) + infinite tape

Figure 7: Formal language classes and their correspondence with neural network architectures and
k-counter machines that have a counting mechanism (from: Delétang et al., 2023]).
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B Data Augmentation
This section details the time series augmentations proposed and used for pre-training TiRex.

Amplitude Modulation This augmentation introduces scale trends and change points into the time
series by multiplying the signal with a piecewise linear trend. The modulation trend is generated by
sampling change points and interpolating amplitudes between them. See Algorithm T}

Censor Augmentation This augmentation censors (clips) the input signal either from below or
above, depending on a randomly sampled direction. The clipping threshold is determined by drawing
a quantile uniformly from the empirical distribution of the signal. See Algorithm[2}

Spike Injection This augmentation injects a structured additive signal in the form of sparse, periodic
spikes. First, a periodic pattern is sampled, which is then tiled across the time axis with a sampled
periodicity. Each spike label in the pattern is mapped to a kernel (selected from a fixed set) with
randomized parameters that control its shape and magnitude. The final augmentation is the sum of all
such kernel evaluations added to the original signal. See Algorithm[3] The goal of this augmentation
is to improve generalization to sharp, transient events by exposing the model to a diversity of spike
structures. The spike kernel types and their parameter ranges are defined in Table [2] while the
available temporal patterns and their sampling probabilities are described in Table 3]

Algorithm 1: Amplitude Modulation

Input: Time series y € R”

Output: Augmented time series yaug

k ~ Uniform(0, 5) ; // Number of changepoints
Sample k changepoints {c1,...,cx} C {1,..., T —1};

c « [0,sorted({c1,...,cx}),T];

Sample amplitudes a ~ N(1,1)F+2;

Interpolate trend t € R” from (c, a) ;

Yaug <Y O t;

return y

Algorithm 2: Censor Augmentation

Input: Time series y € R”
Output: Augmented time series yaug

Sample quantile level ¢ ~ Uniform(0, 1) ;
Compute threshold ¢ < Quantile(y, q) ;
Sample censor direction b ~ Bernoulli(0.5) ; // Bottom or top censor
if b = 1 then

| Yaug < max(y,c) forallt; // Bottom censoring
else

| Yaug < min(y;, c) forall ¢ ; // Top censoring

return y
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Algorithm 3: Spike Injection

Input: Time series y € R” spike patterns P, spike kernel set

Output: Augmented time series yaug

Sample periodicity m ~ U (10, min(512, 7)) ;

Sample periodic pattern z € P and shift it randomly ;

Sample s ~U(T — 7, T) ;

Generate spike positions m € Z” by repeating z with spacing 7 and shifting to align last spike at
S5

Sample kernel type x € K ;

6 For each unique spike label in m, sample kernel parameters and generate kernel centered at each

occurrence ;

Sum kernels to obtain additive spike signal s € R” ;
Yag <Y +8;

return y,,e

Table 2: Kernel types and parameterizations (as functions of the periodicity 7) employed for the spike
injection augmentations

Kernel Width Param Amplidue Param
Tophat w ~ [0.057,0.27] h ~[0.5, 3]
RBF orgr ~ [0.057,0.27] h ~ [0.5,3]
Linear w ~ [0.057,0.27] h ~[0.5, 3]

Table 3: Spike pattern, representative patterns, and sampling probabilities employed for the spike
injection augmentations.

Category Utilized Pattern Sample Probability
Simple [0], [0, 1] 0.75
3-periodic [0,1,2],10,0,1] 0.10
4-periodic [0,0,1,1],[0,1,0,2] 0.10
Weekly-like [0,0,0,0,0,1,1],[0,0,0,0,0,1,2] 0.05
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C Experiment Details

C.1 Model and Training Hyperparameter

TiRex utilizes a XLSTM-based architecture with hyperparameters summarized in Table 4] The model
has 35 million model parameters.

Pre-Training TiRex is pre-trained for 500,000 steps with a batch size of 256 using the AdamW
optimizer with a learning rate of 0.001 and weight decay of 0.01. We also employ a cosine learning
rate scheduler with linear warm-up (the warm-up ratio is set to 5 % and the minimum learning rate is
0.0001). The context of TiRex length is 2048.

Table 4: TiRex model architecture hyperparameters.

Parameter Value
Input patch size (my,) 32
Output patch size (mqy) 32

Embedding dimension (d) 512
Feed-forward dimension (dg) 2048
Number of heads 4
Number of blocks 12

C.2 Pre-Training Data Corpus

We construct a diverse training corpus by combining real and synthetic time series to support robust
generalization across heterogeneous forecasting tasks. Our training dataset has three components:

1. Chronos Training Data (30 million time series): We incorporate the training datasets
from Chronos and adopt their proposed time series mixup augmentation strategy (Ansari
et al., [2024a). In contrast to Chronos, we generate significantly more and longer time
series, expanding the diversity and temporal span of the data. Table[5]lists the respective
datasets, which are provided on HuggingFace: https://HuggingFace.co/datasets/
autogluon/chronos_datasets! Details on the TsMixup procedure are provided in the
paragraph below.

2. Synthetic Gaussian Process Data (15 million time series): Inspired by KernelSynth (Ansari
et al.| [2024a)), we generate synthetic time series using Gaussian Processes (GPs). Details on
the synthetic data generation procedure are provided in the paragraph below.

3. GiftEval Pre-training Data (= 2.5 million time series): We integrate a subset of the pre-
training corpus from GiftEval and use it for pre-training. It does not overlap with the GiftEval
benchmark evaluation data. Table[6]lists the respective datasets, which are provided on Hug-
gingFace: https://HuggingFace.co/datasets/Salesforce/GiftEvalpre-train.

Data Mix Probabilities For the Chronos training data and the synthetic Gaussian process data,
each time series is sampled with equal probability. The GiftEval Pre-training data is sampled with a
probability of approximately 8%, hence slightly oversampled compared to the share of series due to
technical implementation details.

TsMixup To augment data diversity, we apply TsMixup (Ansari et al |2024a), a convex com-
bination of k time series of length [ to the training data from Chronos. Each series is z-score
normalized (Chronos used mean normalization) prior to combination to ensure comparable magni-
tude. The number £ is sampled uniformly from {1, ..., K.« }, the length [ is sampled uniformly
from [Lin, Lmax), and the mixing weights A; are drawn from a Dirichlet distribution:

k
X = N Xy, (10)

=1

where %; € R! is a normalized time series segment, and A ~ Dir(a). As k = 1 is sampled with
non-zero probability, the augmented dataset includes original sequences, thereby preserving base

18


https://HuggingFace.co/datasets/autogluon/chronos_datasets
https://HuggingFace.co/datasets/autogluon/chronos_datasets
https://HuggingFace.co/datasets/Salesforce/GiftEvalpre-train

data fidelity while enhancing variability. In our procedure we utilize K ax = 4, Lyin = 128,
Lin = 4096, and o« = 1.5; we generate 30 million time series.

Synthetic GP Data We generate synthetic time series using Gaussian Processes (GPs), building
upon the core ideas of KernelSynth (Ansari et al., [2024a)). Each synthetic time series x € REIsn is
sampled from a GP:

x ~ GP(0,/(t, 1)), (11)
where %(t,t') is a composite kernel constructed by randomly sampling and combining kernels from
a kernel bank IC. We sample j ~ U{1, J} base kernels (with replacement) from X and combine
them using random binary operations from {+, x } to obtain %. Kernel parameters (e.g., length scale,
periodicity) are sampled from predefined priors. In our procedure, we utilize J = 4 and Ly, = 4096;
Our kernel bank K includes periodic, Radial Basis Function (RBF), Rational Quadratic (RQ), and
Piecewise Polynomial kernels. We generate 15 million time series with this procedure.

In contrast to KernelSynth, we introduce the following adaptations:
1. We sample periodicities from both fixed sets (as KernelSynth) and additionally from contin-
uous distributions to increase temporal diversity.

2. We employ a more scalable GP sampler with GPU support and approximations for longer
series (Gardner et al.,[2018)). This enables the generation of more and longer sequences.

3. We use a modified kernel bank.

Table 5: Training Datasets published by |Ansari et al.|(2024a) — (https://huggingface.co/
datasets/autogluon/chronos_datasets) — that were utilized to train TiRex.

Name #Series  Avg. Length
Mexico City Bikes 494 78313
Brazilian Cities Temperature 12 757
Solar (5 Min.) 5166 105120
Solar (Hourly) 5166 105120
Spanish Energy and Weather 66 35064
Taxi (Hourly) 2428 739
USHCN 6090 38653
Weatherbench (Hourly) 225280 350639
Weatherbench (Daily) 225280 14609
Weatherbench (Weekly) 225280 2087
Wiki Daily (100k) 100000 2741
Wind Farms (Hourly) 100000 8514
Wind Farms (Daily) 100000 354
Electricity (15 Min.) 370 113341
Electricity (Hourly) 321 26304
Electricity (Weekly) 321 156
KDD Cup 2018 270 10897
London Smart Meters 5560 29951
M4 (Daily) 4227 2371
M4 (Hourly) 414 901
M4 (Monthly) 48000 234
M4 (Weekly) 359 1035
Pedestrian Counts 66 47459
Rideshare 2340 541
Taxi (30 Min.) 2428 1478
Temperature-Rain 32072 725
Uber TLC (Hourly) 262 4344
Uber TLC (Daily) 262 181
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Table 6: Subset of pre-training datasets published by Aksu et al.[(2024) — (https://huggingface!
co/datasets/Salesforce/GiftEvalPretrain) — that were utilized to train TiRex.

Name #Series  Avg. Length
azure vm traces 2017 159472 5553
borg cluster data 2011 143386 3749
bdg-2 panther 105 8760
bdg-2 fox 135 17219
bdg-2 rat 280 16887
bdg-2 bear 91 16289
Icl 713 13385
smart 5 19142
ideal 217 5785
sceaux 1 34223
borealis 15 5551
buildings 900k 1795256 8761
largest 2017 8196 105120
largest 2018 8428 105120
largest 2019 8600 105120
largest 2020 8561 105408
largest 2021 8548 105120
PEMSO03 358 26208
PEMS04 307 16992
PEMSO07 883 28224
PEMSO08 170 17856
PEMS BAY 325 52128
LOS LOOP 207 34272
BEIJING SUBWAY 30MIN 276 1572
SHMETRO 288 8809
HZMETRO 80 2377
Q-TRAFFIC 45148 5856
subseasonal 862 16470
subseasonal precip 862 11323
wind power 1 7397147
solar power 1 7397222
kaggle web traffic weekly 145063 114
kdd2022 134 35280
godaddy 3135 41
favorita sales 111840 1244
china air quality 437 13133
beijing air quality 12 35064
residential load power 271 538725
residential pv power 233 537935
cdc fluview ilinet 75 852
cdc fluview who 74 564
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C.3 Benchmarks and Metrics

We evaluated our models on two standardized benchmarks, GiftEval (Aksu et al., [2024) and the
Chronos Zero-Shot benchmark (Ansari et al.l 2024a). Both are hosted on public HuggingFace
leaderboards. These benchmarks offer transparent, reproducible evaluations across a wide range of
datasets, domains, and forecast horizons, enabling a comprehensive assessment of generalization
capabilities. The benchmarks not only specify the datasets and forecast horizons but also metric
computations, and provide results of state-of-the-art models, ensuring valid baseline comparisons.

GiftEval. GiftEval (Aksu et al.,[2024) comprises 23 datasets totaling over 144,000 time series,
spanning seven domains, ten sampling frequencies, and a wide range of forecast horizons from
short- to long-term. In sum the benchmark evaluates 97 different evaluation settings. The benchmark
includes evaluations of 17 models, covering classical statistical methods, deep learning approaches,
and recent foundation models, including all pre-trained models relevant to our study.

In total, 16 out of the 97 evaluation settings in GiftEval overlap with those used for pre-training in our
work (i.e., the Chronos pre-train collection). To ensure comparability while avoiding data leakage, we
restrict our main evaluation to non-overlapping datasets. We denote this benchmark as GiftEval-ZS
benchmark. This is possible because of the dataset-level granularity of the leaderboard submissions,
which allows custom aggregations of results while preserving fidelity to the original benchmark. Full
benchmark results, including the overlapping datasets, are reported in Appendix [D.1] The individual
datasets and evaluation settings of the benchmark are listed in Table[8] For additional details, please
refer to/Aksu et al.|(2024).

GiftEval uses the Mean Absolute Scaled Error (MASE) for point forecasts and the Continuous
Ranked Probability Score (CRPS) for probabilistic forecasts as performance metrics. Equation[I2]
defines the MASE: ¢, is the point forecast, y; is the observed value at time ¢t. MASE scales the
error by a naive seasonal forecast, given the seasonal period s. Equation [[3]respectively defines the
CRPS: F(u) is the predictive cumulative distribution and 1{y; < u} is the indicator function for the
observed value. To evaluate performance over a full forecast horizon, the CRPS is averaged across
time steps. In practice, CRPS is approximated by computing the average weighted quantiles loss over
a fixed set of quantile levels @ = {0.1,0.2,...,0.9}, with §{ as the quantile prediction of quantile ¢
at time step t (see Equation[T4).

T+h |~
% Zt:T—i—l |9¢ — yil

MASE = (12)
T
% Zt:s—i—l |yt - yt—s|
1 T+h %)
CRPS = - > / (F(u) — 1{y, < u})? du (13)
t=T+17 ~
1 25 QL(q, 3. )
CRPS ~ P (14)
Q- h 7cQ t:+T+1 |yl
X q(ye — 97) if g/ <y
L q = 15
Q (qu 7yt) {(1 o q)(g;} _yt) CISC . ( )

Before aggregation, the metric values of both metrics are normalized per dataset using a seasonal naive
baseline to mitigate scale effects. The aggregated metric scores are computed using the geometric
mean of these normalized scores. Additionally, the average rank of the CRPS across evaluation
settings is reported to increase robustness against outlier results. GiftEval benchmark scores are
reported based on the leaderboard computation at the time of the submission. A subsequent
update to the seasonal naive baseline affects the absolute aggregated scores but does not change
any discussed model ranking, result, or conclusion.

Chronos-ZS benchmark. The Chronos-ZS benchmark (Ansari et al.| |2024a)) consists of 27 datasets,

with a focus on short-term forecasting. TiRex’s pre-training data has no overlap with Chronos-ZS
benchmark, hence we can use it to extend the assessment of its zero-shot capabilities. The evaluation
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metrics are identical in structure to GiftEval: MASE for point forecasts and Weighted Quantile
Loss (WQL) for probabilistic forecasts, with WQL evaluated over the same set of quantiles, making
it computationally equivalent to the CRPS approximation of GiftEval. Aggregation procedures,
including baseline normalization and geometric mean computation, are also consistent across both
benchmarks. The datasets and settings of the benchmark are presented in Table 8} for additional
details, please refer to /Ansari et al.[(2024a).

C.4 Computation & Hardware

We conducted all experiments on Nvidia A40 and H100 GPUS — A40’s provide enough GPU
memory to conduct all training runs. The inference experiments (GPU memory and Inference Speed)
were conducted on a Nivida A40 GPU. CPU requirements are flexible; we utilized a 64-core Xeon(R)
Platinum 8358.
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Table 7: GiftEval (Aksu et al.,[2024) benchmark datasets and evaluation settings. Evaluation settings
that are part of GiftEval-ZS benchmark are marked in the respective column. Forecast Horizion is
abbreviated as “Hor” and the number of evaluated windows is abbreviated as “Win”.

N

z s

s 23
Name ©) s2 3# Short Medium Long

Hor Win Hor Win Hor Win

bitbrains_fast_storage x 5T 1250 48 18 480 2 720 2
bitbrains_fast_storage X H 1250 48 2 - - - -
bitbrains_rnd X 5T 500 48 18 480 2 720 2
bitbrains_rnd X H 500 48 2 - - - -
bizitobs_application x 10S 1 60 15 600 2 900 1
bizitobs_12c X 5T 1 48 20 480 7 720 5
bizitobs_I2¢c X H 1 48 6 480 1 720 1
bizitobs_service x 10S 21 60 15 600 2 900 1
car_parts X M 2674 12 1 - - - -
covid_deaths X D 266 30 1 - - - -
electricity 15T 370 48 20 480 20 720 20
electricity X D 370 30 5 - - - -
electricity H 370 48 20 480 8 720 5
electricity W 370 8 3 - - - -
ettl x 15T 1 48 20 480 15 720 10
ettl X D 30 3 - - - -
ettl X H 1 48 20 480 4 720 3
ettl X A\ 1 8 2 - - - -
ett2 x 15T 1 48 20 480 15 720 10
ett2 X D 1 30 3 - - -
ett2 X H 1 48 20 480 4 720 3
ett2 X A\ 1 8 2 - - -
hierarchical_sales X D 206 30 4 - - - -
hierarchical_sales X W 118 8 4 - - - -
hospital X M 767 12 1 - - - -
jena_weather x 10T 1 48 20 480 11 720 8
jena_weather X D 1 30 2 - - - -
jena_weather X H 1 48 19 480 2 720 2
kdd_cup_2018 D 270 30 2 - - - -
kdd_cup_2018 H 270 48 20 480 2 720 2
loop_seattle X 5T 323 48 20 480 20 720 15
loop_seattle X D 323 30 2 - - - -
loop_seattle X H 323 48 19 480 2 720 2
m4_daily D 4227 14 1 - - - -
m4_hourly H 207 48 2 - - - -
m4_monthly M 2400 18 20 - - - -
m4_quarterly X Q 24000 8 1 - - - -
m4_weekly w 359 13 1 - - - -
m4_yearly X A 22974 6 1 - - - -
m_dense X D 30 30 3 - - -
m_dense X H 30 48 20 480 4 720 3
restaurant X D 403 30 2 - - - -
saugeen X D 1 30 20 - - -
saugeen X M 1 12 7 - - - -
saugeen X w 1 8 20 - - - -
solar x 10T 137 48 20 480 11 720 8
solar X D 137 30 2 - - - -
solar X H 137 48 19 480 2 720 2
solar X w 137 8 1 - - - -
sz_taxi x 15T 156 48 7 480 1 720 1
Sz_taxi X H 156 48 2 - - - -
temperature_rain D 32072 30 3 - - - -
us_births X D 1 30 20 - - - -
us_births X M 1 12 2 - - - -
us_births X A\ 1 8 14 - - - -
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Table 8: Chronos-ZS benchmark benchmark datasets (Ansari et al.||2024a) and evalution setting.

Name Horizon  Periodicty
traffic 24 24
australian electricity 48 48
ercot 24 24
ETTm 24 96
ETTh 24 24
exchange rate 30 5
nnS 56 1
nn5 weekly 8 1
weather 30 1
covid deaths 30 1
fred md 12 12
m4 quarterly 8 4
m4 yearly 6 1
dominick 8 1
m5 28 1
tourism monthly 24 12
tourism quarterly 8 4
tourism yearly 4 1
car parts 12 12
hospital 12 12
cif 2016 12 12
ml yearly 6 1
ml quarterly 8 4
m1 monthly 18 12
m3 monthly 18 12
m3 yearly 6 1
m3 quarterly 8 4
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Figure 8: Results of the full GiftEval benchmark: Aggregated scores of the overall benchmark and
the short- and long-term performances. Additionally, the average rank in terms of CRPS, as in the
public leaderboard, is presented. Lower values are better. “Zero-shot Leak” refers to models which
are partly trained on the benchmark datasets. We trained TiRex with 6 different seeds and report the
observed standard deviation in the plot.

D Extended Results

This section presents additional experimental results complementing Section[d] The structure is the
same as in the main paper, preceded by results for the full GiftEval benchmark: First, extended results
on the zero-shot evaluation of GiftEval-ZS benchmark and Chronos-ZS benchmark are presented,
followed by inference efficiency results of all pre-trained models, extended ablation studies results,
and additional qualitative examples. Additionally, we provide fine-tuning results.

D.1 Full GiftEval leaderboard

Figure[§] presents the evaluation results on the full GiftEval benchmark, including settings excluded
from GiftEval-ZS benchmark due to training data overlap with TiRex. These results align with
those reported on the HuggingFace GiftEval leaderboard. The results are consistent with the trends
observed in the main GiftEval-ZS benchmark evaluation. TiRex outperforms all baseline models by a
substantial margin, with the largest performance gap observed in the long-term forecasting tasks.

D.2 Zero-Shot Forecasting

GiftEval-ZS benchmark Figures EHEpresent the short-, medium-, and long-term evaluation
sub-results for all models. Both aggregated scores and average CRPS rank metrics are reported. As
discussed in the main text, TiRex consistently achieves the best performance across all settings. The
results of the individual evaluation settings are reported in the Tables PI6

Chronos-ZS benchmark  Figure [I2] extends the Chronos benchmark results by including task-
specific and local models not covered by the official leaderboard, which reports only pre-trained
models. These additional results are taken from the benchmark’s original publication (Ansari et al.|
2024a). Consistent with the main paper, TiRex performs best and even outperforms models with
substantial training data overlap and those explicitly trained for individual datasets. The results of the
individual evaluation settings are reported in the Tables [T7{I8]
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Inference Efficiency Figure[I3|presents an extended inference efficiency comparison, including
additional pre-trained baselines beyond those shown in the main paper.

D.3 Multivariate data

While TiRex models each time series variate independently, this approach remains remarkably effec-
tive on multivariate forecasting tasks. This observation is consistent with previous work demonstrating
that strong univariate models can serve as powerful baselines on multivariate benchmarks (e.g.,
[2022)). Our main results on the full GiftEval-ZS benchmark, which contains 8 multivariate
datasets, already support this, as TiRex outperforms several multivariate models.

To make this point more explicit, Table[T4]isolates the performance on only the multivariate subset
of the GiftEval-ZS benchmark benchmark. Even in this setting, TiRex achieves the top rank among
models designed specifically for multivariate forecasting (e.g., Moirai, TTM).
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Figure 9: Results of the GiftEval-ZS benchmark: The aggregated scores and the average CRPS rank
of the benchmarks’ long-term sub-results are shown. Lower values are better. “Zero-shot Leak”
refers to models that are partly trained on the benchmark datasets. We trained TiRex with 6 different
seeds and report the observed standard deviation of the aggregated scores.
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Figure 10: Results of the GiftEval-ZS benchmark: The aggregated scores and the average CRPS rank
of the benchmarks’ medium-term sub-results are shown. Lower values are better. “Zero-shot Leak”
refers to models that are partly trained on the benchmark datasets. We trained TiRex with 6 different
seeds and report the observed standard deviation of the aggregated scores.
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Figure 11: Results of the GiftEval-ZS benchmark: The aggregated scores and the average CRPS rank
of the benchmarks’ short-term sub-results are shown. Lower values are better. “Zero-shot Leak”
refers to models that are partly trained on the benchmark datasets. We trained TiRex with 6 different
seeds and report the observed standard deviation of the aggregated scores.
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Figure 12: Results of the Chronos-ZS benchmark: The aggregated scores and the average WQL rank.
Lower values are better. “Zero-shot Leak” refers to models that are partly trained on the benchmark
datasets (Overlap: Moirai 82%, TimesFM 15%, TTM: 11%). We trained TiRex with 6 different seeds
and report the observed standard deviation of the aggregated scores.
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Figure 13: Inference efficiency of different pre-trained forecasting models. Left: GPU Memory
depending on the batch size. The maximum available GPU memory was 48 GB in the experiment
(Nvidia A40). Right: Inference Time per sample depending on the batch size.
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Figure 14: Results for the multivariate data subset of the GiftEval-ZS benchmark: The aggregated
scores and the average CRPS rank of the benchmarks’ short-term sub-results are shown. Lower
values are better. “Zero-shot Leak” refers to models that are partly trained on the benchmark datasets.
We trained TiRex with 6 different seeds and report the observed standard deviation of the aggregated
scores.
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D.4 Ablations

Contiguous Patch Masking (CPM) CPM applies 2 hyperparameters: pray , which defines the

mask’

maximum masking probability sampled per sample, and c2%, , which defines the maximum for the
number of consecutive patches sampled per sample. As pre-training computational demand hinders
an extended hyperparameter search, we heuristically selected pyi¥, = 0.25, which corresponds to

a typical dropout probability of time series models, and ¢35 = 5 to ensure multi-patch forecasts
spanning multiple tokens. To analyze the sensitivity of the model performance to these parameters,
we additionally trained TiRex variants spanning the combinations of pi2% = {0.1,0.25,0.5} and
epx = {0,1,3,5,7,9}. Figure [15|illustrates the results: The results are not very sensitive to the
parameters as long as CPM is utilized (¢35 > 0). Additionally, good long-term forecasts require
sufficient training samples with multi-patch forecasts spanning multiple tokens, i.e.,cqay, > 3 or
Dmaxe = 0.5 (the latter more likely leads to neighboring masked patches that effectively mask out

more than cy,sx patches).

Augmentations We do not apply each augmentation to every sample. Due to the computational
cost of pre-training, an extensive hyperparameter search was not feasible. Instead, we heuristically
selected application probabilities under the hypothesis that augmentations are beneficial, but excessive
use may lead to diminished returns. We chose an application probability of 0.5 for both Censor and
Amplitude Modulation. For Spike Injection, we used a lower probability of 0.05, as its computational
cost is higher, and frequent application creates a speed bottleneck in training.

To analyze the sensitivity of TiRex’s performance to these application probabilities, we trained
additional variants with altered values. Specifically, we tested probabilities in {0,0.1,0.25,0.75, 1}
for Censor and Amplitude Modulation, and probabilities in {0,0.01,0.2, 0.3} for Spike Injection.
Figure[I6|summarizes the results. The analysis indicates that model performance is relatively robust
to variations in application probability as long as the augmentations are utilized at all. However,
targeted tuning may yield marginal improvements.

Chronos-Bolt architecture trained with our data pipeline In order to isolate the impact of our
dataset and augmentation pipeline from other methodological contributions, we trained a Chronos-
Bolt architecture, as representative of a state-of-the-art pre-trained model. Chronos-Bolt was selected
due to its publicly available code and configuration, though the exact training data and procedure
remain undisclosed. We used the same training hyperparameters (e.g., learning rate, warmup schedule,
...) as for TiRex. Figure|l7|shows that integrating our data pipeline leads to improved performance
compared to the published Chronos-Bolt results on the GiftEval-ZS benchmark, while we see a mixed
effect on the Chronos-ZS benchmark. Nonetheless, TiRex consistently outperforms the optimized
Chronos-Bolt variant, which highlights the contributions of both CPM and the xXLSTM backbone to
TiRex’s effectiveness. This difference is most pronounced for long-term forecasts.
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Figure 15: CRPS results on the GiftEval-ZS benchmark of TiRex variants trained with a different
set of hyperparameters for Contiguous Patch Masking (c3% = 0 indicates that Contiguous Patch
Masking is not used). The parameters used for training TiRex are enclosed in a red frame.
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Figure 16: CRPS performance variation on the GiftEval-ZS benchmark for TiRex variants trained with
different augmentation application probabilities, relative to a baseline TiRex without augmentations.
Red vertical lines indicate the parameters used in the actual model configuration.
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Figure 17: Results of training a Chronos-Bolt architecture with the same data and data augmentations
as TiRex — compared to the published Chronos-Bolt model and TiRex. The results are from the
GiftEval-ZS benchmark and the Chronos-ZS benchmark.
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D.5 Additional qualitative examples

In addition to Figure[I] from the main paper, we provide further qualitative examples of forecasts
on the GiftEval benchmark. Specifically, Figure 20]depicts the model behaviors for medium- and
long-term forecasts and Figure 2] does the same for short-term forecasts.

D.6 Finetuned-Forecasting

To further explore the capabilities of our already strong pre-trained model, we finetune TiRex with the
training split of the GiftEval benchmark (as defined by 2024). Fine-tuning is performed
jointly across all training datasets. To avoid overfitting, we mix the training data with our pre-training
data, using a 20/80 ratio. For sampling, we use a uniform distribution to choose the dataset to draw
the next training sample from. We freeze the input and output layers of TiRex and run over 40k steps
with an initial learning rate of 1 x 10~3 and a linear learning rate decay that reaches 0 at the end of
the run. In contrast to the pre-training regime, we do not apply any data augmentation techniques
(see Section[3) but still employ CPM (Section 2.T).

In the finetuning setting, we observe an incremental improvement over the pre-trained model,
especially in the MASE metric (Figure|I8)). Specifically, we compare the pre-trained to its finetuned
version as well as to a fine-tuned TTM (Ekambaram et al.| 2024), the only zero-shot model that
provides fine-tune results on the GiftEval leaderboard.
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Figure 18: GiftEval-ZS benchmark evaluation results comparing the finetuned models from the
GiftEval leaderboard to our pre-trained and finetuned models. We trained TiRex with 6 different
seeds, finetuned each of these models with 4 different seeds (24 seeds in total), and report the mean
and the observed standard deviation of the aggregated scores.

E TiRex 1.1 - Full GiftEval Zero-Shot

Subsequent to the initial release, we developed an updated model variant, denoted as TiRex 1.1, to
ensure a completely zero-shot evaluation on the full GiftEval benchmark. For this version, we
revised the pre-training data corpus with the following modifications to eliminate any potential data
leakage: (1) All datasets present in the GiftEval benchmark were removed from our training corpus,
across all their respective sampling frequencies. (2) Datasets from the Chronos-ZS benchmark that
do not overlap with GiftEval were included to enhance data diversity. (3) To address a potential
but difficult-to-verify overlap in the ’solar’ dataset — where time series, specifically from Alabama,
might exist in Chronos training data and GiftEval despite differing frequencies —we proactively
removed that specific subset, thereby removing any ambiguity in its zero-shot status.

Beyond the training data adjustments, we also incorporated long-period normalization, a pre-
processing enhancement aimed at better handling long-range periodicities. This technique addresses
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Figure 19: Results of the full GiftEval benchmark with TiRex 1.1: Aggregated scores of the overall
benchmark and the short- and long-term performances. Additionally, the average rank in terms of
CRPS, as in the public leaderboard, is presented. Lower values are better. ‘“Zero-shot Leak” refers to
models that are partly trained on the benchmark datasets.

the challenge of fitting long period patterns into TiRex’s context window by identifying the dominant
frequency of the time series and resampling it such that one period fits into context.

Figure shows the performance of TiRex 1.1 on the full GiftEval benchmarkﬂ alongside new results
from concurrent works published after our initial submission, including ToTo (Cohen et al.,[2025),
Sundial 2025), and Yinglong (Wang et al}[2025). In this updated and strictly zero-shot

comparison, TiRex 1.1 maintains its state-of-the-art performance, achieving the top rank across all
reported metrics.

F Societal Impact

As a pre-trained zero-shot model, TiRex could democratize access to modern forecasting techniques
by removing the need for task-specific training or machine learning expertise, enabling broader
adoption across non-expert communities. It also has the potential to enhance forecasting in data-
sparse domains. Nonetheless, care must be taken to ensure responsible deployment, particularly in
high-stakes settings where model errors could have significant real-world consequences.

G Code

The code repository for the model is hosted on GitHub: https://github.com/NX-AI/tirex

>GiftEval benchmark scores are reported based on the leaderboard computation at the time of our submission.

A subsequent update to the seasonal naive baseline affects the absolute aggregated scores but does not change
any discussed model ranking, result, or conclusion.
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Figure 20: Examples of medium- and long-term forecasts from the GiftEval benchmark. For each
example, we show one plot with the full context and the TiRex prediction, as well as zoomed-in
forecasts of the best-performing zero-shot models.
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Figure 21: Examples of short-term forecasts from the GiftEval benchmark. For each example, we
show one plot with the full context and the TiRex prediction, as well as zoomed-in forecasts of the
best-performing zero-shot models.
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Table 9: MASE scores of different zero-shot models on the GiftEval benchmark evaluation settings
(Part 1/2). The models achieving the best and second-best scores are highlighted. Results for datasets
that are part of the training data for the respective models are shaded in grey, and these results are
excluded from the calculation of the best score. We trained TiRex with 6 different seeds and report
the observed standard deviation in the plot.
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ett2/H/medium 1.05 £ 0.021 1.03 1.05 1.05 1.12 1.28 1.18 1.03 1.10 1.15 1.14
ett2/H/short 0.742 +0.006  0.733  0.744 0.755 0821 0.787 0.783 0.807 0.790 0.781  0.790
ett2/W/short 0.797 £ 0.040  0.739  0.791 1.12 1.13 0959 131 0.851 1.36 0.749  0.807
hierarchical_sales/D/short 0.744 £0.002 0743 0749 0.752 0.745 0766 ~ 0.745 0.746 0.834  0.774  0.801
hierarchical_sales/W/short 0.721 +£0.001 0733  0.733  0.703 0725 0.723  0.749  0.747  1.09 0.764  0.756
hospital/M/short 0.767 £0.003  0.791 0801 0.755 0.783  0.753 0.768 0.775 1.05 0.816  0.813
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Table 10: MASE scores of different zero-shot models on the GiftEval benchmark evaluation settings
(Part 2/2). The models achieving the best and second-best scores are highlighted. Results for datasets
that are part of the training data for the respective models are shaded in grey, and these results are
excluded from the calculation of the best score. We trained TiRex with 6 different seeds and report
the observed standard deviation in the plot.
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jena_weather/10T/long 0.641 +0.015 0.657 0.703  0.231 1.36 0.657 0.792 0.762 0.649 0.802 0.956
jena_weather/10T/medium  0.610 £ 0.005  0.610  0.646  0.191 1.10 0.625 0.694 0712 0.656 0.722  0.744
jena_weather/10T/short 0.297 £0.006 0.306 0320 0.091 0318 0325 0338 0350 0346 0366 0.359
jena_weather/D/short 1.02 + 0.014 1.05 1.03 1.24 1.20 1.23 1.14 1.15 2.53 1.12 1.14
jena_weather/H/long 0.987 + 0.031 1.03 1.06 1.06 1.38 1.10 0.881 1.06 1.07 1.11 1.16
jena_weather/H/medium 0.828 £0.023  0.747 0.721 0864  1.05 0954 0.891 0.817 0815 0.883 0.842
jena_weather/H/short 0.516 = 0.003  0.536  0.540 0.525 0589 0595 0.585 0554 0575 0567  0.583
kdd_cup_2018/D/short 1.21 &£ 0.009 1.20 1.19 1.21 1.21 1.17 1.20 1.20 1.17 1.37 1.40
kdd_cup_2018/H/long 0.759 +0.027 0.684 0925 1.03 1.09 1.06 0.867 0.960  1.00 1.14 1.24
kdd_cup_2018/H/medium 0.825 +£0.024 0.700 0.857 1.03 1.14 1.14 0.954  1.05 1.07 1.24 1.34
kdd_cup_2018/H/short 0.657 £ 0.006  0.601 0.667 0.941 1.09 1.10 0.894 0.944 1.01 1.04 1.06
loop_seattle/5T/long 1.02 + 0.038 1.24 1.19 1.13 1.43 1.05 0.556  0.591 1.11 1.31 1.38
loop_seattle/5ST/medium 0.941 +£0.019 1.14 1.15 1.12 1.49 0972 0450 0.523 1.07 1.61 1.61
loop_seattle/5T/short 0.572 £0.005 0.628 0.631 0.583 0.836 0588 0486 0536 0.631 0.764 0.768
loop_seattle/D/short 0.878 £0.005 0903 0919 0.859 0.880 0.899 0916 0.903 1.74 0912  1.00
loop_seattle/H/long 0917 £ 0.011  0.996  1.08 0906 1.26 0922  1.05 1.15 1.11 1.01 1.12
loop_seattle/H/medium 0.944 4+ 0.012 1.02 1.10 0.934 1.32 0.948 1.00 1.14 1.19 1.05 1.14
loop_seattle/H/short 0.850 +0.005 0900 0915 0.832 1.15 0912  0.945 1.06 1.08 0.926  0.967
m4_daily/D/short 3.15 £ 0.063 3.20 3.19 3.09 3.27 4.31 4.18 5.37 4.40 3.18 3.16
m4_hourly/H/short 0.719 £0.026  0.837 0866 0.596 0.768  0.780 0.886 0971 2.78 0.693  0.739
m4_monthly/M/short 0.929 +0.004 0949 0954 0.600 0957 0.895 0977 0953 153 0973  0.982
m4_quarterly/Q/short 1.18 £ 0.013 1.22 1.25 0965  1.40 1.17 1.14 1.14 2.03 1.23 1.24
m4_weekly/W/short 1.90 £ 0.029 2.08 2.11 222 242 2.07 2.58 2.81 3.48 2.08 2.09
m4_yearly/A/short 3.45 £ 0.075 3.51 3.69 2.54 3.35 3.16 297 3.01 5.13 3.64 3.74
m_dense/D/short 0.688 £0.016 0.716 0.742 0.636 0.702 0.634 0957 1.10 1.21 0712 0.834
m_dense/H/long 0.730 £ 0.013 0938 0913  0.795 0.787 1.04 0.696 0.734  1.06 0.773  0.737
m_dense/H/medium 0.736 £ 0.016  0.881 0.820  0.771 0.765 1.02 0.684 0.734 1.02 0.757  0.712
m_dense/H/short 0.788 £0.009 0.775 0.805 0.848 0.849 0916 0.777 0837 1.09 0.800  0.803
restaurant/D/short 0.677 £0.002 0.700 0.700 0.692 0.704 0.782 0.715 0.704 0.8397 0.728  0.758
saugeen/D/short 3.12 £ 0.108 2.84 2.96 3.34 3.30 3.30 3.29 291 4.03 3.29 2.98
saugeen/M/short 0.750 £0.020  0.739  0.727 0836 0.814 0.707 0.756 0.834 0.790 0.854  0.992
saugeen/W/short 1.18 + 0.028 1.22 1.24 1.95 1.28 1.25 1.38 1.41 1.87 1.35 1.37
solar/10T/long 0.828 + 0.021 1.07 1.19 1.15 1.58 0.915 1.95 2.02 1.10 1.66 1.98
solar/10T/medium 0.879 £ 0.037  1.03 1.06 1.17 1.38 0.935 1.82 1.89 1.13 1.54 1.79
solar/10T/short 1.05 £+ 0.032 0.991 0947 148 1.49 1.08 1.11 1.10 1.18 1.11 1.22
solar/D/short 0.971 £0.005 0982 0995 0971 0990 0985  0.987 1.02 1.07 1.01 1.08
solar/H/long 0.697 +0.024  1.03 0.957 1.27 1.44 0.977 1.02 1.07 1.12 1.07 1.01
solar/H/medium 0.731 £0.026 0931 0926 0959 1.04 0921 0917 0892 1.05 0.806 0.815
solar/H/short 0.699 +£0.019 0.813 0.852 1.02 1.04 0937 0.875 0893 0980 0.827 0.855
solar/W/short 1.13 £ 0.075 0.980  0.991 1.28 1.15 0.878 1.53 1.66 2.88 1.15 0.877
sz_taxi/15T/long 0.509 +0.003 0.545 0.538 0514 0535 0560 0.554 0537 0531 0567 0.584
sz_taxi/15T/medium 0.536 - 0.001  0.559 0.562 0.546 0.558 0585 0.569 0558 0.566 0597 0.618
sz_taxi/15T/short 0.544 +0.001 0.548 0.550 0.539 0.558 0571 0581 0576 0574 0589  0.598
sz_taxi/H/short 0.563 £0.002 0.562 0.567 0.560 0.566 0.582 0.601 0588 0.597 0576 0.579
temperature_rain/D/short 1.34 £+ 0.003 1.30 1.32 1.43 142 1.38 1.20 1.31 1.66 1.41 1.44
us_births/D/short 0.404 +£0.017 0485 0528 0370 0552 0320 0503 0509 1.63 0420  0.436
us_births/M/short 0.808 £ 0.066  0.924 0.756 0.497 0.622 0588 0.771  0.723 1.32 0.778  0.572
us_births/W/short 1.08 £ 0.032 1.09 1.12 1.10 1.06 0.929 147 1.44 1.78 0932  0.921
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Table 11: CRPS scores of different zero-shot models on the GiftEval benchmark evaluation settings
(Part 1/2). The models achieving the best and second-best scores are highlighted. Results for datasets
that are part of the training data for the respective models are shaded in grey, and these results are
excluded from the calculation of the best score. We trained TiRex with 6 different seeds and report
the observed standard deviation in the plot.
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bitbrains_fast_storage/5T/long 0.655 +0.028 0.748  0.753 0908 0806 0.760 0.716  0.732 0939 0711  0.709
bitbrains_fast_storage/5T/medium  0.605 4+ 0.016 ~ 0.755  0.867 0.881  0.746  0.735 0.636 0.662 0.906 0.804  0.803
bitbrains_fast_storage/5T/short 0.408 + 0.005 0454 0435 0447 0476 0456 0412 0413 0596 0463  0.446
bitbrains_fast_storage/H/short 0.699 +£0.013 0774 0.589 0.688 0.699 0.591 0.646 0.613 0926 0622 0.614
bitbrains_rnd/5T/long 0.660 + 0.065 0.756  0.756  0.706  0.806  0.730  0.678  0.665  0.779 1.05 1.08
bitbrains_rnd/5T/medium 0.594 +0.019 0.605 0.792 0.727 0.734  0.710 0.594 0.616 0.835 0.644 0.615
bitbrains_rnd/5T/short 0.403 +0.001 0438 0453 0461 0519 0455 0418 0446 0.605 0507  0.493
bitbrains_rnd/H/short 0.631 £0.013  0.624 0.623 0.649 0.654 0.637 0566 0.580 1.06 0.665  0.614
bizitobs_application/10S/long 0.053 £0.004 0.109 0.092 0.057 0.128 0.088 0.094 0.120 0.144  0.093  0.093
bizitobs_application/10S/medium 0.041 +0.003  0.104 0.085 0.033 0.136 0.070 0.084 0.104 0.126 0.117  0.078
bizitobs_application/10S/short 0.013 +0.001  0.054 0.035 0.014 0056 0.031 0.038 0.033 0.058 0.031 0.031
bizitobs_12¢/5T/long 0.581 +0.032 0738 0.790 0.748 0.734  0.511 0.508 0.554 0.785 0.722  0.743
bizitobs_12¢/5T/medium 0366 +0.015 0445 0462 0529 0449 0345 0410 0380 0.540 0484  0.465
bizitobs_12¢/5T/short 0.078 £0.002  0.074 0.073  0.084  0.080 0.099 0.079 0.078 0.107 0.084  0.087
bizitobs_12¢/H/long 0.276 - 0.010  0.278 0295 0.728 0.724 0440 0.600 0.495  0.751 0.738  0.780
bizitobs_12¢/H/medium 0.253 +0.008 0.254 0285 0.640 0856 0.380 0.619 0.688 0.782  0.793  0.780
bizitobs_12¢c/H/short 0227 +£0.011 0189 0204 0.345 0485 0290 0.559 0493 0.549 0469  0.428
bizitobs_service/10S/long 0.054 +0.002 0.113  0.096 0.062 0.137 0.091 0.104 0.115 0.140 0.094  0.093
bizitobs_service/10S/medium 0.034 +0.002 0.096 0.082 0.038 0.109 0067 0.069 0.09 0.117 0.073  0.068
bizitobs_service/10S/short 0.013 +0.000  0.051 0.032  0.015 0.051 0031 0.032 0.042 0.053 0.027 0.027
car_parts/M/short 0.990 4+ 0.010  0.995 1.01 1.05 1.02 0955 1.18 0.999 229 1.07 1.03
covid_deaths/D/short 0.037 +0.004 0.047 0.043 0.062 0204 0.040 0.046 0.044 0.123 0.045 0.061
electricity/15T/long 0.075 £0.001 0.084 0.086 0.083 0.137 0.089 0.099 0.115 0.143  0.095 0.098
electricity/15T/medium 0.075 +£0.001 0.083 0.087 0.080 0.138 0.092 0.103 0.106 0.142  0.095 0.096
electricity/15T/short 0.082 +0.000 0.082 0.082 0.079 0.130 0.104 0.128 0.120 0.152  0.092  0.099
electricity/D/short 0.056 +0.001  0.055 0.058 0.060 0.077 0.060 0.069 0.061 0.093 0.061 0.071
electricity/H/long 0.092 +0.003 0.098 0.102 0.089 0.101  0.112 0.103 0.086 0.128 0.105 0.107
electricity/H/medium 0.078 £0.002 0.081 0.084 0.073 0.082 0.091 0.087 0.082 0.109 0.087 0.088
electricity/H/short 0.061 +0.001 0.064 0.067 0.054 0.064 0.072 0.077 0.075 0.097 0.064 0.070
electricity/W/short 0.046 +0.001 0.047 0.048 0.049 0088 0.051 0.062 0.077 0.159 0.049 0.052
ett1/15T/long 0.246 +0.003 0.298 0296 0.283 0358 0.260 0.358 0273 0.352 0400 0.450
ettl/15T/medium 0251 £0.002 0.281 0288 0.278 0329 0.248 0342 0324 0333 0379 0.390
ettl/15T/short 0.161 +0.003 0.158 0.169 0.168 0.193  0.183 0.226 0.193 0.235 0.198  0.217
ettl/D/short 0.282 £ 0.004 0.287 0283 0.281 0280 0.292  0.286  0.301 0.416  0.387  0.360
ettl/H/long 0.263 +0.004 0311 0337 0310 0317 0290 0.296 0287 0.342 0350 0.360
ettl/H/medium 0.253 +0.002 0303 0295 0.282 0304 0276 0.270 0282 0.339 0330 0.327
ett1/H/short 0.179 +£0.002  0.181  0.189  0.192 0209 0.194 0.189 0.197 0250 0.194 0.222
ettl/W/short 0.306 £0.009 0296 0.293 0272 0307 0256 0.260 0261 0448 0312 0.317
ett2/15T/long 0.097 +0.001  0.111 0.118 0.106  0.119 0.101 0.115 0.137 0.126  0.134  0.129
ett2/15T/medium 0.093 +0.001 0.110 0.119 0.105 0.112 0.098 0.105 0.109 0.128 0.122  0.117
ett2/15T/short 0.066 +0.001  0.067 0.070  0.065 0.077 0.073 0.080 0.078 0.093 0.071  0.073
ett2/D/short 0.092 +0.001  0.094 0.091 0.108 0.113  0.129  0.094 0.095 0.119 0.092  0.097
ett2/H/long 0.116 £ 0.004  0.117 0.121  0.125 0.125 0.136  0.125 0.110 0.144 0.136  0.122
ett2/H/medium 0.106 +0.002  0.115 0.118 0.110 0.126 0.128 0.118 0.100 0.139  0.132  0.136
ett2/H/short 0.065 +0.001  0.063 0.065 0.066 0.074 0.070 0.069 0.072 0.088 0.071 0.072
ett2/W/short 0.088 +0.002  0.088  0.094 0.110 0.111  0.120 0.109 0.087 0.200 0.077  0.077
hierarchical_sales/D/short 0.572 +£0.002 0576 0582 0576 0573 0.593 0580 0575 0.792  0.600 0.619
hierarchical_sales/W/short 0.349 £0.003  0.353 0.354 0330 0343 0342 0359 0357  0.725 0.367  0.367
hospital/M/short 0.052 +0.000  0.057 0.058 0.050 0.052 0.050 0.051 0.051 0.123 0.056 0.056
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Table 12: CRPS scores of different zero-shot models on the GiftEval benchmark evaluation settings
(Part 2/2). The models achieving the best and second-best scores are highlighted. Results for datasets
that are part of the training data for the respective models are shaded in grey, and these results are
excluded from the calculation of the best score. We trained TiRex with 6 different seeds and report
the observed standard deviation in the plot.
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jena_weather/10T/long 0.053 +0.001  0.064 0063 0.035 0.069 0.055 0.077 0.070 0.068 0.080  0.096
jena_weather/10T/medium  0.051 £ 0.001  0.057  0.060 ~ 0.031 0.067 0.057 0.072 0.068 0.069 0.076  0.089
jena_weather/10T/short 0.030 +0.001  0.033  0.037 0.016 0.036 0.035 0.051 0.053 0.045 0.044 0.047
jena_weather/D/short 0.046 +0.001  0.045 0.047 0.058 0.059 0.047 0.051 0.050 0.124 0.049 0.051
jena_weather/H/long 0.057 £0.002 0.062 0.068 0.068 0.089 0066 0.061 0.065 0.084 0.074 0.072
jena_weather/H/medium 0.051 +0.002 0.054 0.058 0.066 0.065 0.060 0.058 0.057 0.073 0.070  0.069
jena_weather/H/short 0.041 +0.000 0.042 0.043 0.045 0.048 0.043 0.045 0.044 0.060 0.046  0.047
kdd_cup_2018/D/short 0.381 £0.005 0372 0373 0378 0380 0.359 0381 0376 0452 0503 0.512
kdd_cup_2018/H/long 0.341 +0.014 0300 0419 0.518 0537 0462 0378 0418 0542 0624 0.712
kdd_cup_2018/H/medium 0.337 £0.011 0301 0364 0466 0493 0462 0387 0441 0532 0664 0.706
kdd_cup_2018/H/short 0.270 +0.004 0246 0267 0376 0446 0437 0362 0389 0514 0459 0459
loop_seattle/5T/long 0.090 +0.004  0.129  0.125 0.114 0.148 0.094 0.049 0052 0.125 0.143  0.150
loop_seattle/5T/medium 0.083 +0.002 0.116 0.119 0.110 0.151 0.087 0.038 0.045 0.121 0.176 0.175
loop_seattle/5T/short 0.049 +0.000 0.055 0.055 0.051 0075 0.052 0.041 0.046 0.068 0.070 0.070
loop_seattle/D/short 0.042 +0.000 0.044 0.045 0.041 0043 0.044 0.045 0.044 0.101 0045 0.048
loop_seattle/H/long 0.063 +0.001  0.076  0.082 0.066 0.097 0.063 0.074 0.080 0.097 0.082  0.089
loop_seattle/H/medium 0.065 +0.001  0.076  0.082 0.067 0.100 0.065 0.070 0.080 0.104 0.084  0.088
loop_seattle/H/short 0.059 +0.000 0.065 0.066 0.059 0082 0.064 0.066 0.074 0.095 0.066 0.069
m4_daily/D/short 0.021 £0.000  0.021  0.021  0.021 0.021  0.024 0.030 0.040 0.035 0.022 0.021
m4_hourly/H/short 0.021 £0.000 0.025 0.020 0.011 0.021 0.028 0.020 0.022 0.040 0.024  0.025
m4_monthly/M/short 0.093 £0.000  0.094 0.094 0.067 0.097 0.088 0.095 0.094 0.177 0.104 0.103
m4_quarterly/Q/short 0.074 +0.000  0.077 0.078 0.062 0.085 0.075 0.073 0.073 0.139 0.083 0.084
m4_weekly/W/short 0.035+0.001 0.038 0.038 0.042 0041 0.036 0.046 0.048 0.069 0.037 0.040
m4_yearly/A/short 0.119 £0.002 0.121 0.128 0.091 0.117 0113 0.104 0.105 0.197 0.135  0.139
m_dense/D/short 0.066 +0.002  0.069 0.072 0.060 0.070 0.057 0.095 0.104 0.151 0.075 0.087
m_dense/H/long 0.122 4 0.003  0.170  0.146  0.127  0.135 0.164 0114 0.122 0.222  0.135  0.133
m_dense/H/medium 0.121 +0.002  0.157 0.134 0.127 0.132 0.159 0112 0.123 0213 0.136  0.128
m_dense/H/short 0.130 £ 0.001  0.125  0.133  0.139  0.140 0.154 0.128 0.140 0.225 0.137  0.140
restaurant/D/short 0.254 +£0.001 0264 0264 0261 0.265 0297 0270 0266 0438 0.279 0292
saugeen/D/short 0.382 +£0.014 0338 0354 0408 0417 0.384 0406 0354 0.589 0432 0.387
saugeen/M/short 0.303 £0.009 0296 0293 0.342 0328 0.278 0324 0348 0405 0408 0.464
saugeen/W/short 0.353 £0.009 0363 0372 0.601 0382 0.380 0430 0423 0.696 0473 0.4382
solar/10T/long 0.328 +0.008 0.443 0497 0498 0703 0.352 0.771 0903 0.545 0.748  0.901
solar/10T/medium 0354 £ 0016 0436 0453 0516 0.623 0359 0.747 0832 0573 0.686  0.796
solar/10T/short 0.5424+£0.017 0.511 0498 0.804 0871 0.545 0596 0.614 0.785 0579 0.635
solar/D/short 0.281 £0.002  0.287 0286 0.278 0288  0.269 0.292 0295 039 0326 0.337
solar/H/long 0.243 +0.008 0.405 0373 0493 0572 0.324 0347 0360 0512 0464  0.441
solar/H/medium 0.260 +0.010 0368  0.356 0376 0425 0.324 0346 0331 0493 0356 0.361
solar/H/short 0.259 +£0.009 0.298 0303 0406 0403 0358 0.333 0338 0468 0334 0345
solar/W/short 0.154 £0.008  0.133  0.136  0.171  0.157 0.124 0213 0235 0531 0161 0.124
sz_taxi/15T/long 0.197 £0.001 0248 0245 0.227 0238 0.248 0.213 0209 0260 0265 0.275
sz_taxi/15T/medium 0.202 +0.001 0.244 0246 0229 0233 0245 0215 0211 0270 0268 0.279
sz_taxi/15T/short 0.200 +0.000  0.202 0203 0.199 0206 0215 0215 0213 0268 0236 0.241
sz_taxi/H/short 0.136 +0.000  0.136  0.137 0.135 0.137 0.144 0.146 0.143 0.183 0.149  0.149
temperature_rain/D/short 0.550 £ 0.002 0.538 0.544 0586 0.581 0.565 0479 0535 0.791 0.610  0.627
us_births/D/short 0.021 £0.001  0.026  0.028 0.019 0.029 0.018 0.027 0.027 0.104 0.022 0.023
us_births/M/short 0.017 £0.002  0.019 0.016 0.011 0013 0.013 0.016 0.015 0.036 0.018 0.013
us_births/W/short 0.013 £0.000 0.013 0.013 0.013 0.013 0.011 0.018 0.017 0.027 0.011 0.011
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Table 13: MASE scores of TiRex compared with various task-specific and local models on the
GiftEval benchmark evaluation settings (Part 1/2). Models achieving the best and second-best scores
are highlighted, while the grey shade indicates results on datasets TiRex trained on. We trained TiRex
with 6 different seeds and report the observed standard deviation in the plot.
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bitbrains_fast_storage/5T/long 0.916 +0.006  7.33 1.14 3.47 1.21 1.40 1.14 1.61 1.14
bitbrains_fast_storage/5T/medium  1.00 4= 0.011 8.50 1.20 3.33 1.38 1.60 1.22 1.42 1.22
bitbrains_fast_storage/5T/short 0.692 +0.007 0.945 0973 1.48 0.996 1.09 1.14 1.15 1.14
bitbrains_fast_storage/H/short 1.06 £+ 0.013 6.06 1.34 2.65 1.73 1.37 1.43 1.35 1.30
bitbrains_rnd/5T/long 3.35 4+ 0.013 4.44 3.72 6.35 3.71 3.95 3.50 4.11 3.50
bitbrains_rnd/5T/medium 4.40 £ 0.007 4.89 4.65 7.08 4.81 4.79 4.54 4.88 4.54
bitbrains_rnd/5T/short 1.66 £ 0.004 2.10 1.98 2.63 2.27 2.18 197 2.07 1.97
bitbrains_rnd/H/short 5.84 +0.011 6.06 6.11 8.50 6.19 6.16 6.08 5.75 6.04
bizitobs_application/10S/long 3.67 £ 0.069 4.47 3.19 4.25 14.8 3.83 36400 293 36400
bizitobs_application/10S/medium 2.85 £ 0.057 3.22 2.7 3.88 13.8 2.57 2.69 1.78 2.69
bizitobs_application/10S/short 140+ 0.112 4.16 2.24 7.65 9.11 2.57 2.24 111 2.24
bizitobs_12¢/5T/long 1.19 4 0.040 1.32 0.686 1.12 1.06 0968 145 1.24 1.45
bizitobs_12¢/5T/medium 0.849 +£0.028  1.21 0.787  0.894 0.786 0.935 1.24 0.868 1.24
bizitobs_12¢/5T/short 0.290 +0.005  0.613  0.266 0.243  0.278 0297  0.986 0292 0.986
bizitobs_I2¢/H/long 0.590 £0.022 0727 0.617 0.744  0.599 02811 1.54 1.41 4.04
bizitobs_l12¢/H/medium 0.525 £0.020 0.737  0.537 0.676  0.693  0.701 1.56 1.65 1.65
bizitobs_12c/H/short 0.528 + 0.021 1.50 0495 0.640 0.862 0536 1.25 1.19 1.21
bizitobs_service/10S/long 1.57 + 0.057 3.96 1.69 2.29 1.75 2.62 1.37 1.62 1.37
bizitobs_service/10S/medium 1.32 4+ 0.058 2.17 1.49 223 1.68 2.59 1.32 1.06 1.32
bizitobs_service/10S/short 0.884 +0.052  2.67 1.24 1.87 2.15 1.12 1.23 0791  1.23
car_parts/M/short 0.838 £0.004 0.835 0.797 0997 0.807 0.810 0.958 1.23 1.20
covid_deaths/D/short 39.5 £ 0.803 50.7 37.7 33.2 329 32.8 314 454 46.9
electricity/15T/long 0.891 +0.008  2.28 0960 1.24 1.03 1.15 1.16 1.50 1.16
electricity/15T/medium 0.841 =+ 0.006 1.39 0.977 1.31 1.11 1.62 1.15 1.43 1.15
electricity/15T/short 0.945 £0.008  1.67 147 1.64 2.07 1.69 1.72 1.35 1.72
electricity/D/short 1.43 £ 0.010 1.89 1.85 3.56 1.86 1.85 1.82 1.88 1.99
electricity/H/long 1.21 £ 0.018 2.67 1.39 221 141 1.42 1.52 2.05 1.52
electricity/H/medium 1.08 £ 0.010 6.76 1.16 2.26 131 1.35 1.39 1.78 1.39
electricity/H/short 0.869 +0.009  1.23 1.08 1.31 1.29 1.44 1.36 1.74 1.36
electricity/W/short 1.46 £ 0.010 2.25 1.96 1.84 2.10 2.10 2.09 2.14 2.09
ettl/15T/long 1.05 £ 0.009 9.34 1.10 1.19 1.34 1.42 1.19 1.76 1.19
ettl/15T/medium 1.04 £ 0.009 1.35 1.08 1.20 1.08 1.41 1.19 1.25 1.19
ettl/15T/short 0.706 + 0.007  1.44 0.835 0.804 1.05 0.870  0.934 0.863  0.934
ett1/D/short 1.71 £ 0.016 1.69 1.68 1.98 1.86 2.04 1.85 1.75 1.78
ettl/H/long 1.34 £ 0.030 2.68 1.47 146 1.55 1.96 1.65 2.51 1.48
ettl/H/medium 1.25 £ 0.017 3.12 1.39 1.66 1.58 1.67 1.57 1.84 1.57
ettl/H/short 0.827 £ 0.007  1.06 0.893 0945 0947 0930 0995 1.28 0.977
ettl/W/short 1.72 £ 0.044 4.16 1.89 2.16 1.61 1.63 1.99 1.89 1.77
ett2/15T/long 0932 £0.012 3.70 0961 1.10 1.15 0980 1.01 1.10 1.01
ett2/15T/medium 0.910 £ 0.010  3.27 0933 121 1.10 1.09 1.05 1.04 1.05
ett2/15T/short 0.749 + 0.010  4.11 0.879  0.937  1.06 1.01 1.07 0.832  1.07
ett2/D/short 1.28 £ 0.019 3.64 2.17 3.25 1.31 1.54 1.45 1.85 1.39
ett2/H/long 1.16 + 0.037 2.49 1.43 1.58 1.45 1.26 1.28 1.46 1.13
ett2/H/medium 1.05 + 0.021 2.52 1.27 1.36 1.32 1.05 1.46 1.30 1.24
ett2/H/short 0.742 £ 0.006  1.48 0.858 0.817 0956 0819 0.952 1.02 0.923
ett2/W/short 0.797 + 0.040  7.17 1.49 1.93 1.60 2.69 1.13 1.41 0.779
hierarchical_sales/D/short 0.744 £0.002  0.757  0.756  0.860  0.771 0.773  0.813 0.932 1.13
hierarchical_sales/W/short 0.721 £0.001  0.781  0.771 0993 0.793 0.778  0.850 0.849  1.03
hospital/M/short 0.767 +0.003  0.834  0.820 0.811  0.833 0.771  0.826 0.761  0.921
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Table 14: MASE scores of TiRex compared with various task-specific and local models on the
GiftEval benchmark evaluation settings (Part 2/2). Models achieving the best and second-best scores
are highlighted, while the grey shade indicates results on datasets TiRex trained on. We trained TiRex
with 6 different seeds and report the observed standard deviation in the plot.
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jena_weather/10T/long 0.641 £ 0.015  3.15 1.07 0912  0.741 0.855  0.761 0.990 0.761
jena_weather/10T/medium  0.610 £ 0.005 1.20 0.943 1.17 0.737 0749  0.716 0.806  0.716
jena_weather/10T/short 0.297 +£0.006 0.574 0552 1.96 0450  0.527 0743 0368 0.743
jena_weather/D/short 1.02 + 0.014 1.30 1.39 1.60 1.80 1.83 1.45 1.60 1.57
jena_weather/H/long 0.987 +0.031  6.89 1.31 1.90 1.15 113 1.98 2.64 1.27
jena_weather/H/medium 0.828 + 0.023 1.30 1.09 0.997 0939  0.902 1.45 1.36 0.889
jena_weather/H/short 0.516 + 0.003 18.8 0.641 0982 0.634 0.763 1.08 0.878  0.723
kdd_cup_2018/D/short 1.21 4 0.009 1.23 1.22 1.23 121 1.35 1.18 1.38 1.50
kdd_cup_2018/H/long 0.759 £ 0.027 3.34 1.02 1.09 1.11 1.18 1.18 1.37 1.34
kdd_cup_2018/H/medium 0.825 £0.024 1.17 1.05 112 1.16 1.29 1.42 1.33 1.43
kdd_cup_2018/H/short 0.657 +£ 0.006 1.28 1.12 1.13 1.15 1.30 1.34 1.27 1.34
loop_seattle/5T/long 1.02 4+ 0.038 1.96 1.06 1.17 0.977 1.05 1.25 1.44 1.25
loop_seattle/5T/medium 0941 +£0.019 1.27 1.05 1.12 1.01 1.05 1.15 2.06 1.15
loop_seattle/5T/short 0.572 £0.005 0.803 0.744 0.895 0.731 0.735 0.762 0.780  0.762
loop_seattle/D/short 0.878 £ 0.005 1.08 0934 0900 0973 0.898 149 1.39 1.73
loop_seattle/H/long 0.917 £+ 0.011 0985 0979 1.03 0972 0932 259 2.02 1.55
loop_seattle/H/medium 0944 +£0.012 1.03 1.03 1.20 0.971 1.03 2.00 1.61 1.48
loop_seattle/H/short 0.850 +0.005 0.941 1.07 1.13 1.04 1.03 1.29 1.40 1.29
m4_daily/D/short 3.15 4+ 0.063 4.58 3.22 3.42 3.29 3.35 3.26 3.34 3.28
m4_hourly/H/short 0.719 £ 0.026  3.53 1.40 1.69 2.47 1.34 1.03 2.46 1.19
m4_monthly/M/short 0.929 +£0.004  3.18 1.06 1.13 1.21 1.05 0976  0.966 1.26
m4_quarterly/Q/short 1.18 £ 0.013 1.44 1.32 1.46 1.30 1.21 1.28 1.19 1.60
m4_weekly/W/short 1.90 £ 0.029 4.62 234 4.64 2.68 1.97 2.36 2.66 2.78
m4_yearly/A/short 3.45 +0.075 3.40 3.29 4.16 3.09 3.15 3.71 3.11 3.97
m_dense/D/short 0.688 £ 0.016 0.793  0.732  1.01 0799  0.706  1.34 1.22 1.67
m_dense/H/long 0.730 +0.013  0.805  0.738 1.24 0.723 1.18 1.21 2.29 1.48
m_dense/H/medium 0.736 +0.016 ~ 0.738  0.757 0930 0.732 0.890 1.27 1.74 1.57
m_dense/H/short 0.788 +0.009 0.795 1.03 1.04 0.878  0.915 1.49 1.69 1.49
restaurant/D/short 0.677 £0.002 0.713  0.690 0.706  0.750 0.712 0929 0843 1.01
saugeen/D/short 3.12 +0.108 4.31 3.28 4.20 322 3.28 3.74 3.60 341
saugeen/M/short 0.750 +0.020  1.63 0.893 0955 0.865 0.758 0.725 0912 0.976
saugeen/W/short 1.18 + 0.028 131 1.55 1.81 1.55 1.54 1.55 2.12 1.99
solar/10T/long 0.828 + 0.021 1.28 0912  1.18 1.00 2.03 0.871 4.53 0.871
solar/10T/medium 0.879 +0.037  1.21 0913 1.08 0.931 1.98 0.927  2.69 0.927
solar/10T/short 1.05 £+ 0.032 1.47 2.20 1.24 1.11 0.848 1.11 1.80 1.11
solar/D/short 0.971 +0.005  2.49 0962 1.03 0.999 1.21 1.01 1.05 1.16
solar/H/long 0.697 +£0.024 0972 0978 135 1.12 2.21 0.995 524 1.07
solar/H/medium 0.731 £0.026  0.992 0965 1.17 0.884  2.12 0.848  2.87 0.935
solar/H/short 0.699 +0.019  1.02 0954  1.06 0.960  1.04 0952 2.05 0.952
solar/W/short 1.13 £ 0.075 1.69 1.10 1.13 0.691 233 1.12 1.15 1.47
sz_taxi/15T/long 0.509 +0.003 0.733 0.761 0.841 0.535 0.666 0.598 0.759  0.691
sz_taxi/15T/medium 0.536 +0.001  0.558 0588  0.629 0.548 0.662 0.632 0.716  0.713
sz_taxi/15T/short 0.544 +0.001  0.602 0560 0.582 0.603 0.604 0.764 0.649 0.764
sz_taxi/H/short 0.563 +£0.002 0.576 0591  0.667 0595 0.624 0.624  0.691  0.738
temperature_rain/D/short 1.34 4 0.003 1.72 1.51 1.83 1.44 1.90 1.71 1.93 2.01
us_births/D/short 0.404 +0.017 0535 0487 0.645 0315 0456 1.58 1.63 1.86
us_births/M/short 0.808 +0.066  0.760 0.782  1.17 0.871  0.928 0.466 0.883  0.761
us_births/W/short 1.08 + 0.032 1.45 123 1.46 1.59 1.40 1.48 1.49 1.56
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Table 15: CRPS scores of TiRex compared with various task-specific and local models on the GiftEval
benchmark evaluation settings (Part 1/2). Models achieving the best and second-best scores are
highlighted, while the grey shade indicates results on datasets TiRex trained on. We trained TiRex
with 6 different seeds and report the observed standard deviation in the plot.
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bitbrains_fast_storage/5T/long 0.655 +0.028  1.01 0.669  1.33 0.734  0.791 1.29 1.36 1.29
bitbrains_fast_storage/5T/medium  0.605 + 0.016  0.990 0.642  0.967 0.610 0.841 1.27 1.45 1.27
bitbrains_fast_storage/5T/short 0.408 +0.005 0493 0471 0577 0451 0.622 1.21 0.731 1.21
bitbrains_fast_storage/H/short 0.699 £0.013 0.778 0.549 0.803 0.595 0.812 0.844 1.15 1.08
bitbrains_rnd/5T/long 0.660 + 0.065  0.672  0.664 1.30 0.624  1.06 1.29 1.60 1.29
bitbrains_rnd/5T/medium 0.594 +0.019 0.647 0.620 1.01 0.628  0.699  1.26 1.47 1.26
bitbrains_rnd/5T/short 0.403 +0.001 0557 0474 0.571 0486  0.656 1.10 0.741 1.10
bitbrains_rnd/H/short 0.631 £0.013  0.585  0.603 1.07 0.650 0.715 0.874 138 1.30
bizitobs_application/10S/long 0.053 +0.004 0.083  0.054 0.070 0.056 0.062 0973 0.035 0973
bizitobs_application/10S/medium 0.041 +0.003 0.053  0.047 0.056 0.047 0.047 0.042 0.024 0.042
bizitobs_application/10S/short 0.013 +0.001  0.064 0.022 0.079 0.090 0.043 0.035 0.010 0.035
bizitobs_12¢/5T/long 0.581 £0.032 0719 0324 0.653 0472 0546 0.674 0.632 0.674
bizitobs_12¢/5T/medium 0366 +0.015 0589 0332 0490 0346 0505 0.530 0415  0.530
bizitobs_12¢/5T/short 0.078 £0.002  0.179  0.074 0.080 0.077 0.100 0.262 0.080 0.262
bizitobs_I12¢/H/long 0.276 - 0.010 0338 0291 0422 0.286 0479 0.787 0819 1.82
bizitobs_12¢/H/medium 0.253 +0.008 0.345 0263 0.398 0345 0420 0.813 0892 142
bizitobs_12¢/H/short 0.227 +£0.011 0789  0.217 0336 0401 0.288 0547 0.507 0.536
bizitobs_service/10S/long 0.054 +0.002  0.070  0.057 0.067 0.056 0.061 0.056 0.052 0.056
bizitobs_service/10S/medium 0.034 +0.002  0.044 0.045 0.053 0.044 0.043 0049 0.027 0.049
bizitobs_service/10S/short 0.013 +0.000 0.032 0.025 0.032 0.025 0.021 0.040 0.013  0.040
car_parts/M/short 0.990 +0.010 0953  1.00 1.26 0.890 1.02 1.29 1.34 1.72
covid_deaths/D/short 0.037 +0.004  0.177  0.067 0.063  0.037 0.071  0.030 0.095 0.125
electricity/15T/long 0.075 +£0.001 0.155 0.081 0.129 0.084 0.123 0.129 0401  0.129
electricity/15T/medium 0.075 +£0.001 0.119 0.086 0.142 0.094 0.176  0.124 0328  0.124
electricity/15T/short 0.082 +0.000 0.152 0.134 0.177 0.184 0.180 0.165 0.140 0.165
electricity/D/short 0.056 +0.001  0.078 0.083 0.169 0.084 0.110 0.083 0.088  0.122
electricity/H/long 0.092 £0.003 0.176  0.104 0203 0.094 0.126  0.190 0.300  0.190
electricity/H/medium 0.078 £0.002 0454 0.081 0.206 0.091 0.115 0.156 0254 0.156
electricity/H/short 0.061 +0.001 0.094 0.079 0.112 0.089 0.123 0.109 0.177  0.109
electricity/W/short 0.046 +0.001  0.092 0.095 0.111 0.107 0.123 0.100 0.101  0.099
ett1/15T/long 0.246 +0.003  2.22 0247 0.343 0280 0431 0396  1.39 0.396
ett1/15T/medium 0251 £0.002 0.315 0250 0.347 0247 0430 0352 1.13 0.352
ettl/15T/short 0.161 +0.003  0.320  0.191 0.233 0245 0.254 0241 0410 0.241
ett1/D/short 0.282 +0.004 0293  0.304 0376 0330 0.387 0279 0.341 0.515
ett1/H/long 0.263 +0.004 0469 0297 0.363 0313 0567 0430 1.94 0.616
ettl/H/medium 0.253 £0.002 0.535 0273 0455 0316 0450 0.384 1.65 0.540
ett1/H/short 0.179 £0.002 0.233  0.190 0.256 0.199 0249 0.223  0.668  0.250
ett]/W/short 0.306 +0.009 0.686  0.323  0.447 0406 0372 0305 0.319 0.338
ett2/15T/long 0.097 +0.001 0304 0.098 0.141 0109 0.126  0.165 0.169  0.165
ett2/15T/medium 0.093 +0.001 0258 0.094 0.151 0.104 0.138 0.143  0.150  0.143
ett2/15T/short 0.066 +0.001 0378 0.076 0.102 0.081 0.109 0.096 0.077  0.096
ett2/D/short 0.092 +£0.001 0207 0.131 0.218 0.096 0.140 0.125 0.164  0.205
ett2/H/long 0.116 +0.004  0.196  0.130 0.165 0.138  0.156 0272 0336  0.287
ett2/H/medium 0.106 +0.002  0.281  0.125 0.166  0.122  0.130 0.245 0284  0.241
ett2/H/short 0.065 +0.001  0.122 0.074 0.088 0.078 0.091 0.089 0.102  0.094
ett2/W/short 0.088 +0.002 0.728 0.142  0.194 0.160 0294 0.136 0.160  0.169
hierarchical_sales/D/short 0.572 £ 0.002 0.600 0.590 0.817 0.600 0.728 0.735 0.967 2.36
hierarchical_sales/W/short 0.349 £ 0.003 0379 0358 0.582 0382 0439 0485 0474 1.03
hospital/M/short 0.052 +0.000 0.062 0.064 0.076 0.058 0.068 0.060 0.055 0.062
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Table 16: CRPS scores of TiRex compared with various task-specific and local models on the GiftEval
benchmark evaluation settings (Part 2/2). Models achieving the best and second-best scores are
highlighted, while the grey shade indicates results on datasets TiRex trained on. We trained TiRex
with 6 different seeds and report the observed standard deviation in the plot.
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jena_weather/10T/long 0.053 4 0.001 0.143  0.066 0.093  0.052 0.134 0304 0424 0.304
jena_weather/10T/medium  0.051 £ 0.001 0.073  0.065 0.098 0.052 0.089 0277 0350 0.277
jena_weather/10T/short 0.030 +0.001  0.063 0.064 0.129 0.069 0.104 0.155 0.130  0.155
jena_weather/D/short 0.046 +0.001  0.062 0.053 0.073 0.069 0.193 0.080 0.082  0.297
jena_weather/H/long 0.057 £0.002 0.197 0.076 0.139 0.090 0.131 0230 1.29 0.598
jena_weather/H/medium 0.051 £0.002 0.078 0.069 0.093 0.073 0.097  0.211 0.832  0.486
jena_weather/H/short 0.041 +£0.000 0.699 0.050 0.086 0.048 0.098 0.143 0296 0.173
kdd_cup_2018/D/short 0.381 +0.005 0.383 0401 0482 0380 0529 0.393 0459 0.888
kdd_cup_2018/H/long 0.341 £0.014  1.09 0477 0.583 0.503  0.660 1.05 0970 125
kdd_cup_2018/H/medium 0.337 £0.011 0442 0442 0.548 0472 0.660 0.851 0.791  0.949
kdd_cup_2018/H/short 0.270 £ 0.004 0.517 0457 0.581 0467 0.683 0.559 0531 0.559
loop_seattle/5T/long 0.090 +0.004  0.184 0.095 0.131  0.088 0.117 0.137  0.231 0.137
loop_seattle/5T/medium 0.083 +0.002 0.118 0.095 0.126 0.092 0.118 0.123 0240 0.123
loop_seattle/5T/short 0.049 +0.000 0.072 0.066 0.099 0.065 0.080 0.081 0.082  0.081
loop_seattle/D/short 0.042 £ 0.000 0.052 0.046 0.053 0.048 0.053 0.078 0.072  0.131
loop_seattle/H/long 0.063 +£0.001  0.068 0.069 0.088 0.068 0.080 0.193 0468  0.245
loop_seattle/H/medium 0.065 +0.001  0.072 0.071 0.104 0.069 0.088 0.154 0390 0.206
loop_seattle/H/short 0.059 +0.000 0.066 0.076  0.099 0.073 0.090 0.108 0.165 0.108
m4_daily/D/short 0.021 £ 0.000 0.030  0.023  0.029 0.023 0.029 0.023 0.024 0.026
m4_hourly/H/short 0.021 £0.000 0.133  0.039 0.055 0.040 0.050 0.034 0.041  0.040
m4_monthly/M/short 0.093 £0.000 0.184 0.102 0.129 0.113  0.122  0.098 0.098 0.126
m4_quarterly/Q/short 0.074 +0.000 0.083 0.083 0.110 0.083 0.096 0.082 0.079  0.099
m4_weekly/W/short 0.035 +£0.001 0.062 0.040 0.070 0.049 0.047 0.050 0.053 0.073
m4_yearly/A/short 0.119 £0.002 0.113 0.117 0.168 0110 0.134  0.130 0.115  0.138
m_dense/D/short 0.066 + 0.002  0.076  0.070 0.123  0.077 0.087 0.135 0.126 0.294
m_dense/H/long 0.1224+£0.003 0.130 0.120 0259 0115 0243 0270 143 0.552
m_dense/H/medium 0.121 £0.002  0.118 0.127 0.191 0114 0.184  0.255 1.21 0.479
m_dense/H/short 0.130 +0.001  0.128 0.173 0.214 0.139 0.190 0281  0.549  0.281
restaurant/D/short 0.254 £0.001 0270 0262 0.340 0.284 0342 0362 0329  0.907
saugeen/D/short 0.382 +0.014 0.572 0408 0.613 0419 0478 0564 0.669 0.754
saugeen/M/short 0.303 £ 0.009 0.689 0372 0490 0340 0388 0.326 0373  0.445
saugeen/W/short 0.353 £0.009 0.397 0484 0.673 0491 0574 0549 0.734  0.855
solar/10T/long 0.328 +0.008 0.549 0339 0.585 0379 1.01 0.786  6.64 0.786
solar/10T/medium 0.354 £0.016 0485 0356 0.552 0362 1.00 0771  5.67 0.771
solar/10T/short 0.542 +£0.017  0.933 1.37 0.824  0.618 0.576 0.860  2.36 0.860
solar/D/short 0.281 +0.002  0.682  0.287 0.383 0277 0450 0282 0286 0.757
solar/H/long 0.243 +0.008 0.381 0353 0.612  0.401 1.00 0.607  7.32 1.47
solar/H/medium 0.260 = 0.010  0.352 0344 0.552  0.330 1.00 0.557  6.13 1.27
solar/H/short 0.259 +£0.009 0.389 0340 0.507 0.367 0498 0.628  2.33 0.628
solar/W/short 0.154 £0.008 0.242 0.162 0210 0114 0432 0.152 0155 0.236
sz_taxi/15T/long 0.197 £0.001 0286 0281 0.396 0.241 0323 0.398 0.629 0.554
sz_taxi/15T/medium 0.202 +£0.001 0210 0220 0296 0.206 0314 0351 0529 0454
sz_taxi/15T/short 0.200 = 0.000  0.219 0207 0271 0222 0281 0.309 0288  0.309
sz_taxi/H/short 0.136 = 0.000  0.139  0.144 0201 0.144 0.190 0.170 0232  0.229
temperature_rain/D/short 0.550 £0.002 0.682 0.644 0.830 0.592 0840 0.694 0.761 1.63
us_births/D/short 0.021 +0.001  0.028 0.025 0.041 0.016 0.029 0.074 0.075 0.144
us_births/M/short 0.017 £0.002 0.016 0.017 0.032 0.021 0.025 0.010 0.019 0.017
us_births/W/short 0.013 +£0.000 0.017 0.015 0.022 0.019 0.021 0.018 0.018 0.022
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Table 17: MASE scores of different zero-shot models on the Chronos-ZS benchmark datasets. The
models achieving the best and second-best scores are highlighted. Results for datasets that are part
of the training data for the respective models are shaded in grey, and these results are excluded from
the calculation of the best score. We trained TiRex with 6 different seeds and report the observed
standard deviation in the plot.
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Table 18: WQL scores of different zero-shot models on the Chronos-ZS benchmark datasets. The
models achieving the best and second-best scores are highlighted. Results for datasets that are part
of the training data for the respective models are shaded in grey, and these results are excluded from
the calculation of the best score. We trained TiRex with 6 different seeds and report the observed
standard deviation in the plot.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The key contributions stated in the abstract and introduction are well supported
by the content of the paper. Specifically, our proposed model, TiRex, is rigorously evaluated
on two comprehensive benchmarks — to the best of our knowledge the most extensive to date.
Across both benchmarks, TiRex consistently outperforms all existing pre-trained models on
both short- and long-term forecasting tasks (Figure ] [5| App: Figure[B|[IT). We note that
most benchmark results of the compared models are not generated by us but are sourced
from a public leaderboard, with most results contributed by the original model authors.
However, we additionally replicated a subset of these results for verification. Furthermore,
the effectiveness of each component of TiRex is validated through detailed ablation studies
(Table[T] App: Figure[I7), highlighting the contributions of TiRex architecture, CPM and
the proposed augmentation strategies.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitation in a paragraph in the the conclusion (Section [5))
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: There are no theoretical results; we only highlight and built on theoretical
results of past work.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information about training data, training data preparation,
training hyperparameters, model hyperparameters, augmentations, etcin the appendix in
Section[Cland Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All training data is publicly available — further, we provide the code of
the model, CPM, and the augmentations in the supplementary material. The benchmark
and the respective leaderboard are publicly available. The model is available here https
//github.com/NX-AI/tirex/tree/main/src/tirex, and the results are submitted in
a reproducable way to the respective leaderboards.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all training details in Appendix|[C| The benchmarks are standardized
public benchmarks — details are specified in Section |4{and Appendix |C|as well as in the
respective publications.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We train TiRex using 6 different random seeds and report the mean and
standard deviation of the resulting performance metrics. In our ablation studies (Table|[T)),
we explicitly highlight cases where the performance degradation exceeds three times the
observed standard deviation across seeds, indicating statistical significance. For baseline
models, whose results are obtained from a public leaderboard or rely on pre-trained models
with deterministic inference, error bars are not available.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a section on the utilized hardware (Section[C.4). We also conducted
an inference speed analysis in Section 4] relevant for replicating the benchmark results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and the work conforms to it.
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Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We added a dedicated section in Appendix [F|on societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All relevant assets are cited accordingly. (Models, Datsets, Benchmarks:
Section ] and Appendix[C)

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: For the paper review, a preliminary code is provided for replication as
supplementary — Readme instructions are included. The model(code) is available here
https://github.com/NX-AI/tirex/tree/main/src/tirex, and the results are sub-
mitted in a reproducible way to the respective leaderboards.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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