
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENOAGENT: A BASELINE METHOD FOR LLM-BASED
EXPLORATION OF GENE EXPRESSION DATA IN ALIGN-
MENT WITH BIOINFORMATICIANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in machine learning have significantly improved the iden-
tification of disease-associated genes from gene expression datasets. However,
these processes often require extensive expertise and manual effort, limiting their
scalability. Large Language Model (LLM)-based agents have shown promise in au-
tomating these tasks due to their increasing problem-solving abilities. To leverage
the potential of agentic system, we introduce GenoAgent, a team of LLM-based
agents designed with context-aware planning, iterative correction, and domain
expert consultation to collaboratively explore gene datasets. GenoAgent provides
generalized approach for addressing a wide range of gene identification problems,
in a completely automated analysis pipeline that follows the standard of computa-
tional genomics. Our experiments with GenoAgent demonstrate the potential of
LLM-based approaches in genomics data analysis, while error analysis highlights
the challenges and areas for future improvement. We also propose GenoTEX, a
benchmark dataset for automatic exploration of gene expression data, and also a
promising resource for evaluating and enhancing AI-driven methods for genomics
data analysis.

1 INTRODUCTION

In biomedical research, gene analysis is crucial for understanding biological mechanisms and advanc-
ing clinical applications such as disease marker identification and personalized medicine. Advances in
next-generation sequencing and other technologies have led to a surge in the volume of transcriptomic
data. Genomics research is expected to produce between 2 and 40 exabytes of data in the next decade
Institute (2024), greatly facilitating research and discoveries in genomics.

Despite the scientific value of gene data analysis, these tasks are often repetitive, labor-intensive,
and prone to errors BPC (2023). The rapid increase in transcriptomic data and potentially inefficient
workflows lead to considerable financial burden Intelligence (2023). The genetics research industry
incurs an annual expense of around $848.3 million on manual data analysis tasks Research and
Markets (2024), with costs expected to increase at a compound annual growth rate (CAGR) of 12%
Research and Markets (2024) to 16% Research (2024) by 2030. Bioinformaticians spend significant
effort on these repetitive tasks, valued at around $29 per hour Payscale. This high volume of routine
tasks greatly impacts job satisfaction among bioinformatics professionals, as surveys show that
data scientists, including bioinformaticians, prefer engaging in advanced analytical tasks rather than
routine data processing. Currently, up to 45% of their work hours are spent on tasks that could be
automated Woodie (2020). These financial and workforce challenges highlight the urgent need for
more efficient and cost-effective data analysis solutions in genetics research Bartley (2023).

Meanwhile, the increasing abilities of Large Language Models (LLMs) OpenAI (2024) have enabled
methods for automating certain data analysis tasks Ma et al. (2023); Arasteh et al. (2024), and
relevant benchmarks have been proposed Stühler et al. (2023); Eldeeb et al. (2024). However, these
studies have mostly focused on simplified synthetic datasets, or specific steps in the analyze pipeline
such as missing data imputation or hyper-parameter tuning. In contrast, analysis on real-world
gene expression data involves complex domain-specific procedures, and inherently requires the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

flexible planning, troubleshooting, and domain knowledge inference typically performed by a human
bioinformatician, posing higher demands on automatic methods.

To facilitate the development of such methods, we propose Genomics Data Automatic Exploration
Agents (GenoAgent), a team of LLM-based agents that simulate the behavior of bioinformaticians in
gene data analysis. To tackle the challenges in gene data exploration, GenoAgent employs a structured
workflow characterized by context-aware planning, iterative correction, and expert consultation, with
each agent assigned specific roles that reflect the diverse expertise within a bioinformatics team.
By adhering to detailed guidelines, these agents manage the complete data analysis pipeline, from
preprocessing to gene identification, thereby streamlining workflows. Our evaluation suggests that
GenoAgent is able to automate the process of gene expression data analysis with good overall
accuracy, affirming the promise of integrating LLMs into genomics research.

To enhance the evaluation and development of automated gene expression analysis methods, we also
propose the benchmark GenoTEX. This dataset facilitates the identification of disease-associated
genes while considering biological influences. A trained team of bioinformaticians performed
analyses according to these protocols, creating a benchmark dataset comprising input data, annotated
code, and analysis outcomes. We define three key tasks—dataset selection, data preprocessing, and
statistical analysis—along with metrics to evaluate the automated exploration of gene expression
data.

In summary, our contributions are as follows:

• We propose a baseline method, GenoAgent, a team of LLM-based agents to collaboratively
explore gene expression datasets. Our evaluation demonstrates the promise of LLM-based
approaches in genomics data analysis, and error analysis reveals areas for future improve-
ment.

• We define three challenging tasks: dataset selection, data preprocessing, and statistical
analysis, to support more systematic evaluation on performance of GenoAgent.

• We propose a benchmark dataset, GenoTEX, that evaluates the performance of analysis
pipeline for a rich set of gene identification problems. We believe it will serve as a useful
resource for the evaluation and development of advanced methods for automatic gene
expression data analysis.

2 RELATED WORK

LLMs for collaborative problem-solving Large Language Models (LLMs) have shown the
potential to achieve human-level intelligence Wang et al. (2023b); OpenAI (2023); Touvron et al.
(2023a;b). Research has tried to enhance their problem-solving abilities through techniques such
as goal decomposition Wei et al. (2022); Zheng et al. (2023); Feng et al. (2023); Ning et al. (2023),
tree and graph structures Yao et al. (2023); Hao et al. (2023); Besta et al. (2023), consistency Wang
et al. (2022b), self-refinement Xi et al. (2023); Madaan et al. (2023); Wang et al. (2023c); Chen et al.
(2023), and the use of external tools Liu et al. (2023); Zhao et al. (2023); Qin et al. (2023).

The collaboration of multiple agents can further enhance problem-solving capacities Wang et al.
(2023d); Talebirad and Nadiri (2023); Du et al. (2023); Wang et al. (2023a), often through role-playing
with distinct expertise Yang et al. (2023a); Dong et al. (2023). MetaGPT Hong et al. (2023) promotes
collaboration among various agent roles, and studies have shown the effectiveness of role-playing
in software development Qian et al. (2023); Dong et al. (2023). Other works explore sociological
phenomena Shapiro et al. (2023); Sumers et al. (2023); Zhou et al. (2023); Wang et al. (2023d);
Li et al. (2023), such as virtual towns for interactions among AI agents Park et al. (2023). Recent
research emphasizes task management and feedback for performance improvement Huang et al.
(2023); Xu et al. (2023); Gou et al. (2023); Yin et al. (2023), with task management shown to enhance
multi-agent systems Talebirad and Nadiri (2023); Yang et al. (2023a).

LLMs for scientific discovery Researchers have also been incorporating LLMs into scientific
discovery in fields such as chemistry Bran et al. (2023); Guo et al. (2023), biotechnology Madani
et al. (2023), and medicine Singhal et al. (2023); Yang et al. (2023b) by training or fine-tuning
LLMs on domain-specific data. In contrast to these works, we leverage current state-of-the-art LLMs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

without additional training. We employ structured prompting and communication strategies to equip
LLM-based agents with the planning, analysis, and coding abilities required for scientific exploration.

To tackle the challenging tasks in our benchmark, we propose a baseline method that employs a
team of LLM-based agents, each contributing their own expertise, to collaboratively conduct gene
expression data analysis.

3 METHOD

Recent studies have attempted to leverage LLM-based agents to tackle challenging problems Huang
et al. (2023); Yin et al. (2023), including a range of data analysis tasks Ma et al. (2023); Arasteh
et al. (2024). While these methods each have their own novelties and strengths, our preliminary
experiments reveal that none of them can generate functional code that runs data analysis on gene
identification. This is not surprising, considering the full complexity of the analysis required for
solving real-world gene data analysis problem, a more tailored approach is probably needed. This
section describes our method for exploring and setting up a baseline for this task.

3.1 MOTIVATION AND ROLE DESIGN

When human experts engage in complex genomic analysis tasks, they demonstrate several key abilities,
including procedural memory, context-aware planning, tool utilization, and domain knowledge
inference. We believe that integrating these components is essential for enabling agent systems to
navigate the complexities of gene data analysis.

Inspired by the workflows of human bioinformaticians, we propose GenoAgent, a team of LLM-based
agents, each equipped with several fundamental features to effectively tackle the challenges of data
preprocessing and gene expression analysis.

Procedural Memory Our agent will develop a comprehensive set of guidelines and action se-
quences for genomic analysis tasks, including optimal parameter selection for data normalization
and variant calling. These procedures will be dynamically refined through experience, mirroring the
expertise development seen in bioinformaticians. Formally, let P represent the set of procedures and
E denote the experience gained. The refinement process can be expressed as P ′ = f(P,E), where
P ′ is the updated set of procedures and f adjusts them based on accumulated experience.

Context-aware planning and error corrections Before initiating any task, the agent reviews
its historical actions and the current genomic analysis context. This review can be formalized as
D(Ht, Ct), where Ht = {a1, a2, . . . , at−1} represents the history of actions and Ct represents the
current analysis context. This function helps the agent make informed decisions about the next
steps, such as adjusting analysis parameters or revising data filters, and to correct any prior errors or
inaccuracies. This capability is crucial for ensuring the adaptability and reliability of genomic data
analyses.

Tool Utilization Upon deciding on an action, the agent utilizes a curated library of bioinformatics
code snippets to perform tasks efficiently. This method is akin to a bioinformatician using well-
established bioinformatics libraries. The agent selects the optimal tool by minimizing both time
and error, which can be modeled as T = argminTi∈T (Time(Ti, task) + Error(Ti, task)), where
T represents the available tools. If a novel task arises, the agent develops new scripts T ′ =
GenerateNewTool(task), ensuring both speed and precision in handling complex genomic data.

Domain Knowledge Inference The agent observes the metadata of the dataset and intermediate
processing results, using domain knowledge to infer the desired information. This inference process
is modeled as I(K,D) → True or False, where K is the domain knowledge and D represents the
dataset. This allows the agent to check whether their code works as expected, ensuring the accuracy
and reliability of their genomic analyses.

The GenoAgent team consists of various specialized roles, each contributing unique expertise to
the analysis process. A Project Manager coordinates the analysis process for solving each gene
identification problem, assigning tasks to agents according to the standardized pipeline from our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Report
Results

 Data Engineer

 Project Manager

 Domain Expert

 Statistician

 Code Reviewer

raw data

Task Decomposition

Processing Data

Analysis

Quality Assurance

Consulting

review

output
review

output

question

answer

 Team of AI-made Researchers in Genomic

dataset of interest

predicting missing conditions
(1st step of two-step regression)

additional data checking
confounding factors

confounding factors
correction

Analysis with
confounding factors Analysis

What genes are
associated with
Pancreatic Cancer
when considering
conditions related to
Vitamin D Levels?

Regression Analysis Algorithm

data

preprocess

Figure 1: GenoAgent Method Overview

benchmark as instructions; Two programming agents, the Data Engineer and the Statistician, handle
data preprocessing and statistical analysis tasks, respectively. To enable context-aware planning, the
agents maintain a task context Ct = (instruction, code, output), which records the text instruction,
code, and output for each step. Before proceeding, the agents observe the current context Ct

and use D(Ct) → {perform, skip, revert} to decide whether to perform the next step, skip it, or
revert to a previous one. If writing code is necessary, they can select tools from a function library
L = {l1, l2, . . . , ln}. A Code Reviewer agents help the programming agents debugging code and
verifying that their code follows the instructions. A Domain Expert agent provides professional
knowledge consultation to programming agents when required for data processing, as shown in
Figure 1.

3.2 COLLABORATION AMONG LLM AGENTS

This subsection introduces the two main patterns of collaboration between agents.

Code review and iterative debugging This process involves the interaction between the Code
Reviewer and a programming agent (Statistician or Data Engineer). Let R(v) represent the review
function performed by the Code Reviewer, where v is the code version. If the execution of v fails,
the reviewer evaluates it based on its execution result, error-free status, and compliance with the
instructions. Then the reviewer either approves the code, or rejects it with feedback. Based on
the feedback, the programming agent refines the code, representing with P (v, f), where f is the
feedback from the reviewer, generating new versions vi+1 = P (vi, f). This process iterates, with the
agent generating vi for i = 1, 2, . . . , n, until either R(vn) = approved or the maximum debugging
rounds nmax are reached. This mechanism facilitates troubleshooting and improves adherence to
task instructions, as shown in Figure 4 in Appendix.

Domain-guided programming The second collaboration pattern involves a Data Engineer con-
sulting a Domain Expert for data preprocessing tasks that require specialized knowledge. The Data
Engineer sends questions to the Domain Expert, providing the necessary context such as metadata,
summary information about a dataset, or other intermediate results in data processing. Let D represent
the dataset and P denote preprocessing functions. The Data Engineer may formulate queries of the
form Q(D), seeking P (D). The Domain Expert then provides answers in the form of executable code,
as shown in 5 in Appendix. This type of programming also undergoes a debugging process, where
execution results R = P (D) are sent back to the same Domain Expert. Some questions are complex
enough that the Domain Expert may not provide the correct answer immediately, necessitating further
refinement based on the execution results R and adjustments to the preprocessing functions P .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

SOFT
file

Matrix
file

Input file

Initial Filtering

• Biomedical text understanding

Row Extraction

• Text and tabular data

Gene Mapping

• Tabular data

Trait Conversion

• Biomedical knowledge

Gene Normalization

• Utilizing tools

Data Linking

• Basic data wrangling

Quality Verification

• Basic data wrangling

Trait data extraction

Gene data preprocessing

Output
Data

Figure 2: The pipeline for preprocessing a GEO series dataset.

3.3 STANDARDIZED PIPELINE FOR GENE EXPRESSION DATA ANALYSIS

Our study aims to automate the gene expression data analysis process to address a class of important
problems: What are the significant genes associated with a specific trait, given the influence of some
condition? Here, a “trait” refers to a characteristic such as a disease (e.g., diabetes), and a “condition”
refers to a factor like age, gender, or a co-existing trait (e.g., hypertension). By incorporating
these factors into our analysis, we aim to gain a more comprehensive understanding of the genetic
underpinnings of these traits.

Thus, to enhance the reliability of our GenoAgent, we have developed a standardized pipeline, serving
as an instructive guideline for data preprocessing and statistical analysis tasks, detailed in Appendix A.
This pipeline mirrors the steps a skilled bioinformatician would follow, enabling systematic evaluation
of the automated methods against established human expertise. In the following subsection, we
introduce this pipeline in detail and provide the necessary background knowledge to understand its
significance and application in our research.

3.3.1 DATA PREPROCESSING

The preprocessing of gene expression data involves a comprehensive pipeline with several main steps
such as dataset filtering and selection, gene data preprocessing, trait data extraction, and data linking.
Below we introduce the preprocessing steps for gene expression data within our pipeline. Please refer
to our guidelines file in Appendix A for more details. Fig. 2 shows the pipeline of preprocessing a
series dataset from the GEO database.

Dataset filtering and selection When selecting datasets for gene expression data analysis, the
process involves the following steps: (i) Initial filtering. We assess each dataset’s relevance by
reviewing its metadata, ensuring the availability of gene expression data and confirming the traits
of interest; (ii) Quality verification. Datasets with abnormalities unresolved during preprocessing
are discarded to maintain quality; (iii) Dataset selection. Given the high dimensionality of gene
expression data, we prioritize datasets with the largest sample sizes for single-trait analyses. For
two-trait analyses, we select the dataset pair with the highest product of their sample sizes.

Gene data preprocessing In this step, we prepare a data table where each attribute represents the
expression level of a specific gene within a sample. We map the initial identifiers to gene symbols
using platform-specific gene annotation data, then normalize and deduplicate these gene symbols
by querying gene databases via APIs to prevent potential inaccuracies due to different gene naming
conventions. This process requires flexible planning and proficient use of bioinformatics tools to
ensure accuracy and consistency.

Data linking In this step, we merge the preprocessed gene data with the extracted trait data based
on the sample IDs. This integration creates a data table containing both genetic and clinical features
for the same samples, ready for association studies to identify significant genes.

3.3.2 STATISTICAL ANALYSIS

After preprocessing, one can perform basic regression analysis to identify the genes that are predictive
of the disease (or trait) Ghosh and Chinnaiyan (2005); Wu et al. (2009). Lasso Tibshirani (1996) is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

often chosen as the model due to its ability to identify a sparse set of genes. In addition to directly
using regression model, some other steps are often taken.

Confounding factor correction To ensure reliable identification of genes, the pipeline often
involves steps to correct potential confounding factors Leek et al. (2010); Bruning et al. (2016). One
type of confounding factor arises when the distribution of gene expressions varies across subgroups
within the data due to different background distributions rather than the disease itself Yu et al. (2006).
This variation can introduce significant bias, leading to incorrect conclusions where the association
between certain genes and the disease might be mistakenly attributed to differences in gene expression
distributions across groups, rather than a true link to the disease Wang et al. (2022a).

Incorporating conditions in regression Additionally, one can include additional covariates in the
regression model, such as patient demographics and co-occurrence of other diseases Kyalwazi et al.
(2023). Including these conditions allows for identifying gene expression patterns that are not only
associated with the disease status but also modulated by these conditions. This nuanced analysis
supports the development of more personalized treatment strategies by identifying how different
conditions affect gene-disease relationships Rosenquist et al. (2023). This practice is encouraged due
to the need for “precision medicine” Hamburg and Collins (2010); Chan and Ginsburg (2011).

4 BENCHMARK

This section describes our GenoTEX benchmark. Specifically, we introduce our process for creating
and ensuring the quality of the benchmark, and the tasks and metrics defined for evaluation.

4.1 BENCHMARK CREATION

This subsection describes our process of building the benchmark, including the design of gene
identification problems, downloading data from open gene expression databases, the collection of
manual analysis data, and quality control and assessment.

Table 1: Descriptive statistics of our GenoTex benchmark.

Gene Identification Problems

Total problems 1146
Unconditional problems 82
Conditional problems 1064

Input Dataset

Total size 32.22 GB
Datasets 795
Samples per dataset 167±121
Total samples 132,673

Manual Analysis and Results

Relevant datasets 181
Datasets successfully preprocessed 163
Lines of code for analyzing per dataset 90±32
Total lines of code for analysis 71,669
Normalized gene features per dataset 14174 ± 5851
Significant genes identified per prob-
lem

42±65

Gene identification problem design To en-
sure the scientific relevance of our benchmark,
we began by curating a list of human traits
that are either important to public health or
interesting to genomics research. A computa-
tional biologist compiled this list, resulting in
82 traits spanning 9 main categories such as
cardiovascular diseases and neurological dis-
orders. This yields 82 problems in the form:
What are the significant genes related to the
trait? (hereafter referred to as "unconditional
gene identification").

Next, each trait was paired with a condition,
which could be another trait from the list or
demographic attributes like age or gender, gen-
erating 6806 possible trait-condition pairs. To
choose these pairs, we first applied manual cri-
teria based on trait categories (Appendix C).
For each undecided pair, we measured trait-
condition association by calculating the Jac-
card similarity J(A,B) between gene sets A
(trait) and B (condition) from the NCBI Gene database Brown et al. (2015). Pairs with J(A,B) > 0.1
were selected, indicating shared genetic mechanisms valuable for understanding trait-condition inter-
actions. This process identified 1064 pairs of interest, alongside 82 unconditional gene identification
problems, forming our benchmark’s problem set.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Gene Expression
Omnibus

The Cancer
Genome Atlas

Data preprocessing

missing values
imputation

gene names
standardization

check dataset
quality

remove invalid
records

Question Creation

mismatch traits
and conditions

remove invalid
or trivial pairs

Analysis

choose machine
learning models

optimize model
parameters

interprete
results

repeat if necessary

batch effect
correction

Results

700+ records of

paired with

research
question

genes from
data-driven

methods

Results independently
obtained by two
scientists

A third scientist
adjudicates

discrepancies

Figure 3: The overview of the GenoTEX benchmark curation.

Input Dataset To address the formulated research problems, we downloaded cohort datasets
containing gene expression and corresponding clinical data from public databases: (1) The Gene
Expression Omnibus (GEO) Clough and Barrett (2016), the largest gene expression database currently
available; and (2) The Cancer Genome Atlas (TCGA) Tomczak et al. (2015), the largest gene
expression database focused on cancer. The TCGA data were acquired via the UCSC Xena platform
Goldman et al. (2020). Additionally, domain knowledge regarding gene symbols associated with
traits was sourced from the NCBI Gene database Brown et al. (2015). For more detailed information
about these data sources, please refer to Appendix D.

Manual analysis Four researchers curated the problem list and extracted relevant input data from
public sources. In the pilot stage, a computational biologist and a doctoral student developed a
guidelines file and example code for solving problems related to two traits, iteratively refining their
work based on manual analysis of 200 problems. In the next phase, nine bioinformaticians established
a gold standard for analyzing input data across all benchmark problems. This included writing code
for data preprocessing and regression analysis. Two researchers analyzed each trait independently,
with an experienced researcher adjudicating the annotation by selecting the better analysis and making
further refinements, as shown in Figure 3.

To evaluate the consistency of annotations, we measured the Inter-Annotator Agreement (IAA)
between the two annotation versions. The results indicate high annotation quality, with an F1 score of
94.73% for the task of dataset filtering. We also used IAA as a baseline for human performance in
gene data analysis, with additional results presented in Section 5.

4.2 TASKS AND METRICS

Dataset selection and filtering We evaluate the performance of Dataset Filtering and Dataset
Selection seperately. The former is a binary classification task, and we use F1 as the primary metric;
For the latter, we use accuracy to measure the percentage of problems for which the method chooses
the same dataset (or pairs of datasets) as the bioinformations did in our benchmark.

Preprocessing To evaluate the performance of different methods, we adopted the following
metrics: (i) Attribute Jaccard (AJ) is the Jaccard similarity between sets of attributes of two datasets.
It evaluates how well the method extracts attributes from the dataset by encoding clinical features and
normalizing gene symbols. (ii) Sample Jaccard (SJ) is the Jaccard similarity between sets of sample
IDs of two datasets. It measures how well the method integrates features of the same samples and
handles missing values. Based on these metrics, we define (iii) Composite Similarity Correlation
(CSC) as the product of the Attribute Jaccard, Sample Jaccard, and the Pearson correlation of the
common feature vectors (common rows and columns) between the datasets. This metric captures
both the structural and content similarity of the resulting datasets, so we consider it as the primary
metric for evaluation preprocessing alignment.

Statistical analysis The goal of statistical analysis is to identify sigificant genes related to traits.
To evaluate this process, we adopt multiple metrics such as precision, recall, and Jaccard index. The
Jaccard index evaluates the similarity between the sets of genes identified by our method and the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

gold standard. We also consider gene identification as a binary classification problem of predicting
whether a gene is related to the trait, and use Precision, Recall, and F1 to measure the performance.

5 EXPERIMENT

This section describes our experiments to evaluate GenoAgent and other baseline methods on the
GenoTEX benchmark. We conducted an end-to-end evaluation where methods process raw input
data to complete the full analysis for solving gene identification problems. Additionally, we assessed
the performance of each task individually to gain a deeper understanding of their strengths and
weaknesses. The tasks and metrics used are defined in Section 4.2. All experiments were conducted
on a RunPod cluster RunPod (2024) with two 16-core CPUs and 62 GB RAM. GenoAgent utilizes
GPT-4o OpenAI (2024) models accessed via the OpenAI API.

5.1 RESULTS

Table 2: Performance of GenoAgent on dataset fil-
tering and selection. We use F1 and Accuracy for the
two subtasks, respectively, where DF stands for Dataset
Filtering, and DS stands for Dataset Selection.

Methods DF (%) DS (%)

GenoAgent (Ours) 87.32 80.25
GenoAgent (Rounds=1) 85.29 76.04
GenoAgent (No Reviewer) 82.13 69.57
GenoAgent (No Domain Expert) 84.28 78.63

Inter-Annotator Agreement 94.73 90.26

End-to-end performance We evaluated the
end-to-end data analysis capabilities of GenoA-
gent and baseline methods by measuring their
performance in gene identification from raw
input data. The results in Table 3 show that
GenoAgent achieved an F1 score of 51.19%.
While this is promising given the task difficulty,
there is still a significant gap compared to human
inter-annotator agreement scores, indicating sub-
stantial room for improvement. Ablation results
demonstrated the importance of the collabora-
tive approach involving the Code Reviewer and
Domain Expert agents, as well as the number of review rounds. Additionally, we included a simple
baseline where GPT-4o was directly asked to answer the significant genes in each problem, resulting
in low performance (2.4% F1), which highlights the difficulty of this task. For completeness, we also
reported the trait prediction accuracy of the agents’ models, reflecting the validity of the data and
models they used.

Dataset filtering and selection The performance of dataset filtering and selection is shown in
Table 2. The agents show decent performance, likely because determining dataset relevance based on
metadata often does not require complex inference. However, errors in this step can propagate to
subsequent steps, impacting overall performance.

Dataset preprocessing We evaluated the preprocessing performance of GenoAgent by comparing
its output with that of human bioinformaticians in our benchmark. The results are presented in
Table 4. GenoAgent generally performed well in preprocessing gene expression and merged data,
achieving high CSC scores (80.63% for genes). However, preprocessing of trait data was significantly
weaker, with a CSC score of 32.28%, due to the complexity of clinical data extraction and the need
for nuanced knowledge inference.

Statistical analysis For the statistical analysis task, we used datasets preprocessed by human
bioinformaticians and instructed various baseline methods to perform statistical analysis following
our standardized pipeline. The results are shown in Table 5. Unlike data preprocessing, this task
primarily involves leveraging Python libraries for generic statistical modeling, allowing several LLMs
or agent-based models to achieve decent performance.

5.2 DISCUSSIONS

While the results demonstrate the potential of LLM-based methods in gene analysis, they also
highlight the limitations of current approaches.

Instability of the feedback mechanism For complex tasks, agents ideally refine their code iter-
atively based on feedback to reach the correct solution. However, Table 3 shows that while one

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: End-to-end performance of GenoAgent on the gene identification problems in our benchmark;
additional evaluation on trait prediction performance and the efficiency of LLM API requests for our experiments.
Code execution time excluded from the time measurement. We did not include other baseline LLM-as-agent
methods such as MetaGPT Hong et al. (2023), because none of them are able to generate runnable code for the
preprocessing of gene data, after extensive attempts and given detailed instructions and function tools (Appendix
E).

Methods Benchmark Performance Trait Prediction Efficiency
Prec.(%) Rec.(%) F1(%) Jac.(%) Acc.(%) Prec.(%) Rec.(%) F1(%) Tk.(k) Time(s)

GenoAgent (Ours) 54.64 52.28 51.19 48.07 94.40 91.97 89.48 86.26 31.90 183.36
GenoAgent (Round=1) 50.38 49.48 48.37 43.18 89.82 79.26 81.78 82.84 26.44 152.47
GenoAgent (No Reviewer) 21.35 20.20 20.10 18.77 62.81 57.76 62.58 59.31 23.85 128.63
GenoAgent (No Domain Expert) 47.94 43.80 41.33 37.19 27.82 24.68 26.59 24.79 29.23 158.37

Inter-Annotator Agreement 75.58 70.64 69.66 68.64 - - - - - 10.74

GPT-4o zero-shot 8.47 0.12 2.41 2.69 - - - - 0.06 8.32

Table 4: Performance of GenoAgent on the preprocessing tasks.

Methods Merged Data Gene Data Trait Data
AJ(%) SJ(%) CSC(%) AJ(%) SJ(%) CSC(%) AJ(%) SJ(%) CSC(%)

GenoAgent (Ours) 89.82 86.98 79.71 92.80 89.87 80.63 46.81 63.71 32.28
GenoAgent (Round=1) 87.04 82.15 74.43 88.04 82.34 76.11 45.04 59.25 30.74
GenoAgent (No Reviewer) 35.18 35.06 32.73 36.01 35.7 33.62 24.02 32.58 6.45
GenoAgent (No Domain Expert) 78.54 75.93 70.01 80.79 76.38 69.67 25.14 23.48 4.68

Table 5: Performance of baseline methods on the statistical analysis task.

Methods Benchmark Performance(%) Trait Prediction(%)
Prec. Rec. F1 Jac. Acc. Prec. Rec. F1

GenoAgent (Ours) 68.18 62.84 67.08 68.67 57.7 57.73 58.67 57.42
MetaGPT Hong et al. (2023) 64.90 67.20 70.28 67.14 60.63 60.85 57.04 58.55
GPT-4o OpenAI (2024) 61.61 62.75 60.48 63.85 55.39 50.72 52.50 50.42
Llama 3 (8B) Meta (2024) 8.29 10.42 8.58 12.68 8.36 8.90 5.54 5.45

feedback round boosts performance compared to none, further rounds yield diminishing returns.
Analysis (Appendix F) reveals that Code Reviewer feedback sometimes varies randomly or may be
incorrect, contradicting earlier suggestions across multiple rounds, hindering consistent performance.
The randomness likely stems from the LLM, highlighting the need to prevent agents from misleading
each other. We applied prompt engineering techniques to mitigate this issue(Appendix F), specifically
by promoting critical evaluation of feedback in the programming agent and potentially retaining the
original code for consistency. Another promising direction is to design collaborative modes where
agents iteratively discuss differing opinions to improve task understanding.

6 CONCLUSION

In this work, we introduced GenoAgent, a team of LLM-based agents demonstrating the potential of
large language models in facilitating the automatic exploration of gene expression data for identifying
disease-associated genes. By incorporating mechanism of iterative code review and domain experts
programming into standard pipeline, we provide a robust framework for developing and enhancing
automated methods. Our experiments highlight both the strengths and limitations of these agents,
underscoring the need for further research to address challenges in nuanced human judgment and
data anomalies. We also proposed GenoTEX, which is poised to be a useful resource in evaluating
and advancing AI-driven genomics data analysis, promoting efficiency, accuracy, and scalability in
biomedical research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

S. T. Arasteh, T. Han, M. Lotfinia, C. Kuhl, J. N. Kather, D. Truhn, and S. Nebelung. Large language
models streamline automated machine learning for clinical studies. Nature Communications,
15(1603), 2024. doi: 10.1038/s41467-024-45879-8. URL https://www.nature.com/
articles/s41467-024-45879-8.

K. Bartley. Big data statistics: How much data is there
in the world?, 2023. URL https://rivery.io/blog/
big-data-statistics-how-much-data-is-there-in-the-world/.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi, J. Gajda, T. Lehmann, M. Pod-
stawski, H. Niewiadomski, P. Nyczyk, and T. Hoefler. Graph of thoughts: Solving elaborate
problems with large language models. arXiv preprint arXiv: 2308.09687, 2023.

R. BPC. Navigating the intersection of biostatistics, bioinformatics, and
machine learning., 2023. URL https://medium.com/@RR-BPC/
navigating-the-intersection-of-biostatistics-bioinformatics-and-machine-learning-d1b1337757b9.

A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White, and P. Schwaller. Chemcrow: Augmenting
large-language models with chemistry tools. arXiv preprint arXiv: 2304.05376, 2023.

G. R. Brown, V. Hem, K. S. Katz, M. Ovetsky, C. Wallin, O. Ermolaeva, I. Tolstoy, T. Tatusova, K. D.
Pruitt, and D. R. Maglott. Gene: a gene-centered information resource at NCBI. Nucleic Acids
Research, 43(D1):D36–D42, 2015. doi: 10.1093/nar/gku1055. URL https://doi.org/10.
1093/nar/gku1055.

O. Bruning, W. Rodenburg, P. F. Wackers, C. Van Oostrom, M. J. Jonker, R. J. Dekker, H. Rauwerda,
W. A. Ensink, A. De Vries, and T. M. Breit. Confounding factors in the transcriptome analysis of
an in-vivo exposure experiment. PLoS One, 11(1):e0145252, 2016.

I. S. Chan and G. S. Ginsburg. Personalized medicine: progress and promise. Annual review of
genomics and human genetics, 12:217–244, 2011.

X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching large language models to self-debug. arXiv
preprint arXiv: 2304.05128, 2023.

E. Clough and T. Barrett. The gene expression omnibus database. Methods in Molecular Biology,
1418:93–110, 2016. doi: 10.1007/978-1-4939-3578-9_5.

Y. Dong, X. Jiang, Z. Jin, and G. Li. Self-collaboration code generation via chatgpt. arXiv preprint
arXiv: 2304.07590, 2023.

Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch. Improving factuality and reasoning in
language models through multiagent debate. arXiv preprint arXiv: 2305.14325, 2023.

H. Eldeeb, M. Maher, R. Elshawi, and S. Sakr. Automlbench: A comprehensive experimental
evaluation of automated machine learning frameworks. Expert Systems with Applications, 243:
122877, 2024.

G. Feng, B. Zhang, Y. Gu, H. Ye, D. He, and L. Wang. Towards revealing the mystery behind chain
of thought: A theoretical perspective. NEURIPS, 2023.

D. Ghosh and A. M. Chinnaiyan. Classification and selection of biomarkers in genomic data using
lasso. Journal of Biomedicine and Biotechnology, 2005(2):147, 2005.

M. J. Goldman, B. Craft, M. Hastie, et al. Visualizing and interpreting cancer genomics data
via the xena platform. Nature Biotechnology, 2020. doi: 10.1038/s41587-020-0546-8. URL
https://doi.org/10.1038/s41587-020-0546-8.

Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, N. Duan, and W. Chen. Critic: Large language models
can self-correct with tool-interactive critiquing. arXiv preprint arXiv:2305.11738, 2023.

10

https://www.nature.com/articles/s41467-024-45879-8
https://www.nature.com/articles/s41467-024-45879-8
https://rivery.io/blog/big-data-statistics-how-much-data-is-there-in-the-world/
https://rivery.io/blog/big-data-statistics-how-much-data-is-there-in-the-world/
https://medium.com/@RR-BPC/navigating-the-intersection-of-biostatistics-bioinformatics-and-machine-learning-d1b1337757b9
https://medium.com/@RR-BPC/navigating-the-intersection-of-biostatistics-bioinformatics-and-machine-learning-d1b1337757b9
https://doi.org/10.1093/nar/gku1055
https://doi.org/10.1093/nar/gku1055
https://doi.org/10.1038/s41587-020-0546-8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

T. Guo, K. Guo, B. Nan, Z. Liang, Z. Guo, N. V. Chawla, O. Wiest, and X. Zhang. What can large
language models do in chemistry? a comprehensive benchmark on eight tasks. arXiv preprint
arXiv:2305.18365, 2023.

M. A. Hamburg and F. S. Collins. The path to personalized medicine. New England Journal of
Medicine, 363(4):301–304, 2010.

S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Wang, and Z. Hu. Reasoning with language model is
planning with world model. Conference on Empirical Methods in Natural Language Processing,
2023. doi: 10.48550/arXiv.2305.14992.

S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, C. Zhang, J. Wang, Z. Wang, S. K. S. Yau,
Z. Lin, L. Zhou, C. Ran, L. Xiao, C. Wu, and J. Schmidhuber. Metagpt: Meta programming for a
multi-agent collaborative framework. arXiv preprint arXiv: 2308.00352, 2023.

J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language models
cannot self-correct reasoning yet. arXiv preprint arXiv:2310.01798, 2023.

N. H. G. R. Institute. Genomic data science, 2024. URL https://www.genome.gov/
about-genomics/fact-sheets/Genomic-Data-Science. Accessed: 2024-06-03.

M. Intelligence. Bioinformatics market size & share analysis - growth trends & forecasts
source, 2023. URL https://www.mordorintelligence.com/industry-reports/
global-bioinformatics-market-industry.

B. Kyalwazi, C. Yau, M. J. Campbell, T. F. Yoshimatsu, A. J. Chien, A. M. Wallace, A. Forero-Torres,
L. Pusztai, E. D. Ellis, K. S. Albain, et al. Race, gene expression signatures, and clinical outcomes
of patients with high-risk early breast cancer. JAMA Network Open, 6(12):e2349646–e2349646,
2023.

J. T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E. Johnson, D. Geman,
K. Baggerly, and R. A. Irizarry. Tackling the widespread and critical impact of batch effects in
high-throughput data. Nature Reviews Genetics, 11(10):733–739, 2010.

H. Li, Y. Q. Chong, S. Stepputtis, J. Campbell, D. Hughes, M. Lewis, and K. Sycara. Theory of mind
for multi-agent collaboration via large language models. arXiv preprint arXiv:2310.10701, 2023.

B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. Llm+p: Empowering large
language models with optimal planning proficiency. arXiv preprint arXiv: 2304.11477, 2023.

P. Ma, R. Ding, S. Wang, S. Han, and D. Zhang. Insightpilot: An llm-empowered automated data
exploration system. arXiv preprint arXiv:2304.00477, 2023. URL https://arxiv.org/
abs/2304.00477.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, et al. Self-refine: Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651,
2023.

A. Madani, B. Krause, E. R. Greene, S. Subramanian, B. P. Mohr, J. M. Holton, J. L. Olmos Jr,
C. Xiong, Z. Z. Sun, R. Socher, et al. Large language models generate functional protein sequences
across diverse families. Nature Biotechnology, pages 1–8, 2023.

Meta. Lamma-3, 2024. URL https://ai.meta.com/blog/meta-llama-3/. The state-
of-the-art open source large language model of Meta.

X. Ning, Z. Lin, Z. Zhou, H. Yang, and Y. Wang. Skeleton-of-thought: Large language models can
do parallel decoding. arXiv preprint arXiv:2307.15337, 2023.

OpenAI. Gpt-4 technical report. PREPRINT, 2023.

OpenAI. Gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/. Latest
Large language model of OpenAI.

11

https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
https://www.mordorintelligence.com/industry-reports/global-bioinformatics-market-industry
https://www.mordorintelligence.com/industry-reports/global-bioinformatics-market-industry
https://arxiv.org/abs/2304.00477
https://arxiv.org/abs/2304.00477
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/hello-gpt-4o/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J. Park, J. C. O’Brien, C. J. Cai, M. Morris, P. Liang, and M. S. Bernstein. Generative agents:
Interactive simulacra of human behavior. ACM Symposium on User Interface Software and
Technology, 2023. doi: 10.1145/3586183.3606763.

I. Payscale. Bioinformatics hourly rate. URL https://www.payscale.com/research/
US/Skill=Bioinformatics/Hourly_Rate. Accessed: 2024-06-20.

C. Qian, X. Cong, W. Liu, C. Yang, W. Chen, Y. Su, Y. Dang, J. Li, J. Xu, D. Li, Z. Liu, and M. Sun.
Communicative agents for software development. arXiv preprint arXiv: 2307.07924, 2023.

Y. Qin, S. Liang, Y. Ye, K. Zhu, L. Yan, Y. Lu, Y. Lin, X. Cong, X. Tang, B. Qian, S. Zhao, L. Hong,
R. Tian, R. Xie, J. Zhou, M. Gerstein, D. Li, Z. Liu, and M. Sun. Toolllm: Facilitating large
language models to master 16000+ real-world apis. arXiv preprint arXiv: 2307.16789, 2023.

Research and Markets. Next generation sequencing (ngs) data analysis - global strategic business
report, 2024. URL https://www.researchandmarkets.com/reports/5303640/
next-generation-sequencing-ngs-data-analysis. Accessed: 2024-06-03.

D. B. M. Research. Global next generation sequencing data analysis market – industry trends
and forecast to 2030, 2024. URL https://www.databridgemarketresearch.com/
reports/global-next-generation-sequencing-data-analysis-market.
Accessed: 2024-06-03.

R. Rosenquist, E. Bernard, T. Erkers, D. W. Scott, R. Itzykson, P. Rousselot, J. Soulier, M. Hutchings,
P. Östling, L. Cavelier, et al. Novel precision medicine approaches and treatment strategies in
hematological malignancies. Journal of Internal Medicine, 294(4):413–436, 2023.

RunPod. Runpod: The cloud built for ai. https://www.runpod.io/, 2024. Accessed: 2024-
06-06.

D. Shapiro, W. Li, M. Delaflor, and C. Toxtli. Conceptual framework for autonomous cognitive
entities. arXiv preprint arXiv: 2310.06775, 2023.

K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani, H. Cole-
Lewis, S. Pfohl, et al. Large language models encode clinical knowledge. Nature, 620(7972):
172–180, 2023.

H. Stühler, M.-A. Zöller, D. Klau, A. Beiderwellen-Bedrikow, and C. Tutschku. Benchmark-
ing automated machine learning methods for price forecasting applications. arXiv preprint
arXiv:2304.14735, 2023.

T. R. Sumers, S. Yao, K. Narasimhan, and T. L. Griffiths. Cognitive architectures for language agents.
arXiv preprint arXiv: 2309.02427, 2023.

Y. Talebirad and A. Nadiri. Multi-agent collaboration: Harnessing the power of intelligent llm agents.
arXiv preprint arXiv: 2306.03314, 2023.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

K. Tomczak, P. Czerwińska, and M. Wiznerowicz. The cancer genome atlas (tcga): an immeasurable
source of knowledge. Contemporary Oncology (Poznan), 19(1A):A68–77, 2015. doi: 10.5114/wo.
2014.47136.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and efficient
foundation language models. arXiv preprint arXiv: 2302.13971, 2023a.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A.
Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva,

12

https://www.payscale.com/research/US/Skill=Bioinformatics/Hourly_Rate
https://www.payscale.com/research/US/Skill=Bioinformatics/Hourly_Rate
https://www.researchandmarkets.com/reports/5303640/next-generation-sequencing-ngs-data-analysis
https://www.researchandmarkets.com/reports/5303640/next-generation-sequencing-ngs-data-analysis
https://www.databridgemarketresearch.com/reports/global-next-generation-sequencing-data-analysis-market
https://www.databridgemarketresearch.com/reports/global-next-generation-sequencing-data-analysis-market
https://www.runpod.io/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu,
Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov,
and T. Scialom. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:
2307.09288, 2023b.

H. Wang, B. Aragam, and E. P. Xing. Trade-offs of linear mixed models in genome-wide association
studies. Journal of Computational Biology, 29(3):233–242, 2022a.

K. Wang, Y. Lu, M. Santacroce, Y. Gong, C. Zhang, and Y. Shen. Adapting llm agents through
communication. arXiv preprint arXiv: 2310.01444, 2023a.

L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin, et al.
A survey on large language model based autonomous agents. arXiv preprint arXiv:2308.11432,
2023b.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022b.

X. Wang, Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng, and H. Ji. Executable code actions elicit better
llm agents. arXiv preprint arXiv:2402.01030, 2024.

Y. Wang, Z. Jiang, Z. Chen, F. Yang, Y. Zhou, E. Cho, X. Fan, X. Huang, Y. Lu, and Y. Yang. Recmind:
Large language model powered agent for recommendation. arXiv preprint arXiv:2308.14296,
2023c.

Z. Wang, S. Mao, W. Wu, T. Ge, F. Wei, and H. Ji. Unleashing the emergent cognitive synergy
in large language models: A task-solving agent through multi-persona self-collaboration. arXiv
preprint arXiv:2307.05300, 2023d.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in Neural Information Processing
Systems, 35:24824–24837, 2022.

A. Woodie. Data prep still dominates data scientists’ time, survey
finds, 2020. URL https://www.datanami.com/2020/07/06/
data-prep-still-dominates-data-scientists-time-survey-finds/.

T. T. Wu, Y. F. Chen, T. Hastie, E. Sobel, and K. Lange. Genome-wide association analysis by lasso
penalized logistic regression. Bioinformatics, 25(6):714–721, 2009.

Z. Xi, S. Jin, Y. Zhou, R. Zheng, S. Gao, T. Gui, Q. Zhang, and X. Huang. Self-polish: Enhance
reasoning in large language models via problem refinement. arXiv preprint arXiv:2305.14497,
2023.

Z. Xu, S. Shi, B. Hu, J. Yu, D. Li, M. Zhang, and Y. Wu. Towards reasoning in large language models
via multi-agent peer review collaboration. arXiv preprint arXiv: 2311.08152, 2023.

H. Yang, S. Yue, and Y. He. Auto-gpt for online decision making: Benchmarks and additional
opinions. arXiv preprint arXiv: 2306.02224, 2023a.

R. Yang, T. F. Tan, W. Lu, A. J. Thirunavukarasu, D. S. W. Ting, and N. Liu. Large language models
in health care: Development, applications, and challenges. Health Care Science, 2(4):255–263,
2023b.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601, 2023.

Z. Yin, Q. Sun, C. Chang, Q. Guo, J. Dai, X.-J. Huang, and X. Qiu. Exchange-of-thought: Enhancing
large language model capabilities through cross-model communication. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 15135–15153, 2023.

J. Yu, G. Pressoir, W. H. Briggs, I. Vroh Bi, M. Yamasaki, J. F. Doebley, M. D. McMullen, B. S.
Gaut, D. M. Nielsen, J. B. Holland, et al. A unified mixed-model method for association mapping
that accounts for multiple levels of relatedness. Nature genetics, 38(2):203–208, 2006.

13

https://www.datanami.com/2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/
https://www.datanami.com/2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

R. Zhao, X. Li, S. R. Joty, C. Qin, and L. Bing. Verify-and-edit: A knowledge-enhanced chain-of-
thought framework. Annual Meeting of the Association for Computational Linguistics, 2023. doi:
10.48550/arXiv.2305.03268.

L. Zheng, R. Wang, and B. An. Synapse: Leveraging few-shot exemplars for human-level computer
control. arXiv preprint arXiv:2306.07863, 2023.

P. Zhou, A. Madaan, S. P. Potharaju, A. Gupta, K. R. McKee, A. Holtzman, J. Pujara, X. Ren,
S. Mishra, A. Nematzadeh, S. Upadhyay, and M. Faruqui. How far are large language models from
agents with theory-of-mind? arXiv preprint arXiv: 2310.03051, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The supplementary material is organized as follows:

• Appendix A introduces the guidelines file used to standardize the manual curation.
• Appendix B provides examples of manual analysis on trait data extraction.
• Appendix C outlines the criteria for forming trait-condition pairs for gene identification

problems in our standardized pipeline.
• Appendix D describes our data acquisition process.
• Appendix E presents our preliminary experiments highlighting the challenges faced by

existing LLMs and agent-based methods.
• Appendix F discusses the limitations of GenoAgent.

A GUIDELINES FOR GENE EXPRESSION DATA ANALYSIS

To tackle the complexities of gene expression data analysis, we have established a set of compre-
hensive guidelines shown below. These guidelines try to replicate the detailed processes of a skilled
bioinformatician, covering dataset preprocessing, selection, and statistical analysis. By follow-
ing these standardized procedures, we seek to improve consistency and reliability in our manual
benchmark curation.

This document describes the standardized pipeline for analyzing gene
expression data for identifying disease-associated genes, involving
dataset preprocessing, selection, and statistical analysis. These
steps follow the practices of computational genomics and ensure the
reproducibility and reliability of the analysis.

Data Sources and Organization:
- Gene expression data are sourced from two public databases,
organized by trait in specific subdirectories:

- Gene Expression Omnibus (GEO): Data are downloaded under certain
criteria and saved under the path "{data_root}/GEO". Within this
directory, datasets related to each trait are organized in
subdirectories named after the trait.

- The Cancer Genome Atlas (TCGA) data via the Xena platform: Data
are saved under the path "{data_root}/TCGA". Similar to GEO, datasets
related to each cancer type are organized in subdirectories named
after the specific cancer trait.

Problem Setting Differentiation:
- If the problem is to identify significant genes predictive of a
trait (optionally conditioning on age or gender, but not involving
another trait), prepare the data related to this trait.
- If the problem is to identify significant genes predictive of a
trait while conditioning on another trait, prepare data for both
traits. These datasets will be integrated in a two-step regression
process.

PART I. GEO Data Preprocessing

Step 1: Initial Data Loading
1. Identify the names of the SOFT file and Matrix file of the Series
data.
2. Read the Matrix file to obtain background information and clinical
trait data. This involves extracting the text data of series titles,
summaries, and overall designs, as well as the tabular data of sample
characteristics.
3. Get the unique values of all attributes in the sample
characteristics table into a Python dictionary.
4. Print the background information and the sample characteristics
dictionary for later observation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Step 2: Dataset Analysis and Clinical Feature Extraction
1. Read the metadata to determine if the dataset is likely to contain
gene expression data (which does not include miRNA data or methylation
data).
2. Based on the metadata and the sample characteristics dictionary,
for each of the variables of interest (e.g., a specific trait, age,
gender):

a. Assess the availability of data.
b. If available, identify the key in the sample characteristics

dictionary where unique values of this variable are recorded.
c. Choose the appropriate data type (continuous, binary, or

categorical) and design conversion functions to encode the features
into that type.
3. Conduct initial filtering. If either the gene data or trait data is
not available, discard this dataset; otherwise, continue with the
following steps.

Step 3: Gene Data Extraction
1. Read the Matrix file to extract the tabular gene expression data
into a dataframe.
2. Print the first few row identifiers in the dataframe for later
observation.
3. Determine if the row identifiers are human gene symbols or other
types that require mapping.

Step 4: Gene Annotation (Conditional)
1. If gene mapping is required, extract the gene annotation table from
the SOFT file.
2. Preview the gene annotation table for later observation.

Step 5: Gene Identifier Mapping
1. If gene mapping is required, identify the columns for the
identifiers and gene symbols from the gene annotation table.
2. Create a mapping dataframe and apply it to the gene expression data.
Handle many-to-many relationships between probe IDs and gene symbols
by splitting concatenated strings of symbols using separators such as
semicolons (;), vertical bars (|), double slashes (//), and commas (,).
Assign the corresponding expression values to each gene symbol linked
to an identifier. Finally, aggregate the expression values for each
gene symbol by averaging the values from multiple probes, with the aim
of accurately representing the expression level of each gene symbol.

Step 6: Data Normalization and Merging
1. Normalize the gene symbols in the gene data by querying databases
with the Python MyGene library, setting the ‘scopes’ parameter
properly. Remove data corresponding to genes that cannot be normalized.
For genes that normalize to the same symbol, deduplicate by averaging
their expression values.
2. Merge the clinical data with the normalized gene data on sample IDs.

3. Handle missing values. Drop records with the clinical trait missing
or with more than 20% of the gene features missing. Use mean
imputation for other missing values in the gene expression data.
4. Observe the resulting dataset for quality verification. If the
dataset is successfully preprocessed, save the merged data to a CSV
file.

PART II. TCGA-Xena Data Preprocessing

Step 1: Initial Data Loading
1. Identify the names of the clinical data file and the genetic data
file, and load them into two separate dataframes. For gene expression,
we choose the ‘gene expression RNAseq’ dataset instead of its PANCAN
normalized or percentile versions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Step 2: Clinical Attribute Selection
1. Print and observe the column names of the clinical data file.
Identify all columns that might hold relevant data for age and gender
from the list of column names.
2. Inspect the first few values of all candidate columns. Select a
single column from the candidate columns that accurately records age
and gender information, respectively, considering meaningful values
and minimal missing data.
3. Based on metadata of the TCGA database, use a simple rule to
convert the trait (whether the sample has the particular type of
cancer) to binary values.
4. Conduct initial filtering. If all samples have the same target
values, or if the clinical dataset shows other abnormalities, discard
the dataset. Otherwise, continue with the next step.

Step 3: Data Processing and Merging
1. Normalize the gene symbols in the gene data by querying databases
with the Python MyGene library, setting the ‘scopes’ parameter
properly. Remove data corresponding to genes that cannot be normalized.
For genes that normalize to the same symbol, deduplicate by averaging
their expression values.
2. Merge the clinical and genetic datasets on sample IDs.
3. Handle missing values. Drop records with the clinical trait missing
or with more than 20% of the gene features missing. Use mean
imputation for other missing values in the gene expression data.
4. Observe the resulting dataset for quality verification. If the
dataset is successfully preprocessed, save the merged data to a CSV
file.

PART III. Statistical Analysis

Step 1: Data Selection and Loading
1. Select the best input data relevant to the gene identification
problem, and load the data into a dataframe. If multiple preprocessed
datasets are available for statistical analysis about a trait, we
select the one with the largest sample size.
2. If the analysis requires integrating datasets about two traits, we
sort the possible pairs of datasets for both traits by the product of
their sample sizes, and select the pair with the largest product. Load
data for the trait and condition into separate dataframes and select
common gene regressors.

Step 2: Data Wrangling
1. Extract the relevant data columns and convert into numpy arrays for
analysis. Get the data matrices of features, the target variable, and
also the condition when applicable.
2. For two-step regression, this needs to be done twice. In the first
step, the features are the common gene regressors, and the target is
the condition, and we need to extract these matrices from the
condition dataset. The second step follows other cases for extracting
relevant data.

Step 3: Condition Prediction (Only for Two-Step Regression)
1. Determine the variable type (binary, continuous, or categorical) of
the condition.
2. Select a simple regression model based on the type of the target
variable, and train it to regress the condition on the common gene
regressors in the condition dataset.
3. Use the trained model to predict the condition values in the trait
dataset using the common gene regressors. Remove the columns in the
trait dataset corresponding to the common regressors, and add the
predicted condition values to it as a new column.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Step 4: Model Selection Based on Batch Effect
1. Assess whether the dataset shows batch effects by observing gaps in
eigenvalues. Choose the appropriate model based on the presence of
batch effects. Use a Linear Mixed Model (LMM) if batch effects are
detected. Otherwise, use a Lasso model.

Step 5: Data Normalization
1. For the feature matrix, and the condition matrix (if applicable),
apply Z-score normalization so that each feature has a mean of 0 and
standard deviation of 1. Make sure this is done every time before
training the model.

Step 6: Hyperparameter Tuning
1. Do 5-fold cross-validation, and perform hyperparameter search on
the logarithm scale with base of 10. Record the best hyperparameter
settings.

Step 7: Model Training
1. Train the model on the entire dataset, with the best
hyperparameters found during cross-validation. For conditional
analyses, incorporate the condition matrix into the model.

Step 8: Model Interpretation
1. Interpret the trained model to identify significant factors and
effects. For Lasso, choose gene variables with non-zero coefficients.
For LMM, apply the Benjamini-Hochberg correction for multiple
hypothesis testing, and select variables whose corrected p-value is
less than 0.05.
2. Save the regression output to a JSON file, with the identified
genes and the corresponding coefficient or p-values.

Listing 1: Guidelines file for gene expression data analysis

B EXAMPLES OF MANUAL ANALYSIS

In addition to the guidelines file, we provide example files to the participants of our data curation.
These examples include code and results for analyzing gene identification problems related to
traits such as Breast Cancer and Epilepsy. These illustrations have proven helpful in familiarizing
participants with these tasks quickly. Among the many steps in the analysis pipeline, a key step is the
trait data extraction during the preprocessing of GEO data. This step requires biomedical knowledge
and an understanding of the dataset collection process described in the metadata. In this section, we
will introduce the part of the manual analysis examples related to this crucial step.

B.1 PROBLEM STATEMENT

Our goal was to extract clinical traits from GEO datasets. For each trait of interest, we aimed to
determine its availability and develop encoding rules to automate the extraction process. Below are
two examples focusing on Breast Cancer and Epilepsy, respectively.

B.2 BREAST CANCER EXAMPLE

B.2.1 INPUT DATA

!Series_title "Unlocking Molecular mechanisms and identifying
druggable targets in matched-paired brain metastasis of Breast and
Lung cancers"
!Series_summary "Introduction: The incidence of brain metastases in
cancer patients is increasing, with lung and breast cancer being the
most common sources. Despite advancements in targeted therapies, the
prognosis remains poor, highlighting the importance to investigate the
underlying mechanisms in brain metastases. The aim of this study was

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

to investigate the differences in the molecular mechanisms involved in
brain metastasis of breast and lung cancers. In addition, we aimed to
identify cancer lineage-specific druggable targets in the brain
metastasis. Methods: To that aim, a cohort of 44 FFPE tissue samples,
including 22 breast cancer and 22 lung adenocarcinoma (LUAD) and their
matched-paired brain metastases were collected. Targeted gene
expression profiles of primary tumors were compared to their matched-
paired brain metastases samples using nCounter PanCancer IO 360 Panel
of NanoString technologies. Pathway analysis was performed using gene
set analysis (GSA) and gene set enrichment analysis (GSEA). The
validation was performed by using Immunohistochemistry (IHC) to
confirm the expression of immune checkpoint inhibitors. Results: Our
results revealed the significant upregulation of cancer-related genes
in primary tumors compared to their matched-paired brain metastases (
adj. p<=0.05). We found that upregulated differentially expressed
genes in breast cancer brain metastasis (BM-BC) and brain metastasis
from lung adenocarcinoma (BM-LUAD) were associated with the metabolic
stress pathway, particularly related to the glycolysis. Additionally,
we found that the upregulated genes in BM-BC and BM-LUAD played roles
in immune response regulation, tumor growth, and proliferation.
Importantly, we identified high expression of the immune checkpoint
VTCN1 in BM-BC, and VISTA, IDO1, NT5E, and HDAC3 in BM-LUAD.
Validation using immunohistochemistry further supported these findings.
Conclusion: In conclusion, the findings highlight the significance of
using matched-paired samples to identify cancer lineage-specific
therapies that may improve brain metastasis patients outcomes."
!Series_overall_design "RNA was extracted from FFPE samples of (
primary LUAD and their matched paired brain metastasis n=22, primary
BC and their matched paired brain metastasis n=22)"

Listing 2: Background information for breast cancer

{
0: [’age at diagnosis: 49’, ’age at diagnosis: 44’, ’age at

diagnosis: 41’, ’age at diagnosis: 40’, ...],
1: [’Sex: female’, ’Sex: male’],
2: [’histology: TNBC’, ’histology: ER+ PR+ HER2-’, ’histology:

Unknown’, ’histology: ER- PR- HER2+’, ’histology: ER+ PR-HER2+’, ’
histology: ER+ PR- HER2-’, ’histology: ER- PR+ HER2-’, ’histology:
adenocarcinoma’],
3: [’smoking status: n.a’, ’smoking status: former-smoker’, ’smoking

status: smoker’, ’smoking status: Never smoking’, ’smoking status:
unknown’, ’smoking status: former-roker’],
4: [’treatment after surgery of bm: surgery + chemotherpy’, ’

treatment after surgery of bm: surgery + chemotherpy + Radiotherapy’, ’
treatment after surgery of bm: surgery + chemotherapy + Radiotherapy’,
’treatment after surgery of bm: surgery’, ’treatment after surgery of
bm: surgery + chemotherapy + Radiotherapy’, ...]
}

Listing 3: Sample characteristics for breast cancer. Some long lists are truncated for brevity.

B.2.2 INFERENCE PROCESS

The dataset summary indicated that tissue samples from primary breast cancer (BC) and lung adeno-
carcinoma (LUAD), along with their matched-paired brain metastases, were included. By examining
the sample characteristics dictionary, combined with domain knowledge, we identified subtypes
such as ’TNBC’, ’ER+’, ’PR+’, and ’HER2+’ associated with breast cancer, and ’adenocarcinoma’
associated with lung cancer. Based on this, we developed a rule: tissues labeled with ’TNBC’, ’ER+’,
’PR+’, or ’HER2+’ are coded as having breast cancer (1), while ’adenocarcinoma’ is coded as not
having breast cancer (0).

def convert_trait(value):

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

if ’TNBC’ in value or ’ER+’ in value or ’PR+’ in value or ’HER2+’
in value:

return 1 # Breast Cancer
elif ’adenocarcinoma’ in value:

return 0 # Not Breast Cancer (LUAD)
else:

return None # Unknown

Listing 4: Python function to encode Breast Cancer trait

B.3 EPILEPSY EXAMPLE

B.3.1 INPUT DATA

!Series_title "Integrated analysis of expression profile and
potential pathogenic mechanism of temporal lobe epilepsy with
hippocampal sclerosis"
!Series_summary "To investigate the potential pathogenic mechanism of
temporal lobe epilepsy with hippocampal sclerosis (TLE+HS), we have
employed analyzing of the expression profiles of microRNA/ mRNA/
lncRNA/ DNA methylation in brain tissues of hippocampal sclerosis (TLE
+HS) patients. Brain tissues of six patients with TLE+HS and nine of
normal temporal or parietal cortices (NTP) of patients undergoing
internal decompression for traumatic brain injury (TBI) were collected.
The total RNA was dephosphorylated, labeled, and hybridized to the
Agilent Human miRNA Microarray, Release 19.0, 8x60K. The cDNA was
labeled and hybridized to the Agilent LncRNA+mRNA Human Gene
Expression Microarray V3.0, 4x180K. For methylation detection, the DNA
was labeled and hybridized to the Illumina 450K Infinium Methylation
BeadChip. The raw data was extracted from hybridized images using
Agilent Feature Extraction, and quantile normalization was performed
using the Agilent GeneSpring. We found that the disorder of FGFR3, hsa-
miR-486-5p, and lnc-KCNH5-1 plays a key vital role in developing TLE+
HS."
!Series_overall_design "Brain tissues of six patients with TLE+HS
and nine of normal temporal or parietal cortices (NTP) of patients
undergoing internal decompression for traumatic brain injury (TBI)
were collected."

Listing 5: Background information for Epilepsy

{
0: [’tissue: Hippocampus’, ’tissue: Temporal lobe’, ’tissue:

Parietal lobe’],
1: [’gender: Female’, ’gender: Male’],
2: [’age: 23y’, ’age: 29y’, ’age: 37y’, ’age: 26y’, ’age: 16y’, ’age:

13y’, ’age: 62y’, ’age: 58y’, ’age: 63y’, ’age: 68y’, ’age: 77y’, ’
age: 59y’, ’age: 50y’, ’age: 39y’]
}

Listing 6: Sample characteristics for Epilepsy

B.3.2 INFERENCE PROCESS

The dataset summary indicated that brain tissues from patients with temporal lobe epilepsy with
hippocampal sclerosis (TLE+HS) and control samples were included. By examining the sample
characteristics dictionary, we identified tissue types such as ’Hippocampus’, ’Temporal lobe’, and
’Parietal lobe’. We inferred that ’Hippocampus’ and ’Temporal lobe’ tissues are associated with
TLE+HS (epilepsy), while ’Parietal lobe’ tissues are from control samples. Based on this, we
developed a rule: tissues labeled with ’Hippocampus’ or ’Temporal lobe’ are coded as having
epilepsy (1), while ’Parietal lobe’ is coded as control (0).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

def convert_trait(value):
if ’Hippocampus’ in value or ’Temporal lobe’ in value:

return 1 # Epilepsy (TLE+HS)
elif ’Parietal lobe’ in value:

return 0 # Control (NTP)
else:

return None # Unknown

Listing 7: Python function to encode Epilepsy trait

B.4 VALIDATION AND CONCLUSION

By executing the provided Python functions, we confirmed the accuracy of our trait extraction
process. For instance, applying the convert_trait function for the epilepsy dataset, we verified
the presence of exactly six samples with the positive Epilepsy trait, consistent with the metadata
description. Similarly, for the breast cancer dataset, the function accurately identified 22 samples
with the Breast Cancer trait. These examples highlight the dataset context understanding and domain
knowledge inference required for the accurate preprocessing of gene expression data.

C CRITERIA FOR MANUAL CORRECTION OF TRAIT-CONDITION PAIRS

To ensure the scientific validity of our benchmark questions, we apply specific rules for including and
excluding certain trait-condition pairs. Each biomedical entity in our list can be considered a trait and
paired with a condition, where the condition is either another entity from the list or a demographic
attribute like "age" or "gender." The following criteria are designed to maintain scientific relevance
and robustness:

• Trait-Condition Role Assignment: Entities such as language abilities, Vitamin D levels,
and bone density are included only as conditions and not as traits. This distinction ensures
that the primary focus remains on traits with more direct clinical implications, while these
entities serve as influential factors that could affect those traits.

• Universal Conditions: Entities such as obesity, hypertension, and mental disorders like
anxiety disorder and bipolar disorder are designated as conditions to be paired with all other
traits. This is because these conditions are widespread and significantly impact various
health outcomes, making them critical factors to consider in any genetic analysis.

• Gender-Specific Considerations: Gender-specific entities such as prostate cancer, en-
dometriosis, and breast cancer are not conditioned on gender. Furthermore, entities from
different genders are not paired. This approach respects the biological distinctions between
genders and ensures that the resulting questions remain relevant and meaningful.

• Cancer Category Exclusion: Pairs where both the trait and the condition belong to the
cancer category are excluded. This is because investigating genetic factors behind one type
of cancer conditioned on another type of cancer is often less scientifically important. The
focus is placed on broader, more impactful genetic relationships that offer greater insight
into cancer biology.

These criteria are used in combination with the Jaccard similarity of related genes (Section 3.2), to
uphold the scientific integrity and relevance of the benchmark questions, facilitating meaningful and
insightful gene expression analysis.

D DETAILS ABOUT THE DATA SOURCES

GEO The Gene Expression Omnibus (GEO) (Clough and Barrett, 2016) is a public archive for
high-throughput gene expression data and various other types of genomic data. We leveraged the
Entrez programming utility to perform a systematic search of the GEO database for human series
data relevant to each trait on our list, prioritizing datasets with large sample sizes. We downloaded
both SOFT and matrix files for each series and used heuristic evaluations of file sizes to pinpoint

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

datasets likely containing gene expression data. When automated searches failed to yield results
for specific traits, we conducted manual searches using expanded synonyms from Medical Subject
Headings (MeSH) terms.

TCGA-Xena The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015), accessed through the
Xena platform Goldman et al. (2020), offers a rich repository of RNAseq gene expression and clinical
data for numerous cancer types. We obtained data for 36 traits from the TCGA cohort using the
UCSC Xena platform, which provides high-quality, cancer-related gene expression and clinical data
linked by patient IDs.

NCBI Gene The NCBI Gene database (Brown et al., 2015) is an important resource for compre-
hensive information on gene sequences, functions, and their links to diseases and conditions. For
each trait, we queried the database to compile sets of gene symbols associated with the trait. This
data was crucial for identifying disease-disease associations for question generation and for selecting
common regressors in two-step regression analyses.

E CHALLENGES FACED BY EXISTING METHODS ON THE GENOTEX
BENCHMARK

Gene expression data analysis is a complex and specialized task. Despite their problem-solving
abilities, state-of-the-art LLMs and agent-based methods struggle with gene expression data. Our
evaluations of methods such as GPT-4o OpenAI (2024), MetaGPT Hong et al. (2023), and CodeAct
Wang et al. (2024) revealed consistent failures across various settings.

We tested these methods under three different settings: (i) providing general task instructions, (ii)
providing detailed task instructions used by GenoAgent, and (iii) providing detailed task instructions
and all necessary library functions as in GenoAgent. Each setting was tested on a subset of 50 gene
identification problems. Our results show that none of the methods generated runnable code for
preprocessing datasets downloaded from GEO. Persistent errors in the generated code prevented
testable outputs, regardless of the level of detail provided.

First, we find that when preprocessing GEO data, these methods often fail at dataset loading in the
initial steps. The gene expression data files follow special formats. The agent struggles to extract
tabular data embedded in the text file by identifying special markers, skipping metadata rows, and
setting other parameters correctly, resulting in data reading failures.

import pandas as pd
from typing import Tuple
from utils import Utils

class DataLoader:
"""
DataLoader class is responsible for loading clinical and genetic

data from given file paths.
"""

def load_clinical_data(self, filepath: str) -> pd.DataFrame:
"""
Loads clinical data from a specified file path.

:param filepath: The path to the clinical data file.
:return: A pandas DataFrame containing the clinical data.
"""
try:

clinical_data = pd.read_csv(filepath)
Utils.log(f"Clinical data loaded successfully from {

filepath}")
return clinical_data

except FileNotFoundError:
Utils.log(f"File not found: {filepath}")
raise

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

except pd.errors.EmptyDataError:
Utils.log(f"No data: {filepath} is empty")
raise

except Exception as e:
Utils.log(f"An error occurred while loading clinical data:

{e}")
raise

Listing 8: Failure example of MetaGPT in reading datasets

We manually corrected the data loading code for the baseline methods and continued with the tasks.
However, they were still unable to conduct the inference required to extract clinical features. This
step is inherently difficult and often requires at least one round of debugging by the Domain Expert
agent in our GenoAgent method to achieve a higher success rate.

def convert_trait(self, value: str) -> str:
"""
Converts a trait value to a standardized string format.

:param value: The trait value to convert.
:return: A standardized string representation of the trait.
"""
This is a placeholder for the actual conversion logic, which

would
depend on the specific requirements for trait conversion.
For example, it could map various synonyms to a canonical form.
standardized_value = value.strip().lower()
return standardized_value

Listing 9: Failure example of MetaGPT in encoding Breast Cancer trait

def convert_trait(value):
if value in [’TLE+HS’, ’control’]:

return 1 if value == ’TLE+HS’ else 0
return None

Listing 10: Failure example of CodeAct in encoding Breast Cancer trait. ’TLE+HS’ is indeed related
to epilepsy according to the metadata, but this is not the way the trait information is recorded for
each sample. Moreover, these functions didn’t strip the content before the colon. As a result, the
code will convert all trait values to None.

The challenges faced by methods like MetaGPT and CodeAct in processing gene expression data
primarily stem from their difficulty in handling specialized data formats and the absence of flexible
feedback mechanisms. MetaGPT, primarily designed for software engineering tasks, operates with an
independent execution model and limited context-awareness, which can impede dynamic adaptation
during task execution and lead to errors when dealing with the nuanced formats of gene expression
datasets. CodeAct, while effective at generating executable code through structured prompts, lacks
the context-aware planning and iterative refinement necessary for the intricate steps involved in
gene expression data preprocessing. Its static approach does not easily accommodate the dynamic
adjustments required for diverse and complex gene expression data, leading to errors during initial
data loading and clinical feature extraction.

In contrast, GenoAgent employs a team of specialized agents that maintain a comprehensive task
context and leverage expert consultation, allowing for context-aware planning and iterative correction.
This enables GenoAgent to handle the complexities of genomics data analysis more effectively,
improving its reliability in data preprocessing.

F DISCUSSION ON THE LIMITATIONS OF GENOAGENT

This section discusses the observed limitations of our baseline method, GenoAgent, on the GenoTEX
benchmark. We identified that certain steps are inherently challenging, and instability in the feedback

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

[Prompt]:…
[Code]:…
[Output]

[Prompt]:
Verify execution through STDERR check. If not, provide a feedback for revision.
Return "Final Decision: approved" else return "Final Decision: need revision".

Step 2: Feedback

Step 1: Send

[Output]: Code Result
StandardOut:
The dataset has 92 rows, such as …
The dataset has 105 columns, such as …
StandardError:

[Code]: # Read the clinical data
 clinical_data = pd.read_csv(clinical_file_path, sep="\t")
 # Get the lists of column names
 _, clinical_columns = check_rows_and_columns(clinical_data, display=True)

[Prompt]: obtain the information of clinical data and get the lists of column names

[Output]:
Review: Final Decision: approved.

If "Final Decision: need revision".
append review to prompt and redo this step.

If “Final Decision: approved”,
Move to the next step.

Step 1: Code Review

Code Reviewer

Data Engineer

Data Engineer

Figure 4: The collaboration between Data Engi-
neer and Code Reviewer.

Step 1: Consulting

Domain Expert

Data Engineer

Data Engineer

[Prompt]: Inspect all candidate columns to
avoid missing values
[Code]: …
[Output]: …

[Prompt]: Focus on pinpointing every column that could possibly contain age
information.

[Output]: Code Result
StandardOut:
The dataset has 92 rows, such as …
The dataset has 105 columns, such as [‘sampleID’,
‘age_at_initial_pathologic_diagnosis’, …]
StandardError:

[Code]: # Read the clinical data
 clinical_data = pd.read_csv(clinical_file_path, sep="\t")
 # Get the lists of column names
 _, clinical_columns = check_rows_and_columns(clinical_data, display=True)

[Prompt]: obtain the information of clinical data and get the lists of column names

[Output]: candidate_age_cols = [age_at_initial_pathologic_diagnosis,
day_to_birth, age_at_last_review]

Step 2: Decision

Figure 5: The collaboration between Data Engi-
neer and Domain Expert.

mechanism may hinder the agents’ iterative improvement process. Figures 4 and 5 illustrate the two
types of feedback mechanisms in GenoAgent.

F.1 ERROR EXAMPLE IN PREPROCESSING

The results in Table 4 of the main paper indicate that the preprocessing performance of GenoAgent is
primarily constrained by the clinical feature extraction step, which shows a CSC of only 32.28%. This
step is conducted through Domain-Guided Programming (Section 4.2), where the Domain Expert
iteratively improves its output based on feedback from the execution environment. Although one
round of self-review significantly enhances performance, increasing the maximum review rounds
from 1 to 2 yields only marginal benefits. Detailed examination of the agent system’s operation log at
this step across different experimental runs reveals that the Domain Expert’s answers to the same
question can vary randomly.

For example, consider the following function used to encode the Breast Cancer trait:

def convert_trait(value):
if ’breast cancer’ in value.lower():

return 1
elif ’lung adenocarcinoma’ in value.lower():

return 0
else:

return None

Listing 11: Failure example of GenoAgent for encoding Breast Cancer trait

In one run, the code review provided the following feedback:

Issue: The convert_trait function assumes that the input string will
always mention either "breast cancer" or "lung adenocarcinoma," which
might not always be the case. The current data may not explicitly
have such a field.

Suggestion: Update the function to be more flexible by incorporating
biomedical knowledge. Since the dataset deals explicitly with breast
cancer and lung adenocarcinoma, we can assume breast cancer is present
based on the context or use a default binary value.

Final Decision: Approved

Listing 12: Code review that didn’t correctly find the issue, and approved the code

However, in another run with the identical setting, the code review provided different feedback:

Issue: The convert_trait function does not conform to the
instructions. The traits should be inferred from the histology field.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Suggestion: Adjust the function to check for breast cancer subtypes
in the histology field. The current implementation checks for "breast
cancer" and "lung adenocarcinoma" in the value, which might not
directly map to the provided sample characteristics. A more context-
aware approach, utilizing the provided histology information to infer
the presence of breast cancer, would be more effective.

Final Decision: Rejected

Listing 13: Another run of code review, which correctly analyzed the issue and rejected the code

F.2 ERROR EXAMPLE IN STATISTICAL ANALYSIS

Analysis of failure cases during the statistical analysis task reveals various low-frequency random
failures, including errors in extracting data matrices from dataframes and incorrect parameter passing
to the regression model. Although no single bottleneck was identified, the cumulative error risk
significantly impacts performance, resulting in a suboptimal F1 score of 67.08%. This task involves
collaboration between the Statistician and Code Reviewer (Section 4.2). Similar to preprocessing, we
observed unstable and inconsistent feedback from the Code Reviewer.

The following is an example of erroneous code generated by the Statistician agent:

from utils.statistics import *

Set directory and trait, omitted here.

Step 1: Load input data about the trait into a dataframe
trait_data, _, _ = select_and_load_cohort(data_root, trait, condition=
None, is_two_step=False)

Step 2: Extract X and Y for regression analysis
Y = trait_data[trait].values
X = trait_data.drop(columns=[trait]).values

Step 3: Selecting appropriate model based on batch effect
batch_effect_detected = detect_batch_effect(X)
model_constructor = LMM if batch_effect_detected else Lasso

Step 4: Hyperparameter search
param_values = [10 ** i for i in range(-6, 1)] # powers of 10 from 1e
-6 to 1e0
var_names = list(trait_data.columns)
if batch_effect_detected:

fixed_params = {"fit_intercept": False}
else:

fixed_params = {"fit_intercept": True, "max_iter": 10000}
best_config, _ = tune_hyperparameters(

model_constructor, param_values=param_values, X=X, Y=Y, var_names=
var_names,

trait=trait, gene_info_path=gene_info_path, condition=None, Z=None,
fixed_params=fixed_params
)

Step 5: Normalize X
X_normalized, _ = normalize_data(X)

Step 6: Train the model with best hyperparameter on whole dataset
model = ResidualizationRegressor(model_constructor, best_config)
model.fit(X_normalized, Y)

Step 7: Interpret trained model for significant genes and save
results

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

significant_genes = interpret_result(model, var_names, trait,
condition=None, print_output=True)

os.makedirs(os.path.join(output_dir, normalize_trait(trait)), exist_ok
=True)
save_path = os.path.join(output_dir, normalize_trait(trait))
save_result(

significant_genes, output_dir=save_path, condition=None
)

[Output]:

[Execution Error]:
__init__() got an unexpected keyword argument ’fit_intercept’

Listing 14: Failure example of the Statistician agent

Discussion The randomness observed may stem from the LLM itself, suggesting a need to prevent
one agent from misleading another. During the development of our baseline methods, we implemented
several prompt engineering techniques to mitigate this issue: (i) Limiting the Reviewer’s feedback
to three main suggestions to focus on problem-solving rather than providing numerous distracting
comments about code quality, and (ii) Encouraging the agent receiving the review to critically
evaluate the feedback and possibly retain its original code. While these measures have alleviated
some issues, they persist to some extent in our GenoAgent baseline. A promising future direction
involves designing collaborative modes that foster iterative discussions among agents to reconcile
differing opinions and enhance their task performance abilities.

We hope this discussion highlights the challenges of our benchmark tasks and encourages future work
to address these issues.

26

	Introduction
	Related work
	Method
	Motivation and role design
	Collaboration among LLM agents
	Standardized pipeline for gene expression data analysis
	Data preprocessing
	Statistical analysis

	Benchmark
	Benchmark creation
	Tasks and metrics

	Experiment
	Results
	Discussions

	Conclusion
	Guidelines for gene expression data analysis
	Examples of manual analysis
	Problem statement
	Breast Cancer example
	Input data
	Inference process

	Epilepsy example
	Input data
	Inference process

	Validation and conclusion

	Criteria for manual correction of trait-condition pairs
	Details about the data sources
	Challenges faced by existing methods on the GenoTex benchmark
	Discussion on the limitations of GenoAgent
	Error example in preprocessing
	Error example in statistical analysis

