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ABSTRACT

Large Vision-Language Models have demonstrated exceptional performance in
multimodal reasoning and complex scene understanding. However, these models
still face significant hallucination issues, where outputs contradict visual facts.
Recent research on hallucination mitigation has focused on retraining methods and
Contrastive Decoding (CD) methods. While both methods perform well, retraining
methods require substantial training resources, and CD methods introduce dual
inference overhead. These factors hinder their practical applicability. To address
the above issue, we propose a framework for dynamically detecting hallucination
representations and performing hallucination-eliminating edits on these represen-
tations. With minimal additional computational cost, we achieve state-of-the-art
performance on existing benchmarks. Extensive experiments demonstrate the
effectiveness of our approach, highlighting its efficient and robust hallucination
elimination capability and its powerful controllability over hallucinations. Our
code will be released.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) (Bai et al., 2023b; Dai et al., 2023; Liu et al., 2024b;
Zhu et al., 2023) have made remarkable advancements in recent years, demonstrating the ability
to generate context-aware language outputs based on visual understanding. By integrating visual
information into Large Language Models (LLMs), LVLMs have demonstrated strong capabilities in
tasks such as multimodal reasoning (Lu et al., 2022) and complex scene understanding (Luo et al.,
2024). However, LVLMs currently face the issue of hallucination, where the generated responses
contradict the actual visual content.

Recently, many approaches (Leng et al., 2024; Liu et al., 2024a; Yin et al., 2024b; Zhao et al., 2023)
have been proposed to mitigate hallucinations in LVLMs, which can be broadly categorized into
retraining methods and Contrastive Decoding (CD) methods. As illustrated in Fig. 1 (a), retraining
methods aim to alleviate hallucinations by constructing specialized datasets that target hallucination
phenomena and introducing new training paradigms (Jiang et al., 2024a; Fu et al., 2024; Lu et al.,
2023). In contrast, Fig. 1 (b) illustrates the paradigm of CD methods, which mitigate hallucination
during inference. The method can work by contrasting the output token probabilities of the original
response with those of a weakened variant that is more susceptible to hallucination. CD methods
effectively reduce hallucinations without requiring retraining or additional data (Leng et al., 2024;
Huo et al., 2024; Manevich & Tsarfaty, 2024).

Although both methods have shown promising results in hallucination mitigation, they still face some
notable limitations: 1) Retraining methods require substantial data collection and computational
resources for partial or full model fine-tuning. However, both the high cost of dataset construc-
tion and the heavy computational burden (i.e., they need to retrain the LVLM) limit the practical
applicability of these methods. 2) Contrastive decoding methods, while more efficient in design,
introduce high computational overhead. They require two forward passes per inference—one for
generating the original output and another for producing a deliberately weakened variant prone to
hallucination—which significantly increases latency. Moreover, they uniformly adjust the probability
of all tokens without distinguishing whether a token is actually prone to hallucination. For instance,
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Figure 1: Comparison of mainstream hallucination mitigation paradigms. (a) Retraining-based
methods: Constructing hallucination-specific datasets and training frameworks. (b) Contrastive
decoding methods: Comparing the original probability distribution with a perturbed one. (c) Our
method: Editing intermediate representations of LVLMs.

common tokens like “in,” “on,” or “from” rarely cause such issues. The one-size-fits-all adjustment
leads to unnecessary computation and may harm output coherence. 3) Finally, hallucinations are not
inherently harmful in tasks like creative writing (Jiang et al., 2024b), where appropriate hallucination
can enhance expressiveness. However, most existing methods lack the ability to control the degree of
hallucination, limiting their applicability in broader use cases where flexible generation is desired.

Recent studies on LLMs (Azaria & Mitchell, 2023; Chen et al., 2024b) have shown that a model’s
internal representations encode cues about the truthfulness of statements, enabling hallucination
detection without external knowledge. Building on these insights, recent research on LVLMs (Li
et al., 2024; Duan et al., 2025) demonstrates that similar techniques can be applied to multimodal
settings, where hallucination detection can be effectively performed through simple classifiers trained
on intermediate features. This suggests that authentic and hallucinatory features in LVLMs are clearly
separable in the latent space. This raises a natural question: Can we leverage this inherent separation
to effectively eliminate hallucinations?

Based on the above discussion, we propose HIRE (Hallucination-aware Intermediate Representation
Edit), a feature-editing framework that dynamically detects and mitigates hallucinations at the
intermediate representation level. As shown in Fig. 1 (c), instead of costly retraining, we propose to
mitigate hallucinations at the feature level without modifying the LVLM’s weights. Specifically, we
first introduce a module, Editor, that learns to identify and isolate hallucination-related components by
modeling both semantic invariance and hallucinatory differences between authentic and hallucinated
responses, while preserving the underlying semantic information. Moreover, since uniformly editing
all tokens leads to unnecessary computational overhead, we design a lightweight Router to selectively
edit only tokens with high hallucination risk. Lastly, to enable more flexible hallucination control, we
introduce a Hallucination Regulator, which allows dynamic control over hallucination levels via a
simple hyperparameter. Overall, our main contributions are:

1) We introduce a new paradigm for hallucination mitigation, which reduces fabricated content
by modifying intermediate representations without requiring retraining models or doubling
inference costs.

2) We propose a new framework, HIRE, that dynamically detects and edits intermediate
representations with high hallucination. Meanwhile, the proposed method can control the
degree of hallucinations to adapt to different user requirements by adjusting the editing
intensity.

3) We validate the effectiveness of the proposed method through extensive experiments and
achieve state-of-the-art performance on three benchmarks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 LARGE VISION-LANGUAGE MODELS

Building on the success of Large Language Models (LLMs) (Bai et al., 2023a; Brown et al., 2020;
Chiang et al., 2023; Touvron et al., 2023) and cross-modal learning (Radford et al., 2021; Dosovit-
skiy et al., 2020), Large Vision-Language Models (LVLMs) achieve breakthrough performance by
integrating visual perception and language generation capabilities, excelling in tasks such as image
captioning (Hossain et al., 2019), visual question answering (Antol et al., 2015), and multimodal
reasoning (Lu et al., 2022). A typical LVLM architecture comprises three core components: a visual
encoder for hierarchically image feature extraction like CLIP (Radford et al., 2021); a cross-modal
alignment module implemented via linear projection layers or advanced architecture like Q-Former
(Li et al., 2023b); a large language model fine-tuned through instruction tuning for context-aware
text generation. Despite these advancements, LVLMs inherently suffer from hallucination, where the
generated text exhibits semantic inconsistencies with the input visual content.

2.2 MITIGATING HALLUCINATIONS IN LVLMS

Recently, multiple strategies have been proposed to address hallucination in LVLMs, which can be
broadly categorized into retraining methods and Contrastive Decoding (CD) methods. Retraining
methods retrain LVLMs using carefully constructed datasets and training paradigms specifically
designed to address hallucinations. HA-DPO (Zhao et al., 2023) fine-tunes LVLMs using style-
consistent hallucination sample pairs to promote non-hallucinatory outputs. HDPO (Fu et al., 2024)
further targets diverse causes of hallucinations by constructing specialized preference pairs for visual
distraction, long-context generation, and multimodal conflicts. In contrast, CD methods mitigate
hallucinations by comparing the output distributions from the original and perturbed inputs, without
requiring any model parameter updates. VCD (Leng et al., 2024) introduces noise into visual
inputs to amplify hallucinations and suppresses them by contrasting perturbed and original token
distributions. SID (Huo et al., 2024) retains only the least important visual tokens after shallow
processing to amplify vision-text association hallucinations. Unlike previous works, we propose to
mitigate hallucinations by detecting and editing hallucinated representations, avoiding the need for
heavy training resources and the cost of dual inference.

3 PRELIMINARY

LVLMs have garnered significant attention due to their capacity to combine visual and textual
information for generation tasks. These models take both an image and a textual prompt as input.
Given an image, it is firstly processed by a visual encoder and a cross-modal interface. Subsequently,
the visual information v and the text-based query q are combined and fed into the LLM for further
processing. The LLM pθ is a parameterized model that maps the input to a probability distribution
over the next token. Generally, the LLM architecture typically consists of stacked Transformer layers
(Vaswani et al., 2017), each comprising multi-head self-attention and a feed-forward network (FFN).
After passing through all L layers, the final hidden states are projected into the vocabulary space to
produce a probability distribution yt over the next token. The above process can be formulated as:

yt ∼ pθ(yt|v, q, y<t), (1)

where yt is the t-th generated token, and y<t represents the previous tokens. However, the generated
sentences often suffer from hallucinations, where the output contradicts the real visual input.

4 METHOD

Current methods primarily employ retraining methods (Fu et al., 2024; Zhao et al., 2023) or CD
methods (Leng et al., 2024; Wang et al., 2024) to mitigate hallucinations. However, retraining
methods suffer from training resource burdens, while CD methods incur dual computational cost
during inference. Moreover, these approaches are incapable of achieving controllable generation of
hallucinations. Motivated by the separability of hallucinated and truthful representations in the latent
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Figure 2: Overview of HIRE. Our framework consists of two key components: the Editor, which
learns semantic invariance and hallucinatory difference through contrastive learning, and the Router,
which learns efficient editing strategies through DPO.

space (Li et al., 2024; Duan et al., 2025), we propose a feature editing approach HIRE. As shown in
Fig.2, HIRE dynamically identifies hallucination-prone components within representations and edits
them by projecting features onto low-hallucination directions in the representation space.

To eliminate hallucination through editing and identify optimal editing strategies, we must address two
key challenges: (1) how to determine the direction for obtaining hallucination-reduced representations,
and (2) how to identify which token representations require editing. For the first challenge, we
propose constructing hallucination-reduced representations by analyzing the divergence between
high-hallucination and low-hallucination representations and then editing along this divergence
direction. For the second challenge, our method autonomously learns effective editing strategies,
enhancing the success rate of edits while minimizing ineffective changes. The following sections will
detail our approach in terms of model architecture and optimization.

4.1 MODEL STRUCTURE

Editor. Based on the established correlation between hallucination phenomena and attention distri-
butions (An et al., 2024; Huo et al., 2024), we identify the attention-layer representations at each
transformer layer as our editing targets. The further analysis about the effect of editing different
layers can be found in Appendix D.1. However, due to the entanglement between the representations
of hallucinated and non-hallucinated texts (Jiang et al., 2024a), direct manipulation may disrupt
semantic integrity(Li et al., 2023c; Chen et al., 2024c; Zhang et al., 2024). Inspired by (Zhang et al.,
2024), we design a dual-encoder autoencoder Gϕ that enables hallucination suppression while pre-
serving semantics. Specifically, the Gϕ consists of a semantic encoder Esem, a hallucinatory encoder
Ehal, a multi-head attention module fattn, and a decoder D. Given the t-th token in attention-layer
representations from l-th layer htl, the input representations are processed by both encoders to yield
semantic representations htl,sem and hallucinatory representations htl,hal, which can be formulated as:

htl,sem = Esem (htl) , htl,hal = Ehal (htl) . (2)
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To ensure correct editing, we compute the hallucination-reduction direction δl by averaging token-
level differences between authentic and hallucinated representations within the hallucinatory subspace.
The semantic and hallucinatory representations are fused and decoded to yield an optimized editing
direction ∆tl, which is the direction of targeted feature editing. The ∆tl are obtained as follows:

∆tl = D (htl,sem + fattn (htl,sem, htl,hal + δl))−D (htl,sem + fattn (htl,sem, htl,hal − δl)) , (3)

where the fattn denotes an attention fusion of htl,sem (serving as query) and htl,hal (serving as key and
value). Overall, the δl aims to identify hallucination-reduced directions that are irrelevant to specific
tokens within the hallucinatory subspace, while the ∆tl leverages the δl to obtain token-specific
hallucination-reduced directions in the original representation space.

Router. To avoid unnecessary editing operations on hallucination-free representations, we introduce
a lightweight module, Router Rθ. Motivated by the observed layer redundancy in LVLMs, where
deeper layers tend to exhibit high similarity (Wu et al., 2023; Suo et al., 2024), as well as by recent
findings indicating that shallow layers preserve more informative representations (Wang et al., 2025;
Chen et al., 2024a), we employ an MLP that takes the first-layer transformer representation ht0

as input and produces a binary decision c. This signal determines whether editing is required: if
c = 1, the Editor is activated for all subsequent layers; otherwise, no editing is performed. Further
experiments exploring alternative layer-wise decision strategies are provided in Appendix D.2]. With
an editing strength α introduced, the editing process can be formulated as follows:

htl,aug =

{
htl + α ·∆tl if c = 1,

htl if c = 0,
(4)

where htl,aug denotes edited representations, and the α ∈ [−1, 1] controls the direction and intensity
of editing. A positive α suppresses hallucination by steering features toward low-hallucination
directions, while a negative α amplifies them, enabling flexible control over hallucination levels.

4.2 MODEL OPTIMIZATION

The above computation reveals that the Editor Gϕ and the Router Rθ are critical to detecting and
correcting hallucination-related features. However, optimizing them is challenging due to the lack
of labeled training data. Therefore, we introduce contrastive learning and DPO strategy to train the
Editor Gϕ and the Router Rθ, respectively. To disentangle hallucinatory patterns from semantic
content, we use contrastive learning to optimize the Editor Gϕ. Specifically, Hl,sem = {htl,sem}Tt=1
(T denotes the number of tokens) should have high similarity to semantically identical representations
and low similarity to those with different meanings. Conversely, Hl,hal = {htl,hal}Tt=1 exhibits high
similarity within group similarity (hallucinated or authentic), but low cross-group similarity regardless
of token semantics. To optimize the Router Rθ, we maximize the likelihood ratio between effective
edits and ineffective ones by introducing DPO (Rafailov et al., 2023), which learns from pairwise
data by increasing the likelihood of preferred responses while suppressing less desirable ones.

4.2.1 DATA CONSTRUCTION

Based on the finding that visual uncertainty amplifies hallucinations in LVLMs (Leng et al., 2024),
we obtain authentic and hallucinated representations by pairing identical textual inputs with both
intact and visually-degraded images. The positive sample uses the original image to produce more
faithful outputs, while the negative sample uses a noised version of the image, weakening visual
grounding and increasing hallucination. The resulting intermediate representations are denoted as
H+

l = {h+
tl}Tt=1 and H−

l = {h−
tl}Tt=1. Our framework is also compatible with other hallucination

induction techniques; comparative experiments are provided in the Appendix D.3.

To obtain pairwise preference data, we generate N candidate captions for each image by applying
different editing action sequences during greedy decoding, where each sentence Sn of length Tn

has corresponding representations {h0t}Tn
t=1 and editing decision trajectory {ct}Tn

t=1 . We quantify
hallucination severity using the CHAIRI metric (Rohrbach et al., 2018). The most and least faithful
sentences are used to construct preference pairs (h+, c+) and (h−, c−) for the Router training.
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4.3 TRAINING PROCESS

Editor. We apply contrastive learning to both the semantic and hallucinatory encoders. The semantic
encoder aims to preserve semantic information by maximizing the similarity between corresponding
tokens in positive and negative samples, while minimizing the similarity for non-matching tokens. In
contrast, the hallucinatory encoder focuses solely on hallucination-related signals and is trained to
separate positive and negative samples regardless of their semantic similarity. The loss formulations
are defined as follows, where negative samples are formulated similarly:

L+
tl,sem = LInfoNCE

(
h+
tl,sem, h

−
tl,sem, H

+
l,sem

)
,

L+
tl,hal = LInfoNCE

(
h+
tl,hal, H

+
l,hal, H

−
l,hal

)
,

(5)

where LInfoNCE (Oord et al., 2018) encourages the anchor to be closer to positive samples than to
negatives, h±

tl,sem and h±
tl,hal denote the semantic and hallucinatory embeddings of token t at layer

l, and H±
l,sem, H±

l,hal are the sets of token embeddings h±
tl,sem and h±

tl,hal. The learned semantic and
hallucinatory representations are fused through a multi-head attention fattn and decoded to predict the
original feature. To ensure both faithful reconstruction and effective editing, a reconstruction loss and
an editing loss can be formulated as follows, where negative samples are calculated similarly:

L+
tl,recon = MSE(h+

tl , D(h+
tl,sem + fattn(h

+
tl,sem, h

+
tl,hal)),

L+
tl,edit = MSE(h+

tl , D(h−
tl,sem + fattn(h

−
tl,sem, h

+
tl,hal)),

(6)

where h±
tl denote the original representations of the token t at layer l of positive and negative samples.

Averaging the sum of four loss terms across tokens and layers yields the final training objective Le.

Router. To guide the model towards optimal editing strategies, we adopt Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023), which reformulates reward maximization as a policy likelihood
ranking problem. Unlike standard DPO that requires pairwise comparisons between a learnable
policy πθ and a reference model πref, our implementation eliminates the reference model based on
recent findings (Meng et al., 2024) demonstrating its removability. The simplification is suitable for
training the Router from scratch rather than fine-tuning an existing policy. Given paired state-action
sequences (h+, c+) (preferred) and (h−, c−) (non-preferred), the optimization objective becomes:

Lr = −E(h,c)

[
log σ

(
β
(
log πθ(h

+, c+)− log πθ(h
−, c−)

))]
, (7)

where Lr denotes the Router’s training loss, πθ represents the learnable policy (Router), σ(·) is the
sigmoid function, and β = 0.1 serves as a scaling factor regulating optimization intensity. Finally,
the total loss for optimizing both the Editor and the Router can be formulated as:

Ltotal = Le + Lr. (8)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate our method on three benchmarks: CHAIR (Rohrbach et al., 2018), POPE (Li
et al., 2023d), and AMBER (Wang et al., 2023). CHAIR measures object hallucination in image
captions, calculating the proportion of objects mentioned in the text but missing from the ground-truth
annotations. It provides object-level (CHAIRI) and sentence-level (CHAIRS) scores, with lower
values indicating fewer hallucinations. We evaluate on 500 images randomly sampled from the
MSCOCO (Lin et al., 2014) dataset. POPE assesses object hallucination in multimodal question
answering using three object-sampling strategies (random, popular, adversarial) and binary queries
like “Is there a <object> in the image?”. Evaluation is based on 9,000 question-answer pairs from
MSCOCO. AMBER evaluates hallucinations in LVLMs, using 1,004 generative instances and 14,216
discriminative instances annotated for existence, attribute, and relation hallucinations, providing a
comprehensive framework for hallucination identification and classification.
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Table 1: Evaluation results on the CHAIR benchmark with LLaVA-1.5.

Method LLaVA-1.5(Liu et al., 2024b) InstructBLIP(Dai et al., 2023)

CHAIRS ↓ CHAIRI ↓ TFLOPs↓ CHAIRS ↓ CHAIRI ↓ TFLOPs↓
baseline 51.3 16.8 10.23 51.0 24.2 2.77

Max new tokens set to 512

OPERA(Huang et al., 2024) 45.2 12.7 - 47.4 12.9 -
SID(Huo et al., 2024) 44.2 12.2 - 42.3 12.4 -
ICD(Wang et al., 2024) 47.4 13.9 20.63 46.3 15.3 5.64
VCD(Leng et al., 2024) 46.8 13.2 20.46 44.0 13.6 5.61
M3ID(Favero et al., 2024) 48.3 13.5 20.71 45.2 13.9 5.70
AVISC(Huo et al., 2024) 45.2 13.4 20.08 43.9 13.5 5.63
Octopus(Suo et al., 2025) 39.2 11.1 21.39 40.6 12.1 5.87
Projectaway(Jiang et al.) 42.0 12.2 - 43.8 12.5 -
VTI(Liu et al., 2025) 35.8 11.1 - 43.4 11.8 -
Ours(HIRE) 30.2 9.7 11.81 39.0 11.5 3.45

Max new tokens set to 64

baseline 20.4 6.2 8.91 25.4 8.2 1.89
M3ID+DPO(Favero et al., 2024) 13.5 5.7 - - - -
Nullu(Yang et al., 2025) 17.0 5.9 - - - -
Ours (HIRE) 15.2 5.4 9.18 14.8 5.4 2.32

Implementation Details. We train the Editor and the Router on the training split of the MSCOCO
dataset, using 2,000 randomly selected samples. The relationship between performance and data
size is shown in Appendix D.4. Training is performed for 10 epochs with a batch size of 1. For the
Editor, we use the AdamW (Loshchilov & Hutter) optimizer (learning rate 1× 10−3) and a Cosine
Annealing scheduler (a minimum learning rate of 1 × 10−5). For the Router module, we set the
group size to 10 and use the Adam optimizer (Kingma & Ba, 2014) (learning rate 1× 10−4) and a
Cosine Annealing scheduler (a minimum learning rate of 1 × 10−6). We report the results of our
method with a consistent edit strength α set to 1. All experiments were performed on four 3090
GPUs. Further discussions on the different training configuration are provided in the Appendix D.5.

5.2 RESULTS ON BENCHMARKS

We conduct experiments on LLaVA-1.5 (Liu et al., 2024b) and InstructBLIP (Dai et al., 2023) across
three widely used benchmarks: CHAIR (Rohrbach et al., 2018), POPE (Li et al., 2023d), and AMBER
(Wang et al., 2023), with related results from (Suo et al., 2025; Xing et al., 2024; Huo et al., 2024;
Jiang et al., 2024a; Liu et al., 2025; Jiang et al.). Overall, our method consistently outperforms existing
approaches while maintaining efficient inference. As shown in Table 1, it reduces sentence-level and
instance-level hallucinations by ∼40% and ∼50% respectively on both LLaVA-1.5 and InstructBLIP
in the long description scene (max new tokens set to 512). Additionally, in the short description
scene (max new tokens set to 64), our method also demonstrates reliable hallucination mitigation
capabilities. Table 2 shows that our method achieves improvements of 1.48/3.79 and 0.48/1.99 over
the state-of-the-art method Octopus(Suo et al., 2025) on the two models on the accuracy and F1
score, demonstrating superior performance in discriminative tasks. As shown in Table 3, our method
achieves the highest AMBER scores-an indicator that averages performance across generative and
discriminative tasks. Compared to the baseline, it significantly improves AMBER scores by 7.54
on LLaVA-1.5 and 6.38 on InstructBLIP. In addition, benefiting from the lightweight nature of our
editing strategy and the selective token editing enabled by the Router, our method introduces minimal
inference overhead. In summary, our approach effectively mitigates hallucination in both generative
and discriminative tasks, with only a small additional overhead. Additional analysis and results on
generalization and stability can be found in Appendix D.6 and Appendix D.7.
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Table 2: Evaluation results on the POPE benchmark on the MS COCO datasets with LLaVA-1.5 and
InstructBLIP.

Method Random Popular Adversarial ALL TFLOPs↓Acc. F1 Acc. F1 Acc. F1 Acc. F1

LLaVA-1.5-7B 83.77 81.94 82.57 80.86 79.77 78.47 82.04 80.42 8.13

Referenced Results

+HACL 88.59 88.70 87.84 87.36 86.54 85.73 87.66 87.26 -
+VTI 89.50 88.89 87.36 86.69 82.57 82.11 86.48 85.90 -

Comparable Results

+ICD 87.51 83.28 83.15 83.91 79.13 80.41 83.26 82.53 -
+ConVis 84.70 - 83.20 - 81.10 - 83.00 - -
+OPERA 84.40 - 83.40 - 81.20 - 83.00 - -
+VCD 85.43 83.99 83.17 81.94 80.27 79.49 82.96 81.81 16.26
+M3ID 86.13 81.85 82.07 80.77 79.50 78.15 82.57 80.26 16.26
+AVISC 84.67 82.21 83.67 81.27 81.83 79.55 83.39 81.01 16.26
+Octopus 87.51 85.40 85.20 84.19 82.22 81.44 85.79 83.44 16.34
+Ours 90.37 90.25 87.70 87.86 83.73 83.56 87.27 87.23 10.62

InstructBLIP 81.53 81.19 78.47 78.75 77.43 78.00 79.14 79.31 1.08
+ICD 84.36 83.82 77.88 78.70 75.17 77.23 79.14 79.92 -
+OPERA 84.57 83.74 78.24 79.15 74.59 76.33 79.13 79.74 -
+VCD 82.03 81.56 79.13 79.20 77.23 77.72 79.46 79.49 2.16
+M3ID 82.33 81.53 80.90 80.42 78.53 78.49 80.59 80.15 2.16
+AVISC 86.03 84.41 84.27 82.77 81.83 80.67 84.04 82.62 2.16
+Octopus 86.63 85.30 84.90 83.55 82.83 81.43 84.79 83.43 2.27
+Ours 90.30 89.83 84.03 84.25 81.47 82.17 85.27 85.42 1.25

Table 3: Evaluation results on the AMBER benchmark with LLaVA-1.5 and InstructBLIP.

Model Setting Generative Discriminative AMBER↑
CHAIR↓ Cover↑ Hal↓ Cog↓ TFLOPs↓ Acc.↑ F1↑ TFLOPs↓

LLaVA-1.5

baseline 8.0 44.5 31.0 2.2 9.89 67.00 71.10 8.07 81.58
VCD 6.7 46.5 27.8 2.0 19.55 67.30 71.10 16.14 82.20
M3ID 6.0 48.9 26.0 1.5 19.81 67.25 70.90 16.14 82.25
AVISC 6.3 46.6 25.6 2.0 19.45 70.70 75.45 16.14 84.60
Octopus 4.8 49.2 23.4 1.2 20.48 76.70 82.70 16.35 88.95
Ours 4.6 49.9 20.4 1.5 11.73 79.20 82.83 10.58 89.12

InstructBLIP

baseline 8.4 46.4 31.1 2.6 2.93 68.20 74.60 1.04 83.10
VCD 7.6 47.7 29.9 2.2 6.11 69.65 75.90 2.08 84.15
M3ID 6.9 47.2 27.5 2.2 5.87 69.05 75.25 2.08 84.20
AVISC 6.7 46.7 28.0 2.6 6.09 72.60 78.60 2.08 85.95
Octopus 6.1 48.5 22.2 1.3 6.47 74.00 79.70 2.19 86.80
Ours 5.3 49.3 23.8 1.8 3.57 78.34 84.26 1.21 89.48

5.3 HALLUCINATION REGULATOR

Recognizing that hallucinations can have positive effects in certain scenarios like creative writing
(Jiang et al., 2024b), it is important to have a controllable generation of hallucinations. However,
existing methods exhibit unstable hallucination control capabilities. Detailed experimental results
are provided in Appendix D.8. Hence, we conduct experiments on the edit strength hyperparameter
α in formulation 4 to investigate its critical role in hallucination control for LVLMs. As shown
in Figure 3, we conduct experiments with different values of α, ranging from -0.7 to 1.0. It can
be found that a positive α value can mitigate hallucination at both sentence-level and object-level
granularities, and the reduction of hallucination increases with higher values. Conversely, negative
α values demonstrate a proportional amplification effect on hallucination rates, with lower values
inducing stronger hallucinatory responses. From the figure, it can be observed that our method has
excellent controllability in hallucination generation.
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Table 4: Ablation study on the impact of encoder architecture and the Router module. Results show
the effects on hallucination mitigation performance and computational cost.

Semantic encoder Hallucinatory encoder Router CHAIRS↓ CHAIRI↓ TFLOPs↓
1 51.3 16.8 10.23
2 ✓ 37.0 12.2 -
3 ✓ 48.6 13.0 -
4 ✓ ✓ 30.4 9.5 16.23
5 ✓ ✓ ✓ 30.2 9.7 11.81

Q: Please describe this 

image in detail.

Ours: The image features a baby sitting on a 

blanket on the grass, smiling and holding a cell 

phone. The baby is wearing only a diaper and is 

surrounded by a red blanket. The baby appears to 

be enjoying the outdoors, possibly in a park. The 

cell phone is placed near the baby, possibly for 

entertainment or communication purposes.

LLaVA-1.5: The image features a baby sitting on 

a blanket in a park, wearing only a diaper. The 

baby is holding a cell phone in its hands, possibly 

playing with it or simply enjoying the outdoor 

environment. In the background, there are a few 

other people present, possibly enjoying the park 

as well. Additionally, there are two bottles placed 

near the baby, possibly belonging to the baby or 

other visitors in the park.

LLaVA-1.5: The image captures a skateboarder 

performing a trick in mid-air at a skate park. The 

skateboarder is in the center of the scene, with 

their skateboard visible beneath them. There are 

several other people in the park, watching the 

skateboarder's performance. Some of them are 

standing closer to the skateboarder, while others 

are further away. A bench can be seen in the 

background, providing a place for spectators to 

sit and enjoy the skateboarding action.

Ours: The image captures a skateboarder 

performing a trick in mid-air at a skate park. The 

skateboarder is in the middle of the action, 

showcasing their skills. There are several other 

people in the scene, some of them watching the 

skateboarder's performance. The skate park 

features a variety of ramps and structures, 

providing an exciting and challenging 

environment for the skateboarders to practice 

their tricks. The scene is lively, with people 

enjoying the thrilling atmosphere and the 

skateboarder's impressive display of talent.

Q: Please describe this 

image in detail.

Q: Is there a pizza 

in the image?

Answer: Yes 

LLaVA-1.5: No

Ours: Yes

Q: Is there a cup 

in the image?

Answer: No 

LLaVA-1.5: Yes

Ours: No

Figure 4: Some examples of generative and discriminative tasks on the MSCOCO dataset, with
hallucinated content highlighted in red and newly added correct content displayed in green.

5.4 ABLATION STUDY

Figure 3: Control hallucination generation via
α.

We conduct ablation studies on CHAIR using LLaVA-
1.5 to validate each module’s contribution. As shown
in Table 4, the original model’s results are provided
first. Adding only the semantic encoder or hallucina-
tory encoder individually yields limited gains. Com-
bining both achieves the lowest hallucination rate,
demonstrating their complementary roles. Further-
more, integrating the Router reduces computational
cost by ∼30% without performance loss, underscor-
ing its efficiency. These results confirm the necessity
of both encoders for effective hallucination mitigation
and the Router’s role in maintaining efficiency.

5.5 QUALITATIVE EVALUATION

To better illustrate the effectiveness of our method, Fig. 4 presents representative examples from both
generative tasks and discriminative tasks on the MSCOCO dataset. Hallucinated content in the figure
is highlighted in red. It can be observed that our method eliminates hallucinations and provides a
more accurate interpretation of the image. More results are provided in the Appendix E.

Figure 5: Distribution of original, halluci-
nated, and edited representations.

To demonstrate our method’s effectiveness in sup-
pressing hallucination within the representation
space, Figure 5 compares distributions of non-
hallucinated (green), hallucinated (red), and edited
(blue) feature. Non-hallucinated features are ex-
tracted using the image and its ground-truth caption.
Following Wang et al. (2024), we introduce halluci-
nation into features via a disturbed prompt and hallu-

9
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cinated caption to avoid image perturbation bias. Edited representations result from applying our
Editor to hallucinated ones. The left subfigure shows clear separation between hallucinated and
non-hallucinated clusters in the hallucinatory subspace. On the right, edited representations shift
toward the non-hallucinated cluster and exhibit overlap and converge, confirming that our editing
effectively reduces hallucination.

5.6 COMPATIBILITY WITH STEERING-BASED METHODS

Several steering-based methods exist for hallucination mitigation. For example, Nullu (Yang et al.,
2025) operates by editing model weights and Projectaway (Jiang et al.) removes hallucinations from
image features. In contrast, our method focuses on the textual feature space and further making
fine-grained editing decisions per token. Hence, our approach can be integrated with other steering-
based methods, offering a composite solution. Following the experimental settings of these methods,
we evaluate the combined performance using the CHAIR metric across different max new token
constraints. As shown in Table 5 and Table 6, our method can be combined with steering-based
methods to yield stronger hallucination suppression.

Table 5: Evaluation results on the CHAIR
with Max New Tokens set to 512.

Method CHAIRS↓ CHAIRI↓
LLaVA-1.5-7B 51.3 16.8
+Projectaway 43.8 12.5
+Ours 30.2 9.7
+Ours & Projectaway 27.6 8.3

Table 6: Evaluation results on the CHAIR
with Max New Tokens set to 64.

Method CHAIRS↓ CHAIRI↓
LLaVA-1.5-7B 20.4 6.2
+Nullu 17.0 5.9
+Ours 15.2 5.4
+Ours & Nullu 13.2 4.6

5.7 EVALUATION ON GENERAL CAPABILITIES

We evaluate the general capabilities of the model equipped HIRE, using LLaVA-1.5-7B as a repre-
sentative model on two challenging benchmarks: MME (Yin et al., 2024a) and SEED-Bench (Li
et al., 2023a).As shown in Table 7, it can be observed that our method preserves the model’s general
capabilities on these benchmarks.

Table 7: Comparison of general capabilities on MME and SEED-Bench.

Method MME ↑ SEED ↑
LLaVA-1.5 7B 1751.64 64.3
+Ours 1751.99 63.8

6 CONCLUSION AND LIMITATIONS

In this paper, we propose a novel adaptive feature-editing framework that dynamically detects and
calibrates hidden-layer activations to either suppress or enhance hallucinations, forming flexible,
input-aware workflows. Our method operates in a single inference pass without updating parameters
of LVLMs, offering exceptional efficiency while maintaining strong performance. It is also easily
extendable to tasks requiring flexible control over hallucinations. We expect that this work will
provide a general, practical paradigm for mitigating hallucination across diverse scenarios.

Despite these advantages, we note a limitation of the current framework. Our method employs all
tokens and layers for training, a process that can be susceptible to noise. Training selectively on the
most critical hidden states presents a significant opportunity for enhancing data efficiency. This work,
as an initial step, aimed primarily at validating the feasibility of the proposed editing paradigm. We
will explore the aforementioned direction in future work.
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A DETAILED EXPERIMENTAL SETTINGS

A.1 VISUAL PERTURBATION METHODS

We follow VCD (Leng et al., 2024) to apply visual perturbations by introducing noise to images. For
LLaVA-1.5, we set the noise step to its maximum value of 999, which lies within its supported range
of 0–999. For InstructBLIP, considering that the Q-former module relies on interactions between
textual and visual inputs, excessively corrupted images can introduce unwanted degradation into the
representations. To mitigate this, we limit the noise step to 600.

B LICENSE OF ASSETS

LLaVA-1.5 (Liu et al., 2024b) is available under the Apache-2.0 License and InstructBLIP (Dai et al.,
2023) is available under BSD-3-Clause License. CHAIR is under the BSE 2-Clause License. POPE
is available under the MIT License and AMBER is available under Apache-2.0 License.

C EVALUATION METRIC

AMBER. We follow the experimental setup in (Suo et al., 2025). In the generative task of AMBER,
we report four metrics: CHAIR, Cover, Hal, and Cog.

CHAIR measures the proportion of objects mentioned in the generated sentences but not present in the
ground-truth labels. Specifically, given the list of generated objects Gobj = {objG1 , objG2 , . . . , objGn }
and the list of annotated objects Aobj = {objA1 , objA2 , . . . , objAn }. CHAIR is calculated by the
following formula:

CHAIR = 1− len(Gobj ∩Aobj)

Gobj
. (9)

Cover measures the ratio of between the correctly mentioned objects in responses and the total num
of objects in the annotations:

Cover =
len(Gobj ∩Aobj)

len(Aobj)
. (10)

Hal indicates whether a response contains hallucination. For each response, Hal is defined as 1 when
the CHAIR score is greater than 0, and 0 otherwise, as shown below:

Hal = I(CHAIR > 0), (11)

Cog measures the alignment between model-generated hallucinations and those identified by hu-
man cognition. Specifically, AMBER defines a target set of hallucinated objects as Hobj =
{objH1 , objH2 , . . . , objHm}. The Cog score is computed as the proportion of hallucinated objects
generated by the model that also appear in the human-annotated set, as shown below:

Cog =
|Gobj ∩Hobj |

|Gobj |
. (12)

D ADDITIONAL EXPERIMENTS

D.1 EDIT LAYERS FOR HIRE’S EDITOR

To investigate the influence of different editing layer, Table 8 shows the hallucination mitigation
performance with three different editing layer sets, where shallow layers represent the editing layers
of 0∼9, middle layers represent the editing layers of 10∼19, deep layers represent the editing layers
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Table 8: Evaluating the impact of editing different layers on the CHAIR benchmark.

Edit layer CHAIRS ↓ CHAIRI ↓
baseline 51.3 16.8
shallow (0∼9) 42.0 13.0
middle (10∼19) 36.0 10.7
deep (20∼29) 46.8 14.1
HIRE (0∼31) 30.2 9.7

Table 9: Performance of different router strategies evaluated by hallucination (CHAIR) and text
quality (BLEU).

Router type CHAIRS ↓ CHAIRI ↓ BLEU ↑ training time ↓
LLaVA-1.5 51.3 16.8 17.47 -

I (a unified router) 30.6 9.6 20.53 11h
II (layer-specific routers) 30.4 9.6 20.65 14h

III (initial embedding-based decision) 46.2 12.9 16.93 8h
Ours (first layer embedding-based decision) 30.2 9.7 20.59 8h

of 20∼29. The results indicate that editing the middle layers plays the most significant role in
mitigating hallucinations, while editing shallow layers has a moderate effect. Editing deep layers,
however, shows minimal contribution to performance gains. However, editing all layers achieves
superior performance compared to editing only partial layers.

D.2 EXPERIMENTS ON LAYER-WISE CONTROL

We conduct comparative studies about router decision strategies, comparing with: (I) a unified router
shared across all tokens and layers; (II) layer-specific routers: each layer owns an independent
router; (III) initial embedding-based decision: the router determines editing decisions for all
subsequent layers based solely on the input embedding of the LVLM. To evaluate the quality of
responses generated by our method, we further incorporate the BLEU metric (Papineni et al., 2002)
(where higher scores indicate better sentence quality) to assess semantic integrity and coherence.
The corresponding results are summarized in Table 9. We observe that both Strategy I and Strategy
II achieve performance comparable to our first layer embedding-based decision approach in terms
of hallucination mitigation. However, our method requires only a single router decision during the
forward pass, leading to a reduction in training time by approximately ∼30%. Furthermore, compared
to Strategy III, our first layer-based decision mechanism more effectively reduces hallucinations.
This improvement may be attributed to the fact that the first-layer representations process the input
embeddings into activations that are more discriminative for hallucination detection.

D.3 COMPARISON OF DIVERSE HALLUCINATION INDUCTION METHODS

We conduct a comparative experiment to validate the robustness of our method to different hallu-
cination induction approaches. Specifically, we introduce hallucinations by providing the model
with confusing instructions (Wang et al., 2024) during training. Table 10 shows that perturbing the
instructions given to LVLMs can be effectively integrated with our approach, yielding comparable
performance in hallucination mitigation. This indicates that our method is robust against different
hallucination-inducing strategies.

D.4 DATA SIZE FOR HIRE’S EDITOR TRAINING

To investigate the impact of training data size on model performance, we report hallucination
mitigation results under varying training scales on the CHAIR benchmark. As shown in Fig. 6, the
model’s ability to mitigate hallucinations plateaus when the dataset size reaches about 2500 samples.
As a result, performance cannot be further improved by large-scale training beyond this range. We
argue that our approach requires no adjustments to the original LVLM parameters. Rather, it learns
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Table 10: CHAIR evaluation of HIRE trained with different hallucination induction methods.

Method CHAIRS ↓ CHAIRI ↓
LLaVA-1.5 51.3 16.8

Instruction perturbation 32.4 8.7
Visual perturbation 30.2 9.7

Figure 6: Performance of HIRE on CHAIR benchmark under different training data sizes.

an editing direction by training an editor and a router ( 0.05B parameters). Therefore, only a small
number of samples is required to achieve effective hallucination mitigation with our method.

D.5 HYPERPARAMETER SENSITIVITY ANALYSIS

To validate the training stability, we conduct additional experiments by retraining the model with
different learning rates and scaling factors β, all without using a learning rate scheduler. As shown in
Table 11, it can be found that our method shows low sensitivity to hyperparameters. Although certain
settings can yield better performance, our primary focus is not to achieve SOTA results through
hyperparameter tuning. Instead, we aim to provide the community with a novel perspective to rethink
feature-level hallucination mitigation.

Table 11: Analysis of training stability under different hyperparameters.

Setting CHAIRs ↓ CHAIRi ↓
Varying Learning Rate.
LLaVA-1.5-7B 51.3 16.8
+Ours (1e-3) 30.2 9.7
5e-4 32.4 12.1
5e-5 33.4 10.2
Varying Scaling Factor β.
0.05 31.6 10.1
+Ours (0.1) 30.2 9.7
0.15 32.4 10.3
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Table 12: Evaluation on CHAIR and AMBER across model types and scales

Model CHAIR AMBER

CHAIRs ↓ CHAIRi ↓ CHAIR ↓ Cover. ↑ Cog. ↓ HalRate ↓
Qwen-2.5-VL 46.2 9.6 8.8 59.9 3.4 46.6

Qwen-2.5-VL+Ours 35.6 8.1 6.5 60.3 2.1 36.8
TinyLLaVA-1.5B 58.6 17.5 11.2 50.8 6.2 48.0

TinyLLaVA-1.5B+Ours 36.6 11.7 8.6 48.7 2.6 35.6
LLaVA-1.5-13B 43.8 12.3 6.3 51.2 3.1 30.9

LLaVA-1.5-13B+Ours 29.8 8.2 4.6 49.0 1.7 22.0

Table 13: More results on the GQA and A-OKVQA datasets of POPE.

Dataset Method Random Popular Adversarial All

Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

A-OKVQA

LLaVA-1.5 84.93 84.07 80.90 80.64 74.80 75.59 80.21 80.10
+VCD 85.53 85.12 81.17 81.46 75.03 76.72 80.58 81.10
+M3ID 85.06 84.30 80.90 80.77 74.80 76.15 80.25 80.41
+AVISC 87.33 86.14 85.03 84.03 79.27 79.16 83.88 83.11
+Ours 88.90 89.20 86.50 86.52 78.07 79.70 84.49 85.14

GQA

LLaVA-1.5 84.80 84.16 79.37 79.64 76.00 76.89 80.08 80.23
+VCD 85.63 85.38 78.73 79.78 76.40 78.15 80.25 81.10
+M3ID 84.80 84.23 79.23 79.63 75.83 76.93 79.95 80.26
+AVISC 87.40 86.21 83.33 82.54 80.37 80.00 83.70 82.92
+Ours 88.87 89.21 84.67 85.21 80.63 82.07 84.72 85.50

D.6 EVALUATING GENERALIZATION ABILITY ON DIVERSE MODELS AND DATASETS

To validate the generalization ability of our method, we present more experimental results on Qwen-
2.5-VL-3B (Bai et al., 2025) and different scales of LLaVA series (Zhou et al., 2024; Liu et al.,
2024b). It can be observed in Table 12 that our method still performs well across different types and
scales of LVLMs.

We further present evaluation results on the GQA (Hudson & Manning, 2019) and A-OKVQA
(Schwenk et al., 2022) datasets under the POPE benchmark in Table 13, comparing against previously
reported results from Woo et al. (2024). Our method achieves consistent improvements in both
accuracy and F1 score across these datasets.

We further conduct a cross-dataset experiment to evaluate the generalization ability of our method.
Specifically, we randomly select 2,000 samples from Visual Genome (Krishna et al., 2017) (excluding
overlaps with MSCOCO) to retrain our model and evaluate it on the MSCOCO dataset. Results in
Table 14 show that our model maintains strong hallucination suppression performance even when
trained on Visual Genome.

D.7 METHOD STABILITY ANALYSIS

To evaluate the stability of our method, we train the model five times with distinct random seeds and
assess its performance on the CHAIR benchmark. As shown in Table 15, our approach consistently
achieves stable results across different runs. On average, our method reduces CHAIRS and CHAIRI

by 20.8 and 7.4, respectively, with variances as low as 1.3 and 0.31. These results demonstrate the
high stability and reliability of our approach.

D.8 HALLUCINATION CONTROLLABILITY OF EXISTING METHODS

We focus on evaluating the hallucination control capability of post-hoc methods, specifically Con-
trastive Decoding (CD) and feature steering methods, as retraining-based methods lack this property.
The evaluation is conducted on the CHAIR benchmark under a controlled setting (max new tokens
= 512) using VCD Leng et al. (2024) and VTI Liu et al. (2025) as representative methods. The
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Table 14: Evaluation on the generalization ability of HIRE

Model CHAIRS ↓ CHAIRI ↓
LLaVA-1.5 51.3 16.8

+Ours (trained on VG 100K) 30.6 10.5
+Ours (trained on MSCOCO) 30.2 9.7

Table 15: Evaluation on the stability of HIRE

CHAIRS ↓ CHAIRI ↓
baseline 51.3 16.8

1 32.0 9.9
2 30.0 9.3
3 31.6 9.6
4 28.4 9.1
5 30.4 9.1

Average 30.5±1.3 9.4±0.31

results are shown as Fig 7 and Fig 8.It can be observed that the CD-based method exhibits unstable
performance in hallucination control. While VTI demonstrates a certain level of hallucination control
capability, its performance exhibits significant fluctuations as the parameter varies. To quantify the
effect of hallucination control, we employ coefficients of determination R2 (Draper, 1998) as an
evaluation metric. Our method demonstrate superior hallucination control capabilities, with R2 scores
of 0.97 on CHAIRs and 0.96 on CHAIRi, compared to VTI’s scores of 0.92 and 0.87, respectively.

Figure 7: Control hallucination generation
via the hyperparameter α in VCD (Leng et al.,
2024).

Figure 8: Control hallucination generation via
the hyperparameter α and β in VTI (Liu et al.,
2025).

E MORE QUALITATIVE ANALYSIS

To more explicitly demonstrate the effectiveness of our method in mitigating hallucinations in
generative tasks, we visualize several examples, as illustrated in Fig. 9. For each image-prompt
pair, we compare the responses generated by the original model and our method. Hallucinated
words are highlighted in red, while newly identified objects that were missed by the original output
are highlighted in blue to emphasize our method’s enhanced perceptual accuracy. As shown in
Fig. 10, we further show the ability of controlling hallucination of HIRE. Additionally, as shown in
Fig. 11, we present several examples from discriminative tasks to further validate the robustness and
generalization capability of our approach across different settings.
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Q: Please describe this 

image in detail.

LLaVA-1.5: The image features a large, well-lit bathroom with a white bathtub and a shower stall. The bathtub is situated next to a window, allowing 

natural light to fill the room. The shower stall is located on the left side of the bathroom. There are several bottles placed around the bathroom, with some 

near the bathtub and others on the right side of the room. A toothbrush can be seen on the right side of the bathroom, and a cup is located near the center of 

the room. The bathroom appears to be well-maintained and clean.

Ours: The image features a large, clean bathroom with a white bathtub and a window. The bathroom is well-lit, with natural light coming in through the 

window. The tub is situated next to a sink, and there is a mirror above the sink. The bathroom also has a shower area, which is likely to be a separate 

room. The overall atmosphere of the bathroom is bright and inviting.

Q: Please describe this 

image in detail.

LLaVA-1.5: The image features a large, ornate building with a clock tower at the top. The clock is prominently displayed on the tower, making it a focal 

point of the building. The building is situated in a city, surrounded by other buildings and a street. There are several people in the scene, with some standing 

closer to the building and others further away. A car can be seen parked on the street, and a traffic light is visible in the background. The overall atmosphere 

of the image suggests a bustling urban environment.

Ours: The image features a large building with a clock tower prominently displayed on its side. The clock tower is situated near the top of the building, 

and it appears to be the focal point of the scene. The building has a unique design, and it is situated in a city with a sky background. The scene is set 

against a backdrop of a cloudy sky, giving the impression of a sunny day.

Q: Please describe this 

image in detail.

LLaVA-1.5: The image features a white room with a large window that allows natural light to fill the space. A vase filled with flowers is placed on a table 

near the window, adding a touch of color and life to the room. The room also has a doorway, which leads to another room. In addition to the vase, there is a 

potted plant in the room, providing a sense of nature and greenery. The combination of the flowers, the potted plant, and the natural light from the window 

creates a pleasant and inviting atmosphere.

Ours: The image features a white room with a large window that allows natural light to fill the space. The room is decorated with a beautiful floral 

wallpaper, and a vase with flowers is placed on the window sill. The vase is filled with flowers, adding a touch of color and elegance to the room. The 

combination of the white walls, the floral wallpaper, and the vase with flowers creates a serene and inviting atmosphere.

Q: Please describe this 

image in detail.

LLaVA-1.5: The image features a giraffe standing in a fenced enclosure, surrounded by trees. The giraffe is positioned in the center of the scene, with its 

long neck and legs visible. The enclosure appears to be a part of a zoo, as there are several other birds scattered throughout the area. Some birds are perched 

on the fence, while others are flying or walking around the enclosure. The scene captures the giraffe's natural habitat and the presence of other animals in 

the same space.

Ours: The image features a giraffe standing in a fenced-in area, possibly in a zoo. The giraffe is positioned in the center of the scene, with its long neck 

and legs prominently visible. The fenced area is surrounded by trees, providing a natural and serene environment for the giraffe. The giraffe appears to be 

looking at the camera, possibly enjoying the attention it receives.

Q: Please describe this 

image in detail.

Ours: The image depicts a group of people enjoying a day at the beach. There are four people in total, with two of them sitting on the sand, and the other 

two standing nearby. They are all wearing bathing suits and are relaxing on the beach. The beach scene also includes a surfboard, which is placed on the 

sand, and a chair, which is situated near the group of people. The overall atmosphere appears to be a fun and leisurely day spent at the beach.

Q: Please describe this 

image in detail.

LLaVA-1.5: The image captures a woman in a green shirt playing with a red frisbee in a grassy field. She is in the process of throwing the frisbee, which is 

positioned in the middle of the scene. There are several other people in the background, some of them closer to the woman and others further away. A 

handbag can be seen placed on the ground near the left side of the scene. The overall atmosphere of the image is lively and fun, as everyone seems to be 

enjoying their time outdoors.

Ours: The image captures a woman in a green shirt playing with a red frisbee in a park. She is in the middle of throwing the frisbee, which is visible in 

the air. The park is surrounded by trees, providing a pleasant and natural setting for the activity. There are several other people in the park, some of whom 

are sitting on the grass, enjoying the outdoors. The scene is lively and full of energy, as people engage in various activities and enjoy the pleasant weather.

LLaVA-1.5: The image captures a group of people enjoying a day at the beach. There are four people in the scene, with two of them sitting on a blanket, 

and the other two standing nearby. They are all gathered around a surfboard, which is placed on the sand. The beach setting includes a chair positioned 

towards the left side of the image, and a backpack can be seen placed on the sand. The atmosphere appears to be relaxed and fun, as the group of friends 

spends time together on the beach.

Figure 9: Some examples of generative tasks on the COCO dataset, with hallucinated content
highlighted in red and newly added correct content displayed in blue.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Q: Please describe 

this image in detail.

Original output: The image features a man wearing a white shirt and a red tie, standing in a room. He is making a hand gesture, 

possibly giving the middle finger, while looking at the camera. The man appears to be a waiter, as he is wearing a name tag. In 

the room, there is a potted plant located on the left side, and a clock can be seen hanging on the wall. The man is the main focus 

of the scene, and his hand gesture adds a sense of personality to the image.

Positive edit: The image features a man wearing a red tie 

and a white shirt, standing in front of a mirror. He is 

holding up his hand and making a peace sign with his 

fingers. The man appears to be enjoying himself and 

having a good time.

Negative edit: The image features a man wearing a white shirt 

and a red tie, standing in a room. He is making the "I Love You" 

hand gesture, with his fingers pointing upwards. The man is also 

wearing a name tag, which is visible on his shirt. In the room, 

there is a potted plant located on the left side, and a clock can be 

seen on the right side. A chair is also present in the scene, situated 

in the lower-left corner.

Q: Please describe 

this image in detail.

Original: The image captures a lively scene on a sidewalk where a young man is skillfully riding a skateboard. He is 

performing a trick, possibly a kickflip, as he moves down the sidewalk. There are several other people in the scene, some of 

them standing or walking nearby. A bench can be seen in the background, providing a place for people to sit and enjoy the 

atmosphere. Additionally, there are a few bottles scattered around the area, possibly belonging to the people present.

Positive edit: The image captures a young man 

skillfully riding a skateboard down a sidewalk. He is 

wearing a black jacket and appears to be enjoying his 

ride. There are several other people in the scene, some 

of whom are standing or walking nearby. The sidewalk 

is lined with benches, providing a comfortable space for 

people to sit and relax. The presence of multiple 

benches and people in the area suggests that this might 

be a popular spot for people to gather and socialize.

Negative edit: The image captures a man riding a skateboard down 

a sidewalk, with several people watching him perform the trick. 

The skateboarder is in the center of the scene, while the onlookers 

are scattered around him. There are a total of 11 people in the scene, 

with some standing closer to the skateboarder and others further 

away. A bench can be seen in the background, and a fire hydrant is 

also visible in the scene. In addition to the skateboarder, there is a 

person holding a cell phone, possibly capturing the moment or 

communicating with someone.

Q: Please describe 

this image in detail.

Original output: The image features a stove top oven with a black stove top and a glass window. The oven is located in a 

kitchen, and it appears to be empty. The stove top is surrounded by a wooden countertop. In the kitchen, there are a few items 

scattered around. A bottle can be seen on the left side of the oven, and a cup is placed on the right side. Additionally, there is a 

bowl located near the center of the scene.

Positive edit: The image features a stove top 

oven with a metal surface, placed on a wooden 

counter. The oven has a clear glass door, 

allowing us to see the interior. The stove is 

equipped with a set of knobs, which are likely 

to control the temperature and cooking 

functions. The oven is situated in a kitchen 

setting, and the countertop is made of wood.

Negative edit: The image features a stove with a glass door, which is open

and revealing a blue and white towel. The stove is situated on a wooden 

countertop. The stove is equipped with a burner and a cooktop, and it is 

surrounded by a variety of utensils and appliances. There are several knives, 

with one located near the top left corner, another in the middle, and a third 

one on the right side. A spoon is also visible in the middle of the scene. A 

cup can be found on the left side of the stove, and a bowl is placed near the 

center. A toaster is present on the left side of the stove, and a book is located 

on the left side of the stove, possibly a cookbook or a recipe guide.

Q: Please describe 

this image in detail.

Original: The image showcases a beautiful cityscape with a large clock tower, Big Ben, towering over the city. The clock tower 

is situated in the middle of the scene, surrounded by other buildings. The city is bustling with activity, as numerous cars are 

scattered throughout the area, some closer to the foreground and others further in the background. In addition to the cars, there 

are two trucks visible in the scene, one near the center and the other towards the right side. The combination of the clock tower, 

the city's architecture, and the vehicles creates a lively and dynamic urban environment.

Positive edit: The image features a beautiful cityscape with a 

large clock tower prominently visible in the background. The 

clock tower is situated in the middle of the scene, surrounded by a 

variety of buildings. The cityscape is bustling with activity, as 

numerous cars are driving around the area, adding to the lively 

atmosphere. The scene also includes a bridge, which is a 

prominent feature in the background, and a river that runs through 

the city. The overall view of the cityscape is breathtaking, 

showcasing the city's architectural beauty and the dynamic nature 

of the urban environment.

Negative edit: The image showcases a bustling 

cityscape with a large clock tower, Big Ben, towering 

over the city. The clock is visible on the side of the tower, 

and the city is filled with various buildings, including a 

large castle. In the foreground, there is a busy street with 

cars and a truck, as well as a bus. A person can be seen 

walking on the sidewalk, and a traffic light is visible in 

the middle of the scene. The clock is positioned in the 

middle of the scene, and the cityscape is filled with 

buildings, creating a sense of depth and scale.

Figure 10: Some examples show that HIRE can amplify or mitigate hallucination by adjust the
hyperparameter α.
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Q: Is there a cup in the image?

Answer: No 

LLaVA-1.5: Yes

Ours: No

Q: Is there a car in the image?

Answer: No 

LLaVA-1.5: Yes

Ours: No

Q: Is there a car in the image?

Answer: Yes 

LLaVA-1.5: No

Ours: Yes

Q: Is there a pizza in the image?

Answer: Yes 

LLaVA-1.5: No

Ours: Yes

Q: Is there a sports ball in the image?

Answer: Yes 

LLaVA-1.5: No

Ours: Yes

Q: Is there a person in the image?

Answer: No 

LLaVA-1.5: Yes

Ours: No

Q: Is there a dining table in the image?

Answer: No 

LLaVA-1.5: Yes

Ours: No

Q: Is there a cup in the image?

Answer: No 

LLaVA-1.5: Yes

Ours: No

Figure 11: Some examples of discriminative tasks on the COCO dataset.
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