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Abstract
Predicting epidemic evolution is essential for making informed deci-

sions and implementing effective countermeasures. Computational

models provide valuable insights into disease progression, enabling

early detection, timely intervention, and effective prevention strate-

gies. These models help allocate resources and protect public health

by anticipating the course of an outbreak and allowing for proactive

measures. We propose Sybil, a framework that merges machine

learning with variant-aware compartmental models, combining

data-driven and analytical methods. We tested Sybil’s predictive ca-

pabilities using COVID-19 data from Italy, Austria, and U.S., includ-

ing records of new and recovered cases, fatalities, and the presence

of different variants over time. Our evaluation focused on Sybil’s

forecasting accuracy during periods of significant trend changes.

The results indicate that Sybil surpasses traditional data-driven

approaches, accurately predicting trend shifts and the extent of

these changes.
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1 Introduction
The COVID-19 pandemic underscores the imperative of resilient

monitoring systems to effectively navigate global health crises.

These systems are indispensable tools for policy-makers, empower-

ing them to manage health emergencies with precision and fore-

sight. Central to their efficacy is the capacity for accurate forecast-

ing, which not only informs strategic decision-making but also

enables proactive planning and targeted resource allocation, es-

sential for mitigating the pandemic’s impact on public health and

societal well-being.

Numerous methodologies exist for predicting the trajectory of

epidemics, employing diverse modeling approaches. Machine learn-

ing (ML) [39, 28, 4, 35, 31, 17] and deep learning (DL) models [25,

1, 2, 32, 29], including Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs) with Long Short-Term Mem-

ory (LSTM) or Gated Recurrent Unit (GRU) cells, and multivariate

CNNs have gained prominence. Nonetheless, these data-centric ap-

proaches face challenges related to transparency, explainability, and

difficulty in forecasting significant trend changes. These shortcom-

ings are especially problematic when timely and precise forecasting

is critical for effective decision-making and intervention.

Conversely, compartmental models are specifically crafted to

compute the progression of infections within a population and

offer clarity and ease of interpretation for stakeholders like policy-

makers and healthcare professionals. These models may consider

various factors, including vaccinations, variants, different age groups,

symptoms, hospitalizations, ICU admissions, undetected infections,

and human mobility between regions [8, 24, 14, 13, 5, 26, 27, 23, 38].

Stochastic transmission models, incorporating random variables

like individual interactions and variations in infectiousness, were

also used to study COVID-19 transmission, providing a nuanced

understanding and robust predictions [18, 22]. Despite these ad-

vantages, these analytic approaches face several challenges: they

depend on assumptions about the system—which may not always

be accurate in real-world scenarios—and the parameter estimation

is complex, requiring precise data collection for reliable models.

The joint use of data-centric methodologies and analytical ap-

proaches, exemplified by the integration of ML techniques with

compartmental models, not only augments forecasting accuracy but

also bolsters the efficacy of mitigation strategies. This innovative

fusion of methodologies, as evidenced in some studies [12, 35, 21,

36], showcases the potential for significantly improving predictive

capabilities in epidemic forecasting. By leveraging the strengths

of both data-driven and analytical frameworks, researchers can

attain a more comprehensive understanding of disease dynamics

and thereby enhance the precision of forecasts.

Forecasting epidemic spread aims to predict the percentage of

the infected population, fatalities, and hospitalizations at a future

point. These metrics stem from complex, nonlinear population

dynamics, especially at critical points like peaks or the emergence

of new variants. Epidemic dynamics are characterized by widely

recognized quantities, such as the basic reproduction number, 𝑅0,

which expresses the number of secondary infections arising from

one single infected individual within a population of susceptible

individuals. While 𝑅0 shows how fast a disease spreads, its time-

dependent counterpart, 𝑅𝑡 , allows for quantitative evaluation of

the infection’s course. Such indicators, being specific to the disease,
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Figure 1: Schematic representation of Sybil’s steps.

tend to be more stable. Therefore, their future evolution shows a

more predictable behavior.

1.1 Contributions
We propose Sybil [3], a framework integrating machine learning

and compartmental models for better prediction accuracy and ex-

plainability. Sybil leverages disease characteristics—like the Rt—to

project future trends and employs a simple analytical model for

infection dynamics. Its strengths include accurate forecasting de-

spite changes in the diffusion process, a reduced need for training

data, the ability to study the evolution of multiple variants’ infec-

tions, reproducible results, and availability as open-source software

online.

2 Methods
Sybil [3] is an integrated framework designed to deliver accurate

and explainable epidemic spread forecasts. It combines a simple

compartmental model with a machine learning-based predictive

model to forecast infection progression, accounting for multiple

virus strains.

Sybil operates in two stages. First, it uses an analytical model

to derive critical parameters from surveillance data, specifically

the reproductive number over time, Rt. Secondly, the data-centric

model predicts future parameter values, which are fed back into

the analytical model to compute future daily infections—see Figure

1 for a visual overview of Sybil’s steps.

Sybil’s performance is evaluated by comparing its forecasts

against actual surveillance data from Italy, Austria, and U.S. and

against predictions obtained from some state-of-the-art approaches,

including Prophet [33], ARIMA / SARIMA [6], Neural Prophet [34],

LSTM [19] and GRU [10] neural networks, and EpiNow2 [30].

2.1 Compartmental analytical model
The analytical component of Sybil is a Susceptible - Infected - Re-

covered - Deceased - Susceptible (SIRDS) compartmental model

described by Equation 1. We reconstruct the evolution of the in-

fection process using surveillance data from the COVID-19 Data

Hub [16, 15]—we used data on cases, recoveries, and fatalities—

possibly after a pre-processing phase (step 1) and 2) of Figure 1).

𝑆 (𝑡 + 1) = 𝑆 (𝑡) − 𝜷 (𝒕)
𝑆 (𝑡)𝐼 (𝑡)

𝑁
+ 𝜈𝑅(𝑡)

𝐼 (𝑡 + 1) = 𝐼 (𝑡) + 𝜷 (𝒕)
𝑆 (𝑡)𝐼 (𝑡)

𝑁
−𝜸 (𝒕)𝐼 (𝑡) − 𝝀(𝒕)𝐼 (𝑡)

𝑅(𝑡 + 1) = 𝑅(𝑡) +𝜸 (𝒕)𝐼 (𝑡) − 𝜈𝑅(𝑡)
𝐷 (𝑡 + 1) = 𝐷 (𝑡) + 𝝀(𝒕)𝐼 (𝑡)

(1)

In this model, the rates are time-dependent—meaning that they may

vary at each time step, with the time step corresponding to one

day. The only exception is the end-of-immunization rate 𝜈 , which

is assumed to be constant
1
.

Obtaining all the required parameters to solve the equations in

Equation 1 is not straightforward as surveillance data does not pro-

vide the transition rates—the bold elements of Equation 1. By using

Equation 2 (derived from Equation 1), we can estimate the daily

infection 𝛽 (𝑡), recovery 𝛾 (𝑡), and fatality rates 𝜆(𝑡), as outlined in

step 3) of Figure 1.

𝜆(𝑡) = 𝐷 (𝑡 + 1) − 𝐷 (𝑡)
𝐼 (𝑡)

𝛾 (𝑡) = 𝑅(𝑡 + 1) − 𝑅(𝑡) + 𝜈𝑅(𝑡)
𝐼 (𝑡)

𝛽 (𝑡) = 𝐼 (𝑡 + 1) − 𝐼 (𝑡) + 𝛾 (𝑡)𝐼 (𝑡) + 𝜆(𝑡)𝐼 (𝑡)
𝑆 (𝑡)𝐼 (𝑡)

𝑁

(2)

Incorporating variants into the model from Equation 1 requires

adding a compartment for each virus strain, creating a SI
V
RDS

model—for Italy and Austria we used variants’ diffusion data from

the European Center for Disease Control (ECDC) [11, 20], while

for the U.S. we used data from the Centers for Disease Control and

Prevention (CDC) [9]. This introduces additional rates: instead of a

single infection rate 𝛽 (𝑡), there are V different rates 𝛽v (𝑡), one for
each variant at each time step—Equations 3 and 4. Sybil simplifies

by assuming that the evolution of each 𝐼v (𝑡) compartment is based

1𝜈 = 1

180
since, on average, the immunization due to infection is estimated to be lost

after 180 days [37]
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on the 𝐼 (𝑡) compartment and the daily proportion of the variant—

𝐼v (𝑡) = 𝐼 (𝑡)𝜋v (𝑡), where 𝜋v (𝑡) is the proportion of infections due

to variant v in each time step.

𝐼v (𝑡 + 1) = 𝐼v (𝑡) + 𝜷v (𝒕)
𝑆 (𝑡)𝐼 (𝑡)

𝑁
− 𝛾 (𝑡)𝐼v (𝑡) − 𝜆(𝑡)𝐼v (𝑡) (3)

𝛽v (𝑡) =
𝐼v (𝑡 + 1) − 𝐼v (𝑡) + 𝛾 (𝑡)𝐼v (𝑡) + 𝜆(𝑡)𝐼v (𝑡)

𝑆 (𝑡)𝐼 (𝑡)
𝑁 (4)

2.2 Prophet predictive model
The second component of the Sybil framework is Prophet [33], an

open-source time series forecasting tool developed by Facebook.

It uses an additive model with adjustable parameters, combining

statistical modeling and machine learning techniques, including

piece-wise linear trends, nonlinear growth, and seasonality adjust-

ments using a Fourier series.

Prophet’s flexible approach captures both simple and complex

data patterns through three main components: trend (𝑔(𝑡)), season-
ality (𝑠 (𝑡)), and holidays (ℎ(𝑡)), represented by the equation:

𝑦 (𝑡) = 𝑔(𝑡) + 𝑠 (𝑡) + ℎ(𝑡) + 𝜖𝑡

The error term 𝜖𝑡 captures unmodeled changes. Prophet estimates

uncertainty in trend forecasts using Markov Chain Monte Carlo

(MCMC) to generate many plausible future trajectories. The MCMC

samples from the posterior distribution of model parameters, pro-

ducing a range of possible outcomes used to create multiple forecast

trajectories.

From Equations 2 and 4, we extracted the infection rates 𝛽v (𝑡)
for each variant, the recovery rates 𝛾 (𝑡), and the fatality rates 𝜆(𝑡).
Using these rates, we applied Prophet to predict the values one, two,

three, and four weeks into the future, using the previous month’s

data for training—step 4) in Figure 1. We then injected these new

values into the SI
V
RDS model to forecast the evolution of each

compartment for the next four weeks—steps 5) and 6) in Figure 1.

3 Results
Accurate forecasts rely heavily on regular data: linear increases

or decreases are easy to predict, while sudden changes are much

harder. Outbreaks and peak infection declines often show this un-

predictable behavior. The vertical dashed lines in Figure 2 indicate

the time point chosen to assess Sybil’s accuracy in Italy, Austria

and in the state of New York (U.S.). The selected points in Italy and

Austria are in the rising phase of an outbreak but near enough to the

peak for precise predictions, while the one selected in New York is

in the descending phase of the Alpha and the Other variant—the lat-
ter represents the initial SARS-CoV-2 variant, all the other variants

(e.g., Beta, Gamma, Kappa), and some noisy values in the surveil-

lance data. Sybil must accurately capture a change in the function’s

concavity. Figures from 3 to 7 show the obtained results. For the

first scenario in Italy and the scenario in Austria we also compared

Sybil’s and Prophet’s predictions—we chose Prophet since it is a

component of Sybil—, and we calculated the Root Mean Squared

Error (RMSE) and the standard deviation between the ground truth

and the predictions obtained using Sybil and all the considered

state-of-the-art approaches—see Table 1.

Figure 2: Daily active cases in Italy, Austria and in the state of New
York (U.S.) from February 2020 to May 2023 for the four main SARS-
CoV-2 strains.

In the first scenario in Italy we used data from December 13
th

2021 to January 13
th

2022 for training, forecasting daily infections

from January 14
th
through February 2022. In Italy, three variants

were active during this period: Omicron, Delta, and the Other vari-
ant. Figure 3-(a) shows daily infections for these variants, compar-

ing the ground truth with Sybil’s forecasts for one to four weeks.

The forecasts are highly accurate for predictions from seven to

twenty-one days and slightly anticipate the peak’s decline at four

weeks. Figure 3-(b) contrasts both approaches with the ground

truth. Prophet’s predictions miss the peak, diverging from real data

and failing to provide even a valid qualitative prediction, as they

increase while infections decrease.

In the scenario in Austria we consider the period from June 14
th
,

2022 to July 14
th
, 2022 as training data, and we forecast the daily

infections for the period July-August 2022 (starting from July 15
th
).

Figure 5 shows that Sybil’s predictions demonstrate remarkable

accuracy in foreseeing the infection’s future trajectory and how

well Sybil is able to capture the weekly seasonality presents in the

data, which is one of Sybil’s strengths.

Finally, the scenario in the state of New York (U.S.) shows that

Sybil i) can be used for predictions at different levels—country,

state (for U.S. states), regional, and city levels—, ii) can be used with
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Figure 3: Evolution of infections using Sybil in the first scenario in
Italy (the dashed line shows the prediction, while solid and dotted
lines represent the training data and the ground-truth values ex-
tracted from the surveillance data, respectively).

various data sources, iii) is able to make predictions on multiple

variants, and iv) can be used with a fixed recovery rate, to dispense

with the often unavailable data on recoveries. Here there are three

active variants: Alpha, Delta and the Other variant. In this case, we

used a fixed recovery rate
1

𝛾 equal to 14 days [7]—same for each

variant. Figure 6 shows that Sybil is also able to capture this flatter

trend, especially after one and two weeks.

4 Discussion
ML approaches excel at handling complexity by exploiting non-

trivial correlations often inaccessible with other tools. However,

they require substantial amounts of data, which may not always

be available from surveillance. Sybil addresses this issue by using

Prophet, a hybrid ML approach combined with simulations, and

by not treating virus spread forecasting as a single task. Specifi-

cally, by providing the compartmental model with parameters ex-

tracted from the real data or forecasts, there is no need to tune the

model and estimate the missing parameters, a resource-intensive

and situation-specific task, making Sybil easily deployable in new

scenarios as long as daily data requirements are met. Addition-

ally, compartmental models provide clear explanations of infection

trends, aiding in communication with policy-makers.

In the Results section, we presented Sybil’s forecasts for Italy,

Austria and the state of New York (U.S.), covering periods with

a significant changes in daily infection rates. Sybil’s predictions

Figure 4: Comparison between Sybil (green line) and Prophet (red
line) in the first scenario in Italy on the number of infections for the
Omicron variant using the same period as training data (black line)
comparing and contrasting the predictions against the surveillance
data for the period spanning the forecasting window (blue line).

were compared with surveillance data and the plain Prophet ap-

plication, demonstrating Sybil’s superior accuracy. For example,

Figure 4 highlights Sybil’s precise prediction of a peak that Prophet

alone missed. Sybil consistently outperformed other state-of-the-art

approaches—see Table 1—, particularly for forecasts spanning two

to four weeks. Even with minor or no changes in infection trends,

Sybil maintained robust performance.

To set up a continuous monitoring system we have to obtain

good predictions also in periods in which there is a new emerging

variant or a new exploding outbreak. In particular, in the second

scenario in Italy there are three active variants: Alpha, Delta and

the Other variant. The Alpha variant is ascending while the Other
variant is descending. Figure 7 shows how the one-week forecast

changes moving the training window from February 15
th
, 2021 to

March 20
th
, 2021 by three days and how Sybil is able to capture the

future evolution of infections after one week.

Sybil can be applied to make predictions in other countries, as

well as at regional and city levels. The methodology is very close to

a continuous monitoring system but depends on data availability—

e.g., surveillance data available for many countries worldwide re-

ports incorrect data on recoveries or does not report data to devise

daily recovery rates. For this reason, we have included the possibil-

ity to use a fixed recovery rate, to pre-process missing data, and to

work with weekly data.
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1 week 2 weeks 3 weeks 4 weeks

Approach mean (± std) mean (± std) mean (± std) mean (± std)

Italy

Sybil 96883 (± 34583) 99589 (± 63486) 190196 (± 186429) 380341 (± 326962)

Prophet 300266 (± 133638) 676381 (± 356182) 1226726 (± 703819) 1946285 (± 1158953)

ARIMA 196298 (± 106323) 502508 (± 290262) 984971 (± 602757) 1636012 (± 1022713)

SARIMA 196298 (± 106323) 502508 (± 290262) 984971 (± 602757) 1636012 (± 1022713)

Neural Prophet 299890 (± 130724) 675966 (± 354417) 1225983 (± 702251) 1945198 (± 1157424)

LSTM 857350 (± 447682) - - -

GRU 259534 (± 134814) 768775 (± 470723) 2362125 (± 1714411) -

EpiNow2 64997 (± 63032) 2417232 (± 161043) 2429904 (± 147212) 2322897 (± 245505)

1 week 2 weeks 3 weeks 4 weeks

Approach mean (± std) mean (± std) mean (± std) mean (± std)

Austria

Sybil 4383 (± 2052) 5237 (± 4589) 10463 (± 9874) 12605 (± 10515)

Prophet 3830 (± 969) 7230 (± 7104) 21879 (± 17776) 33265 (± 23837)

ARIMA 8689 (± 2818) 23719 (± 13307) 46740 (± 28039) 66184 (± 38009)

SARIMA 8689 (± 2818) 23719 (± 13307) 46740 (± 28039) 66184 (± 38009)

Neural Prophet 4027 (± 1149) 7145 (± 7055) 21636 (± 17674) 32931 (± 23698)

LSTM 3245 (± 2870) 7702 (± 6778) 22690 (± 17181) 33687 (± 22817)

GRU 4434 (± 3173) 5931 (± 5847) 19115 (± 15538) 28769 (± 20578)

EpiNow2 2696 (± 2695) 105529 (± 5070) 97197 (± 14127) 89894 (± 18865)

Table 1: RMSE with std between the ground truth used for validation and the obtained forecast with Sybil and the plain use of different
state-of-the-art approaches for the first scenario in Italy and the scenario in Austria. Values in bold represent minimum values, while underlined
values represent values close to minimum values. For LSTM and GRU we do not report the errors in some cases because they are too high.

Figure 5: Comparison between Sybil (green line) and Prophet (red
line) in the scenario in Austria on the number of infections for the
Omicron variant using the same period as training data (black line)
comparing and contrasting the predictions against the surveillance
data for the period spanning the forecasting window (blue line).

5 Conclusion
The COVID-19 pandemic underscores the critical need for advanced

tools to monitor and forecast infections. This paper presents Sybil,

a cutting-edge framework seamlessly integrating machine learning

and compartmental models. Sybil provides reliable, replicable, and

explainable forecasts, validated through extensive experimentation.

Sybil accurately predicts peaks and emerging outbreaks and inte-

grates variants, aiding policy-makers. By using only data from the

previous month, Sybil reduces the need for extensive training data,

enhancing computational efficiency. By combining data-centric and

analytic approaches, Sybil overcomes inherent limitations, making

Figure 6: Evolution of infections using Sybil in the scenario in the
state of New York (the dashed line shows the prediction, while solid
and dotted lines represent the training data and the ground-truth
values extracted from the surveillance data, respectively).

it a versatile tool not only for COVID-19 but also for other diseases,

empowering policy-makers to respond swiftly to emerging threats.

6 Future works
Possible future directions include trying different ML component in-

stead of Prophet—such as Neural Prophet [34], LSTM [19], GRU [10],

or other alternatives—, including vaccinations and hospitalizations

in the compartmental model, using stochastic simulations instead

of deterministic ones, and improving explainability.
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Figure 7: Evolution of 𝐼v (𝑡 ) compartments using Sybil in the second
scenario in Italy starting the forecast from February 15th, 2021 and
moving the training window by three days (the dashed line shows
the prediction, while solid and dotted lines represent the training
data and the ground-truth values extracted from the surveillance
data, respectively). All plots refer to a forecast one week into the
future.
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