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ABSTRACT

Traditional approaches to studying decision-making in neuroscience focus on sim-
plified behavioral tasks where animals perform repetitive, stereotyped actions to
receive explicit rewards. While informative, these methods constrain our un-
derstanding of decision-making to short timescale behaviors driven by explicit
goals. In natural environments, animals exhibit more complex, long-term behav-
iors driven by intrinsic motivations that are often unobservable. Recent works
in time-varying inverse reinforcement learning (IRL) aim to capture shifting mo-
tivations in long-term, freely moving behaviors. However, a crucial challenge
remains: animals make decisions based on their history, not just their current
state. To address this, we introduce SWIRL (SWitching IRL), a novel framework
that extends traditional IRL by incorporating time-varying, history-dependent re-
ward functions. SWIRL models long behavioral sequences as transitions between
short-term decision-making processes, each governed by a unique reward func-
tion. SWIRL incorporates biologically plausible history dependency to capture
how past decisions and environmental contexts shape behavior, offering a more
accurate description of animal decision-making. We apply SWIRL to simulated
and real-world animal behavior datasets and show that it outperforms models lack-
ing history dependency, both quantitatively and qualitatively. This work presents
the first IRL model to incorporate history-dependent policies and rewards to ad-
vance our understanding of complex, naturalistic decision-making in animals.

1 INTRODUCTION

Historically, decision making in neuroscience has been studied using simplified assays where ani-
mals perform repetitive, stereotyped actions (such as licks, nose pokes, or lever presses) in response
to sensory stimuli to obtain an explicit reward. While this approach has its advantages, it has lim-
ited our understanding of decision making to scenarios where animals are instructed to achieve an
explicit goal over brief timescales, usually no more than tens of seconds. In contrast, in natural
environments, animals exhibit much more complex behaviors that are not confined to structured,
stereotyped trials. For example, a freely moving mouse may immediately rush toward the scent of
food when hungry, but after eating, it might seek out a quiet spot to rest for an extended period. Thus,
real-world animal behaviors form long sequences composed of multiple decision-making processes.
Each decision-making process involves a series of states and actions aimed at achieving a goal, and
such decision switching is unlikely to occur on very short timescales in simplified assays. Addition-
ally, many of the goals animals pursue in natural settings are generated by intrinsic motivations and
thus unobservable. To truly understand animal’s decision-making in a naturalistic context, we need
methods to uncover animals’ intrinsic motivations during multiple decision-making processes.

Inverse reinforcement learning (IRL), which infers agents’ policies and intrinsic reward functions
based on their interactions with the environment (Ng & Russell, 2000; Abbeel & Ng, 2004; Ziebart
et al., 2008; 2010; Wu et al., 2024), has been shown to be effective in capturing animal decision-
making intentions by learning reward functions from behavioral trajectories (Sezener et al., 2014;
Yamaguchi et al., 2018; Pinsler et al., 2018; Hirakawa et al., 2018). However, traditional IRL as-
sumes a single static reward function over time, limiting its ability to account for shifts in intrinsic
motivations. To address this limitation, recent IRL variants have aimed to uncover heterogeneous
and time-varying reward functions (Babes-Vroman et al., 2011; Surana & Srivastava, 2014; Nguyen
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et al., 2015; Ashwood et al., 2022a; Zhu et al., 2024). Despite these advancements, a significant
challenge remains unaddressed: animals make decisions based on their history, not just their current
state (Kennedy, 2022; Hattori et al., 2019). For example, in perceptual decision-making tasks, mice
are found to make new decision based on reward, state and decision history (Ashwood et al., 2022b).
Incorporating historical context into the modeling could offer a more accurate representation of an-
imal behavior.

To address the absence of history dependency in time-varying IRL models, we introduce a novel
framework called SWitching IRL (SWIRL). Similar to Zhu et al. (2024), SWIRL models long
recordings of animal behaviors as a sequence of short-term decision-making processes. Each
decision-making process is treated as a Markov decision process (MDP) with a unique reward func-
tion that can be inferred using IRL. The segmentation of a long recording into switching decision-
making processes is unknown; therefore, each process is regarded as being associated with a hidden
mode that must also be inferred. Most importantly, SWIRL incorporates biologically plausible his-
tory dependency, drawing on insights from animal behavior. The history dependency is added at
two levels: the transitions between decision-making processes (decision-level) and the actions taken
to achieve a single goal within a decision-making process (action-level). Decision-level dependency
is reflected in the transitions between decision-making processes over extended sequences of time
bins, suggesting that an animal’s current choice is shaped by its previous decisions and environmen-
tal feedback. Additionally, we posit that these transitions are influenced by the animal’s location. For
example, after a mouse drinks from a water port, if it stays nearby, it is more likely to seek another
goal. Conversely, if it is far from the port, indicating it has been away for some time, it may become
thirsty again and return to search for water. For action-level history dependency, we will model the
policy and reward functions as dependent on trajectory history within each decision-making pro-
cess, using a non-Markovian decision framework. Such a dependency has been studied by existing
reinforcement learning research, which often characterizes exploration with reward functions based
on historical states and actions (Houthooft et al., 2016; Sharafeldin et al., 2024). Importantly, our
paper is the first to incorporate history-dependent policies and rewards into IRL.

One key aspect we want to highlight in this paper is that the proposed SWIRL model has intriguing
connections to traditional behavioral analysis methods in the animal neuroscience literature. In
Sec. 3.5, we will demonstrate that our SWIRL model offers a more generalized and principled
approach to characterize animal behaviors compared to existing autoregressive dynamics models
(Wiltschko et al., 2015; Mazzucato, 2022; Stone, 2023; Weinreb et al., 2024).

In the Results section, we will apply our SWIRL to a simulated dataset as well as two real-world
animal behavior datasets. For both animal datasets, we will demonstrate that SWIRL outperforms al-
ternative models when history dependency is not included, both quantitatively and qualitatively. This
underscores the necessity of incorporating this biologically plausible element when modeling long-
term behaviors. Additionally, for the first time, we will present the application of non-Markovian
reward functions and state-action reward functions to model freely-moving animals, contrasting with
previous works that only assume a single state-based reward.

2 RELATED WORK

IRL for animal behavior understanding. IRL has been widely used to infer animals’ behavioral
strategies and decision-making policies when the reward is unknown. For instance, Pinsler et al.
(2018) applies IRL to uncover the unknown reward functions of pigeons, explaining and reproduc-
ing their flock behavior, and developed a method to learn a leader-follower hierarchy. Similarly,
Hirakawa et al. (2018) uses IRL to learn reward functions from animal trajectories, identifying
environmental features preferred by shearwaters, and discovered differences in male and female mi-
gration route preferences based on the estimated rewards. In another study, Yamaguchi et al. (2018)
apllies IRL to C. elegans thermotactic behavior, revealing distinct behavioral strategies for fed and
unfed worms. Additionally, Sezener et al. (2014) maps reward functions for rats freely moving in
a square area, showing how these rewards changed before and after training. While these studies
demonstrate the utility of IRL in uncovering behavioral strategies of freely moving animals, they
share a key limitation: they all assume a single reward function governs all animal behaviors, which
does not account for the complexities of long-term decision-making.

Heterogeneous and time-varying IRL. Recent works have extended traditional IRL, which as-
sumes a constant reward, to models with time-varying or multiple reward functions driving behav-
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ioral trajectories. For example, Babes-Vroman et al. (2011) introduced Multi-intention IRL, which
infers multiple reward functions across different trajectories but still assumes a single reward func-
tion within each trajectory. On the other hand, the Dynamic IRL (DIRL) method (Ashwood et al.,
2022a) models reward functions as a linear combination of feature maps with time-varying weights,
addressing the issue of varying rewards within a trajectory. However, DIRL requires trajectories to
be highly similar or clustered beforehand, significantly limiting its applicability. Moreover, it can-
not capture switching decision-making processes over long-term periods where each process may
vary in length. Additionally, BNP-IRL (Surana & Srivastava, 2014), locally consistent IRL (Nguyen
et al., 2015) and multi-intention inverse Q-learning (IQL) (Zhu et al., 2024) all extended the multi-
intention IRL framework to allow for changing reward functions within trajectories, making them
the closest models to our proposed SWIRL. However, all models do not account for both decision-
level and action-level history dependency, an important biologically plausible factor that SWIRL
incorporates to achieve more accurate behavior modeling. In our experiments, we will use multi-
intention IQL and locally consistent IRL as baseline models, as they are special cases of SWIRL.

Dynamics-based behavior analysis in animal neuroscience. Traditional approaches to analyzing
animal behavior in neuroscience often rely on autoregressive dynamics models. For instance, MoSeq
and related works (Wiltschko et al., 2015; Weinreb et al., 2024) assume that animal behavior consists
of multiple segments modeled by an HMM, with each segment evolving through an autoregressive
process. Stone (2023) introduces a switching linear dynamical system (SLDS), similar to an AR-
HMM, but with an additional layer of continuous latent states between the behavioral trajectories
and the hidden states representing behavioral segments. We argue that if each segment lasts only a
few seconds, it represents meaningful action motifs, such as grooming and sniffing. However, if a
segment is significantly longer and reflects a decision-making process, traditional dynamics-based
models may not be suitable for identifying these long-term segments. However, these dynamics-
based models are not entirely independent of SWIRL. We will demonstrate that SWIRL generalizes
purely dynamics-based models by relying on a more principled IRL framework to identify multiple
decision-making processes. Our goal is to offer profound insights that bridge these traditional and
new models for animal behavioral analysis.

3 METHODS

3.1 HIDDEN-MODE MARKOV DECISION PROCESS

A discounted Hidden-Mode Markov Decision Process (HM-MDP) is defined by the tuple M =
(Z,S,A,P,Pz, r, γ). Here, Z represents a finite set of hidden modes z, S denotes the finite state
space, and A indicates the finite action space. rz represents the reward function r under hidden
mode z. The discount factor γ is constrained to the interval [0, 1]. Starting from an initial state s0,
the agent (animal) selects an action a based on its policy (behavioral strategy) π and subsequently
receives a reward determined by rz , z ∈ Z := {z1, z2, . . . , zm}, where m represents the total
number of modes. The agent then transitions to the next state s′ according to the transition kernel
P(s′|s, a), while the agent’s hidden mode also transitions to z′ based on the transition probability
Pz(z

′|z).

3.2 INVERSE REINFORCEMENT LEARNING

Inverse Reinforcement Learning (IRL) addresses the scenario where we have gathered multiple tra-
jectories from an expert agent π∗, comprising a set of state-action pairs {(s∗t , a∗t )}. The goal is to
estimate the policy and reward that generated these state-action pairs, often referred to as demon-
strations in the literature. We assume that we have collected N expert trajectories, denoted as
D = {ξ1, ξ2, . . . , ξN}. Each trajectory consists of a sequence of state-action pairs, represented
as ξn = {(s∗1, a∗1), (s∗2, a∗2), . . .}, with Tn time steps, which may vary across trajectories.

3.3 SWITCHING INVERSE REINFORCEMENT LEARNING

Our SWIRL model is built on the HM-MDP. Instead of explicitly knowing the reward for each
mode, we will use IRL to infer these rewards. Mathematically, at each time step t, we represent
the agent’s internal reward function rzt with an additional dependency on the hidden mode zt. This
means that the agent receives a reward rzt based on its current hidden mode zt, which indicates the
decision-making state the animal is in (e.g., water seeking or home seeking), with rzt representing
the corresponding intrinsic motivation. Consequently, the optimal policy πt is determined by rzt .
However, SWIRL goes beyond merely embedding IRL within HM-MDP. We also introduce two
levels of history dependency into the model. The full graphical model is depicted in Fig. 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The decision-level dependency is characterized by the idea that animals make new decisions based
on their previous choices. The transitions between decision-making processes already account for
this decision-level dependency since Pz(zt+1|zt). However, the hidden modes with such a clas-
sical transition are generated through an open-loop process: the mode zt+1 depends solely on the
preceding mode zt, with zt+1|zt being independent of the observation state st. Consequently, if a
discrete switch should occur when the animal enters a specific region of the state space, the classical
transition will fail to capture this dependency. To address this, we extend the transition model to in-
clude the state st as a condition, resulting in Pz(zt+1|zt, st), which effectively captures the desired
relationship between decisions and the animal’s location.

Hidden modes

Action

States

Figure 1: SWIRL graphical model. Green dotted
lines represent transitions of the hidden modes de-
pend on the previous state (decision-level depen-
dency). Blue dotted lines represent that polices
depend on past states (action-level dependency).

For action-level history dependency, we treat
both the reward and policy under a hidden mode
z as functions dependent on the previous L
states, specifically rz : SL × A → R and πz :
SL → A, where L ∈ N and SL denotes the
cartesian product of L state spaces. To simplify
the notation, we denote an element of SL as
sL, so that rz(sL, a) := rz(s

1, s2, . . . , sL, a)
and πz(a|sL) := πz(a|s1, s2, . . . , sL), and pad
both functions with dummy variables if the cur-
rent time step is less than L. We can also
add the dependency of previous actions for the
reward function. But we use state-only re-
wards for simplicity and the IRL tradition. It’s
straightforward to do so, though. This makes it natural to extend from a single state dependency to
a history of state dependencies in our work.

Furthermore, we can view the decision process as being non-Markovian, meaning that the current
decision or action depends not only on the current state but also on the history of previous states
and actions. Noticeably, there are various approaches to address non-Markovian decision processes,
including state augmentation (Sutton, 1991), recurrent neural networks (Bakker, 2001; Hausknecht
& Stone, 2015), Neural Turing Machines (Parisotto & Salakhutdinov, 2017) and so forth. In this
paper, we adopt the most common approach–state augmentation; however, the framework can also
be implemented using more advanced and scalable methods.

3.4 SWIRL INFERENCE PROCEDURE

The goal of inference is to learn the hidden modes z and the model parameters θ =
(Pz, rz, πz, p(s1), p(z1)) given the collected trajectories D. Here, p(s1) and p(z1) represent the
probabilities of the initial state and hidden mode, respectively. The variables rz and πz denote the
reward and policy associated with the hidden mode z, while Pz is the transition matrix between
hidden modes. We can maximize the likelihood of the demonstration trajectories D to learn the
optimal θ∗, such that θ∗ = argmaxθ logP (D|θ) (MLE). However, achieving this objective requires
marginalizing over the hidden modes z, which is intractable. To address the intractability, we em-
ploy the Expectation-Maximization (EM) algorithm, alternating between updating the parameter
estimates and inferring the posterior distributions of the hidden modes.

Following the EM update scheme, we derive the auxiliary function for the n-th trajectory during the
E-step, where n = 1, 2, . . . , N :

Gn(θ, θ̂) = log p(sn,1) +
∑
z

p(zn,1|ξn, θ̂) log p(zn,1) +
Tn−1∑
t=1

logP(sn,t+1|sn,t, an,t) (1)

+

Tn∑
t=1

∑
zn,t

p(zn,t|ξn, θ̂) log πzn,t(an,t|sLn,t; rz) (2)

+

Tn−1∑
t=1

∑
zn,t,zn,t+1

p(zn,t, zn,t+1|ξn, θ̂) logPz(zn,t+1|zn,t, sn,t). (3)

Here are some remarks: (I) We incorporate state dependency into the hidden mode transition Pz ,
such that zt+1 depends not only on the previous hidden mode zt but also on the current state st. This
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modification results in longer segments of hidden modes with reduced fast-switching phenomena.
(II) If we have estimated the current policy πzn based on the current reward estimate rz , we can apply
any inference method to estimate the posterior probabilities p(zn,t|ξn, θ̂) and p(zn,t, zn,t+1|ξn, θ̂).
In this work, we use the standard forward-backward message-passing algorithm. (III) It is important
to note that P(sn,t+1|sn,t, an,t) represents the environment transition and is not involved in the
optimization process. The detailed derivation can be found in Appendix A.1.

Algorithm 1 The SWIRL Algorithm
Data: Expert demonstrations D = {ξ1, ξ2, . . . , ξN}
Result: The posterior probabilities of hidden modes z, rewards rz for each mode, and other param-

eters in θ
Initialize parameters θ0
for k = 1, 2, . . . ,K do

E-step
For each hidden mode z and corresponding reward rkz , compute the soft Q-function using

Eq. 4 for I iterations. Compute the policy with the Boltzmann distribution:

πz(a|s) =
exp{QI

z(s, a)/α}∑
a′∈A exp{QI

z(s, a
′)/α}

to obtain πk
z (a|sL; rkz ), ∀s ∈ S.

For each trajectory ξn, use forward-backward message passing to calculate p(zn,t|ξn, θk)
and p(zn,t, zn,t+1|ξn, θk).

Use the posteriors, πk
z (a|sL; rkz ), and θk to compute the auxiliary function G (Eqs. 1-3).

end
M-step

Update parameters θ using gradient descent on the auxiliary function G with learning rate
ηk:

θk+1 ← θk − ηk∇θG(θ, θk).

end
end

Consequently, to fully compute the auxiliary function, we must calculate πz(a|sL; rz) in Eq. 2,
which represents the current optimal policy based on the reward estimate rz for every hidden mode
z. This term represents the objective function for optimizing the reward estimate rz during the M-
step. To parameterize the policy in terms of the reward, we use Soft-Q iteration (Haarnoja et al.,
2017). Specifically, for the i-th iteration, the Q function will be updated through

Qi+1(s, a)← rz(s, a) + αγ log
∑
a′∈A

exp
{
Qi(s′, a′)/α

}
, (4)

where α is a predefined temperature parameter. The policy πzn,t(an,t|sLn,t; rz) in Eq. 2 is derived
from a Boltzmann distribution of the computed Q function, making it a differentiable function of the
reward function rz . In the M-step, to maximize the auxiliary function G, we compute the gradient of
G with respect to rz through the differentiable policy term, and with respect to all other parameters
in θ in other objective terms. The inference procedure alternates between the E-step and M-step until
convergence or a predetermined number of iterations. The algorithm is summarized in Algorithm 1.

3.5 CONNECTION TO DYNAMICS-BASED BEHAVIOR ANALYSIS METHODS

Traditional methods for analyzing animal behavior in neuroscience often use autoregressive dy-
namics models, with the autoregressive hidden Markov model (ARHMM) being the most prevalent
(Wiltschko et al., 2015; Weinreb et al., 2024). ARHMMs assume that the animal behavior consists
of multiple segments represented by a hidden Markov model, where each segment evolves through
an autoregressive process. Using the notation established earlier, we denote hidden modes as zt
at time t, following the transition p(zt+1|zt). At each time step t, the observation state st follows
conditionally linear (or affine) dynamics, determined by the discrete mode zt. This can be expressed
as st+1 = Aztst + vt, where Azt is the linear dynamics associated with zt and vt represents Gaus-
sian noise. If zt changes, the linear dynamics will also change accordingly. More generally, we
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can represent the dynamics as p(st+1|st, zt). Consequently, the overall generative model for the
ARHMM can be summarized as follows: (1) zt ∼ p(zt|zt−1), and (2) st+1 ∼ p(st+1|st, zt). Let’s
outline the generative model of SWIRL without history dependency: (1) zt ∼ p(zt|zt−1), and (2)
st+1 ∼

∑
at
p(st+1|st, at)π(at|st, zt). The term π(at|st, zt) arises because the policy is derived

from rzt . Consequently, the primary distinction between ARHMM and SWIRL lies in the dynamics
used to generate st+1.

We can show that SWIRL is a more generalized version of ARHMM. In a deterministic MDP,
where p(st+1|st, at) is a delta function and each action at uniquely determines st+1, st+1 directly
implies at. Thus,

∑
at
p(st+1|st, at)π(at|st, zt) = π(at|st, zt) = p(st+1|st, zt). This effectively

reduces SWIRL to ARHMM. In the second real-world experiment, the MDP setup satisfies these
assumptions. In such a case, ARHMM can be seen as performing policy learning through behavioral
cloning without learning a reward function, whereas SWIRL employs IRL to learn the policy.

Having established this connection, we can view SWIRL as a more generalized version of ARHMM,
as it permits the MDP to be stochastic and allows multiple actions to result in the same preceding
state. Additionally, explicitly modeling the policy introduces a reinforcement learning framework
that better represents the decision-making processes of animals and reveals the underlying reward
function. For SWIRL with history dependency, we can further connect it to the recurrent ARHMM
(Linderman et al., 2016), which expands p(zt+1|zt) to p(zt+1|zt, st).
An advanced version of the ARHMM is the switching linear dynamical system (SLDS), which
assumes that the state st is unobserved. Instead, the observed variable yt is a linear transforma-
tion of st. Thus, the complete generative model for SLDS consists of: (1) zt ∼ p(zt|zt−1), (2)
st+1 ∼ p(st+1|st, zt), and (3) yt+1 ∼ p(yt+1|st+1). This suggests that the representation st captur-
ing the primary dynamics is, in fact, a latent representation of the external world yt. Building on this
concept, we can extend SWIRL into a latent variable model, where st serves as the latent represen-
tation of the true observation state yt. This corresponds to the setup of Partial Observation Markov
Decision Processes (POMDPs) in the literature. This extension will link SWIRL to representation
learning in reinforcement learning, which we plan to explore further in future work.

Thus, we argue that SWIRL offers a more generalized and principled approach to studying animal
behavior compared to commonly used dynamics-based models, as one can draw inspiration from the
development of (latent) dynamics models to enhance advanced IRL methods for analyzing animal
decision-making processes.

4 RESULTS

Throughout the experiment section, we use the following terminology to denote our proposed algo-
rithms and the baseline models we compare.
• MaxEnt (Ziebart et al., 2008; 2010): Maximum Entropy IRL where the reward function is only
a function of the current state and action. It is a single-mode IRL approach with a single reward
function.
•Multi-intention IQL (Zhu et al., 2024): learns time-varying reward functions based on HM-MDP.
It is a SWIRL model with no history dependency.
• Locally Consistent IRL (Nguyen et al., 2015): learns time-varying reward functions based on
HM-MDP. It is a SWIRL model with no action-level history dependency.
• ARHMM (Wiltschko et al., 2015): learns the segmentation of animal behaviors using autoregres-
sive dynamics combined with a hidden Markov model.
• rARHMM (Linderman et al., 2016): recurrent ARHMM whose transition probability of the hid-
den modes also relies on the state.
• I-1, I-2: the baseline variant of our proposed SWIRL method which assumes the transition kernel
Pz is independent of the state. The reward and policy depend either on the current state (in the case
of I-1) or on both the current and previous states (in the case of I-2). Note that I-1 represents the
simplest version of SWIRL, which corresponds to Multi-intention IQL. Thus, we use I-1 to denote
Multi-intention IQL. The model can incorporate an arbitrary history length L for the policy and re-
ward; in this paper, we use L = 1 and L = 2.
• S-1, S-2: our proposed SWIRL method where Pz is state dependent. The suffix follows the same
setup as above. S-1 corresponds to Locally Consistent IRL.
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Figure 2: Simulation experiment on a 5 × 5 gridworld. (A) Comparison between the true and
discovered reward maps. The color scale represents reward values ranging from 0 to 1. The home
reward is defined as r(st), while the water reward depends on both the current and previous loca-
tions, r(st, st−1). To present the water reward, each location is divided into five groups, as detailed
in the table on the far right. For example, the polygon in the first row represents the reward value
when st is the current location and st−1 is the location to the right. Light grey indicates an impos-
sible transition where no reward exists. (B) Box plots illustrating the Pearson correlation between
the true and recovered reward maps, test log-likelihood, and test segmentation accuracy. The x-axis
represents the five different models. Outlier selection method is described in Appendix B.6.
4.1 APPLICATION TO A SIMULATED GRIDWORLD ENVIRONMENT

We begin by testing our method on simulated trajectories within a 5 × 5 gridworld environment,
where each state allows for five possible actions: up, down, left, right, and stay. The agent alternates
between two reward maps: a home reward map and a water map (see Fig. 2A). Following the design
of real animal experiments (Rosenberg et al., 2021), we assume that the water port provides water to
the agent only once per visit. Therefore, under the water reward map, the agent receives a reward for
(1) visiting the water state if it was not in the water state previously or (2) leaving the water state. The
home reward map returns a reward at the home state. This leads to a non-Markovian reward function
that relies on both the current state and the previous state. We employed soft-Q iteration to determine
the optimal policy for each reward function and generated 200 trajectories based on the learned
policy, using a history-dependent hidden-mode switching dynamic Pz(zt+1|zt, st). Accordingly,
the agent is more likely to switch to the home map after visiting the water port and to switch to the
water map after returning home. Each trajectory consists of 500 steps.

We then used SWIRL to learn the reward functions and the transition dynamics between them,
based on 80% of the generated trajectories. As a baseline, we employed the Maximum Entropy
IRL (MaxEnt) method and tested four variations of the SWIRL models (I-1, I-2, S-1, S-2), with
I-1 representing multi-intention IQL. Fig. 2A displays a comparison between the true and discov-
ered reward functions, while Fig. 2B presents boxplots showing the Pearson correlation between the
true and recovered reward functions, along with the test log-likelihood (LL) and test segmentation
accuracy (which measures the ability to predict the correct segments for home and water modes).
The test performance was evaluated using the remaining 20% of the trajectories. Notably, accurate
reward recovery was only achieved with the S-2 model. All four SWIRL variations outperformed
MaxEnt, indicating the presence of more than one hidden model. Both the state dependency of
hidden-mode transitions (decision-level dependency) and the history dependency reward function
(action-level dependency) contributed to further improvements in test LL and segmentation accu-
racy. Specifically, only the state-dependent models (S-1, S-2) could accurately and robustly recover
test segments, while the independent models (I-1, I-2) exhibited lower accuracy with higher vari-
ance. This is attributed to the non-Markovian reward design, where the agent can only receive water
once per visit. Notably, S-2, the full SWIRL model incorporating both decision-level and action-
level dependencies, demonstrated the best performance across all metrics.
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4.2 APPLICATION OF SWIRL TO LONG, NON-STEREOTYPED MOUSE TRAJECTORIES

We then applied SWIRL to the long, non-stereotyped trajectories of mice navigating a 127-node
labyrinth environment with water restrictions (Rosenberg et al., 2021). In this experiment, a cohort
of 10 water-deprived mice moved freely in the dark for 7 hours. A water reward was provided at an
end node (Fig. 3A), but only once every 90 seconds at most. Similar to the simulated experiment,
the 90-second condition forces the mice to leave the port after drinking water, leading to a non-
Markovian internal reward function. For our analysis, we segmented the raw node visit data into
238 trajectories, each comprising 500 time points. This data format presents a considerably greater
challenge compared to the same dataset processed with more handcrafted methods in previous IRL
applications (Ashwood et al., 2022a; Zhu et al., 2024), which were limited to clustered, stereotyped
trajectories of only 20 time points in length.
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Figure 3: Water-restricted labyrinth experiment. (A) Setup for the labyrinth experiment. (B)
Inferred reward maps from SWIRL (S-2) under three hidden modes: water, home, and explore. To
enhance visualization, the inferred reward r(st, st−1) was averaged over st−1 to produce r(st). (C)
History dependency inferred by SWIRL (S-2), as reflected in the reward map for the water mode.
(D) Trajectories segmented into hidden modes based on SWIRL (S-2) predictions. (E) Boxplot
showing held-out test LL, with the x-axis representing the five different models. Outlier selection
method is described in Appendix B.6. (F) Segments of a trajectory from held-out test data, predicted
by four SWIRL models. The orange dot indicates when the mouse visits the water port, while the
red cross denotes the mouse’s visit to state 0 (home) at that time.

4.2.1 SWIRL INFERRED INTERPRETABLE HISTORY-DEPENDENT REWARD MAPS
We applied SWIRL to 80% of the 238 mouse trajectories from the water-restricted labyrinth ex-
periments. According to Rosenberg et al. (2021), mice quickly learned the labyrinth environment
and began executing optimal paths from the entrance to the water port within the first hour of the
experiment. Therefore, we assume the mice acted optimally concerning the internal reward function
guiding their behavior. Fig. 3E displays the held-out test LL for MaxEnt and the SWIRL varia-
tions based on the remaining 20% of trajectories. The state dependency in hidden-mode switching
dynamics and the history dependency in the reward function contributed to improved test perfor-
mance. The final SWIRL model (S-2) successfully inferred a water reward map, a home reward
map, and an explore reward map (Fig. 3B). For better visualization, we averaged the S-2-recovered
history-dependent rewards across previous states and normalized the reward values to a range of (0,
1). In the water reward map, mice received a high reward for visiting the water port. In the home
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reward map, there was a high reward for visiting state 0 at the center of the labyrinth, which also
served as the entrance and exit. Mice occasionally went to state 0 to enter or leave the labyrinth and
sometimes passed by on their way to other nodes. In the explore reward map, mice received a high
reward for exploring areas of the labyrinth other than state 0 and the water port.

We are particularly excited to have inferred an interpretable history-dependent reward map for the
water port (Fig. 3C). It indicates that mice receive a high reward (1.0) for reaching the water port
when their previous location was not the water port. If their prior location was the water port, there
is still a reward (0.7) for staying there, but the reward for leaving the water port is even higher
(0.9). This observation aligns with the water port design, as mice can only obtain water once every
90 seconds. Consequently, it makes sense that the mice would want to leave the water port after
reaching it. Such insights would not be captured by a Markovian reward function that depends
solely on the current state.

4.2.2 SWIRL INFERRED INTERPRETABLE HISTORY-DEPENDENT HIDDEN-MODE SEGMENTS

We then visualized all mouse trajectories based on the hidden-mode segments predicted by SWIRL
(S-2) (Fig. 3D). In segments classified as water mode, mice start from various locations in the
labyrinth and move toward the water port. In segments identified as home mode, mice begin from
distant nodes and head toward the center of the labyrinth (home). In segments categorized as explore
mode, mice start from junction nodes or the water port and explore end nodes other than the water
port. This result demonstrates that SWIRL can identify sub-trajectories of varying lengths from raw
data spanning 500 time points, allowing us to visualize them together and reveal clustered behav-
ioral strategies. This capability has not been achieved by previous studies on freely moving animal
behavior over extended recording periods, and we conducted this analysis without prior knowledge
of the locations of the water port or home.

We also provide a detailed visualization of the hidden-mode segments from an example trajectory
in the held-out test data and compare the segmentation performance of the four SWIRL variations
(Fig. 3F). In the S-2 segments, visits to the water port (indicated by orange dots) consistently occur
at the end of a water mode segment, while visits to state 0 (home) (indicated by red crosses) typ-
ically happen at the conclusion of a home mode segment. Notably, home mode segments that do
not include a visit to state 0 can still be valid, as these segments may end at state 1 or 2 (see Ap-
pendix C.1). In contrast, the I-1, I-2, and S-1 segments exhibit instances of water segments that do
not involve a visit to the water port, along with many home segments that lack clear interpretability.
Overall, S-2 successfully identifies robust segments of reasonable length, avoiding the numerous
rapid switches seen in the other variations. We attribute this to both the state dependency of hidden
mode transitions and the history dependency in rewards. This suggests that mice are unlikely to
make quick changes in their decisions; instead, they make choices based on their current location
and take into account at least two locations while navigating the maze.

4.3 APPLICATION OF SWIRL TO MOUSE SPONTANEOUS BEHAVIOR TRAJECTORIES

We also employed SWIRL on a dataset in which mice wandered an empty arena without explicit
rewards (Markowitz et al., 2023). In this experiment, mouse behaviors were recorded via depth
camera video, and dopamine fluctuations in the dorsolateral striatum were monitored. The dataset
includes behavior “syllables” inferred by MoSeq (Wiltschko et al., 2015), which indicate the type of
behavior exhibited by the mice during specific time periods (e.g., grooming, sniffing, etc.). Conse-
quently, the trajectories consist of behavioral syllables, with each time point representing a syllable.
We selected 159 trajectories, each comprising 300 time points, by retaining only the 9 most frequent
syllables and merging consecutive identical syllables into a single time point. This method, also
used in previous reinforcement learning studies on this dataset (Markowitz et al., 2023), ensures that
each syllable has sufficient data for learning and allows the model to concentrate on the transitions
between different syllables.

The MDP for this experiment comprises 9 states and 9 actions, where the state represents the current
syllable and the action signifies the next syllable. As mentioned in Section 3.5, the ARHMM can
be viewed as a variant of SWIRL that learns the policy through behavior cloning. In other words,
the policy for this MDP aligns with the emission probability of the ARHMM. This setup offers
an excellent opportunity to compare the performance of SWIRL with ARHMM and its variant,
rARHMM.
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We applied SWIRL, rARHMM, ARHMM, and MaxEnt to 80% of the trajectories and assessed the
held-out test LL on the remaining 20% (Fig. 4B). All four SWIRL models outperformed ARHMM
and rARHMM on this dataset, indicating that learning rewards is more beneficial for behavior seg-
mentation and explaining the behavior trajectories. Interestingly, the history dependency in the
reward function resulted in lower test LL, as S-1 and I-1 demonstrated higher test LL than S-2 and
I-2. We believe this is attributable to the merging of consecutive identical syllables and the selection
of the top 9 syllables during the preprocessing phase for this dataset. As a result of these steps,
the actual time interval between st−1 and st may vary significantly, leading to a poorly defined
time concept that complicates the model’s ability to capture the history dependency in the reward
function. However, we can use SWIRL with different variations as a hypothesis-testing tool. The
variation yielding the highest test LL may be regarded as more accurately reflecting the dynamics
and structure of the data. Consequently, these results suggest that the behavior trajectories exhibit
only Markovian dependency rather than long-term non-Markovian dependency. Since S-1 remains
higher than I-1, we conclude that the state dependency in the hidden mode transition contributes to
explaining the data. Furthermore, as discussed in Appendix C.2, SWIRL recovered reward maps
and hidden-mode segments provide insights into the variability of dopamine impacts on animal
spontaneous behavior.

While the non-Markovian action-level history dependency introduced by SWIRL does not demon-
strate superior performance in this particular experiment, the findings showcases SWIRL’s unique
contribution to neuroscience research. Specifically, SWIRL serves as a powerful tool for hypothesis
testing in behavioral datasets, enabling researchers to validate or challenge hypotheses regarding
decision-level dependency as well as non-Markovian action-level dependency. This versatility fur-
ther confirms SWIRL’s great potential in advancing our understanding of complex behaviors.
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Figure 4: Mouse spontaneous behavior experiment. (A) SWIRL (S-1) inferred z-scored reward
maps for five hidden modes. h1 denotes hidden mode 1, and so on. DA corr represents the Pearson
correlation between the inferred reward map and the averaged dopamine fluctuation levels. (B) Held-
out test LL for each model across different number of hidden modes. The shaded area represents
the total area that falls between one standard deviation above and below the mean. (C) Inferred
hidden-mode segments for all trajectories, with each row representing a trajectory.

5 DISCUSSION

We introduce SWIRL, an innovative inverse reinforcement learning framework designed to model
history-dependent switching reward functions in complex animal behaviors. Our framework can in-
fer interpretable switching reward functions from lengthy, non-stereotyped behavioral tasks, achiev-
ing reasonable hidden-mode segmentation—a feat that, to the best of our knowledge, has not been
accomplished previously.
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REPRODUCIBILITY STATEMENT

SWIRL codes can be found at the following anonymous repository: https://anonymous.
4open.science/r/SWIRL-86F6. Both the labyrinth dataset (Rosenberg et al., 2021) and the
spontaneous behavior dataset (Markowitz et al., 2023) are publicly available and can be accessed
through the data repositories provided in their respective original publications.
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A APPENDIX A

A.1 DERIVATION OF SWIRL OBJECTIVES BY EM ALGORITHM

Here we need to learn θ ≜ (rz,Pz, p(s1), p(z1)). Note that the total probability for a sequence
{(st, at, zt)}t=1:T is

log p(z, s, a) = log p(z1)p(s1)πz1(a1|s1; rz)
T∏

t=2

P(st|st−1, at−1)Pz(zt|zt−1, st−1)πzt(at|sLt ; rz).

The expectation across all possible sequences is given by

E[log p(z, s, a)] =
N∑

n=1

log p(sn,1) +

N∑
n=1

p(zn,1|s1, a1) log p(zn,1)

+

N∑
n=1

T∑
t=2

logP(sn,t|sn,t−1, an,t−1)

+

N∑
n=1

T∑
t=2

p(zn,t, zn,t−1|ξn) logPz(zn,t|zn,t−1, sn,t−1)

+

N∑
n=1

T∑
t=1

p(zn,t|ξn) log πzn,t
(an,t|sLn,t; rz).

Now we use Expectation-Maximization to find θ. E step:

G(θ, θ̂) =
∑
z

p(z|ξ1:N , θ̂) log p(z, ξ1:N , |θ̂)

=
∑
z

(
N∏

n=1

p(zn,1:T |ξn, θ̂n)

)
N∑

n=1

{
log p(sn,1) + log p(zn,1) +

Tn∑
t=1

(log πzn,t
(an,t|sLn,t; rz)) +

Tn−1∑
t=1

(logP(sn,t+1|sn,t, an,t)

+ logPz(zn,t+1|zn,t, sn,t))
}

=

N∑
n=1

log p(sn,1)

+

N∑
n=1

∑
z

p(zn,1 = z|ξn, θ̂) log p(zn,1)

+

N∑
n=1

Tn∑
t=1

∑
z

p(zn,t = z|ξn, θ̂) log πzn,t
(an,t|sLn,t; rz)

+

N∑
n=1

Tn−1∑
t=1

∑
z

∑
z′

p(zn,t = z, zn,t+1 = z′|ξn, θ̂) logPz(zn,t+1|zn,t, sn,t)

+

N∑
n=1

Tn−1∑
t=1

logP(sn,t+1|sn,t, an,t).

M step:

θk+1 = argmax
θ

G(θ, θk).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For notational simplicity, we only consider a specific trajectory n. To compute G(θ, θk), we need to
estimate

p(zt|s1:T , a1:T , θ̂)
and

p(zt = z, zt+1 = z′|s1:T , a1:T , θ̂).
Thus we can use message passing algorithm, where we define the forward-backward variables α and
β. Forward variables αt,z , for t = 1, . . . , T :

α1,z = p(z1 = z|θ̂),
αt,z = p(s1:t, a1:t, zt = z|θ̂)

=
∑
z′

p(s1:t−1, a1:t−1, zt−1 = z′|θ̂)Pz(zt = z|st−1, zt−1 = z′)p(st|st−1, at−1)πzt(at|sLt ; rz)

=
∑
z′

αt−1,z′Pz(zt = z|st−1, zt−1 = z′)p(st|st−1, at−1)πzt(at|sLt ; rz).

Backward variables βt,z , for t = 1, . . . , T :

βT,z = 1,

βt,z = p(st+1:T , at+1:T |st, at, zt = z, θ̂)

=
∑
z′

βt+1,z′p(st+1|st, at)πz′(at|sLt ; rz)Pz(zt+1 = z′|zt = z, st+1),

β1,z = p(s1:T , a1:T |z1 = z, θ̂)

=
∑
z′

β1,z′p(s1)πz′(a1|sL1 ; rz)Pz(z1 = z′|z0 = z, s1).

Therefore,
p(zt = z|ξ, θ̂)
= p(zt = z, ξ|θ̂)/p(ξ|θ̂)
= p(s1:t, a1:t, zt = z|θ̂)p(st+1:T , at+1:T |st, at, zt = z, θ̂)/p(ξ|θ̂)
= αt,zβt,z/p(ξ|θ̂).

Furthermore,

p(zt−1, st−1, zt|ξ, θ̂) = p(zt−1, st−1, zt, ξ|θ̂)/p(ξ|θ̂)
= p(s1:t−1, a1:t−1, zt−1)p(zt|zt−1, st−1)p(st, at|st−1, at−1, zt)p(st+1:T , at+1:T |zt, st, at)/p(ξ|θ̂)

=
p(s1:t−1, a1:t−1, zt−1)p(zt|zt−1, st−1)p(st|st−1, at−1)p(at|st, zt)p(st+1:T , at+1:T |zt, st, at)

p(ξ|θ̂)

=
αt−1,zt−1Pz(zt|zt−1, st−1)Pz(st|st−1, at−1)πzt(at|sLt ; rz)βt,zt

p(ξ|θ̂)
.

And finally,
p(ξ|θ̂) =

∑
z

αT,z =
∑
z

α1,zβ1,z.

A.2 DISCUSSION ON THE CONVERGENCE

The SWIRL inference procedure follows the Expectation-Maximization (EM) algorithm, which has
a convergence guarantee (Wu, 1983). For inferring the reward function under each hidden mode,
SWIRL adopts the Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) framework,
with Soft-Q iteration serving as the RL inner loop. Both Soft-Q iteration (Haarnoja et al., 2017) and
MaxEnt IRL (Zeng et al., 2022) have also been rigorously analyzed for convergence. Therefore, the
overall convergence of the SWIRL inference procedure can be established based on above works.
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A.3 COMPLEXITY ANALYSIS

Below, we provide a detailed complexity analysis of SWIRL inference procedure under tabular
representation of rz(sL, a) and Pz(zt+1|zt, st).

A.3.1 NOTATION

• N : Number of expert trajectories.

• T : Length of each trajectory.

• Z = |Z|: Number of hidden modes.

• S = |S|: Number of states.

• A = |A|: Number of actions.

• L: Length for action-level history dependency.

• I: Number of iterations in Soft-Q iteration.

• Pr: Number of parameters in the reward function r. Pr = Z ·SL ·A when r is represented
in a tabular form.

• PPz
: Number of parameters in the hidden mode transition probabilities Pz(zt+1|zt, st).

PPz
= Z · S · Z when Pz(zt+1|zt, st) is represented in a tabular form.

• Pθ = Pr + Pz: Total number of parameters. In this analysis we omit the initial probability
p(z1) and p(s1) for simplicity.

A.3.2 E-STEP COMPLEXITY

The E-step consists of two main tasks:

1. Computing the policy πz(a|sL; z) for each hidden mode z by Soft-Q iteration.

• In each iteration, computing Qi+1
z (sL, a) requires summing over all actions a′, result-

ing in O(A2) per sL.
• Time complexity:

O(Z · I · SL ·A2)

(Soft-Q iteration over SL states and I iterations for Z hidden modes).
• Space complexity:

O(Z · SL ·A)

(only need to store the Q-value for current iteration).

2. Using the forward-backward algorithm to compute posterior probabilities p(zt|ξ, θk) and
p(zt, zt+1|ξ, θk).

• Forward and backward computations involve summations over Z2 hidden mode pairs
at each time step.

• Time complexity:
O(N · T · Z2)

(over all timepoints in all trajectories).
• Space complexity:

O(N · T · Z)

(need to store αt,z and βt,z for each time step t, hidden mode z, and trajectory).

The total E-step time complexity:

O(Z · I · SL ·A2 +N · T · Z2).

The total E-step space complexity:

O(Z · SL ·A+N · T · Z).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3.3 M-STEP COMPLEXITY

The M-step updates θ = {r,Pz} by maximizing the auxiliary function G(θ, θ̂).

1. Computing the loss for reward function r involves computing the policy by Soft-Q iteration,
which has time complexity O(Z·I·SL·A2). Since we also need to iterate over all timepoints
across all trajectories for all hidden modes in the policy, the total time complexity is:

O(Z · I · SL ·A2 +N · T · Z).

2. Computing the loss for hidden mode transition Pz involves iterating across all timepoints
in all trajectories for all hidden modes pairs (z, z′). Therefore, the time complexity is:

O(N · T · Z2).

The total M-step time complexity:

O(Z · I · SL ·A2 +N · T · Z2).

The total M-step space complexity:

O(Pθ) = O(Z · SL ·A+ Z · S · Z).

A.3.4 TOTAL COMPLEXITY PER EM ITERATION

The total time complexity:

O
(
Z · I · SL ·A2 +N · T · Z2

)
.

The total space complexity:

O
(
Z · SL ·A+N · T · Z + Z2 · S

)
.

A.4 SCALABILITY AND BROADER IMPACT

While the current implementation of SWIRL performs efficiently for typical animal behavior
datasets in neuroscience, we acknowledge the need for a more general and scalable implementa-
tion to address broader applications.

In its current form, every step of the SWIRL inference procedure, except for the Soft-Q iteration, is
compatible with large or continuous state-action spaces. However, the Soft-Q iteration is limited to
discrete state-action spaces and can be slow with large state-action space as it has time complexity
O(Z ·I ·SL ·A2). For moderate discrete state-action cases, we still recommend the Soft-Q iteration,
as it provides a robust and accurate approach for the RL inner loop of MaxEnt IRL. Nevertheless,
for applications requiring scalability and compatibility with general state-action spaces, alternative
methods can be adapted to replace the Soft Q iteration in the RL inner loop. For instance, Soft
Actor-Critic (Haarnoja et al., 2018).

A promising future direction is to reformulate the standard MaxEnt IRL r-π bi-level optimization
problem in SWIRL as a single-level inverse Q-learning problem, based on the IRL approach known
as IQ-Learn (Garg et al., 2021). This method has has been successfully adapted to large language
models training, demonstrating great scalability(Wulfmeier et al., 2024). Additionally, the MaxEnt
IRL framework can be viewed in an adversarial learning perspective (Fu et al., 2018). Prior work
has explored adversarial IRL within the EM framework for continuous state-action spaces, although
it relies on a future-option dependency at the decision level, which is not biologically plausible, and
does not account for action-level history dependency (Chen et al., 2023).

These advancements suggest that the SWIRL framework has the potential to handle MDPs with
larger and general state-action spaces. This scalability positions SWIRL as a valuable tool not only
for computational neuroscience but also for broader interest of the machine learning community.
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B APPENDIX B

B.1 IMPLEMENTATION DETAILS

We implemented SWIRL in JAX. For all three datasets, we split the trajectories into 80% training
data and 20% held-out test data. We conducted each experiment with 20 random seeds and selected
the top 10 results based on the log-likelihood (LL) of the training data. This approach is a common
practice when implementing the EM algorithm as EM is sensitive to initial parameters and can get
trapped in a local optimum (Weinreb et al., 2024). It ensures that only the most representative
outcomes of each model were used for analysis. We then evaluated the performance on the 20%
held-out test data.

B.2 EMPIRICAL RUNTIME

Our SWIRL implementation leverages the advantages of JAX, including just-in-time (JIT) compila-
tion and vectorization, to achieve high computational efficiency. For S-2 experiments across all three
datasets (gridworld, labyrinth, and spontaneous behavior), SWIRL converges within 15–30 minutes
on a V100 GPU, which takes 50–100 EM iterations. For longer L, a S-4 experiment on labyrinth
with 50 EM iterations take 2-3 hours to finish on a L40S GPU. We switch to a L40S GPU for L=4
due to the V100 GPU’s insufficient memory capacity.

B.3 DISCUSSION ON DISCOUNT FACTOR γ AND TEMPERATURE α

We set the discount factor γ = 0.95, a standard choice in RL and IRL literature. For the mouse
spontaneous behavior dataset, we also tested a smaller γ = 0.7, as previous literature (Markowitz
et al., 2023) suggested this value as optimal for the dataset. However, we observed that the results
learned by SWIRL were highly similar for both discount factors, indicating that the choice of γ had
minimal impact on performance in this case.

We searched for the optimal temperature α in {0.01, 0.1, 0.5, 1}. For the labyrinth dataset, smaller
values of α led to better results for certain hidden modes. This observation aligns with the determin-
istic nature of behaviors in the labyrinth’s tree-like structure. On the contrary, for the spontaneous
behavior dataset, where animals exhibit more stochastic behavior patterns, we found higher values
of α were more appropriate.

B.4 DISCUSSION ON THE NUMBER OF HIDDEN MODES Z AND HISTORY LENGTH L

In this section, we discuss the impact and selection of the number of hidden modes Z = |Z| and
action-level history length L.

B.4.1 Z IN LABYRINTH EXPERIMENT

We evaluated the test LL of SWIRL models on Z from 2 to 5 and found that the best model (S-2)
plateaus beyond Z = 4 (Fig. 5A). However, Z = 4 result does not differ much from the Z = 3 re-
sult: Z = 4 result mainly segments the explore mode of Z = 3 into two explore modes with similar
reward maps (Fig. 5BC). As a result, we still present Z = 3 as the primary result for simplicity.

B.4.2 L IN LABYRINTH EXPERIMENT

With Z = 3, we evaluated the test LL of SWIRL models on L from 1 to 4 and found that the
L = 4 (S-4) provides the best test LL (Fig. 6A). L = 3 and L = 4 provide similar hidden segments
and reward maps (when averaged over (st−1, ...st−L+1) to produce r(st)) as L = 2 (Fig. 6BC). In
the main paper, we present L = 2 (S-2) as the primary result as it has effectively demonstrated the
benefits of incorporating non-Markovian action-level history dependency into SWIRL. However, we
note that the test LL results in Fig. 6A suggest the presence of longer action-level history dependency
(L > 2) in this labyrinth dataset. This observation aligns with the partially observable nature of this
127-node labyrinth: The mouse may not know the whole environment, so it tends to rely on longer
state history to inform its decision-making. Due to the mouse’s limited knowledge of the entire
environment, it likely relies on a longer history of prior states to guide its decision-making.
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Figure 5: Water-restricted labyrinth experiment with different number of hidden modes Z.
(A) Held-out test LL for each model across different number of hidden modes. The shaded area
represents the total area that falls between one standard deviation above and below the mean. (B)
Segments of a trajectory from held-out test data, predicted by SWIRL (S-2) with Z = 3 and Z = 4.
The orange dot indicates when the mouse visits the water port, while the red cross denotes the
mouse’s visit to state 0 (home) at that time. (C) Inferred reward maps from SWIRL (S-2) with Z = 4:
water, home, and two explore maps. To enhance visualization, the inferred reward r(st, st−1) was
averaged over st−1 to produce r(st).
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Figure 6: Water-restricted labyrinth experiment with different action-level history length L.
(A) Boxplot showing held-out test LL, with the x-axis representing the four different models from
L = 1 to L = 4. Outlier selection method is described in Appendix B.6. (B) Segments of a
trajectory from held-out test data, predicted by the four SWIRL models. The orange dot indicates
when the mouse visits the water port, while the red cross denotes the mouse’s visit to state 0 (home)
at that time. (C) Inferred reward maps from SWIRL (S-4): water, home, and explore. To enhance
visualization, the inferred reward r(st, st−1, st−2, st−3) was averaged over (st−1, st−2, st−3) to
produce r(st).
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Figure 7: SWIRL (S-2) experiment on 5 × 5 gridworld dataset with ten random permutations.
Box plots illustrating the Pearson correlation between the true and recovered reward maps, test
log-likelihood, and test segmentation accuracy. The x-axis represents the percentage of states and
actions permuted in the training data. Outlier selection method is described in Appendix B.6.

B.4.3 Z AND L IN MOUSE SPONTANEOUS BEHAVIOR EXPERIMENT

In the mouse spontaneous behavior experiment, we find that L = 1 (S-1) is the optimal choice,
as L = 1 (S-1) consistently provides higher test log-likelihood (LL) compared to L = 2 (S-2)
(Fig. 4B). Additionally, we select Z = 5 for the number of hidden modes since the test LL plateaus
at Z = 5 (Fig. 4B).

B.5 ROBUSTNESS OF SWIRL

To assess the robustness of SWIRL, we evaluated the performance of SWIRL (S-2) under increasing
levels of random perturbations in the simulated gridworld dataset.

Specifically, we introduced random permutations to a percentage of the states and actions in the
training data, ranging from 0% to 50%. As expected, performance decreased as the level of per-
mutation increased (Fig. 7). The model maintained high accuracy with less than 10% permutation.
Between 10% and 30%, SWIRL demonstrated stable performance, achieving reasonable reward cor-
relations and hidden mode segmentation accuracy despite the noise. Permutation beyond 30% led
to very noisy data and it became hard for the model to maintain high performance.

These results suggest that SWIRL can tolerate moderate levels of noise or incomplete data, making
it suitable for real-world animal behavior datasets where such challenges are common.

B.6 OUTLIER SELECTION IN BOX PLOT

All box plots in this paper are drawn by seaborn.boxplot() with its default outlier selection
method. Specifically, the upper quartile (Q3), lower quartile (Q1), and interquartile range (IQR) are
calculated. Values greater than Q3+1.5IQR or less than Q1-1.5IQR are considered as outliers.

C APPENDIX C

C.1 AN EXAMPLE LABYRINTH TRAJECTORY

To further explore the hidden mode segments of the trajectory from held-out test data presented in
Fig. 3F, we visualized the segments corresponding to each hidden mode in this trajectory in detail
(Fig. 8B). The visualization reveals that ”home” segments can remain valid even without a visit to
state 0, as these segments often instead terminate at state 1 or state 2, which are next to state 0.

C.2 DISCUSSION ON REWARD MAPS RECOVERED IN SPONATENOUS BEHAVIOR EXPERIMENT

The best SWIRL model (S-1) recovered reward maps and hidden-mode segments provide insights
into the variability of dopamine impacts on animal spontaneous behavior: As illustrated in Fig. 4A,
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Figure 8: Hidden mode segments in a labyrinth trajectory. (A) Segments of a trajectory from
held-out test data, predicted by SWIRL (S-2). The orange dot indicates when the mouse visits the
water port, while the red cross denotes the mouse’s visit to state 0 (home) at that time. (B) The
segments of the trajectory shown in (A) are plotted within the labyrinth.

the reward maps exhibit some similarities along with distinct differences. For certain reward maps,
there is a decent correlation (e.g., 0.36 and 0.4) with dopamine fluctuations during the correspond-
ing modes. This suggests that dopamine fluctuations can reflect a certain extent of reward during
hidden modes 1 and 4. Furthermore, the plot of hidden mode segments across all trajectories reveals
identifiable patterns. For instance, hidden mode 2 tends to occur more frequently at the beginning
of trajectories, while hidden mode 5 is more prevalent at the end. Previous work by Markowitz et al.
(2023) showed that mice are generally more active and move quickly at the start of a trajectory and
become slower as they progress. Keeping this in mind, we examined the reward maps in Fig. 4A
and found that hidden mode 2 is more rewarding for transitions like run→pause and run→groom,
whereas hidden mode 5 offers greater rewards for pause→turn transitions. In comparison, hidden
mode 2 is associated with larger movements and more running than hidden mode 5. Similarly, hid-
den mode 4 encourages transitions from walk to run, which tend to occur more frequently at the
beginning of trajectories rather than at the end.
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