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Abstract

Web scraping is a powerful technique that ex-
tracts data from websites, enabling automated
data collection, enhancing data analysis capa-
bilities, and minimizing manual data entry ef-
forts. Existing methods, wrappers-based meth-
ods suffer from limited adaptability and scal-
ability when faced with a new website, while
language agents, empowered by large language
models (LLMs), exhibit poor reusability in di-
verse web environments. In this work, we in-
troduce the paradigm of generating web scrap-
ers with LLMs and propose AUTOSCRAPER,
a two-stage framework that can handle diverse
and changing web environments more effi-
ciently. AUTOSCRAPER leverages the hierar-
chical structure of HTML and similarity across
different web pages for generating web scrap-
ers. Besides, we propose a new executability
metric for better measuring the performance of
web scraper generation tasks. We conduct com-
prehensive experiments with multiple LLMs
and demonstrate the effectiveness of our frame-
work. Our work is now open-source.

1 Introduction

Web scraping is a process where software auto-
mates the extraction of data from websites, typi-
cally using bots or web scrapers to gather specific
information (Thapelo et al., 2021). It is impor-
tant because it allows for efficient data collection
and aggregation, which can be crucial for market
research, competitive analysis, and real-time data
monitoring.

Due to the diversity of sources and information
on the internet, the construction of a web scraper
requires substantial human effort. Consequently,
two types of methods for automatic web informa-
tion acquisition have been proposed, categorized as
wrapper-based and language-agent-based (Sarkhel
et al.,, 2023). The wrapper-based method en-
tails complex sequences of operations within cus-
tomized rule-based functions, which are designed
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Figure 1: An illustration of comparing wrapper-based
methods, language-agent-based methods and AUTO-
SCRAPER .

to efficiently access and retrieve desired data from
websites, which is especially beneficial for struc-
tured websites with stable layouts (Kushmerick,
1997; Dalvi et al., 2011; Bronzi et al., 2013). Con-
versely, the language-agent-based method lever-
ages powerful natural language processing capabil-
ities of large language models (LLMs) to interpret
free-text queries and directly extract data within
websites to meet the demand, effectively handling
both structured and dynamic web content (White-
house et al., 2023; Marco Perini, 2024).

Although both types of methods facilitate web
scraping to varying degrees, as shown in Figure 1,
they exhibit significant shortcomings in terms of
scalability. Wrapper-based method, while reusable,
struggles with entirely new website structures,
which necessitates extensive human effort to de-
velop additional customized functions (Gulhane
et al., 2011; Lockard et al., 2019). Conversely,
although language-agent-based methods demon-
strate superior performance in adapting to new con-
tent, their reliance on a limited number of super-



powerful API-based LLMs for web scraping incurs
considerable time and financial costs. Together,
these challenges impede the broader adoption and
scalability of current web scraping technologies,
limiting their practicality in dynamic and diverse
web environments.

To address the shortcomings of the aforemen-
tioned two paradigms, the paradigm of generating
web scrapers with LLMs would be the optimal so-
lution. On one hand, compared to wrapper-based
methods, it fully leverages the reasoning and re-
flection capacities of LLMs, reducing manual de-
sign on new tasks and enhancing scalability. On
the other hand, compared to language-agent-based
methods, it introduces repeatable extraction pro-
cedures, reducing the dependency on LLMs when
dealing with similar tasks, and thereby improving
efficiency when handling a large number of web
tasks. However, there are several challenges asso-
ciated with using LLLMs to generate web scrapers:

1. Long HTML document. Although LLMs
excel in comprehending long textual content,
HTML, as semi-structured data, comprises
both structured (tags and attributes) and un-
structured (textual content) elements. Conse-
quently, it is challenging for LLMs to generate
executable web scrapers that strictly adhere
to the hierarchical structure of web pages in
complex markup contexts.

2. Reusability. A good scraper needs to be
reusable across multiple web pages. How-
ever, the differences in content and structure
between various web pages can lead to the cre-
ation of a scraper that references a webpage,
which can only be applied to some web pages.

3. Appropriate evaluation metrics. For a
scraper to be considered useful, it must be
able to automatically extract the desired re-
sults from all web pages. However, existing
evaluation metrics for web information ex-
traction, which focus on the extraction results
from individual web pages, do not adequately
reflect the usability of the scraper. This can
potentially mislead experimental conclusions.

We introduce AUTOSCRAPER, a two-stage
framework to address the web scraper generation
task. Illustrated in Figure 2, AUTOSCRAPER com-
prises two main components: progressive gener-
ation and synthesis. The progressive generation

stage leverages the hierarchical structure of HTML
for progressive understanding to address the long
HTML document. Subsequently, the synthesis
module integrates multiple scrapers generated on
different web pages to produce a cohesive, website-
specific scraper that functions universally within
that site. Besides, we propose a new evaluation
metric for web scraper generation tasks, called the
executability metric. Unlike traditional information
extraction metrics that measure single web pages,
this metric measures multiple web pages within
a website, accurately reflecting the reliability and
reusability of the scraper.

We evaluate AUTOSCRAPER on three available
datasets with 7 LLMs. On all three datasets, AU-
TOSCRAPER consistently outperforms all base-
lines and achieves new state-of-the-art results in
zero-shot settings. Also, AUTOSCRAPER can sur-
pass supervised learning methods. Moreover, AU-
TOSCRAPER demonstrates superior efficiency on
large-scale web information extraction task. Com-
pared to traditional wrappers, AUTOSCRAPER ad-
justed more quickly according to different web-
sites and task requirements. This flexibility enables
scrappers to handle diverse and changing web en-
vironments more efficiently. Compared to the lan-
guage agent paradigm, it introduces intermediate
functions to enhance reusability and reduce the
dependency on LLMs when dealing with similar
tasks, thereby improving efficiency when handling
a large number of web tasks.

2 Related Work

Wrapper-based methods for web scraping utilize
the hierarchical structure of the webpage. Method
of this category includes rule-based (Zheng et al.,
2008), learning wrappers (i.e a DOM-specific
parser that can extract content) (Gulhane et al.,
2011; Kushmerick, 1997; Dalvi et al., 2011), heuris-
tic algorithm (Lockard et al., 2018, 2019) and deep
learning neural network (Lin et al., 2020; Zhou
et al., 2021; Li et al., 2022; Wang et al., 2022).
These methods demand substantial human involve-
ment, including creating wrapper annotations, ap-
plying heuristic scoring rules (such as visual prox-
imity), crafting features for neural network input,
and using prior knowledge for verification. There-
fore, it is difficult for wrapper-based methods to
automatically scale up when facing web scraping
tasks across a large number of different websites.
With the emergence of powerful LLMs (Ope-



nAl, 2023; Touvron et al., 2023), language
agent (Sumers et al., 2023) act in interactive en-
vironments with the help of LLM-based reasoning,
grounding, learning, and decision making. Cur-
rent language agents target the web mainly aim
to streamline the web environment (Sridhar et al.,
2023; Gur et al., 2023; Zheng et al., 2024) and
to devise strategies for planning and interacting
with the web (Sodhi et al., 2023; Ma et al., 2023).
However, these frameworks mainly focus on the
concept of the open-world web simulation envi-
ronments (Shi et al., 2017; Yao et al., 2023; Deng
et al., 2023; Zhou et al., 2023), encompassing a
broad spectrum of tasks found in real-life scenar-
ios, such as online shopping, flight booking, and
software development. These task scenarios are
oriented towards individuals, and there is a huge
difference in the requirements for accuracy and
efficiency compared to web scraping. Therefore,
current language-agent-based methods, cannot ef-
fectively utilize the HTML structural similarities
between multiple web pages, reducing the depen-
dency on LL.Ms when performing repetitive opera-
tions, resulting in inefficiencies.

3 Preliminaries

In this section, we first define the scraper gener-
ation task and then present the dataset collection
process and its corresponding evaluation metrics.

3.1 Task Formulation

First, we formulate our scraper generation task.
Given a set of webpages on the same website
w € WV describing a subject entity s (also called
topic entity in the previous literature), and its corre-
sponding predefined target attribute r € R, the task
objective is to generate an executable rule/action
sequence .A to extract target information o from all
webpages.

3.2 Datasets

We adopt the semi-structure information extraction
task as a testbed for the scraper generation task.

SWDE (Hao et al., 2011) is a Structured Web
Data Extraction dataset that contains webpages
from 80 websites in 8 domains, with 124,291 web-
pages. Each of the websites from the same domains
focuses on 3-5 attributes in the web pages.

EXTENDED SWDE  (Lockard et al., 2019) in-
volves fine-grained manual annotation of 21 sites

Dataset Numcase Nummpe — Numye,
SWDE 320 32 32,000
EXTENDED SWDE 294 221 29,400
Dsl1 83 11 186

Table 1: The statistic of web scraping task benchmarks.
We report the number of the case (Num gse ), the number
of the different extraction task (Numry, ) and the total
number of webpages (Numwyeyp,).

in 3 domains from SWDE. While SWDE contains
an average of 4,480 triples for 3 predicates per web-
site, the EXTENDED SWDE dataset averages 41K
triples for 36 predicates per site.

Ds1 (Omari et al., 2017) contains 166 annotated
webpages from 30 real-life large-scale websites cat-
egorized into books, shopping, hotels, and movies.

We transform the dataset with the following set-
tings. First, we design instructions for each of the
domains, and for each of the attributes as the input
information for LLMs!. Second, for each website
in each domain, we sample 100 web pages as the
whole test set. We consider the set of webpages
on the same websites and the corresponding ex-
traction instruction as a case. For example, for
the ESPN websites? in NBA player domains, the
sampled 100 detail webpage of players and the in-
struction Please extract the team of the player he
plays now is a complete case of our scraper gen-
eration task. Third, we pre-process the web pages
by removing irrelevant elements in a webpage. We
use open-source BeautifulSoup library® and filter
out all DOM element nodes with <script> and
<style>, as well as delete all attributes in the el-
ement node except @class. We replace the origi-
nal escape characters in the annotations to ensure
consistency with the corresponding information on
the web. The statistic of the dataset we transformed
is shown in Table 1.

3.3 Evaluation Metrics

Existing evaluation schemes for web page infor-
mation extraction tasks still follow the traditional
metrics of text information extraction tasks, namely
precision, recall, and F1 score. They limit the as-
sessment of methods for the scraper generation task
to two aspects. First, it focuses on extraction with
a single webpage, rather than considering the gen-
eralizability from the perspective of a collection
"Further details about the prompt is in Appendix D

2https ://global.espn.com/nba/
*https://beautifulsoup.readthedocs.io


https://global.espn.com/nba/
https://beautifulsoup.readthedocs.io

Action Sequence 1

Phasel: Progressive Generation

— (a) Progressive Generation: Action Sequence 2

Generate an action sequence
through multiple rounds of
Seed Webpages interaction with a webpage.

Action Sequence 3

Sequence Set

(b) Synthesis:

Choose one of the best
action sequence generated
with different webpage.

. Final Action
Sequence

Phase2: Synthesis

(Instruction: What’s the average
e —— rebound of James Harden?
JAMES ) [Full HTML] Action Sequence 1
HARDEN [Top-down] BEFE //* [text()="PPG']/text ()
1.4 XPath://*[text()="PPG']/text() o ETIEESET?
L) ) ./span[2]/text()
= [Extract the text] 16.6 1 —& Extract text with
[Step-back] action sequences
b XPath: . /ancestor (" Which sequence is the best? )
y,
\@“ [Get the sub HTML Result of Action
[Sub HTML] Sequence 1
[Top-down] &
..  XPath:./span[2]/text() Webpage 2.4
[leref] (VEJLLEES 2.9
Wrong Correct. / N <
A Py 1= Extract the text] 5.1 i i 526
IOAOj |°AO' L @s [ ], ). Action Sequence 1 is best. 1o«

Figure 2: AUTOSCRAPER framework of two phases: (a) progressive generation and (b) synthesis.

of webpages. Second, it does not effectively mea-
sure the transferability when adopting the action
sequence to other web pages.

To address this issue, we transform the tradi-
tional IE task evaluation into an executable eval-
uation. Based on the traditional IE evaluation on
a collection of web pages, we categorize the exe-
cutability of action sequences into the following
six situations. Specifically, for each extraction
task on a website, the result is classified based
on the extraction result on precision, recall, and
fl-score. (1) Correct: both precision, recall and f1-
score equal 1, which indicates the action sequence
is precisely; (2) Precision(Prec.): only precision
equals 1, which indicates perfect accuracy in the
instances extracted following the action sequence,
but misses relevant instances; (3) Recall(Reca.):
only recall equals 1, which means that it success-
fully identifies all relevant instances in the webpage
but incorrectly identifies some irrelevant instances;
(4) Un-executable(Unex.): recall equals 0, which
indicates that the action sequence fails to identify
relevant instances; (5) Over-estimate(Over.): pre-
cision equals 0, which indicates that the action se-
quence extracts the instances while ground truth is
empty; (6) Else: the rest of the situation, including

partially extracting the information, etc.

Since the above classifications are mutually ex-
clusive, we use the ratio metric to calculate the
proportion of each result in our task.

# case of situation
Mg =
# total case

€]

We are more concerned with success rate, so for the
Correct metric, higher values indicate a better pro-
portion of generated execution paths; whereas for
the Un-executable metric, lower values are prefer-
able.

4 AUTOSCRAPER

In this section, we describe our framework AU-
TOSCRAPER for generating a scraper to extract
specific information from semi-structured HTML.
Our approach is divided into two phases: first, we
adopt a progressive generation module that utilizes
the hierarchical structure of web pages; second,
we employ a synthesis module based on results
from multiple web pages. The overall framework
is presented in Figure 2.

4.1 Modeling

Unlike the wrapper method that generates an XPath,
we model the scraper generation task as an action



sequence generation task. In specific, we generate
an action sequence A, that consists of a sequence
of XPath* expression from a set of seed webpages
(i.e., a small portion of webpages in the test case
for generating the sequence).

Ageq = [XPathy, XPathy, ..., XPath,]  (2)

where n denotes the length of the action sequence.
We execute the XPath in the sequence using the
parser in order. In the sequence, all XPath expres-
sions except the last one are used for pruning the
web page, and the last one is used for extracting
the corresponding element value from the pruned
web page.

4.2 Progressive Generation

Dealing with the lengthy content and hierarchical
structure of webpages, generating a complete and
executable scraper in one turn is difficult. How-
ever, the HTML content is organized in a DOM
tree structure, which makes it possible to prune
irrelevant page components and hence, limit the
length and height of the DOM tree to improve the
performance of LLM generation.

Specifically, we perform a traversal strategy
consisting of top-down and step-back operations.
Top-down refers to starting from the root node of
the current DOM tree, progressively refining down
to the specific node containing the target informa-
tion. Step-back refers to reassessing and adjusting
selection criteria by moving up the DOM tree to
choose a more reliable and broadly applicable node
as a foundation for more consistent and accurate
XPath targeting. At each step, we first employ a
top-down operation, guiding the LLMs to directly
write out the XPath leading to the node contain-
ing the target information and to judge whether the
value extracted with XPath is consistent with the
value it recognizes. If execution fails, then adopt a
step-back operation to retreat from the failed node,
ensuring the web page includes the target informa-
tion, which is driven by LLMs. The detail is shown
in Algorithm 1.

4.3 Synthesis

Although we gain an executable action sequence
within the progressive generation process, there are
still differences in the specific location of the tar-
get information and the structure between different
web pages. The action sequence may collect XPath

*nttps://en.wikipedia.org/wiki/XPath

with specific characteristics in a single HTML and
lose generalizability. To enhance the reusability of
the action sequence, we propose a synthesis phase.

Specifically, we randomly select ns; webpages
from the case as seed webpages. Then, we generate
an action sequence for each of them. Subsequently,
we execute multiple different action sequences to
extract information from the seed web pages, re-
spectively. We collect all action sequences and
their corresponding results and then choose one
that can extract all the target information in the
web pages as the final action sequence.

S Experiment

Intending to put AUTOSCRAPER to practical use,
we investigate the following research questions:
1) Can AUTOSCRAPER outperform the state-of-the-
art scraper generation methods? 2) How does AU-
TOSCRAPER framework improve the performance
of the scraper generation task? 3) Does AUTO-
SCRAPER meet the requirements for web scraping
tasks, specifically being accurate and efficient?

5.1 Experimental Settings & Evaluation
Metrics

We conduct our experiment on various LLMs
including closed-source LLMs: GPT-3.5-
Turbo (OpenAl, 2022), Gemini Pro(Team et al.,
2023) and GPT-4-Turbo (OpenAl, 2023) as
well as open-source LLMs: Mistral-7B (Jiang
et al., 2023), CodeLlama-34B (Roziere et al.,
2024), Mixtral 8 x7B (Jiang et al., 2024) and
Deepseek-Coder-33B (Guo et al., 2024). Fur-
thermore, we apply different LLM-prompt-based
web agents as our baselines, including COT (Wei
et al., 2023) and Reflexion (Shinn et al., 2023)
and AUTOSCRAPER to them. The comparison
between them is discussed in Appendix B.1.
Due to the limited-length context of LLMs,
all experiments are conducted under zero-shot
settings.

We test them on three datasets: SWDE (Hao et al.,
2011), EXTEND SWDE (Lockard et al., 2019) and
DsS1 (Omari et al., 2017). The experimental result
of the last two can be found in Appendix A.1 and
A.2. We set the size of seed webpages ny = 3 and
max retry times dy,q, = 5.

In addition to the execution evaluation metrics
described in Section 3.3, we also employ tradi-
tional evaluation metrics to more comprehensively
assess the quality of different action sequences.
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EXECUTABLE EVALUATION

IE EVALUATION

Models Method
Correct(t) Prec Reca Unex.(]) Over. Else Prec Reca F1
Closed-source LLMs

COoT 36.75 8.83 6.71 43.46 0.71 353 8945 5043 47.99

GPT-3.5-Turbo Reflexion 46.29 11.66 2.83 37.10 0.71 1.41 94.67 55.85 55.10
,,,,,,,,,, AUTOSCRAPER _ _ 54.84 _ 1183 896 1935 108 394 8585 7334 69.20

COoT 29.69 1094  7.50 47.19 125 344 81.21 4522 41.81

Gemini Pro Reflexion 33.12 6.56  4.06 52.50 0.63 3.12 8745 4275 40.88
,,,,,,,,,, AUTOSCRAPER  _ 42.81 _ 11.87 469 3438 125 500 8570 57.54 5491

COoT 61.88 12.50 7.19 14.37 094 312 87.75 7990 76.95

GPT-4-Turbo Reflexion 67.50 13.75 4.37 10.94 094 250 9328 8276 8240

AUTOSCRAPER 71.56 14.06 5.31 4.06 0.63 437 9249 89.13 88.69

Open-source LLMs

COT 3.44 0.31 0.63 95.31 0.00 0.63 9423 4.55 4.24

Mistral 7B Reflexion 2.19 0.00 0.31 97.19 0.00 031 9560 2.78 2.49
L __ AUTOSCRAPER  _ _2.87 _ _0.00__0.00 __9.77 __036_ _0.00 9857 323 287

COoT 17.98 3.75 2.25 74.53 0.00 150 79.75 2198 21.36

CodeLlama Reflexion 18.08 4.80 2.95 73.06 0.00 1.11 7896 2326 2244
,,,,,,,,,, AUTOSCRAPER  _ 23.99 _ 812 148 6494 000 _148 7859 2870 2841

COoT 28.75 8.13 437 57.81 0.31 0.63 89.79 3823 37.26

Mixtral 8 x7B Reflexion 36.25 6.88 3.12 51.25 0.00 250 89.35 4457 43.60
,,,,,,,,,, AUTOSCRAPER _ _ 4688 _ 1062 _7.19 3031 063 437 8732 6271 39.75

COT 36.56 10.94 5.63 42.50 0.63 375 86.05 48.78 47.05

Deepseek-coder Reflexion 37.19 11.25 4.06 44.69 125 156 86.41 4828 47.08

AUTOSCRAPER 38.75 11.25 531 39.69 0.63 437 8491 52.11 49.68

Table 2: The executable evaluation and IE evaluation of LLMs with three frameworks in SWDE dataset. We examine
7 LLMs, including 3 closed-source LLMs and 4 open-source LLMs.

Specifically, we adopt precision (P.), recall (R.),
and macro-fl1 (F1), which are calculated as the
mean of the corresponding metrics for each case.

5.2 Main Results on SWDE

Results in Table 2 show that: /) With AUTO-
SCRAPER generating action sequence, LLLMs can
achieve better performance. Compared to the COT
and Reflexion baseline, our method performs a
higher ratio of correct and a lower ratio of un-
executable. Also, it should be noted that Mixtral
8Xx7B + AUTOSCRAPER can outperform ChatGPT
+ Reflexion, indicating the superiority of AUTO-
SCRAPER in the generation of executable action
sequences in the scraper generation task. 2) Mod-
els with small parameter sizes have significant dif-
ficulties in understanding and writing executable
paths, so they can be considered challenging to
apply in this task. On the contrary, large-scale
models demonstrate a more stable ability in instruc-
tion alignment, web structure comprehension, and
reflection on execution results; 3) Traditional IE
evaluation metrics cannot well describe the success
rate of our task. Especially for the precision met-
ric, it fails to reveal the performance gap among

different methods with different models. This is
because the extraction metrics only evaluate the
results that have been extracted, ignoring that unex-
ecutable or empty extractions also greatly damage
the executability.

5.3 Generate with Golden Label

To better illustrate the effectiveness of our frame-
work in generating executable action sequences,
we compare the performance of COT, Reflexion,
and AUTOSCRAPER , while answering the instruc-
tion. By offering the same extraction targets, we
can effectively detect the performance of different
frameworks in generating action sequences.

Table 3 shows experimental results, from which
we can have the following observations: /) Our
proposed progressive understanding framework
still effectively enhances the model’s performance
under this setting; 2) LLMs still suffer in accu-
rately understanding web page contents with semi-
structured markup languages, which illustrate the
performance gap between Table 2 and Table 3;
3) Compared to closed-source LLMs, even pro-
vided with golden labels, Open-source LLMs are
unable to achieve sustained performance improve-



EXECUTABLE EVALUATION

Models Method
Correct(t) Prec Reca Unex.(]) Over. Else
Closed-source LLMs
GPT35 cot 4170 1292 738 3542 074 185
2T Reflexion 4723 1624 221 3321 037 074
Turbo AUTOSCRAPER 5689 1943 565 1343 071 3.89
Gemini coT 3344 938 906 4469 094 250
cemint Reflexion 35.31 938 688 4375 156 3.12
Pro AUTOSCRAPER 4531 1344 625 3031 125 344
GPT4 coT 61.88 1156 9.06 11.56 125 4.69
e Reflexion 7125 7.9 469 1437 094 156
Turbo AUTOSCRAPER 7531 1094 437 406  0.63 4.69
Open-source LLMs
cot 2.19 0.00 031 97.19 000 03I
Mistral 7B Reflexion 2.19 0.00 000 9750 031 0.00
AUTOSCRAPER 2.19 0.00 0.00 97.19 0.31 031
coT 2140 627 221 6679 074 258
CodeLlama  Reflexion 2221 493 394 6695 049 148
AUTOSCRAPER 2620 1255 554 5351 000 221
717\/17';1 ”””” cor 2750 750 531 5687 094 187
‘X];“ Reflexion 3469 813 531 4906 063 219
8x7 AUTOSCRAPER ~ 45.62 1156 594 3250 125 3.12
D ) cor 3500 1875 531 3625 0.63 4.06
cepseck Reflexion 3875 1187 281 4219 063 375

coder AUTOSCRAPER 3844 2094 406 3156 094 656

Table 3: The executable and IE evaluation with 7 LLMs
on SWDE dataset with golden label.
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Figure 3: The performance of AUTOSCRAPER with
different number of seed websites in SWDE dataset.

ment. This phenomenon demonstrates that the bot-
tleneck for these models lies not in understanding
the webpage content but in understanding the web-
page’s hierarchical structure itself.

5.4 Ablation Study

To further justify the effectiveness of each com-
ponent of AUTOSCRAPER, we perform an abla-
tion study. The results are shown in Table 4. It
shows that: 1) AUTOSCRAPER without a second
module still beat the other two baseline methods
among different LLMs. 2) The second module
of AUTOSCRAPER, synthesis module, not only
improves AUTOSCRAPER, but also improves the
performance of other methods. Using more web
pages for inference can make the generated scraper
more stable and have better generalization.

Models Method EXEC EVAL IE EVAL
Correct() Unex.(]) F1
COT 36.75 43.46 47.99
- synthesis 27.56 57.24 34.44
GP3S: “Rofiexion %9 30 5500
Turbo - synthesis 28.62 59.01 35.01
AUTOSCRAPER 54.84 19.35 69.20
- synthesis 44.52 29.33 58.44
COT 29.69 47.19 41.81
- synthesis 27.56 57.24 33.09
Gemini* pefiexion 33.12 52.50 40.88
Pro - synthesis 28.62 59.01 37.60
AUTOSCRAPER 42.81 34.38 54.91
- synthesis 39.46 31.56 56.48
COT 61.88 14.37 76.95
- synthesis 46.88 30.00 61.20
GPT-4- " Reflexion 67.50 1094 8240
Turbo - synthesis 56.87 25.31 69.78
AUTOSCRAPER 71.56 4.06 88.69
- synthesis 65.31 11.87 80.41

Table 4: Ablation study on AUTOSCRAPER. We report
Correct, Unexecutable from the executive evaluation,
and F1 score from the IE evaluation in SWDE dataset.

Model F1

Render-Full (Hao et al., 2011) 84.30
FreeDOM (Lin et al., 2020) 82.32
SimpDOM (Zhou et al., 2021) 83.06
MarkupLMgasg (Li et al., 2022)  84.31
WebFormer (Wang et al., 2022)  92.46
Reflexion + GPT-4-Turbo 82.40
AUTOSCRAPER + GPT-4-Turbo  88.69

Table 5: Comparing the extraction performance (F1) of
5 baseline models to our method AUTOSCRAPER using
GPT-4-Turbo on the SWDE dataset. Each value of the
supervised model in the table is trained on 1 seed site.

5.5 Seed Websites

In all previous experiments, we fixed the number
of seed websites ns = 3, which demonstrates the
effectiveness of the synthesis module. In this exper-
iment, we offer different numbers of seed webpages
and test the performance of AUTOSCRAPER. The
result is shown in Figure 3.

As the number of seed webpages increases, the
correct ratio increases, while the unexecutable ra-
tio decreases. It suggests that the performance of
AUTOSCRAPER can still be further improved by
providing more seed webpages. In addition, the
performance improvement reduces as the number
increases, which shows that there is an upper limit
to improve the performance of AUTOSCRAPER by
increasing the number of seed webpages.



5.6 Comparison with supervised baselines

To further demonstrate that AUTOSCRAPER is
adaptive to different web information extraction
tasks, we conduct a comparison with 5 baseline
models in web information extraction on super-
vised learning scenarios: Render-Full (Hao et al.,
2011) proposes a complicated heuristic algorithm
for computing visual distances between predicted
value nodes and adjusting the predictions. Free-
DOM (Lin et al., 2020) and SimpDOM (Zhou et al.,
2021) encode textual features of DOM tree node
with LSTM, while MarkupLLM (Li et al., 2022) is
pre-trained on HTML with text and markup infor-
mation jointly. WebFormer (Wang et al., 2022)
leverages the web layout for effective attention
weight computation.

Table 5 shows the result. Although the compar-
ison is unfair because our method is in zero-shot
settings, AUTOSCRAPER beat most of them on F1
scores. It shows that by designing an appropriate
framework, LLMs can surpass supervised learning
methods in some web information extraction tasks.

5.7 Efficiency Analysis

Suppose the number of seed webpages is 7, the
number of webpages on the same website is Nyy,
the time to generate a wrapper is Ty, the time of
synthesis is T, and the time for extract information
from a webpage with a wrapper is 7.. The total
time for extracting all information from all websites
with AUTOSCRAPER is

Ty = TG +T1g = (nsTg + Ts) + NWTe (3)

Besides, the time for LLMs directly extracting
information from a webpage is T, and the total
time for extracting all information from all websites
directly is

Ty = Nwly ¢

In a real-world scenario, there are many web
pages from the same websites to be extracted. Al-
though generating a wrapper takes more time than
extracting directly from a single webpage, the ex-
traction efficiency of subsequent web pages would
be significantly improved. To explore how many
webpages are needed to make AUTOSCRAPER
more efficient in web IE, we calculate the threshold
of Nyy. Suppose T < T5, we have

Te+Tr = (nTy+ Ts) + NwT. < NwTy (5)

Ny > ngdy + Ty

- (6)

It should be noted that T, depends on d;q;
in Algorithm 1 and can be roughly considered as
Ty = dmazTq. In our experimental settings, we set
dmaz = D and ngy = 3. Also, under the approxima-
tion that Ts ~ T, and Ty > T,, AUTOSCRAPER
have better extraction efficiency when a website
contains more than 16 webpages.

5.8 Error Analysis

We perform an analysis by looking at the recorded
action sequence of AUTOSCRAPER with GPT-4-
Turbo and identify the following common failure
modes. We mainly focus on the case categorized
as unexecutable, over-estimate, and else.

Non-generalizability of webpages The target in-
formation and corresponding webpage structures
exhibit variations across different webpages, lead-
ing to a lack of generalizability in AUTOSCRAPER
(i.e., the inability to apply the same rules across all
webpages in the same website). For instance, for
the task "Please extract the name of the company
offering the job" in the website job-careerbuilder,
most webpages contain the company name, but
there is one webpage where the company name is
"Not Available" on another node of DOM tree.

Miss in multi-valued Presented with the task
of generating a scraper for extracting address in
restaurant webpages or contact phone number from
university websites, the target information is lo-
cated in multiple locations in the webpage, such
as the information bar, title, etc. Although AU-
TOSCRAPER is capable of generating action se-
quences to extract portions of information, crafting
a comprehensive action sequence that captures all
of the information remains a challenge.

6 Conclusion

In this paper, we introduce the scraper generation
task and the paradigm that combines LLMs and
scrapers to improve the reusability of the current
language-agent-based framework. We then pro-
pose AUTOSCRAPER , a two-phase framework in-
cluding progressive generation and synthesis mod-
ule to generate a more stable and executable ac-
tion sequence. Our comprehensive experiments
demonstrate that AUTOSCRAPER can outperform
the state-of-the-art baseline in the scraper genera-
tion task.



Limitation

We introduce a paradigm that combines LLMs with
scrapers for web scraper generation tasks and pro-
pose AUTOSCRAPER to generate an executable ac-
tion sequence with progressively understanding the
HTML documents. Though experimental results
show the effectiveness of our framework, there are
still some limits to our work.

First, our framework is restricted to the paradigm
in the information extraction task for vertical web-
pages. LLMs with scrapers provide high effi-
ciency in open-world web IE tasks, but can hardly
transfer to existing web environments such as
Mind2Web (Deng et al., 2023), WebArena (Zhou
et al., 2023).

Second, our framework rely on the performance
of backbone LLMs. Enhancing LLMs’ ability to
understand HTML is a very valuable research ques-
tion, including corpus collection and training strat-
egy. We will conduct research on HTML under-
standing enchancement in future work.
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A Experiments

Al

Because EXTENDED SWDE dataset focuses on
OpenlE task (the relation is also expected to be ex-
tracted), we first map relations into a predefined list
of attributes and remove unusual ones. Specifically,
we conducted experiments with 294 attributes from
21 websites selected from the EXTENDED SWDE
dataset.

Table 9 shows the result. By comparing Table 2,
we find that: 1) Under complex extraction task set-
tings (multiple target values and ambiguous prob-
lem description), the closed-source LLMs perform
better in generating executable action sequences
compared to the open-source LLMs. 2) There are
some tasks with unclear descriptions, such as the
"Calendar System" and "Facilities and Programs
Offered" on university websites, which affect the
wrapper generation performance of all methods.

Main results on EXTENDED SWDE

A.2 Main results on Ds1

Due to DS1 only contains 166 hand-crafted web-
pages, and for each website, there are only two
webpages, so we take one webpage for inference
and the other for evaluation. Meanwhile, due to the
number of the seed websites being equal to one, we
test three methods without applying the synthesis
module described in Section 4.3.

Table 10 shows the result in the DS1 dataset.
Among all LLMs with three methods, GPT-4-
Turbo + AUTOSCRAPER achieves the best perfor-
mance, and AUTOSCRAPER beats the other two
methods in all LLMs, which is consistent with the
conclusion we make above.

B Analysis on AUTOSCRAPER

B.1 Comparison with COT & Reflexion

Figure 4 more intuitively shows the specific dif-
ferences between different baselines in the exper-
iment. The most significant difference between
AUTOSCRAPER and other methods lies in whether
the hierarchical structure of web pages is utilized
to help LLMs reduce the difficulty of complex web
structures. COT only executes one turn while the
other executes multiple turns and can learn from
the failed execution of the wrapper. Compared to
the Reflexion method, AUTOSCRAPER employs
top-down and step-back operations to prune the
DOM tree during each XPath generation process,
thereby reducing the length of the web page. In



Algorithm 1: Algorithm for progressive
understanding
Data: origin HTML code hg, task
instruction I, max retry times dyqz
Result: Executable action sequence Ay, to
extract the value in the HTML
1 Initial history Ageq < [], & = 0;
2 while True do
3 if & > d,,.. then break;

value, xpath < LLMg(hy, I);
result <— Parser;e,:(hy, xpath);
if result == value then break;

repeat

xpath < xpath +7/..";

hi11 < Parser, 4. (hi, xpath);
until 2 contains value;
Append(Aseq, zpath);
k< k+1;

8
9
10
11
12
13 end

14 return Ay,

Models 1 2 3 4 5 Avg.
GPT4 214 61 13 18 10 157
GPT-3.5-Turbo 115 65 22 30 43 235
Gemini Pro 94 52 33 27 105 299
Mixtral §x7B 80 53 43 24 104 3.00
Mistral 7B 28 7 11 7 84 382
Deepseek-coder 137 70 55 29 23 214
CodeLlama 75 35 32 18 80 297

Table 6: Length of action sequence of AUTOSCRAPER
based on different LLMs in SWDE dataset.

contrast, the Reflexion method can only reflect and
regenerate after producing an unexecutable XPath,
which does not effectively simplify the webpage.

B.2 Further Study with AUTOSCRAPER

The length of the action sequence is dependent
on the LLMs capability. To comprehensively
explore the performance of different LLMs in un-
derstanding web page structure, we explore the
impact of models on the number distribution of
the steps. In particular, we collect all the action
sequences and calculate the average steps of AUTO-
SCRAPER with different LLMs. The experimental
result is reported in Table 6.

We observe that AUTOSCRAPER with stronger
LLMs generate fewer lengths of action sequence.
AUTOSCRAPER with GPT-4-Turbo generates 1.57

12

steps on average, while the AUTOSCRAPER with
Mistral 7B generates 3.82 steps on average. This
phenomenon can be interpreted as more power-
ful models having a better understanding of the
web page hierarchical structure, thus being able
to accurately output the appropriate XPaths in
longer/deeper web pages, thereby reducing the
number of steps.

The "U" curve of compression ratio We define
the length of HTML as the number of tokens in the
HTML, and its height as the height of the DOM
tree represented by the HTML. we define the com-
pression ratio of length and height as the ratio of the
length/height of the original web page to that of the
web page after being pruned by AUTOSCRAPER .

#tokens of new HTML

c ) =
OMPTESSIOnL #tokens of origin HTML
o . #height of new HTML
ompressiony =
b " #height of origin HTML
(N

We calculate their compression ratio of the Cor-
rect case and rank LL.Ms based on their perfor-
mance. Figure 5 shows the result. It is interesting
to note that there is a "U" curve on both the length
and height compression ratios. This phenomenon
can be explained from two aspects: on one hand,
when LLM is powerful, it can generate the cor-
rect XPath without the process of step-back to re-
accessing the sub-DOM tree; on the other hand,
when the model is weak, it is unable to effectively
understand the hierarchical structure of web page,
and thus cannot generate reliable, effective XPaths
for the web page.

XPath fragility within AUTOSCRAPER The
fragility of XPath often refers to the characteristic
of XPath expressions becoming ineffective or inac-
curately matching the target element when faced
with new webpages. This is mainly due to XPath
specifying specific information through predicates,
such as text, @class, etc.

We mainly focus on the fragility of text because
these webpages are from the same websites (i.e.
@class is a good characteristic for generating
stable action sequences). Table 7 shows XPath
expressions that rely on text. We aim to explore
the reusability of generating XPath based on text
features. We manually calculated the proportion
of bad cases with two types of predicates, contains
and equal °. The results in Table 8 show that the

Shttps://www.w3schools.com/xml/xpath_


https://www.w3schools.com/xml/xpath_syntax.asp

Instruction: What’s the average point of James Harden?
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Figure 4: Comparison with the other two baselines.

Good case Bad case

uestion Here’s a webpage on detail information with detail in- Here’s a webpage with detailed information about a
pag pag
Sformation of an NBA player. Please extract the height  university. Please extract the contact phone number
of the player: of the university.

Case /div[ @class=‘gray200B-dyContent "]/ //div[ @class=‘infopage]//hS [-
bl a0, HEGIED) ol st 705-528.7809
sibling::text()

Table 7: Examples of XPath fragility. The [|gf€€M focuses on the common information across different webpages,
while the - focuses on specific information of seed webpages.

110 Length & Height compression ratio of AutoCraw! 100 Models Contains  Equal(=)
105.]|Ja—. Heigh compresaion GPT4 0.61%  2.90%
GPT-3.5-Turbo 9.33% 9.78%
_ Gemini Pro 10.62% 14.29%
g 5 Mixtral 8 x7B 12.88% 8.55%
B s Deepseek-Coder ~ 11.63% 7.55%
] 2 CodeLlama 18.75% 14.29%
g g Mistral 7B 18.18% 33.33%
£ 8
o

Table 8: Bad case ratio in two types of predicate.

W ?‘o <18 (,ode
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Backbone model

C Dataset Statistic

Figure 5: The curve on length and height compression  Taple 11, 12, 13 shows the detailed statistic about

ratio in SWDE dataset. . . . .
the semi-structure web information extraction
dataset SWDE, EXTENDED SWDE and Ds1.

stronger LLMs capability, the lower the proportion Prompt List

of bad cases with AUTOSCRAPER . However, it

should be noted that the current SOTA LLM GPT-4-  Table 14 shows the task prompt we design for each
Turbo still suffers from an XPath fragility problem,  attribute for SWDE.

which indicates that relying entirely on LLMs to

generate reliable XPath still has some distance to

syntax.asp
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EXECUTABLE EVALUATION IE EVALUATION

Models Method
Correct(f) Prec Reca Unex.(]) Over. Else Prec Reca F1
Closed-source LLMs

COT 34.49 348 453 56.10 035 1.05 8796 42.16 40.58

GPE‘3 5- Reflexion 4390 174 209 4913 035 279 93.46 49.58 48.66

Turbo AUTOSCRAPER 45.30 418 8.01 35.89 035 627 8360 60.84 56.69
*********** COT 3449 209 662  49.013 035 732 8109 4655 4240

Gemini Pro Reflexion 34.15 209 697 51.57 035 488 8443 4519 41.66

AUTOSCRAPER 35.89 523 10.10  42.86 035 557 8374 5275 47.73
*********** COT 5505 244 732 3031 035 453 8411 6731 64.04

GPT4 Reflexion 63.76 3.83 557 20.91 035 557 8600 7650 74.50

AUTOSCRAPER 63.07 348 592 16.72 035 1045 8129 78.77 174.77

Open-source LLMs

COT 9.01 129 2.15 85.84 0.00 172 8722 1262 11.21
CodeLlama Reflexion 13.73 172 3.00 80.26 0.00 129 8941 17.76 16.01
AUTOSCRAPER 11.16 0.00 1.72 85.84 0.00 129 9249 1329 1252
’ ;Af ) ; ****** cor 3136 105 488 5819 035 418 8683 40.16 3725
g 1’%2‘ Reflexion 29.62 1.05 4.18 62.02 035 279 8344 3644 33.64
X AUTOSCRAPER 40.07 3.83 9.41 39.37 0.35 6.97 81.63 57.10 51.57
*********** COT 3833 383 662 4774 035 3.14 8132 4852 44.80
Deepseek- Reflexion 36.24 348 3.83 51.92 0.00 4.53 83.53 45.03 43.64
coder AUTOSCRAPER 37.63 244 592 50.52 035 3.14 8691 47.09 44.33

Table 9: The executable evaluation and IE evaluation of LLMs with three frameworks in EXTENDED SWDE dataset.
We examine 6 LLMs, including 3 closed-source LLMs and 3 open-source LLMs.

Models Method EXECUTABLE EVALUATION IE EVALUATION
Correct(f) Prec Reca Unex.(J) Over. Else Prec Reca F1
Closed-source LLMs
PT COT 32.65 4.08 8.16 53.06 0.00 2.04 9056 4354 41.16
? -3.5- Reflexion 36.73 816 408 5102 000 000 9556 4422 4375
urbo AUTOSCRAPER 48.98 4.08 0.00 44.90 0.00 2.04 9490 51.70 52.38
77777777777 cor 1772 253 380 7595 000 000 90.82 2288 22.10

Gemini Pro Reflexion 20.25 10.13 1.27 65.82 0.00 253 88.83 2693 27.66
AUTOSCRAPER 43.04 15.19 3.80 34.18 0.00 3.80 93.76 5597 56.92
COT 50.60 9.64 6.02 30.12 0.00 3.61 93.60 6575 64.73
GPT4 Reflexion 50.60 10.84 4.82 33.73 0.00 0.00 96.85 62.65 63.50

AUTOSCRAPER 57.83 15.66 4.82 16.87 0.00 4.82 9288 7495 75.52

Open-source LLMs

COoT 270 270 541 89.19 000 0.00 7872 10.62 9.19
CodeLlama Reflexion 8.82 0.00 5.88 85.29 0.00 0.00 9412 1441 12.69
AUTOSCRAPER 13.51 0.00 541 81.08 0.00 0.00 8412 1892 17.39
Mixtral CoT 17.72 633 0.00  74.68 000 127 9481 21.15 2201
g 1’%3 Reflexion 22.78 633 1.27 69.62 0.00 0.00 94.15 28.03 2820
X AUTOSCRAPER 36.71 1139 633  43.04 0.00 253 9159 48.52 48.23
*********** COT 2530 964 241 6024 000 241 9247 3471 3565
B}?eliseek‘ Reflexion 22.89 6.02  3.61 65.06 0.00 241 9021 3143 32.04

AUTOSCRAPER 39.76 10.84  6.02 42.17 0.00 1.20 9043 5139 50.28

Table 10: The executable evaluation and IE evaluation of LLMs with three frameworks in DS 1 dataset. We examine
6 LLMs, including 3 closed-source LLMs and 3 open-source LLMs.
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Domain  Attribute Website Num Domain Attribute Website Num
aol 2000 allmovie 2000
autobytel 2000 amctv 2000
automotive 1999 boxofficemojo 2000
model autoweb 2000 ttitle hollywood 2000
Auto price carquotes 2000 Movie director iheartmovies 2000
engine cars 657 genre imdb 2000
fuel_economy kbb 2000 mpaa_rating metacritic 2000
motortrend 1267 msn 2000
msn 2000 rottentomatoes 2000
yahoo 2000 yahoo 2000
abebooks 2000 espn 434
amazon 2000 fanhouse 446
title barnesandnoble 2000 foxsports 425
author bookdepgsi.tory 2000 name msnca 434
Book isbn 13 booksamillion 2000 NBAPlayer team n_ba 434
blisher bookorders 2000 height si 515
P o buy 2000 weight slam 423
pub_date christianbook 2000 usatoday 436
deepdiscount 2000 wiki 420
waterstone 2000 yahoo 438
amazon 1767 fodors 2000
beachaudio 247 frommers 2000
buy 500 zagat 2000
compsource 430 name gayot 2000
Camera mgdel ecost 923 Restaurant address opentable 2000
price jr 367 phone pickaretaurant 2000
manufacturer newegg 220 cuisine restaurantica 2000
onsale 261 tripadvisor 2000
pcnation 234 urbanspoon 2000
thenerd 309 usdiners 2000
careerbuilder 2000 collegeboard 2000
dice 2000 collegenavigator 2000
hotjobs 2000 collegeprowler 2000
title job 2000 name collegetoolkit 2000
compan jobcircle 2000 . . phone ecampustours 1063
Job locagony jobtarget 2000 University website embark 2000
date_posted monster 2000 type matchcollege 2000
nettemps 2000 princetonreview 615
rightitjobs 2000 studentaid 2000
techcentric 2000 usnews 1027

Table 11: Detail statistic of SWDE dataset.
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Domain Website # Attributes

allmovie 20
amctv 13
hollywood 12
Movie ?heartmovies 8
imdb 34
metacritic 17
rottentomatoes 10
yahoo 10
espn 10
fanhouse 14
foxsports 10
NBAPlayer 1S7¢3 s
slam 12
usatoday 5
yahoo 9
collegeprowler 18
ecampustours 14
University ~ embark 23
matchcollege 15
usnews 19

Table 12: Detail statistic of EXTEND SWDE dataset.

Domain Attribute Website

abebooks
alibris
title barnesandnoble
Book author fishpond
price infibeam
powells
thriftbooks

amazoncouk
bestbuy

title dabs

E-commerce . ebay

price
pcworld
tesco
uttings

agoda
expedia
hotels
hoteltravel
. javago
title kayak
ratestogo
venere

address
Hotel price

123movieto
hollywoodreporter
imdb
mediastinger
metacritic
rottentomatoes
themoviedb

yidio

actor
Movie genre
title

Table 13: Detail statistic of DS1 dataset.



Domain

Task prompt

Prompt

Here’s a webpage with detailed infor-

Please extract the model of the auto.
Please extract the price of the auto.

Auto mation about an auto. Please extract the engine of the auto.
Please extract the fuel efficiency of the auto.
Please extract the title of the book.
, . . Please extract the author of the book.
Book Her.e s a webpage with detailed infor- Please extract the isbn number of the book.
mation about a book. Please extract the publisher of the book.
Please extract the publication date of the book.
R . . Please extract the product name of the camera.
Camera Here s a webpage with detail informa- e qe extract the sale price of the camera.
tion of camera. Please extract the manufacturer of the camera.
Please extract the title of the job.
Job Here’s a webpage with detailed infor-  Please extract the name of the company that offers the job.
mation about a job. Please extract the working location of the job.
Please extract the date that post the job.
Please extract the title of the movie.
Movi Here’s a webpage with detailed infor-  Please extract the director of the movie.
vie . - ;
mation about a movie. Please extract the genre of the movie.
Please extract the MPAA rating of the movie.
Please extract the name of the player.
NBAPlayer Herg’s a webpage with detailed infor-  Please extract the team of the player he plays now.
mation about an NBA player. Please extract the height of the player.
Please extract the weight of the player.
Please extract the restaurant’s name.
Restaurant Here’s a webpage with detailed infor-  Please extract the restaurant’s address.
mation about a restaurant. Please extract the restaurant’s phone number.
Please extract the cuisine that the restaurant offers.
Please extract the name of the university.
University Here’s a webpage on detailed informa-  Please extract the contact phone number of the university.

tion about a university.

Please extract the website url of the university.
Please extract the type of the university.

Table 14: Prompts for crawler generation task in SWDE dataset.
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