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Abstract

High-energy collisions at the Large Hadron Collider (LHC) provide valuable in-
sights into open questions in particle physics. However, detector effects must be
corrected before measurements can be compared to certain theoretical predictions
or measurements from other detectors. Methods to solve this inverse problem of
mapping detector observations to theoretical quantities of the underlying collision
are essential parts of many physics analyses at the LHC. We investigate and com-
pare various generative deep learning methods to approximate this inverse mapping.
We introduce a novel unified architecture, termed latent variational diffusion mod-
els, which combines the latent learning of cutting-edge generative art approaches
with an end-to-end variational framework. We demonstrate the effectiveness of this
approach for reconstructing global distributions of theoretical kinematic quantities,
as well as for ensuring the adherence of the learned posterior distributions to known
physics constraints. Our unified approach achieves a distribution-free distance to
the truth of over 20 times smaller than non-latent state-of-the-art baseline and 3
times smaller than traditional latent diffusion models.

1 Introduction

Particle physics experiments at the Large Hadron Collider study the interactions of particles at
high energies, which can reveal clues about the fundamental nature of matter and forces. However,
the properties of particles which result from the collisions must be inferred from signals in the
detectors which surround the collision. Though detectors are designed to reconstruct the properties
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of particles with high fidelity, no detector has perfect efficiency and resolution. A common strategy
to account for these effects is simulation-based inference [[1], in which the detector resolution and
inefficiency are modeled by a simulator. Samples of simulated events can then be compared to
observed data to perform inference on theoretical parameters. However, simulators with high fidelity
are computationally expensive and not widely accessible outside of experimental collaborations.

An alternative approach is the reverse, mapping the observed detector signatures directly to the
unobserved truth-level information. In a particle physics context, this procedure is referred to as
“unfolding’ﬂ In practice, the quantum mechanical nature of particle interactions makes the forward
map from the true particle properties to observed data not one-to-one. As a result, there is no true
inverse function which can map a given detector observation to a single point in the truth-level
space. Such inverse problems are challenging, but unfolded data allows for direct comparisons with
theoretical predictions and across experiments, without requiring access to detector simulation tools
which may not be maintained long-term.

Unfolding methods such as Iterative D’ Agostini [2], Singular Value Decomposition [3]], and TUn-
fold [4] have seen frequent use by experimental collaborations like ATLAS [5]] and CMS [6]. However,
these techniques are limited to unfolding only a few dimensions, and require binning the data, which
significantly constrains later use of the unfolded distributions. The application of machine learning
techniques [[7]] has allowed for the development of un-binned unfolding with the capacity to handle
higher-dimensional data. One approach is to use conditional generative models, which learn to sample
from the truth-level distributions when conditioned on the detector-level data; examples include
applications of generative adversarial networks [8, 9], invertible networks [10, [1 1], and variational
auto-encoders [12]. An alternative approach uses classification models as density estimators which
learn to correct imprecise truth-level distributions with re-weighting [13H15]]. Generative methods
naturally produce unweighted events, an advantage over classification methods which may generate
very large weights or even fail if the original distributions do not sufficiently cover the entire support
of the true distribution. However, generative models are not always guaranteed to produce samples
which respect the important physical constraints of the original sample. While making important
strides, none of these methods have cracked the ultimate goal, full-event unfolding, where the full
high-dimensional detector-level observations are mapped to truth-level objects.

This paper introduces a novel generative unfolding method utilizing a diffusion model [[16-H18]]
to map detector to truth-level distributions. Diffusion models are a class of generative models
which learn to approximate a reverse noise diffusion process and have proven successful in natural
image generation [19} 20] and recently scientific applications such as molecular link design [21]].
Diffusion models excel in learning high-dimensional probability distributions at higher fidelity than
normalizing flows and without the adversarial min-max loss of GANs. In HEP, they have already
found use for approximating calorimeter simulations [22H235]]. Latent diffusion models (LDMs), a
specific class of diffusion models, perform the denoising in an abstract latent space [26] and excel
in image generation tasks. These latent embeddings are often pre-trained on secondary objectives,
such as VAE reconstruction tasks or CLIP [27], to limit computational and memory requirements.
We unify the abstract embedding space of latent diffusion with the recently formalized variational
diffusion approach [28]] to develop an end-to-end variational latent diffusion model (VLD) achieving
state-of-the-art performance in complex HEP generative tasks.

2 Background

2.1 Unfolding

Let f4t(y) be the distribution which governs an observed detector-level data set y = {y;}. An
unfolding method aims to sample from a pre-detector distribution fparion(2), Where parton refers
to an unobserved state of interest to physicists. fpamn(a;) is related to fqe via convolution with a
“response” function p(y|x) over the possible true values x. The response function describes the decay
of the initial, unstable particles into stable particles and their interaction with the detector.

Jaer(y) = /dl“p(ylx)fpanon(m) (D

'In other fields, this kind of problem is often referred to as “deconvolution".



(a) Feynman diagram of top quark pair (¢£) produc-
tion. Each top decays to a W boson and a bottom
(anti-)quark (b). In this example, one W decays
leptonically to an electron (e~ ) and anti-neutrino
(), the second decays hadronically to an up (u)
and down (d) anti-quark. We store the momentum
of all final and intermediate particles.

(b) A example display of the high-dimensional de-
tector observations for an LHC collision identified
as likely to have contained a top quark pair. We
show a 3D representation of the ATLAS detector
and the hadronic jets which are produced by the
decays. The detector-level data consists of the mo-
mentum measurements of these jets.

Figure 1: Visual representations of the different perspectives captured by the parton and detector level
data. The parton-level data represents a fundamental theoretical description of the decay, whereas the
detector-level data represents the real measurements observed after the decay. The primary challenge
in unfolding is to infer the theoretical parton representation from the observed data.

No closed form expression exists for p(y|x), but Monte-Carlo-based simulation can sample from
parton values = and produce the corresponding sample y. The parton distribution can be recovered
via the corresponding inverse process if one has access to a pseudo-inversion of the response function
p(z|y), also known as the posterior.

fparton(x) :/dy p(x‘y)fdel(y) 2)

Generative unfolding methods build the posterior as a generative model, which can be used to sample
from p(z|y). The desired parton distribution is then obtained by Equation [2| Simulated pairs of
parton-detector data, (x, y), may be used to train the generative model.

An important issue when choosing to directly model the posterior is that this quantity is itself
dependent on the desired distribution fparon(2), the prior in Bayes’ theorem:
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Producing the data set used to train the generative model requires choosing a specific fparton(),
which influences the learned posterior. In application to new datasets, this will lead to an unreliable
estimate of the posterior density if the assumed prior is far enough from the truth distribution. A
common method to overcome this challenge is to apply an iterative procedure, in which the assumed
prior is re-weighted to match the approximation to the truth distribution provided by the unfolding
algorithm [2]]. Though application of this iterative procedure is not shown in this paper, the principle
has been demonstrated with other generative unfolding methods [29], for which the conditions are
similar.

2.2 Semi-Leptonic Top Quark Pair Production

Collisions at the LHC which result in a pair of top quarks allow for sensitive probes of new theories
of physics, which makes measurement of the top quark properties an important task. Top quarks are
unstable, decaying almost immediately to a W boson and a bottom quark; the W boson can then
decay hadronically to two quarks or leptonically to a charged lepton and neutrino. The case where
one of the produced top quarks decays hadronically and the other decays leptonically is known as the
semi-leptonic decay mode, see Fig.[Ta] The 4-momenta (three momentum components, one mass) of



these six objects (four quarks, the charged lepton, and the neutrino) constitute the parton-level space
in this context.

The four quarks each produce a shower of particles (jets) which interact with the detector, while the
neutrino passes through without leaving a trace. The resulting observed detector signature which
defines the detector-level space is then quite complex, see Fig.

The semi-leptonic tt process has been studied by the ATLAS and CMS collaborations to measure
various properties of the top quark and to search for new particles and interactions [30-35]]. Many
of these measurements use existing unfolding techniques, which limit the unfolded measurements
to one or two dimensions. An un-binned and high dimensional unfolding technique would allow
physicists to use the full power of their data.

2.3 Variational Autoencoders

Variational Autoencoders (VAEs) are a class of generative models combining an autoencoder architec-
ture with probabilistic modeling [36,[37]. VAEs learn a non-linear latent representation of input data
through an encoder and decoder network while incorporating probabilistic methods and sampling
through the reparameterization trick [36]. VAEs have been applied to numerous applications, such as
image synthesis [38]] and natural language processing [39], among many others.

The VAE encoder network is parameterized as a probabilistic function, approximating the posterior
distribution of the latent variables z conditioned on the input data: ¢(z|z). The decoder network
likewise models the generative distribution conditioned on the latent variables p(z|z). VAEs are
trained by maximizing the evidence lower bound (ELBO), which is a lower bound on the log-
likelihood of the data under the generative model [36]. The ELBO includes a reconstruction loss for
training the decoder and a KL-divergence objective which enforces a regularization constraint on the
learned latent posterior to a prior distribution p(z).

LAk = Ezog(zla) [~ log p(2|2) + Drr(q(z[2) || p(2))] @

Conditional VAEs (CVAE:s) [40] extend the VAE framework by conditioning both the encoder and
decoder networks on additional information, such as class labels, via an arbitrary conditioning vector
y. This allows CVAEs to generate samples with specific desired properties, providing more control
over the generated outputs.

ACCVAE = ]Ezwq(z|x,y) [_ logp(x\z,y) + DKL(Q(Z|$7Z/) H p(Z‘y))] (5)

2.4 Variational Diffusion Models

Variational Diffusion Models (VDMs) define a conditional probabilistic generative model which
exploits the properties of diffusion probabilistic models to generate samples by learning to reverse
a stochastic flow [41]. VDMs may be seen as an extension of VAEs to a (possibly infinitely) deep
hierarchical setting. The Gaussian diffusion process defines the forward stochastic flow with respect
to time ¢ € [0, 1] over the latent space z; € Z and conditioned on y as:

Q(zt|xa y) ~ N(O{t.’]), gt]I) (6)

The flow parameters, o; and «; are defined by a noise schedule. We use the continuous Variance
Preserving (VP) framework throughout this work and derive these flow parameters based on a learned
signal-to-noise ratio, e~ 74 where:

o = 4/sigmoid(y,(t)) and a; = 4/sigmoid(—v4(t))

Assuming it is possible to sample from the terminal distribution p(z1), we may produce samples
from the data distribution by inverting the flow and sampling previous latent representations con-
ditioned on future latent vectors. The inverse flow is modeled as q(z4|z¢, Z9(2t,t,y)) where &g
is an approximate denoising of the original data at the current time-step. In practice, the data de-
noising is implemented using a variance-independent noise prediction network, €y, by the equation

Zo(zt, t,y) = w The noise prediction network, €y, is parameterized using a deep

neural network. The learnable noise schedule ~4(t) is also parameterized using a positive valued,
monotonic neural network with learnable end-points 7,,,;, = v(0) and Vi = (1) [41]. Following



X—><--’ e H ______1, ........... :
' Denoising Model 1
Zy+—Z)=—Zg=H goa(taz,)  mi=Zp 4=Z1 ~ N(O, l])
Y :

5 )
A L fz + ) gy !
X < ....................... trmomomnmomnndl
C-VLD Only

Figure 2: A block diagram of the end-to-end VLD models with trainable components. The conditional
paths are drawn in different colors depending on which model variations employ them. We use the
continuous, variance preserving SDE diffusion formulation introduced in [[17] and [41]. We show the
equivalent ODE form of SDE equation in the diagram.

the VP framework, the noise schedule is regularized so that the terminal distribution is the unit
Gaussian: p(z1) ~ AN(0,1). Both the noise prediction network and the noise schedule network are
trained using the modified ELBO for continuous-time diffusion models [41]:

Lypm = Dk r(q(z1|,¢) || p(21)) + Eq(zo|2) [~ log p(x|20,y)]
+ Ecn(0,1),t~14(0,1) [’Y:p(t) e — €o(2t, 1, y)Hg} (N

2.5 Latent Diffusion

Latent diffusion models (LDMs)[26] are a deep generative framework that operate the diffusion
process in an abstract latent space learned by a VAE to sample high-dimensional data pp(z|z,y),
possibly conditioned on a secondary dataset pc(y). This approach has proven dramatically suc-
cessful when employed in natural image generation applications, including text-to-image synthesis,
inpainting, denoising, and style transfer [26} 20].

LDMs first train an unconditional VAE to embed the data distribution into a low dimensional latent
representation using a traditional VAE approach, ¢(z.|z) and p(x|z. ), regularizing the latent space
towards a standard normal p(z,) ~ A (0,1). A secondary encoder may be trained on the conditioning
data p(zy,|y) along-side VAE, typically using a CLIP objective [27] to map the two datasets into a
common latent space. The diffusion process is then trained to reconstruct the latents 2z, from the
flow latents p(z; |20, z,). The diffusion model training remains otherwise identical to the standard
diffusion framework.

Critically, the most successful methods train the VAE, the conditional encoder, and the diffusion
process individually. While computationally efficient, this independence limits the models’ generative
power as each component is trained on subsets of the overall conditional generative objective. It may
be possible to recover additional fidelity by instead training all components using a unified conditional
generation objective. While several methods allow for training a VAE along-side diffusion [42] 43],
these approaches either cannot train diffusion in the latent space or cannot account for a conditional,
fully variational model. We construct a unified variational framework to allow for a conditional,
probabilistic, end-to-end diffusion model.

3 Variational Latent Diffusion

This work integrates the learning capabilities of latent diffusion models with the theoretical framework
of variational diffusion models in a unified conditional variational approach. This unified variational
model combines the conditioning encoder, data VAE, and diffusion process into a single loss function.
This framework enables further enhancement of these methods through a conditional data encoder or
decoder, and an auxiliary physics-informed consistency loss which may be enforced throughout the
network. We refer to this combined method as Variational Latent Diffusion (VLD), see Fig[2] The
primary contributions of this paper are to define this unified model and derive the appropriate loss
function to train such a model.

Conditioning (Detector) Encoder In traditional LDMs, the conditioning encoder, p(z,|y), is pre-
trained through an auxiliary loss term, such as CLIP [27]], which aims to unify the latent space of the
conditioning and data. While this approach is efficient, it may not be optimal: the encoder is trained



on one objective, and then repurposed to act as a conditioning encoder for a separate generative model.
With the end-to-end framework, we simultaneously learn this encoder alongside other generative
terms, enabling us to efficiently train a variable-length, high-dimensional encoder fine-tuned for
the generative objective. In this work, we simplify this conditioning encoder by restricting it to a
deterministic mapping, z, = fg(y). This decision is based on prior work such as the CVAE which
opts for a deterministic conditional encoder, as well as for simplicity as there is a lack of motivating
benefits from a stochastic encoder.

Data (Parton) VAE The traditional LDM VAE is unconditional, as this allows it to be easily
pre-trained and reused for different diffusion models. As we are training a unified conditional
generative model in an end-to-end fashion, we have the option to extend the encoder and decoder with
conditional probabilistic models: gc.vip(zz|T, 2zy) and pc.vip (2|2, 2, ). We experiment with both
a conditional and unconditional VAE. Additionally, we explore an intermediate method that uses a
conditioned encoder to estimate the VAE posterior, quc.vip (22|, 2 ), but employs an unconditional
decoder during generation pyc.vip(2z|z).

VLD ELBO We interpret the continuous VDM as an infinitely deep hierarchical VAE as presented
by Kingma et al. [41]]. This interpretation allows us to seamlessly integrate the VAE into a unified
diffusion framework by incorporating the VAE as an additional component in the hierarchy. Conse-
quently, the hierarchical variational ELBO incorporates an extra KL divergence term, which serves to
regularize the encoder posterior distribution [44]. We combine this hierarchical objective with the
denoising loss term derived in [41] to define a combined ELBO for the entire generative model.

Lyrp = Drr(q(z1]w, zy) || p(21)) + Eq(z, |2,2,) [— log p(2]22, 2y )]

+ Drr(q(z|z, 2y) || P(22]20)) + Eenn.n) tnre(0.1) [’Y;(t) le —éo(zet2) 5| (®

The additional KL term may be derived explicitly if we assume a Gaussian VAE and a Gaussian
diffusion process. The posterior is parameterized using a learned Gaussian, as in a standard VAE:
q(zz|x, zy) ~ N(po(z, 2zy),09(x,y)). The prior can be reformulated using the definition of the
forward flow from Equation[6] Employing the reparameterization trick, we can rewrite the expression
of zp in terms of z, as zp = apz, + op€, where € ~ N(0,T). Solving this equation for z, yields
another reparameterized Gaussian, which allows us to define the prior over z, as:

1
P(zal20) ~ N (%Zm “()11) ©)

Physics-Informed Consistency Loss Reconstructing the mass of truth-level physics objects is
challenging due to their highly peaked, low-variance distributions. For certain particles like leptons,
the mass distribution exhibits a two-valued delta distribution, while for light quarks, it is consistently
set to zero. Predicting these distributions is more difficult than predicting the energy of truth-level
physics objects, which have a broader range. In special relativity, the mass (M), energy (M), and
momentum p of a particle are related by ¢*M?2 = E2? — (¢ ||p||)®. We operate in natural units with
a unit speed of light ¢ = 1. Forcing the predicted mass, energy, and momentum to satisfy this
equality improves stability and accuracy by capturing this underlying physical relationship between
these quantities. We introduce a consistency loss, L, in addition to the regular reconstruction loss,
weighted by a hyper-parameter Ac. Similar physics-informed constraints have previously been used
for generative models in HEP [45H48]]. The consistency loss minimizes the mean absolute error
(MAE) between the predicted mass term and the corresponding predicted energy and momentum
terms, encouraging the model to learn a more physically consistent representation.

Lo =Ae [N - (B2 - |5)))| (10)

4 Unfolding Semi-Leptonic ¢t Events

Generative models can be trained to estimate a conditional density given any set of paired data. In the
unfolding context, a Monte Carlo simulation can be used to generate pairs of events at detector and
parton level. The density of parton level events fparon() can be taken as the data distribution, and
the density of detector level events fg((y) can be taken as the conditioning distribution. A generative
model can then be used to unfold a set of observed events to the corresponding parton level events
with the following procedure:



1. Sample a parton configuration from the distribution governing the process of interest:
x ~ pp(x). This can be done using a matrix element solver such as MADGRAPH [49].

2. Sample a possible detector observation y ~ pc(y|z) using the tools PYTHIAS [50] and
DELPHES [51]], which simulate the interactions of particles in flight and the subsequent
interactions with a detector.

3. Train a generative model to approximate the inverse distribution pg(z|y).

4. Produce new posterior samples for inference data with unknown parton configurations.

4.1 Generative Models

Multiple baseline generative models are assessed alongside the novel VLD approach, with the goal
of investigating the impact of each VLD component, including the conditional VAE, the denoising
model, and the variational aspects of the diffusion. Note that the network architectures of the VAEs,
denoising networks, and detector encoders are identical where relevant.

CVAE A traditional conditional Variational Autoencoder [40] approach employing a conditional
encoder and decoder. We use a Gaussian likelihood for the decoder and a standard normal prior for
the encoder, following conventional practices for VAE models.

CINN A conditional Invertible Neural Network [52]], which represents the latest deep learning
approach that has demonstrated success in unfolding tasks. This model utilizes a conditional
normalizing flow to train a mapping from a standard normal distribution to the parton distribution,
conditioned on the detector variables. The normalizing flow incorporates an All-In-One architecture
[53]], following the hyperparameters detailed in the CINN paper [52], which combines a conditional
affine layer with global affine and permutation transforms to create a powerful invertible block. In
this work, the MMD objective defined in [52] is replaced with a MSE reconstruction objective and
the physics-informed consistency loss, for fair comparison with other models.

VDM A Variational Diffusion Model (VDM) [41]] that aims to denoise the parton vector directly.
This model serves as a baseline for examining the impact of the VAE in latent diffusion approaches.
The denoising model is trained using a Mean Squared Error loss against the generated noise.

LDM A Latent Diffusion Model (LDM) with a pre-trained VAE, popularized by recent achieve-
ments in text-to-image generative models [26]. The VAE is pre-trained using a Gaussian likelihood
and a minimal prior weight (10~%). This baseline is meant to highlight the importance of the unified
end-to-end architecture as all other aspects of the network are identical to the proposed method.

VLD, C-VLD, UC-VLD These models are variations on the proposed unified Variational Latent
Diffusion (VLD) architecture. They correspond to an unconditional VAE (VLD), a conditional
encoder and decoder (C-VLD), or a conditional encoder with an unconditional decoder (UC-VLD).

4.2 Detector Encoder

All of the generative models are conditioned on detector observations, represented as a set of vectors
for each jet and lepton in the event, as described in Section[5] Additionally, the missing transverse
momentum (MET) from the neutrino is included as a fixed-size global variable. As there is no
inherent ordering to these jets, it is crucial to use a permutation-invariant network architecture for
the encoder. We use the jet transformer encoder from the SPANet (v2.1, BSD-3) [54] jet-parton
reconstruction network to embed detector variables. This architecture leverages the permutation
invariance of attention to contextually embed a set of momentum vectors. We extract the fixed-size
event embedding vector from the central transformer, mapping the variable-length, unordered detector
observations into a fixed-size real vector Ec(y) = z, € RP.

4.3 Parton Encoder-Decoder

For a given event topology, partons may be represented as a fixed-size vector storing the momentum
four-vectors of each theoretical particle. We describe the detailed parton representation in Section [5}



Wasserstein Energy K-S KL64 KL128 KL256

VLD 108.76 7.59  4.08 347 3.74 4.53
UC-VLD 73.56 635 341 5.77 7.10 8.48
C-VLD 389.62 25.39  4.65 9.54 10.09 10.79
LDM 402.32 2409 591 1471 16.34 17.92
VDM 247835 181.35 17.14 29.28 32.29 35.60
CVAE 484.56 3229 637 7.79 9.17 10.60
CINN 3009.08 185.13 15.74  28.55 30.19 32.37

Table 1: Total distance measures across all 55 components for every model and metric. The indepen-
dent sum of 1-dimensional distances for each component are summed across all the components to
compute the total metrics.

which consists of a single 55-dimensional vector for each event. The encoder and decoder network
employ a ConvNeXt-inspired block structure [55] for the hidden layers, described in Appendix
[A] which allows for complex non-linear mappings into the latent space. Unlike traditional VAE
applications, our latent space may be higher dimensionality than the original space. The VAE’s
primary purpose therefore differs from typical compression applications, and instead solely transforms
the partons into an optimized representation for generation.

The encoder uses this feed-forward block network and produces two outputs: the mean, pg(z, zy),
and log-standard deviation, oy (z, 2,), of the encoded vector, possibly conditioned on the detector
observations z,. The decoder similarly accepts a latent parton representation, possible conditioned on
the detector, and produces a deterministic estimate of the original parton configuration & = D (2, 2y).

S Experiments

Dataset Each of the generative approaches is trained to unfold a simulated semi-leptonic tf pro-
duction data set. Matrix elements are evaluated at a center-of-mass energy of /s = 13 TeV using
MADGRAPH_AMC@NLO [49] (v2.7.2, NCSA license) with a top mass of m; = 173 GeV. The
parton showering and hadronization are simulated with PYTHIAS [50] (v8.2, GPL-2), and the detector
response is simulated with DELPHES [56]] (v3.4.1, GPL-3) using the default CMS detector card. The
top quarks each decay to a W-boson and b-quark, with the WW-bosons subsequently decaying either
to a pair of light (u, d, s, ¢) quarks gq’ or a lepton-neutrino pair £v (£ = e, u). A basic event selection
is then applied on the reconstructed objects at detector-level. Electrons and muons are selected
with a transverse momentum requirement of pr > 25 GeV and absolute value of pseudorapidity
|n] < 2.5. The b and light quarks are reconstructed with the anti-kt jet algorithm [57] using a
radius parameter R = 0.5 and the same pr and || requirements as the leptons. Jets originating
from b-quarks are identified with a “b-tagging” algorithm that incorporates a pr and angular (7, ¢)
dependent identification efficiency and mis-tagging rate. Selected events are then required to contain
exactly one lepton and at least 4 jets, of which at least two must be b-tagged. Events are separated
into training and testing data sets, consisting of 9,865,402 and 1,332,514 events respectively.

Parton Data The kinematics for the six final state partons are used as unfolding targets
(b7 q1,q2,b,v1,1 ), along with the kinematics of the intermediate resonance particles (Wiep, Whad, t, ©),
and the entire ¢t system. The parton-level data consists of 11 momentum vectors, each represented
by the five quantities (M, log E, p,, py, p-); Where M is the invariant mass of the particle; E is the
energy; and p,., p,, and p,, are the Cartesian coordinates of the momentum. The Cartesian components
of the momentum are used for regression, as they have roughly Gaussian distributions compared
to the commonly employed cylindrical coordinate representation. Although regressing both the
mass and energy for each parton over-defines the 4-momentum, these components exhibit different
reconstruction characteristics due to sharp peaks in the mass distributions. During evaluation, either
the mass or energy can be used to compute any derived quantities. In our experiments, the regressed
mass is only used for the mass reconstruction, and the predicted energy is used for other kinematics.

Detector Observations The detector-level jets and leptons are used as the conditioning data. The
jets are stored as variable-length sets of momentum vectors with a maximum of 20 jets in each
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Figure 3: Highlighted reconstruction components. The top row presents the full global histogram
while the lower plot presents the ratio between the predicted histogram and the truth. Notice the
improved mass shape compared to the pre-trained and non-latent models.

event. This study is limited to semi-leptonic ¢f events, so each event is guaranteed to have a single
lepton. The missing transverse momentum in each event (MET) is also computed and included in
the conditioning. The jets and leptons are represented using both polar, (M, pr, ¢, 1), and Cartesian,
(E,pz,py, =), representations. We also include a one-hot particle identity, encoding either 1 or e for
the lepton, or b or non-b for the jets as estimated by the b-tagger, resulting in 12 dimensions for each
jet.

Training Networks were trained using the MSE for the reconstruction and noise loss, along with
the physics-informed consistency loss with a weight of Ac = 0.1. Each model underwent training
for 24 hours using four NVIDIA RTX 3090 GPUs, resulting in 500,000 to 1,000,000 gradient steps
for each model. Models were trained until convergence and then fine-tuned with a smaller learning
rate. Full hyperparameters are presented in Appendix

Diffusion Sampling Variational diffusion models dynamically adapt the noise schedule during
training by minimizing the variance of the ELBO [41]. After training, however, VDMs may employ a
more traditional discrete noise schedule, and this approach is preferable when sampling for inference.
The PNDM [58] sampler is used for generating parton predictions.

Global Distributions Each trained model was evaluated on the testing data, sampling a single
parton configuration for each detector-level event. The global distributions of the 55 reconstructed
parton components were then compared to the true distributions. Complete unfolded distributions are
presented in Appendix [F] Several highlighted reconstruction distributions are presented in Figure
Additionally, each model was assessed using several distribution-free measures of distance. The
bin-independent Wasserstein and Energy distances, the non-parametric Kolmogorov-Smirnov (K-S)
test, as well as three different empirical KL divergence measures using 64, 128, and 256 bins, are
presented in Table [??] Full details about the distance functions are presented in Appendix [C| and full
tables of the distances per particle and per component are presented in Appendices [D]and [E]

Global Performance The two proposed VLD models with unconditional decoders (VLD and UC-
VLD) consistently exhibited the best performance across all distance metrics. The end-to-end training
procedure demonstrates improved performance over the pre-trained LDM model. It is interesting to
note that UC-VLD has lower distribution-free distance wheras VLD has a lower histogram distance.
This is likely because the histogram distance will soften the effect of outliers in the distribution as
the bins will combine many different points into a single less noisy measurements. The conditional
decoder in C-VLD and CVAE was found to worsen reconstruction. This is likely because the training
procedure always employs the true encoded parton-detector pairs, (2, z.), whereas the inference
procedure estimates the latent parton vector while using the true encoded detector variables for
conditioning, (%, z.). The lower performance may be evidence that this inference data technically
falls out-of-distribution for the conditional decoder, indicating that an unconditional decoder is a
more robust approach. Finally, we find that all latent models greatly outperformed the models that
directly reconstructed the partons in data-space (CINN and VDM).
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Figure 4: Highlighted reconstruction per-event posteriors for several events and components. We
compare the LVD posteriors to an empirically brute-forced estimate of the posterior.

Posterior Predictions One key innovation of generative methods is the ability to sample from the
posterior to illustrate the space of valid reconstructed partons for a detector level event. While the
true posterior is not available, the unfolded distributions can be compared to a brute-force posterior
distribution derived from the training data. This posterior is defined by a re-weighting of the parton
level training data, where the weights are given by the inverse exponential of the Lo distance between
the testing event’s detector configuration, yr, and every training event’s detector configuration, y;:
w; = e~ lvT=v:ll Selected posterior distributions are presented in Figure El and complete posterior
examples for individual events are presented in Appendix[G] The latent diffusion models have much
smoother posteriors than the empirical estimates, with the proposed VLD model producing more
density close to the true parton configuration. Critically, the brute-force posterior often matches
the unconditional parton level distribution, proving it is difficult to recover the true posterior. We
also note that the VLD model was also able to reproduce a bimodal neutrino 7 posterior. Neutrinos
are not directly measurable at the detector, and their kinematics must be inferred from the event’s
missing energy. For events with a single neutrino, the missing neutrino energy defines a quadratic
constraint on the term which often leads to two configurations satisfying both energy and momentum
conservation. The network appears to learn this phenomenon and presents two likely n values for the
neutrino.

6 Conclusions

This paper introduced a novel extension to variational diffusion models, incorporating elements
from latent diffusion models to construct a powerful end-to-end latent variational generative model.
An array of generative models were used to unfold semi-leptonic ¢f events, an important inverse
problem in high-energy physics. A unified model — combining latent representations, continuous
variational diffusion, and detector conditioning — offered considerable advantages over the individual
application of each technique. This addresses the challenge of scaling generative unfolding methods
for high-dimensional inverse problems, an important step towards unfolding full collision events at
particle-level. Despite being tested on a single topology, our method consistently improved baseline
results, underscoring the importance of latent methods for such high-dimensional inverse problems.
The framework presented may be broadly applicable to arbitrary topologies, although always limit
to a single topology at a time. Future work will focus on broadening the method’s applicability to
different event topologies, unfolding to other stages of the event simulation chain (such as “particle
level”) to remove dependence on event topology, and evaluating its dependency on the simulator’s
prior distribution. The methods described in this study aim to provide a general end-to-end variational
model applicable to numerous high-dimensional inverse problems in the physical sciences.
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Figure 5: Block diagram from the gated inverse-bottleneck feed forward block used for the networks.

A Network Architecture

A.1 Feed-Forward Block

A custom feed-forward block, derived from the successful ConvNeXt [55] and transformer models
[59], is the foundation of the networks in this study. This block features an inverted bottleneck formed
by three linear layers, a GELU activation [60]], layer normalization [61]] for regularization, and a gated
residual connection inspired by GTRXL [62]. The block uses a GRU recurrent layer instead of a
traditional skip connection, where the regular output is the input to the GRU and the skip-connection
value is the hidden input. A complete block diagram of the feed-forward block is presented in Figure

A.2 Detector Encoder

The detector encoder network, as defined in SPANet [63}154], processes variable-length sets of detector
observations into a fixed-size D-dimensional vector. It uses the gated transformer architecture from
SPANet version 2, with Ng transformer encoder blocks. Instead of utilizing the tensor attention layers,
an event-level representation of the detector observations is extracted from the central transformer
encoder.

A.3 Parton Encoder

The encoder starts with an embedding layer, transforming the fixed-size 55 dimensional parton
representation into a D-dimensional vector via a linear layer. The encoder’s body comprises Ng
feed-forward blocks arranged in series. The input can be the embedded D-dimensional parton vector,
or its concatenation with the D-dimensional encoded detector data. Two independent networks, each
accepting identical input and sharing the same block structure, predict the mean, pg(z;2,), and
the log standard deviation, log og(x; z,), respectively. Normalizing and then scaling the mean also

helped prevent the encoder from learning very small-valued components: W% po(x; 2y)

A4 Parton Decoder

The decoder retains the encoder’s linear block structure. As a deterministic decoder, it comprises
a single stack of Np feed-forward blocks and a concluding linear layer mapping D dimensions

back to 55. Conditional decoders also append the D-dimensional detector vector to the input before
processing.
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A.5 Denoising Network

The denoising network, employing the same linear block structure, consists of NV, feed-forward blocks.
It maps the D-dimensional latent sample z; to the approximate noise that produced it, eg(z, t, 2y ).
The time, ¢ € [0, 1], is encoded with a 32-dimensional sinusoidal position encoding as detailed in
[S9]]. The latent vector, position encoding, and conditioning are concatenated and fed through the
feed-forward network to produce the noise estimate.

B Hyperparameters

We present a full table of hyperparameters used throughout the experiments. All models use the same
set of parameters, ignoring any that do not apply to particle methods. Parameters were not tuned
using rigorous search. The detector transformer parameters were extract from experiments presented
in SPANet [54]], and the other networks where tuned to contain a similar number of parameters as the
detector encoder.

Parameter Value
Latent Dimensionality (D) 96
Attention Heads 4

Inverse Bottleneck Expansion (k) 2
Detector Transformer Encoder Layers (Ng) | 8
Parton Encoder Blocks (Ng) 6
Parton Decoder Blocks (Np) 6
Denoising Network Blocks (V) 1

5

1

Primary Learning Rate -1074
Fine-tuning Learning Rate -1074
L5 Gradient Clipping Limit 1.0
Consistency Loss Scale (\¢) 0.1
Batch Size (Per GPU) 4096

Table 2: Table of complete hyperparameters used for training all generative models

C Distance Metrics

As the parton global distributions do not have a known family of distributions to describe their
components, model-free measures of distribution distance must be used to evaluate the models. Three
different families of distance measures are used. These non-parametric distances are only defined
for 1-dimensional distributions. As there is no commonly accepted way of measuring distance for
N-dimensional distributions, the 1-dimensional distances are simply summed across the components.
Although not ideal, it is enough to compare different models and rank them based on performance.

C.1 Wasserstein Distance

The Wasserstein distance, often referred to as the earth-mover distance, quantifies the amount of
work it takes to reshape one distribution into another. This concept originated from the field of
optimal transport and has found wide applications in many areas, including machine learning. An
equivalent definition defines this distance as the minimum cost to move and transform the mass of one
distribution to match another distribution. For a pair of 1-dimensional distribution samples, denoted
u and v, the Wasserstein distance can be computed in a bin-independent manner. This is achieved
by computing the integral of the absolute difference between their empirical cumulative distribution
functions (CDFs), U(x) and V(x).

DWasserstein(Uy U) = / ‘U(ZL’) - V(I)|d$
C.2 Energy Distance
Energy distance is another statistical measure used to quantify the difference between two probability

distributions based on empericial CDFs. It compares the expected distance between random variables
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drawn from the same distribution (intra-distribution) with the expected distance between random
variables drawn from different distributions (inter-distribution). The Energy distance may be defined
as the squared variant of the Wasserstein distance.

DEnergy(u’v) = \/2 /_OO (U([L‘) - V(x))z dx

C.3 Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov (K-S) test is a non-parametric statistical hypothesis test used to
compare the underlying probability distributions of two independent samples. It is particularly useful
in machine learning applications where the goal is to assess whether two datasets come from the
same distribution or if they differ significantly, without making any assumptions about the underlying
distribution shape. It is also based on empirical CDFs.

C.4 KL-Divergence

An alternative approach to empirical CDF approaches is to bin the data into histograms and compute
discrete distribution distances from these histograms. The common Kullback-Leibler distance is
used with three different bin sizes. After finding the histograms with N bins for 1 < i < N, Py (%)
and Qn (4), the discrete KL divergence is computed as

& , Py (d)
i =3 e (G5 )

D Particle Distance Tables

Tables 3| to[6] present the distance metrics for each parton and model. The general trends in Table [??]
remain generally consistent across partons. The neutrino reconstruction can prove difficult for Latent
diffusion models, likely due to its very peaked components.

E Component Distance Tables

Tables [7) to[10] present the distance metrics for each component and model. The mass component
seems to vary the most for for many of the distance functions, indicating that many models struggle
reconstructing the peaked mass distributions. However, the overall results remain consistent with
Table[??] We again see the clear benefit of both latent diffusion and end-to-end training.

F Global Distribution Plots

Figures [6] through [T6] present a collection of global distributions for the three primary classes of
generative models for every particle and component. The proposed method (VLD) closely matches
the truth distributions across all components, including the mass which is slightly smoothed but
peaks in the correct location. Baseline models struggle with capturing the peaks and shapes of the
distributions.

G Posterior Distribution Plots

Figures[T7]and [I8] present a collection of posterior distributions for four testing events, along with
several models and the brute-force empirical approach.

H Loss Function Derivation

We provide a derivation for the loss function presented in Equation [§] adhering to the generative
model displayed in Figure [2| Here, data is generated from a latent representation, p(x|z ); the latent
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data from the diffusion end-point, p(z,|z); a diffusion process to generate the sampled configuration
p(20|21); and a simple standard normal distribution prior at the base of the hierarchy p(z;). All these
functions are further conditioned on the (embedded) detector observations z,. We start with the full
conditional hierarchical VAE loss function over L variational layers as per [64].

L

ACELBO = Eq(zm\ac,zy) [_ logp(x|z$, Zy)] + ZDKL(Q(ZI|5E7 Zyvzi;él) || p(Zl|Z<l)) (11)
=1

Next, we substitute the layers we defined for the sum to expand the expression for our generative
model. For this step, we employ a three-stage hierarchy with the following substitutions: z; < 21,
29 + 29, and z3 < z,. We derive each of these components in the following sections.

Lego = Eq(z,|2,2,) [—log p(z|2s, 2y)] (12)
+ Drr(q(z1lz, 2y, 22) || p(21)) (13)
+ Drr(q(20]7, 2y, 21, 22) || P(20]21)) (14)
+ Drr(q(z2|, 2y, 21, 20) || P(22]21, 20)) (15)

H.1 Prior Loss

Equation[T3]establishes the prior loss and the base layer in the hierarchy. In accordance with the VP
framework, the correct prior distribution for the final latent representation is the standard normal
p(z1) ~ N(0,I). We learn the noise schedule via log SN R(t) = —v,(t), as defined in VDM [41]).
As such, we must ensure the terminal state in the forward diffusion process aligns with the prior
distribution. Substituting the VP noise schedule yields the following distribution for the posterior:
q(z1]x, 2y, 22) = N(a124, 011), where o, = /o (ammag(1)), and oy = /o (—74(1)) as obtained
from Section [2.4] We estimate this KL divergence through Monte-Carlo sampling:

Drr(q(zil|z, zy) || p(21)) = E.,~a(zelz,2,) [(ozlzgc)2 + 0’% — log(af) — 1] (16)

H.2 VAE Loss

Equation delineates our contribution to this unified variational model. We derive the base

@o
ther describe that the posterior distribution in this KL term is merely the regular VAE posterior
q(zz|z, 2y) ~ N (po(z, 2), 00(x, z,)). We define the posterior over z, given z, by adhering to the
definition of the VP diffusion process q(zq|2z) ~ N (24, ool). As all these distributions are normal,
we can provide an explicit form for this loss:

distributions for the right-hand distribution in Equation@ p(zz)20) ~ N ( L 20 Z—Z]I) We fur-

DKL(Q(Zm|$7Zy) ” p(zz|zl)) =

1 ago
EZzNQ(Zz|I7Zy)»ZONQ(Zo\ZI) [DKL(N(MQ(.’L‘,Zy),O'Q(x,Zy) H N( 20, H) ):|
Qo o7

where the KL term is the regular normal distribution KL.

Dt (W (pt0,00) [| N, 00)) =

ot (wo— p1)?
2

— + ———— +1 21 21
U%—i- a% + log o7 og o }

H.3 Diffusion Loss

Equation[T4] defines the final diffusion loss term for the denoising network. We follow the derivation
from Kingma et. al. [41] for a continuous-time diffusion process. The key insight is to interpret
the diffusion process as infinitely deep hierarchical variation model. The VP framework defines
intermediate steps as: q(z¢|x,y) ~ N (azx, o.I). Following [41]], we derive a Monte-Carlo estimate
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of the integral loss for a noise prediction network:

Dicr(q(z0lz, 2y, 21, 22) || p(20]21)) =

1 1 .

~3Eenon) [ / SNR'(t) |20 — Zu(2e, 2, 1)1 dt}
0

1

2

= — S0 con @) [SVR' (1) 122 = 221, 20, D3]

1
= 5Evu01).con0n) [Vo(8) e = é0(zt, 2, )]

H.4 Reconstruction Loss

Equation [T2] is the final and simplest aspect of this model. Since we are regressing the parton
components, we use a Normal decoder on the VAE and use a simple Mean Squared Error loss as the
primary reconstruction loss.

Lyse = |DECODER(zy, 2,) — 2|3

As we explain in the text, this MSE loss works well for most components but fails to capture the
peaked nature of the mass term. Therefore, we add the physics consistency loss described by Equation
[[0lin order to assist with this mass reconstruction.

Lo = | M2~ (£2 =16l

The total reconstruction loss is simply the sum of these two components.

Eq(enlz,zy) [ 108 P(2]22, 2y)] = Eqzya,2,) [Lnmse + L]

VLD UC-VLD C-VLD LDM VDM CVAE CINN

Leptonic b 11.96 5.23 9.08 16.74 21229 33.85 143.49
Leptonic v, /v,  10.33 7.40 36.69 29.63 117.37 3695 149.22
Leptonic e/ it 2.95 2.76 3.07 11.13 155.87 872  96.89
Hadronic b 9.52 4.72 11.38  15.66 22658 39.02 132.69
Hadronic ¢; 8.88 7.19 2426 3533 187.24 5833 180.42
Hadronic ¢ 8.56 5.93 53.15 4356  99.16 4642 123.12
Leptonic W 8.18 8.19 43.63 37.87 21351 3296 260.12
Hadronic W 7.55 6.94 39.97 50.28 215.10 53.85 308.33
Leptonic ¢ 9.57 9.12 46.56 43.27 323.00 46.51 408.39
Hadronic ¢ 15.12 6.57 36.25 48.82 34331 59.08 444.66
tt System 16.15 9.52 85.58 70.04 38493 6885 761.74

Table 3: Particle Distance: Wasserstein Distances
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Figure 6: Global Distribution: Leptonic b Quark
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VLD UC-VLD C-VLD LDM VDM CVAE CINN
Leptonic b 0.93 0.59 0.62 1.01 17.04 2.53 10.33
Leptonic v, /v,  0.79 0.73 2.31 1.76  11.02 272 1215
Leptonic e / 0.24 0.29 026 0.70 13.99 0.59 7.56
Hadronic b 0.61 0.43 094 1.00 17.83 2.75 9.06
Hadronic ¢; 0.90 0.77 271 275 16.30 482 14.73
Hadronic ¢ 0.79 0.57 390 293 10.00 4.09 9.85
Leptonic W 0.54 0.66 294 237 1648 2.09 17.58
Hadronic W 0.49 0.45 270 299 16.18 3.38  20.81
Leptonic ¢ 0.64 0.64 261 242 21.72 252 23.27
Hadronic ¢ 0.86 0.44 203 243 22.16 332 2481
tt System 0.80 0.78 436 372 18.63 347 3498

Table 4: Particle Distance: Energy Distances

VLD UC-VLD C-VLD ILDM VDM CVAE CINN
Leptonic b 0.85 0.07 0.06  0.59 1.91 1.01 1.30
Leptonic v, /v, 0.97 1.06 073 088 1.76 0.77 1.71
Leptonic e / 0.48 0.33 0.52  0.35 1.47 0.43 1.02
Hadronic b 0.05 0.05 0.10  1.06 1.95 0.90 1.30
Hadronic ¢; 0.40 0.40 0.60 0.63 1.63 0.81 1.50
Hadronic ¢ 0.90 1.00 0.83  0.76 1.64 0.95 1.59
Leptonic W 0.10 0.11 046  0.37 1.39 0.30 1.27
Hadronic W 0.07 0.09 042 042 1.36 0.32 1.46
Leptonic ¢ 0.09 0.10 035 032 1.61 0.30 1.43
Hadronic ¢ 0.10 0.09 032  0.28 1.60 0.37 1.48
tt System 0.06 0.09 026 024 0.82 0.21 1.68

Table 5: Particle Distance: Kolmogorov-Smirnov Test Statistics

VLD UC-VLD C-VLD ILDM VDM CVAE CINN
Leptonic b 1.50 0.01 0.01  0.49 5.91 0.27 1.44
Leptonic v, /v,  0.14 3.45 0.87 1.43 0.76 0.88 2.48
Leptonic e / p 0.14 1.35 044 093 3.66 1.04 3.43
Hadronic b 0.00 0.01 0.01  3.57 5.99 0.29 1.09
Hadronic ¢; 0.34 2.07 046  1.19 3.80 1.72 6.15
Hadronic ¢ 1.54 0.08 0.67  0.96 2.31 0.98 2.67
Leptonic W 0.02 0.03 294 259 2.39 0.69 2.13
Hadronic W 0.01 0.02 243 254 2.11 1.25 2.53
Leptonic ¢ 0.02 0.03 1.22 147 2.50 0.98 2.24
Hadronic ¢ 0.03 0.04 0.99 1.14 2.39 1.05 2.45
tt System 0.01 0.01 0.06 0.04 048 0.04 3.59

Table 6: Particle Distance: KL Divergence with 128 bins.
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VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 2.06 2.61 17.76 19.12 87.24 20.91 113.29
pt 7.18 7.65 39.39 33.44 429.70 74.56 257.20
eta 0.37 0.26 0.47 0.40 0.44 0.51 4.35
phi 0.22 0.19 0.20 0.38 0.17 0.30 1.29
energy 27.33 16.26  140.80 152.24 77294 155.16 1098.99
px 13.89 10.48 25.86 2537 27243 50.46 166.93
py 8.90 7.95 26.48 2295 270.28 47.97 168.37
pz 48.80 28.16 138.66 148.42 645.15 134.69 1198.66
Table 7. Component Distance: Wasserstein Distances
VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 0.51 0.76 3.77 3.50 15.30 3.00 9.70
pt 0.77 1.04 4.27 342 44.65 771  25.36
eta 0.26 0.17 0.28 0.25 0.25 0.33 2.76
phi 0.15 0.13 0.14  0.25 0.11 0.21 0.86
energy 1.40 0.96 750 7.36 53.11 8.32 70.01
pX 1.25 1.05 2.23 220 20.68 413 12.49
py 0.87 0.81 2.23 1.88 20.54 3.90 13.15
pz 2.38 1.43 4.97 523 2671 470  50.79
Table 8: Component Distance: Energy Distances
VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 3.39 2.78 320 4.54 7.55 4.21 4.66
pt 0.08 0.14 0.36 0.31 3.30 0.67 1.92
eta 0.14 0.09 0.13 0.12 0.11 0.18 1.34
phi 0.07 0.06 0.07 0.12 0.05 0.10 0.39
energy  0.07 0.08 0.36 0.30 2.94 0.45 3.81
px 0.10 0.10 0.18 0.18 1.16 0.31 0.78
py 0.08 0.08 0.17 0.16 1.14 0.29 0.92
pz 0.15 0.09 0.18 0.17 0.88 0.17 1.91

Table 9: Component Distance: Kolmogorov-Smirnov Test Statistics

VLD UC-VLD C-VLD LDM VDM CVAE CINN
mass 3.69 7.04 9.78 15.80 22.78 853 12.34
pt 0.01 0.02 0.07  0.07 3.08 0.22 1.66
eta 0.01 0.01 0.03 0.04 0.04 0.03 1.87
phi 0.00 0.00 0.00  0.01 0.00 0.01 0.07
energy  0.01 0.01 0.08 024 299 0.15 6.53
px 0.01 0.01 0.03 0.03 1.28 0.10 0.92
py 0.00 0.01 0.04 0.03 1.27 0.09 0.92
pz 0.01 0.00 0.05 0.13 0.86 0.05 5.89

Table 10: Component Distance: KL Divergence with 128 bins.
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Figure 9: Global Distribution: Hadronic b Quark
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Figure 14: Global Distribution: Leptonic Top Quark
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(a) Example Event 1 (b) Example Event 2

Figure 17: Posterior distributions for example events. Included is an empirical posterior distribution
calculated from the training dataset.
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(a) Example Event 3 (b) Example Event 4

Figure 18: Posterior distributions for example events. Included is an empirical posterior distribution
calculated from the training dataset.
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