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Abstract

We introduce CUPS, a novel method for learn-
ing sequence-to-sequence 3D human shapes and
poses from RGB videos with uncertainty quan-
tification. To improve on top of prior work, we
develop a method to generate and score multi-
ple hypotheses during training, effectively inte-
grating uncertainty quantification into the learn-
ing process. This process results in a deep un-
certainty function that is trained end-to-end with
the 3D pose estimator. Post-training, the learned
deep uncertainty model is used as the conformity
score, which can be used to calibrate a confor-
mal predictor in order to assess the quality of
the output prediction. Since the data in human
pose-shape learning is not fully exchangeable,
we also present two practical bounds for the cov-
erage gap in conformal prediction, developing
theoretical backing for the uncertainty bound of
our model. Our results indicate that by taking
advantage of deep uncertainty with conformal
prediction, our method achieves state-of-the-art
performance across various metrics and datasets
while inheriting the guarantees of conformal pre-
diction. 3D visualization, code, and data will be
available at this website.

1. Introduction

Recovering a sequence of human meshes (i.e., shapes and
poses) from a monocular video is a fundamental chal-
lenge with wide-ranging applications in computer vision,
robotics, AR/VR, and computer graphics. Such technol-
ogy has the potential to minimize reliance on traditional
motion capture systems or labor-intensive 3D annotations,
facilitating the generation of human motion templates for
tasks such as animating 3D avatars. The emergence of
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Figure 1: CUPS sample results obtained on in-the-wild videos.
Given RGB frames, CUPS reconstructs a sequence of 3D meshes,
and then a conformal predictor calibrated using a deep uncer-
tainty function —trained end-to-end with the human pose-shape
estimator— quantifies the uncertainty of the output SMPL.

parametrized human models, such as SMPL (Kanazawa
et al., 2018), which represent human body shape and pose
with well-defined joint and structure parameters, made it
possible for modern deep learning models to efficiently
learn to predict human poses and shapes in a systematic
way by directly regressing SMPL parameters from video
inputs. At the same time, safety-critical applications, in-
cluding robotics and autonomous vehicles, demand com-
puter vision algorithms that are able to quantify the uncer-
tainty in their estimates and possibly provide performance
guarantees (Yang & Pavone, 2023).

Few existing works in human reconstruction have explored
the direction of uncertainty-aware human pose and shape
prediction due to two challenges. First, it is difficult
to ensure the predicted pose and shape are close to the
groundtruth under out-of-distribution data or heavy occlu-
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sions. Second, an efficient human shape and pose predic-
tion model takes video frames as input, where the data is
not fully exchangeable. Such non-exchangeability makes
it difficult for uncertainty quantification methods such as
conformal prediction (Angelopoulos & Bates, 2021; Shafer
& Vovk, 2008) to provide a formal statistical error bound
between the estimation and the groundtruth. While a more
recent line of work focuses on learning multiple outputs or
learning variances as uncertainty (Zhang & Carlone, 2024),
none has addressed the problem of providing a reliable sta-
tistical error bound when the data is not exchangeable. For
practical uses in safety-critical scenarios, one should be
able to tell when to frust the human reconstruction model.

To counter the aforementioned challenges, we first take in-
spiration from an important tool in statistical learning, con-
formal prediction (CP) (Shafer & Vovk, 2008; Angelopou-
los & Bates, 2021), which uses a post-training calibra-
tion step to guarantee a user-specified coverage. Assume
that we want to predict an output Y (e.g., the true pose
and shape of a human) from inputs X (e.g., a sequence
of frames). By allowing to predict confidence sets C'(X)
(e.g., a set of human reconstructions), CP guarantees the
true value Y to be included in C'(X') with confidence level
a, e, P(Y € C(X)) > 1 — a, given a set of calibration
examples (X;,Y;) € Iy that are exchangeable with the
test distribution. There are typically two steps involved in
CP. In the calibration step, the conformity scores of the ex-
amples in the calibration set are ranked to determine a cut-
off threshold Q;_,, via quantile computation. In the pre-
diction step, the conformity score measures the conformity
between the output and the unknown ground-truth value,
which is used —in conjunction with the threshold Q; _,—
to construct the confidence sets C(X). By construction,
the set C'(X) provides a quantification of uncertainty: each
prediction in C(X) has a conformity score above (1 — a/)th
quantile and hence is a plausible estimate for Y.

While CP is a flexible tool that can be applied to any ma-
chine learning model, it assumes the data to be exchange-
able, i.e., that the dataset distribution remains invariant un-
der permutation. Such an assumption breaks in many real-
world applications. For example, if the dataset comes from
video frames, the constructed dataset is obviously not ex-
changeable since permuting sequences of frames changes
the underlying distribution. While there have been tech-
niques that aim to increase the exchangeability of video
data by taking long video sequences (Zhang & Carlone,
2024) or observations from evenly-spaced cameras (Yang
& Pavone, 2023), the theoretical guarantee of CP cannot
be fully justified if the data is not exchangeable. To cope
with the lack of exchangeability, we leverage a recent ex-
tension by Barber et al. (2023) that allows dealing with
datasets where the exchengeability assumption no longer
holds. The key idea in Barber et al. (2023) is to use

weighted quantiles to tackle data distribution shifts.

To bring CP into human reconstruction, we design a
methodology that learns a deep uncertainty score of human
reconstruction output in an end-to-end manner by predict-
ing multiple hypotheses of human shapes and poses dur-
ing training. The deep uncertainty value is then used in
the calibration step by incorporating the theoretical toolkit
provided in (Barber et al., 2023), retaining statistical guar-
antees even when exchangeability is violated. Our results
indicate that taking advantage of deep uncertainty with
conformal prediction, our method achieves state-of-the-art
performance across various metrics and datasets. Using
the probabilistic guarantee of correctness inherited from
CP, we also provide theoretical lower bounds of perfor-
mance for human mesh reconstruction when the data is
not exchangeable. The result is CUPS, a Conformalized
Uncertainty-aware human Pose-Shape estimator. To sum-
marize, our contributions include:

* An uncertainty-aware 3D human shape-pose estimator
from 2D RGB videos (Section 4.1 & Section 4.2).

* A novel method to conformalize 3D human estimates
during training by learning a score function to rank the
uncertainty of the proposed estimates (Section 4.2).

* A novel uncertainty quantifier for human reconstruc-
tion outputs using non-exchangeable conformal predic-
tion and deep uncertainty function (Section 4.3).

* A theoretical analysis of the uncertainty when the
data is not fully exchangeable and two practical
lower bounds —one completely new and one adapted
from (Barber et al., 2023)— for the coverage perfor-
mance (Section 4.3).

* Quantitative and qualitative results that demonstrate the
state-of-the-art results of our method on a variety of
real-world datasets (Section 5).

2. Related Work

3D Human Shape and Pose Estimation. End-to-end
approaches for human pose estimation include (Pavlakos
et al., 2017; Sun et al., 2018). With the maturity of 2D hu-
man keypoints detection (Ho et al., 2022; Ma et al., 2022),
more robust approaches focus on lifting 2D keypoints to
3D, resulting in better performance (Xu & Takano, 2021;
Ma et al., 2021; Ci et al., 2019). In this scheme, determin-
istic methods learn to predict one single 3D output from
the 2D input (Zhan et al., 2022; Zhang et al., 2022). In
many applications, it is desirable to also recover the shape
of humans beyond a skeleton of keypoints. (Loper et al.,
2023; Kanazawa et al., 2018) propose SMPL, a univer-
sal parametrization for human pose and shape. MEVA
(Luo et al., 2020) utilizes a VAE to encode the motion se-
quence and generate coarse human mesh sequences which
are then refined via a residual correction. VIBE (Kocabas
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et al., 2020), TCMR (Choi et al., 2021) and MPS-Net (Wei
et al., 2022) encode representations of three different input
lengths and then learns the mid-frame of the sequence with
either a recurrent network or an attention module. GLoT
(Shen et al., 2023) is a new model that decouples long-
term and short-term correlations. We incorporate human
mesh with uncertainty learning during training, forcing the
network to output higher-quality meshes.

Uncertainty in 3D Human Reconstruction. Due to un-
certainty such as occlusion in RGB inputs, deep genera-
tive models have been used in modeling conditional dis-
tributions for such problems. Mixed-density network (Li
& Lee, 2019), VAE (Sharma et al., 2019), normalizing
flows (Wehrbein et al., 2021), GAN (Li & Lee, 2019), and
Diffusion models (Holmquist & Wandt, 2023; Shan et al.,
2023) have all been applied to modeling such conditional
distribution. Dwivedi et al. (2024) learn an explicit confi-
dence value for occlusions. Motion-based methods such
as (Zhang et al., 2024; Rempe et al.,, 2021) use physi-
cal contacts and trajectory consistency to make the uncer-
tain estimates more robust. Zhang et al. (2023) use ex-
plicit anatomy constraints to improve model performance.
Lastly, Biggs et al. (2020) generate a fixed number of hy-
potheses and learn to choose the best one. We learn an un-
certainty score by augmenting training outputs and use the
uncertainty score to probabilistically certify the outputs.

Conformal Prediction. CP is a powerful and flexible
distribution-free uncertainty quantification technique that
can be applied to any machine learning model (Angelopou-
los & Bates, 2021; Shafer & Vovk, 2008) under the as-
sumption of exchangeable data. Assuming the exchange-
ability of the calibration data, CP has desirable coverage
guarantees. Thus, it has been applied to many fields such
as robotics (Sun et al., 2024), pose estimation (Yang &
Pavone, 2023), and image regression (Angelopoulos et al.,
2022). More sophisticated CP paradigms have been also
proposed to tackle distribution shift and online learning
problems (Angelopoulos et al., 2024). More recently, the-
oretical grounding for conformal prediction beyond ex-
changeability assumption (Barber et al., 2023) has been
proposed, which provides analysis tools for non-fully-
exchangeable datasets such as videos in ML problems.

3. Problem Formulation

We are interested in the problem of learning a sequence
of 3D human shapes and poses from a sequence of 2D
RGB images. Formally, given the input 2D video sequence
X € RIXWXSXT ‘where H, W are the dimension of each
frame and 7T is the length of the input sequence, our goal
is to learn to output human shapes and poses, described by
SMPL parameters Y := {0, 3}, where 6 € R?**6*T and
B € R**T model the joint 6D pose and mesh shape, re-

spectively. We wish to learn a human reconstruction func-
tion fp(X) that approximates Y. We are also interested
in learning a deep uncertainty function Sy(X,Y’), which
measures the inherent uncertainty of the human reconstruc-
tion function fy when taking as input X and outputting Y.
Such a learned uncertainty function will be used as a con-
formity score in our method, and enables the construction
of a prediction set via conformal prediction.

4. Method

We use a transformer-based architecture (Shen et al., 2023)
to predict SMPL parameters from 2D video sequences. We
also learn an uncertainty scoring model together with the
reconstruction model. At test time, we use the uncertainty
scoring model for conformal prediction. This results in
CUPS, a Conformalized Uncertainty-aware human Pose-
Shape estimator. The pipeline of CUPS is shown in Fig-
ure 2.

4.1. GLoT Human Reconstruction Model

The human reconstruction model in CUPS is based on
the Global-to-Local Transformer (GLoT) architecture pro-
posed by (Shen et al., 2023), which robustly leverages in-
formation learned with deep networks as well as human
prior structures while decoupling the short-term and long-
term modeling processes. We summarize the key compo-
nents proposed in (Shen et al., 2023) below.

Global Motion Modeling. First, a pretrained ResNet-50
extracts features from individual frames, resulting in static
tokens referred to as S = {81, , 87} € RT*2048 The
global motion modeling step begins by randomly mask-
ing a subset of static tokens along the temporal dimension,
denoted as S € R(-PITX2048  where p represents the
mask ratio. The unmasked tokens are then passed through a
global encoder. During the global decoder phase, the mean
SMPL parameters encoded by an MLP (SMPL tokens) are
padded into the masked positions and the entire sequence
is fed into the global decoder, which generates a long-term
representation. Subsequently, the global motion modeling
step applies an iterative regressor (Kanazawa et al., 2018;
Kocabas et al., 2020) to obtain the global initial SMPL se-
quence, denoted by Y9 = {69, 37}.

Local Parameter Correction. A local parameter correc-
tion step refines the SMPL parameters outputted by the
global modeling step. The local correction step consists
of a local transformer and a Hierarchical Spatial Correla-
tion Regressor. The local transformer captures short-term
local details in neighboring frames: nearby frames’ static
tokens are s;zlected for short-term modeling, denoted as
s = {si},y"
selected neighf)orhood. When decoding, cross-attention is

,, Where w represents the length of the
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Figure 2: CUPS Overview. CUPS takes as input a sequence of input RGB video frames. The RGB video frames get encoded and fed
into a global-local transformer human reconstruction model to produce SMPL parameters representing the human pose and shape in 3D
as well as a decoupled global-local embedding. The output of the human reconstructor is supervised via SMPL loss. While training, we
also learn a deep uncertainty function that learns to rank the uncertainty of the produced output sequence. Then after training, this deep
uncertainty function is used as the conformity score for constructing a conformal set for conformal prediction.

applied to the query of the mid-frame token and key and
value of the global encoder, capturing global human motion
consistency and local, fine-grained human mesh structures.

Global-Local Representation. In the hierarchical spatial
correlation regressor step, the model incorporates both the
global prediction and a decoupled global-local representa-
tion into the regressor. The model learns joint correlations
within the kinematic structure by modeling the local intra-
frame human mesh structure, outputting a correction term
Y'! = {#',3'}, where 6' is obtained using an MLP applied
on the decoupled global-local representation ¢, (X) and
global output 69, and 8" using ¢,(X) and 9. The hu-
man reconstruction model’s final output SMPL values are
obtained by adding the initial global prediction and the lo-
cal correction output: Y := {0, 8} = Y9 + Y.

Training Objective. We follow previous works and apply
standard L2 loss to the SMPL parameters and 3D/2D joints
location (Kanazawa et al., 2018). We also follow the veloc-
ity loss on 3D/2D joint location proposed in (Shen et al.,
2023) to learn consistency and capture the long-range de-
pendency. We refer to the combined loss as L.

4.2. Deep Uncertainty Function

Conformal predictors are calibrated using a nonconformity
score function (Angelopoulos & Bates, 2021). Intuitively,
this function measures to which extent a datapoint is un-
usual relative to a calibration dataset. The most common
nonconformity functions are either simple residual terms

(Shafer & Vovk, 2008), raw logits (Stutz et al., 2021), or
hand-designed functions (Yang & Pavone, 2023). A more
recent line of work has demonstrated the benefits of using
learned nonconformity score function (Zhang & Carlone,
2024), where the score is learned in an end-to-end manner
with the machine learning model. In CUPS, we also learn
the score end-to-end with the human reconstruction model.
Moreover, as the nonconformity score measures how “un-
usual” the datapoint is relative to the calibration set, it pro-
vides an inherent uncertainty measure for the model: the
lower the nonconformity score, the less uncertain the model
is about the datapoint, and vice versa.

Formally, we wish to learn a function Sp(X,Y) € [0,1]
as the nonconformity score, which we refer to as the Deep
Uncertainty Function.

Definition 1 (Deep Uncertainty Function). The Deep Un-
certainty Function takes as input the decoupled global-
local representation ¢ ,,(X) as well as the corrected SMPL
parameters Y and outputs a value between 0 and I using
an MLP:

So(X,Y) = (¢7*) € [0,1] (1)

where ¢P** = MLP(¢,/(X), 0, 3) is the output from a
multi-layer-perceptron and o is the sigmoid function.

Training Time Ensemble Augmentation. To better learn
the deep uncertainty function, we augment the model out-
put with randomness such that the function learns to rank
different samples. We achieve this by utilizing the intrin-
sic randomness in the human reconstruction model. Note
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that the global static tokens &Y (and thus the global-local
representation ¢, (X)) is obtained by randomly mask-
ing some portion of the input video frames. We augment
each training step by randomly masking the video frames
for Hyqin times, effectively simulating Hi.i, hypotheses
given the same input data. Thus, for each input video se-
quence X, we get multiple hypotheses of SMPL parame-
ters prediction: {Y;}" and global-local representation
{p,(X )i} The proposed samples are used to train
Sp.

Training Objective. The uncertainty function is imple-
mented as a discriminator-style scoring function that mea-
sures the quality of the generated SMPL parameters condi-
tioned on the input sequence, similar to the discriminator
loss in (Kocabas et al., 2020). Thus, a lower score func-
tion output means the output is more likely (more realistic)
to be from the ground-truth distribution in the embedding
space. Formally, the deep uncertainty function optimizes
the following loss:

Ls=E[So(X,Yar)’| +E[(1-S0(X,Y))?],

where Y gr is the groundtruth SMPL parameters. Intu-
itively, this loss makes sure that samples close to the ground
truth get higher conformity and vice versa, encouraging
the scoring model to discriminate the prediction from the
ground truth. Moreover, we also add an adversarial loss
that will be back-propagated into the denoiser model, as
done in (Kocabas et al., 2020; Zhang & Carlone, 2024;
Goodfellow et al., 2020), which encourages the prediction
model to output more realistic samples, adversarially con-
fusing the discriminator:

Luv =E [Sy(X,Y)?] 3)

The overall training loss is a sum of SMPL and score loss:
Loet = Li + AM(Ls + Laav), where X is a hyperparameter.

4.3. Conformal Human Reconstruction

Next we use the deep uncertainty function to quantify the
uncertainty of the predicted human SMPL output. We first
leverage the theoretical toolkit provided by (Barber et al.,
2023), combining it with CUPS’ deep uncertainty function,
and then build on top of the coverage guarantee for non-
exchangeable conformal prediction in (Barber et al., 2023)
and provide two practical error bounds based on the char-
acteristic of the video dataset and the design choice of the
CUPS architecture.

SMPL Conformal Calibration. We introduce the calibra-
tion step post-training by using the score in Definition 1.
For any prediction Y from the human reconstruction model
and its corresponding input video sequence X, Sy(X,Y")
measures its “similarity” to an existing dataset — the non-
conformity score for conformal calibration. When ex-

changeability holds (formally defined in Appendix A), the
CP calibration is done by choosing a threshold using the
(1 — a)th quantile of the conformity scores calculated on
the calibration set. Succinctly, we can define this threshold
7 on the calibration dataset as follows:

T=0Qi_q (Z 5SG(X,;,Y1)> ) 4

where J, represents the point mass at point a and Q rep-
resents the quantile calculation. However, when the cali-
bration is no longer exchangeable, such a threshold would
not yield the desirable coverage guarantee of standard CP.
Barber et al. (2023) propose to incorporate weighting terms
in the CP calibration. Specifically, the new threshold 7* is
now calculated with prespecified weights w:

™ =Q1-q (Z (O 5se(xi,yi)> ; (%)

where w; € [0,1] denotes a prespecified weight placed
on data point 7. The values of w; is a design choice
and it should intuitively be large for data with low non-
conformity in the calibration. We discuss some practical
design choices for the weights in the sections below.

SMPL Conformal Prediction. Once the threshold value
T* is calibrated, we are able to do conformal prediction.
Using 7* defined in Equation (5) and the deep uncertainty
function, for a datapoint X, we define the Deep Uncer-
tainty Conformal Set (DUCS) as the conformal prediction

set.

Definition 2 (DUCS). The deep uncertainty conformal
prediction set is the set of input-output pairs X,Y such
that the deep uncertainty value Sy(X,Y) is below the cal-
ibrated threshold value T*

Co(X) ={Y : Sp(X,Y) <7"}. 6)

For a test video sequence X and predicted SMPL parame-
ters Y, it is straightforward to check its set membership in
DUCS. More importantly, as we will show in Section 5.3,
we can explicitly make a set prediction by using Monte
Carlo Dropout during test time.

Under the framework of nonexchangeable conformal pre-
diction (Barber et al., 2023), we analyze some theoreti-
cal properties of DUCS, which are amenable to our hu-
man reconstruction pipeline. We first define the tuple
Z; = (X;,Y;), which denotes the i-th example in our cal-
ibration dataset. We then construct the following sequence
by combining the tuples Z;: Z = (Z1,Zs,-+- ,Z,) and
define

YA (Zy,---

7ZZ‘,1,Zn,"' 7Zn717Zi)7 (7)
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which represents Z sequence after swapping the last point
with the ¢-th calibration datapoint. Now, we define the
weights w; needed for calibration (cf. (5)). As mentioned
above, the exact weight formulation is a design choice, but
to facilitate our analysis, we choose the following design
based on the Euclidean distance of learned features.

Definition 3 (Feature Distance Weight). For our SMPL
conformal calibration, the weight is defined based on the
feature distance between the predicted SMPL feature and
the ground-truth SMPL feature:

pred GT||2
wl_exp<||¢i Ll ) )

where T is the temperature hyperparameter, ¢P™" =
MLP(¢p,,(X:),0i,3;) is the predicted embedding in Def-
inition 1 and & = MLP(¢,(X;),05", B57T) is the
ground-truth embedding.

Then the quantile weights w; is the normalized version of
w;. The exact normalization technique is again a design
choice that we describe below in Equation (11).

We now formally state the coverage guarantee of DUCS
using Theorem 2 in (Barber et al., 2023). Without assum-
ing exchangeability, DUCS is designed to be robust against
distribution shifts.

Theorem 1 (Nonexchangeable Coverage (Barber et al.,
2023, Thm. 2)). Under possibly non-exchangeable dataset

distribution, the conformal prediction set defined in Defini-
tion 2 satisfies the following coverage guarantee:

BY € Co(X)) = 1—a— Y - D (S0(2) | Su(ZY).
- ©

where w; is the normalized weight obtained via Defini-
tion 3, Dry (- || -) represents the total variation distance,

So(Z) = [Se(Z,)), and similarly for So(Z").

We provide a proof in Appendix B, following the out-
line in (Barber et al., 2023). The extra term Y. w; -
Drv (So(Z) || S¢(Z")) is referred to as the miscoverage
gap. Next, we present two practical bounds for the miscov-
erage gap by leveraging the structure of the datasets and
architectures we use in our mesh estimation problems.

The first bound is borrowed from (Barber et al., 2023). We
leverage the video dataset characteristics, assuming the dis-
tribution shift happens periodically. Weights are designed
to account for this periodic change.

Theorem 2 (Miscoverage under Periodic Change (Barber
et al., 2023, 4.4)). Using w; in Definition 3, we define the
auxiliary weight w..:

wj = p i), (10)

where p is a decay hyperparameter and w(w;) maps w;

to its ranked position € [n] among all weights. Then the

. . ~ w
normalized weights are ; = 7.
S

Assuming that the
most recent changepoint in the video dataset occurred k
time steps ago —such that Dyy (Z; || Z,) = 0 for i >
n — k and could be arbitrarily large otherwise— we have
the following bound:

> ;- Dry (So(2) || Se(2%) <p*. (1)

i=1

This bound suggests that the miscoverage gap remains
small as long as k is large.

The second bound is novel and models the deep uncertainty
output on the calibration set Syp(Z) using a beta distribu-
tion. In practice, this is achieved at test time using Monte
Carlo Dropout (Gal & Ghahramani, 2016). The bound
depends on the beta distributions formed by Sy(Z) and
So(Z").

Theorem 3 (Miscoverage under Beta Distribution). As-
sume the deep uncertainty values of the calibration set
of size n follow Beta distributions: S¢(Z) ~ B(a1,n —
a1), S¢(Z") ~ Blag,n — az). If we assume that the
difference between parameters a, and as is bounded by k,

we get the following bound without any assumption on the
weights:

zn:ﬁji - Drv (SQ(Z) I SG(Zi)> < \/2 -2 (1 - anrkk)S

i=1
12)

This bound is stronger when & is smaller. Intuitively, if
the two distributions formed by swapping are similar then
the miscoverage gap will be small. We refer the reader to
Appendix C for the proof of Theorem 2 and 3.

5. Experiments

We provide a quantitative evaluation of our model against
state-of-the-art baselines. We also provide ablation stud-
ies and qualitative results to support our design choices.
We follow previous baselines (Shen et al., 2023; Kanazawa
et al., 2018; 2019; Dwivedi et al., 2024; Choi et al., 2021)
and report several intra-frame metrics, including Mean
Per Joint Position Error (MPJPE), Procrustes-aligned
MPIPE (PA-MPJPE), and Mean Per Vertex Position Error
(MPVPE). Following (Shen et al., 2023; Choi et al., 2021),
we also provide a result for the second-order acceleration
error (Accel) for the inter-frame smoothness.

5.1. Baselines Comparisons

We follow the same dataset split and setup as done in
previous works and evaluated on 3DPW (Von Marcard
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3DPW (Von Marcard et al., 2018)

MPIL-INF-3DHP (Wei et al., 2022)

Human3.6M (Ionescu et al., 2013)

Method PA-MPJPE| MPJPE| MPVPE, Accel| | PAMPIPE | MPIJPE| Accel | | PAMPIPE, MPIJPE| Accel | | ¥ Frames
VIBE (Kocabas et al., 2020) 57.6 919 - 254 68.9 103.9 273 533 78.0 273 16
MEVA (Luo et al., 2020) 54.7 86.9 - 11.6 65.4 96.4 11.1 532 76.0 153 90
TCMR (Choi et al., 2021) 527 86.5 102.9 7.1 63.5 973 8.5 52.0 736 39 16
MPS-Net (Wei et al., 2022) 52.1 84.3 99.7 74 62.8 96.7 9.6 474 69.4 36 16
POCO (Dwivedi et al., 2024) 50.5 80.5 96.5 6.7 62.1 93.7 8.1 46.4 68.1 3.6 1
GLoT (Shen et al., 2023) 50.6 80.7 96.3 6.6 61.5 93.9 7.9 46.3 67.0 36 16
CUPS (Ours) [ 487 76.2 917 69 | 613 923 72 | 440 638 35 | 16

Table 1: Multiple errors ({) results on 3DPW, MPI-INF-3DHP, and Human3.6M. All methods use 3DPW training set for training.
Comparisons show that CUPS outperforms other baseline methods in the vast majority of metrics.

et al., 2018), Human3.6M (Ionescu et al., 2013), and MPII-
3DHP (Mehta et al., 2017). More details on the construc-
tion of training dataset are in Appendix D. As shown in
Table 1, our model outperforms state-of-the-art baseline
methods. On 3DPW, for example, we outperform GLoT’s
PA-MPIJPE by 1.9mm, MPJPE by 4.5mm, and MPVPE
by 4.6mm. While Accel performance was slightly worse
off on 3DPW, on the other two datasets, our method sur-
passes baselines on all metrics. Moreover, our method out-
performs GLoT by a noticeable margin, indicating that the
deep uncertainty function Sy is important in that it forces
the human reconstruction to output higher-quality samples
during training. In Table 2, following previous works (Choi
et al., 2021; Dwivedi et al., 2024; Shen et al., 2023), we
measure our method’s generalizability to unseen datasets.
In this set of experiments, none of the methods uses 3DPW
dataset during training. Again, our method outperforms
baselines by a noticeable margin.

Method | 3DPW
| PAMPJPE| MPIPE| MPVPE| Accel |

HMR (Kanazawa et al., 2018) 76.7 130.0 - 374
3DMB (Biggs et al., 2020) 74.9 120.8 - -

SPIN (Kolotouros et al., 2019) 59.2 96.9 116.4 29.8
HMMR (Kanazawa et al., 2019) 72.6 116.5 139.3 15.2
VIBE (Kocabas et al., 2020) 56.5 93.5 113.4 27.1
TCMR (Choi et al., 2021) 55.8 95.0 111.5 7.0
MPS-Net (Wei et al., 2022) 54.0 91.6 109.6 7.5
POCO (Dwivedi et al., 2024) 54.7 89.3 108.4 6.8
GLoT (Shen et al., 2023) 53.5 89.9 107.8 6.7
CUPS (Ours) 53.0 85.7 103.6 6.6

Table 2: Multiple errors ({) results on 3DPW. None of the meth-
ods use 3DPW for training. CUPS outperforms all baselines.

5.2. Ablation Studies

Training Time Ensemble Augmentation. We augment
the training dataset online to better train the deep un-
certainty function by leveraging the intrinsic stochasticity
(e.g., frame masking) of the human reconstruction model.
We compare results as a function of the number of sam-
ples (H). When H = 1, there is no augmentation and we
are just running the forward pass once. We train several
models using a range of H values and evaluate the MPJPE
using these models in Figure 3. Results suggest that using
more proposed samples during training reduces test error
overall and the improvement saturates after 30.

Choice of Conformity Score Function. We compare our
proposed deep uncertainty function (DUF) trained using
adversarial loss with several different losses in Figure 4:
a score function augmented with inefficiency loss (Ineff.)
(Stutz et al., 2021) during training and a classifier-style
conformity score function (Class.). From Figure 4, we see
that DUF and inefficiency-augmented DUF result in similar
performance quantitatively. While the classifier-style loss
performs better than without any scoring function quantita-
tively, the predicted mesh shape on the videos is less real-
istic. Please refer to Appendix E for more details.

Strength of the Uncertainty Loss. Finally, we ablate the
hyperparameter of the training loss for Sy(X,Y"), A, in the
overall training objective L. This is an important abla-
tion in that we can find a suitable scale of the loss for the
deep uncertainty function to make sure it does not conflict
with the pose loss optimization. Results in Figure 4 suggest
that 0.6 is the most efficient strength across all values, as a
smaller scale does not train the scoring model sufficiently
and a higher scale conflicts with the pose loss.

5.3. Monte Carlo Dropout

One interesting byproduct of learning the deep uncertainty
function Sg(X,Y’) is that we can construct the DUCS
Cy(X) explicitly by sampling the output SMPL parame-
ters multiple times, just like during training time ensem-
ble augmentation. While the model itself is not exactly
probabilistic, we can emulate its stochasticity during infer-
ence time with Monte Carlo Dropout which lends itself to
modeling the model uncertainty in a Bayesian way (Gal &
Ghahramani, 2016). This procedure effectively enables us
to make multi-hypothesis predictions during test time, and
by checking the set membership of each hypothesis, we are
able to explicitly construct the DUCS Cy(X) with mini-
mal changes to the model. Prediction sets from using MC
Dropout are shown in Figure 6

5.4. In-the-Wild Videos

To test the generalizability of our method to in-the-wild
videos, we collect videos from YouTube and TikTok. We
directly apply the CUPS model trained on the 3DPW



CUPS: Improving Human Pose-Shape Estimators with Conformalized Deep Uncertainty

3DPW MPJPE vs #H in Training Ensemble

<
=)

MPJPE (mm)
3

3DPW MPIJPE vs Uncertainty Loss Strength

MPIJPE (mm)

-
2

=
=)

1 3 5 10 20 30 40 50

0.1 0.2 0.4 0.6 0.8 1.0

Number of Proposed Samples H

Figure 3: Comparison of nr. of samples Figure 4: Conformity scores choices on
proposed during training time ensemble.

MC Prediction Set

nput Single Prediction

Figure 6: In the wild video SMPL predictions with both single
hypothesis and multiple hypotheses using MC Dropout.

dataset to test on in-the-wild videos. We run both regular
CUPS and CUPS with MC Dropout for multiple hypothe-
ses results are shown in Figure 6, where the input videos
are collected from TikTok. For 3D visualization, please
refer to this anonymized website to interact with CUPS
predictions in 3D.

5.5. Empirical Coverage

Here we test the empirical coverage of the deep uncertainty
function using the three testing datasets in Table 1. Mathe-
matically, we calculate the following value:

1

C_ =
Tesd ,

1 (YGT e Cg(X)) (13)

GTNIlesl

and compare against the desired coverage value 1-a. We
use o = 0.1 for CP, calibrating with the 90th quantile. Fur-
thermore, we compare the performance with weighted cal-
ibration using weights defined in Definition 3 against un-
weighted calibration as done in regular CP. From Table 3,
we see the empirical coverage for weighted CP is around

3DPW (bottom) and internet videos (top).

Scale of Deep Uncertainty Function Loss

Figure 5: Comparison of strength of un-
certainty loss in the total training loss.

88% 4 3% for all three datasets, which remains close to
1 — «, and in some cases, it exceeds this value. Weighted
CP coverage is noticeably higher than unweighted CP, cor-
roborating the results in (Barber et al., 2023). The cover-
age result with weighted CP is encouraging because it illus-
trates that the miscoverage gap is small in all three datasets.

3DPW 3DHP H3.6M
Weighted CP 86.2+2.1% | 87.3+2.2% | 89.0 £ 1.5%
Theorem 2 Bound | > 83.9% > 84.9% > 85.8%
Theorem 3 Bound | > 84.0% > 85.3% > 86.8%
Regular CP 81.0+3.4% | 83.24+2.8% | 85.2+2.3%

Table 3: Empirical coverage with weighted vs. regular calibra-
tion using the learned deep uncertainty function on three different
datasets. Bounds are obtained as described in Appendix B.

5.6. Implementation and Training Details

The reconstruction model takes as input video sequences of
length 16, following (Shen et al., 2023). We use an Adam
optimizer with a weight decay of 0.1 and a momentum of
0.9. The adversarial loss weight is 0.6 and is optimized ev-
ery 100 iterations. Our model is trained using an NVIDIA
V100 GPU, where training consumes an amortized GPU
memory of 20GB, and CPU memory of 160 GB. We train
the model for 100 epochs with an initial learning rate of
5e-5 with a cosine scheduler. The ensemble augmentation
step produces 20 samples for the same input datapoint.

6. Conclusion

We presented CUPS, an approach for learning sequence-
to-sequence 3D human shapes and poses from RGB videos
with uncertainty quantification. Our method uses a deep
uncertainty function that is trained end-to-end with the 3D
pose-shape estimator. The deep uncertainty function com-
putes a conformity score, enabling the calibration of a con-
formal predictor to assess the quality of output predictions
at inference time. We present two practical bounds for
the miscoverage gap in CP, providing theoretical backing
for the uncertainty quantification of our model. Our re-
sults demonstrate that CUPS achieves state-of-the-art per-
formance across various metrics and datasets, while inher-
iting the probabilistic guarantees of conformal prediction.
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Supplementary Material

A. Exchangeable Distributions

First, we define exchangeability in a probabilistic distribution:

Definition 4 (Exchangeability in Probabilistic Distribution). A sequence of random variables X1, X5, ..., X, is said to
have an exchangeable distribution if the joint distribution of X1, Xo, ..., X, is invariant under any permutation of indices.
Formally, for any permutation 7 of {1,2,...,n},

P(Xl = 9317X2 = x27-'~7Xn = xn) = P(X‘n'(l) = xleTr(Q) = IQa--'aXﬂ(n) = xn)v

for all possible values ©1,xs, ..., T, of X1, Xo,..., X,

B. Proof of Coverage Guarantee without Exchangeability

We first recall the following definition of Deep Uncertainty Conformal Set:

Definition 2 (DUCS). The deep uncertainty conformal prediction set is the set of input-output pairs X,Y such that the
deep uncertainty value So(X,Y') is below the calibrated threshold value T*

Co(X)={Y : Sp(X,Y) <7*}. (6)

We further define tuple Z; = (X,;,Y;) and
Z = (Z17”' )Zn+1)7

as well as 4
Z' = (Z17“' 7Zi717Zn+17"' 7Zn7Zi)7

which represents Z sequence after swapping the test point with the ¢-th calibration point.

Lemma 4 (Weight sum upper bound (Harrison, 2012, Lemma 3)). For all a,wy, -+ ,w, € [0,00], and all t1,- -+ ,tp41 €

[—00, 00], we have:
n+1 n+1
Zwkl <Z wl(t; > tg) < a) <«
k=1 i=1

Proof. We follow the sketch proof in (Harrison, 2012) and provide detailed proof for interested readers. The tuples
(t;,w;) can be permuted without affecting the value of the LHS, so we can assume that ¢; > - -+ > ¢,,. This implies that
Z?:ll w;1(t; > ty) is increasing in k. There exists a k* defined as follows:

n+1

k™ = supril(ti >tp) <«
ko=

Thus, we have:

n+1 n+1
w1 w;1 t >tk < Wy = w;1 t >tk* < (14)
> it (L za) < Sw -3

Next, recall the nonexchangeable conformal prediction coverage guarantee:

Theorem 1 (Nonexchangeable Coverage (Barber et al., 2023, Thm. 2)). Under possibly non-exchangeable dataset distri-
bution, the conformal prediction set defined in Definition 2 satisfies the following coverage guarantee:

P(Y €Co(X)) > 1—a~ Y di D (Se(2) | Se(2)), ©)
i=1
where 1; is the normalized weight obtained via Definition 3, Dry (- || -) represents the total variation distance, S¢(Z) =
[So(Z,:)|?_ and similarly for So(Z").
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Proof. We follow the sketch proof in (Barber et al., 2023) and provide detailed proof for interested readers. We look at
the complement of the above probability P (Y ,,+1 € Cy(X,,+1)). For simplicity, we first define S; := Sp(X;,Y;). B
definition of DUCS, we have:

n+1
Yn+1 ¢ OO(Xn—i-l) = S77,+1 > Ql—a (z 'LDZ : 5&)

=1

© Qi-a (Z Wi + 05, + W1 '5+oo>

i=1

5)

Then define an unusual set function U:

n+1
U(S):{ZG[TL+1]SZ>Q1Q (sz§sl>}7 (16)

i=1

which represents the indices ¢ where the deep nonconformity score values are too large. Then we know that noncoverage
of Y ,, 1 implies the unusualness of point k:

Yo ¢ CG(Xn-i-l) — ke U(SB(Zk))~ (17)

Thus, we have:
n+1 ]
P(k € U(Se(Z"))) ZIP’ =i,i €U(Sp(Z"))

n+1
= Z ;- P(i € U(Sy(Z))

n+1
Zwl (i €eU(So(Z)) + Drv (Se(2) || SG(Zi)))

IN

(18)
—E| Y @]+ wDw (Se(2) | Se(2))

inU(Se(Z7)) i=1

<a+ Y WDy (Se(Z) || Se(Z")) [by Lemma 4]

i=1

By complement, P (Y 41 € Co(Xp11)) > 1 —a— ZHN)’ - Drv (So(2) || S@(Zi))
i=1

C. Upper Bounds of Coverage Gap

We provide two possible bounds for the coverage gap. The first bound comes from an example usage in Barber et al. (2023)
and the second bound is derived by assuming the outputs follow a beta distribution.

C.1. Bounded Periodic Changes

We are interested in finding an upper bound of the coverage gap in Theorem 1. Specifically, we are trying to bound
Drv (89(Z) || S6(Z")). One interesting case to analyze for video data is that we might have periodic large changes in
the distribution rather than a gradual drift (i.e. there might be a changepoint in the calibration set).

Assumption 1 (k-step changepoints in dataset). Suppose that the most recent changepoint occurred k steps ago, so that
Dry (So(Zni1) || Se(Z;)) — 0 fori > n — k. However, we might have an arbitrarily large difference from the new test
point before the changepoint step: Dry (So(Z 1) || So(Z;)) — 1fori <n —k.

Now, we try to bound the coverage gap from Theorem 1. We first design the weights amenable to our analysis. Recall the
definition of weights:

13
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Definition 3 (Feature Distance Weight). For our SMPL conformal calibration, the weight is defined based on the feature
distance between the predicted SMPL feature and the ground-truth SMPL feature:

pred GT||2
w; = exp <||¢T¢|> 7 ®)

where T is the temperature hyperparameter, ¢fred = MLP(¢p,(X:),0i,8;) is the predicted embedding in Definition 1
and ¢$T = MLP(¢,,(X;), 0T, 85T is the ground-truth embedding.

Again, recall the miscoverage gap under bounded period changes:

Theorem 2 (Miscoverage under Periodic Change (Barber et al., 2023, 4.4)). Using w; in Definition 3, we define the
auxiliary weight w;:
wj = pr ), (10)

where p is a decay hyperparameter and (w; ) maps w; to its ranked position € [n] among all weights. Then the normalized
weights are w; = % Assuming that the most recent changepoint in the video dataset occurred k time steps ago —such

that Dry (Z; || Z,,) = 0 for i > n — k and could be arbitrarily large otherwise— we have the following bound:

> i - Drv (Se(2) || So(Z7)) < p*. (11)

i=1

Proof. We follow the sketch proof in (Barber et al., 2023) and provide detailed proof for interested readers. From Assump-
tion 1, suppose the variation before the changepoint could be arbitrarily large:

—k
2

Z" 1k pn+1 (1)
i

S @i Dry (So(Z) | So(2Y)

i=1

IN

pk ' 1— pn—k
1—pn
<p"

Intuitively, this tells us that the coverage gap will be small as long as £ is large - namely, as long as we have enough data
after the changepoint.

Remark 1 (Measuring p and k). As explained in Barber et al. (2023), p is a decay parameter less than 1 and the above
miscoverage gap is small as long as k is sufficiently large. To measure k, for each of the three test datasets in Table 3,
we measure the average number of video sequences between the two closest sequence datapoints belonging to different
subjects/activities.

C.2. Bounded Covariates

Next, we are trying to bound Dy (Sy(Z) || So(Z l)) under distributional modeling. To find this bound, we make use of
the Hellinger distance. The Hellinger distance H?(P, Q) between two probability measure P and @ on a measure space
X with respect to an auxiliary measure A (e.g. joint) is defined as:

H(P.Q) = 5 [ (Vole) = V@) A

where P(dz) = p(z)A(dx) and Q(dzx) = q(x)A(dx). Succinctly, we can denote:
1
H(P,Q) = Ell\/ﬁ— Va2
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It turns out that we can make use of the Hellinger distance to bound the total variation distance.

D (P | Q) < V2H(P,Q) (20)

Proof. This is a fairly well-known results in statistics and we provide a detailed proof for the sake of completeness.
1
2 o 12
Diy (P Q) = 1 <Z Ipi — ail )

-3 (Z(\/E\/@(\/E+\@)>

%

IN

; (Z(@ - m?) (Zwm mf) @1

i %

IN
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Hence, D1y (P || Q) < V2H(P, Q)

We can now focus on providing an upper-bound Hellinger distance instead. Since our conformity score is outputted by a
sigmoid function via Monte Carlo Dropout during test time, one reasonable assumption is that the conformity score outputs
follow a Beta distribution.

Assumption 2 (Conformity scores follow a Beta distribution).
S¢(Z) ~ Blar,n —a1), S¢(Z") ~ Blaz,n — az)
where a1 and ao are defined by the permuted dataset. Without loss of generality, we then assume:
a1 —k<ay<a;+k
That is, assume the difference in the Beta parameters is bounded.

The assumption makes intuitive sense in that it can be thought of as the proportion of calibration data points that are close
to (conform to) the new test point. Furthermore, the expected proportion change between the original and permuted dataset
is bounded by % This assumption makes sense in that we are essentially assuming that after swapping one pair of data
points, the change in proportion of data that conform to the test data is bounded.

With the Beta distributions defined, recall the bound to prove:
Theorem 3 (Miscoverage under Beta Distribution). Assume the deep uncertainty values of the calibration set of size n

follow Beta distributions: Sg(Z) ~ p(a1,n —a1), Se(Z") ~ B(az,n — az). If we assume that the difference between
parameters a1 and as is bounded by k, we get the following bound without any assumption on the weights:

2k

Proof. First, we can express the Hellinger distance between two Beta-distributed measures in closed form:

B (24 2
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where B(m,n) is the beta function defined as:
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We define a short-hand notation a : = % and then by the definition of beta function, the numerator of Eq. 22 becomes:

a + ag a + ag (a—Dln—-1-a)!
B — = 24
< 2 T T > (n—1)! 24)
Similarly, in the denominator:
(e =Dln—1—ay)! (e —=Dl(n—1—ay)!
B(ai,n —ay) = (=1 , Bl(az,mn—a3) = =1 (25)
Combining the expressions above and plugging them into Eq. 22, we have:
) B al—&-az7 _ aitas
12(80(2).80(2)) =1 - it 257)
\/B(al,n —ay)B(ag,n — az)
(a—1)!(n—1—a)!
—1_ (n—1)! (26)
\/(al—l)!(n—l—al)! ~(a2—1)!(n—1—ay)!
(n—1)! (n—1)!
1 (a=Dln—-1-a)!
Vier —Dliaz —Dln—1—a))l(n — 1 —ay)!
With Assumption 2 in place, we are able to bound the fraction in Eq. 26 as follows:
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Putting it all together, we know that

i % \?
1 - H*(8¢(%),8¢(Z")) > (1 - n+k)

16



CUPS: Improving Human Pose-Shape Estimators with Conformalized Deep Uncertainty

and equivalently,

H%SAZLSAZU)<1—(1—RT}>2

Hence, we have the final upper bound on the coverage gap via Lemma 20:

Duy (S4(2) | So(2")) < \/ 2-2 (1 - ni’“k) ’ (28)

Now, we analyze the behavior of this bound. We rewrite the upper bound as follows:
% \*
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By Taylor series, we have the following series expansion:

We first define p := % Then we have:
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Then we have the following behavior:
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)
(30)

Thus, we have:

o122 < 22 (1= 20) o (1o () o

This behavior indicates that the bounds gets weaker exponentially with larger k.

Remark 2 (Measuring k). The parameter k in the bound can be measured empirically for each video calibration dataset.
To measure k, for each of the three test datasets in Table 3, we measure the average changes of labels of subjects/activities
after swapping the i-th data point with the last one. This value is usually low (in most cases < 2).

D. Training and Testing Datasets Details

We use the standard 3D human shape-pose datasets: 3DPW (Von Marcard et al., 2018), Human3.6M (Ionescu et al., 2013),
MPII-3DHP (Mehta et al., 2017), Penn Action (Zhang et al., 2013), PoseTrack (Andriluka et al., 2018), and InstaVariety
(Kanazawa et al., 2019) where the preprocessed data is provided by (Shen et al., 2023), (Choi et al., 2021), and (Kocabas
et al., 2020), and evaluated on 3DPW, Human3.6M, MPII-3DHP. Note that our training dataset is about 2.5% smaller than
previous works because we hold out a small portion (~ 1500 datapoints) for calibration.
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E. Details of Choice of Conformity Score Function

Note that all three mentioned conformity score functions were trained end-to-end with the training time ensemble augmen-
tation setting since learning the score function after the human reconstructor is trained does not improve the performance.
For the score function augmented with inefficiency loss, we are essentially controlling the size of the conformal predic-
tion set during training (Stutz et al., 2021). For the classifier-style conformity score function, the training objective is to
classify if the mean 3D keypoints L2 loss is within 40mm from the groundtruth using BCE loss and we use the logit as
the conformity score. It is worth noting that all three variants result in better performance, demonstrating the importance
of training time ensemble augmentation. Note that Ineff. needs more proposals during training than others and converges
more slowly.

F. Test-Time Multi-Hypothesis Aggregation

In the above experiments, we compare single-hypothesis outputs across methods for fairness, as many baselines are single-
output by design. MC Dropout is optional and provides two key advantages: (1) it naturally yields multiple hypotheses,
and (2) using conformity scores, we can aggregate them via a weighted average that suppresses low-quality predictions
based on the DUF score value.

To clarify its benefit, we provide a comparison below showing how multi-hypothesis (H=20, cutting off samples below
calibrated threshold) aggregation improves performance over the single-sample case.

Table 4: Improvement on 3DPW

MPJPE MPVPE Accel PA-MPJPE

Improvement -0.9 -1.2 -1.1 -1.1

Table 5: Improvement on MPI-INF-3DHP

MPJPE Accel PA-MPJPE

Improvement 23 -0.1 -1.6

Table 6: Improvement on Humans.6M

MPJPE  Accel

Improvement 2.2 -0.2

As we can see, with multi-hypothesis aggregation, the results get further improved. The GPU usage is under 12 GB.

G. Performance under Occlusion

Regarding occlusion/truncation tests, we have completed larger-scale quantitative experiments. We rerun Table 1 experi-
ments (using the same trained model), but with all input image sequences’ bottom 25% truncated.

Table 7: Performance comparison with and without truncation

3DPW MPI-INF-3DHP Human3.6M
Method PA-MPJPE MPJPE MPVPE Accel PA-MPJPE MPJPE Accel PA-MPJPE MPIJPE
W/o Truncation 48.7 76.2 91.7 6.9 61.3 92.8 7.2 44.0 63.8
W/ Truncation 50.7 79.7 94.8 7.0 62.1 93.2 7.8 46.1 64.9
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Despite being 25% truncated, the performance loss is not much, and in many cases, still better than the untruncated
baselines in Table 1, indicating CUPS’s robustness to occlusion.

H. Limitations

While CUPS performs well on various benchmarks, we acknowledge that it does have some limitations. First, many
samples need to be proposed during training to improve the learned nonconformity score, which consumes a lot more GPU
memory (30% more going from 10 proposals to 20) and slows down the training process. Second, the method does not
utilize human joint-level information, which could potentially improve the performance.
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