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ABSTRACT

Transferability estimation aims to identify the most suitable model from a collec-
tion of pre-trained models for specific downstream tasks, playing a crucial role
in the success of the pre-training and fine-tuning paradigm. However, the re-
cent proliferation of pre-trained models with diverse architectures and training
strategies poses significant challenges for transferability estimation due to dis-
crepancies in intrinsic model characteristics, making it difficult for existing meth-
ods to accurately simulate embedding space evolution within feasible computa-
tional limits. To address these challenges, we propose an Implicit Transferability
Modeling (ITM) paradigm that incorporates an implicit modeling strategy for the
intrinsic properties of pre-trained models, enabling more accurate transferabil-
ity estimation. ITM employs a Divide-and-Conquer Adaptation (DCA) process
to efficiently model the transfer process, reducing both learning complexity and
computational cost. Additionally, we introduce a Pseudo-Clustering-based Opti-
mization (PCO) strategy combined with static and dynamic constraints, enabling
effective estimation without intensive retraining. Our method significantly out-
performs state-of-the-art approaches, achieving notable improvements across ten
widely used benchmarks and demonstrating its effectiveness and generalizability
in enabling accurate and efficient model selection for downstream tasks.

1 INTRODUCTION

Recently, the pre-training and fine-tuning paradigm has achieved remarkable success in numerous
computer vision applications, making Transferability Estimation (TE) a significant topic that in-
volves predicting the performance of various pre-trained models on downstream tasks within a lim-
ited time frame.

Early methods (Iran et al.,|2019; [Nguyen et al.| 2020) modeled the joint distribution between pre-
trained labels and downstream task labels. In contrast, methods like LogME (You et al.| 2021)) and
ETran (Gholami et al., 2023) evaluate models using embedding space and downstream task labels,
extending transferability estimation to self-supervised approaches. Subsequently, [Li et al.| (2023)
and [Hu et al.| (2024)) recognized that these static methods overlook the dynamic changes in models
during the fine-tuning process. They proposed modeling the dynamic aspects of fine-tuning to map
the embedding spaces before and after the process, leading to improved performance.

However, with the rise of diverse self-supervised pre-training strategies and increasingly sophis-
ticated network architectures, existing methods encounter discrepancies from various model col-
lections, leading to inaccurate predictions and unreliable model selection for downstream tasks, as
illustrated in Fig.[T] Recent models pre-trained with techniques such as Instance Discrimination (ID)
(Chen et al., 2021} (Caron et al., 2021) and Masked Image Modeling (MIM) (He et al., [2022; Xie
et al., 2022) exhibit divergent convergence characteristics as shown in Fig. 2] rendering unified es-
timation impractical. Consequently, most current transferability estimation methods underperform,
resulting in significant drops in performance.

While recent dynamic TE approaches attempt to simulate the evolution of embedding spaces during
fine-tuning, they are hindered by efficiency and computational cost constraints. As a result, these
methods often depend on manually defined rules to guide feature evolution. However, this trans-
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Figure 1: Relative estimated results of recent TE methods across ten benchmarks: (a) Inconsistent

estimations between different architectures, such as ViTs and CNNs. (b) Estimation failures across
different pre-training strategies, including Instance Discrimination and Masked Image Modeling.

formation process is highly complex and requires sophisticated adaptation to downstream datasets,
making accurate modeling challenging under limited computational resources. Thus, these methods
frequently fail to predict the transferability of emerging models. Therefore, we propose employ-
ing a learnable module to implicitly model the transferability of each unique model by learning the
mapping of embedding spaces before and after fine-tuning, thereby enhancing the generalization of
transferability estimation (TE).

However, achieving this presents two major challenges. First, the strategy of implicit transferabil-
ity modeling remains largely unexplored in the TE context, as the evolution process varies across
models and downstream tasks, complicating implementation under limited computational resources.
Second, the implicit modeling process requires the final embedding states of the model after fine-
tuning, which lacks generalizability and is impractical for TE.

To overcome these limitations, we propose an efficient Implicit Transferability Modeling (ITM)
paradigm. Instead of modeling the entire evolution of the embedding space, we decouple the in-
trinsic properties of the models and represent them using an implicit latent representation. We
then introduce a Divide-and-Conquer Adaptation (DCA) process to reduce learning complexity
and enhance efficiency. To eliminate the need for extensive fine-tuning to obtain the final state,
we employ a Pseudo-Clustering-based Optimization (PCO) strategy combined with static and dy-
namic constraints, allowing for effective estimation without intensive training. By integrating these
components, ITM offers more accurate transferability estimation across pre-trained models with
diverse architectures and pre-training strategies, significantly outperforming state-of-the-art meth-
ods with notable improvements across ten widely used benchmarks, including evaluations of recent
pre-trained models.

Our contributions can be summarized as follows:

1. We propose an Implicit Transferability Modeling (ITM) paradigm that incorporates a
lightweight learnable mapping module and an efficient evolution process to enhance the
precision of embedding space modeling.

2. We introduce a Divide-and-Conquer Adaptation (DCA) strategy, combined with gradient
descent acceleration and Pseudo-Clustering Optimization (PCO), to effectively model em-
bedding evolution while minimizing computational costs.

3. We achieve state-of-the-art performance in transferability estimation using ten recent mod-
els with diverse architectures from various pre-training methods across ten datasets, achiev-
ing an average gain of 16% in rank correlation and significantly outperforming existing
methods.
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Figure 2: The full fine-tuning process of different pre-training methods on the Pets (Parkhi et al.,
2012)) dataset. The same color represents the same pre-training method, while the same marker de-
notes models with the same architecture. The training process of different models with supervised
pre-training is relatively stable. In contrast, the same ViT-Base model, when pre-trained using dif-
ferent self-supervised methods, exhibits significant variations in the transfer learning process and
accuracy on downstream tasks.

2 RELATED WORK

2.1 TRANSFERABILITY ESTIMATION

Transferability estimation aims to effectively select the most suitable pre-trained model for down-
stream tasks from a collection of models. Recent approaches can be broadly categorized based on
the type of transferability metric used, i.e., static statistics-based and dynamic evolution-based.

Static statistics-based methods predict transferability using fixed measurements of pre-trained
models. NCE [Tran et al.| (2019) and LEEP |[Nguyen et al.| (2020) use conditional probability or
Bayesian metrics to estimate logit discrepancies between model outputs and downstream task anno-
tations. A'LEEP [Li et al| (2021)) replaces the output layer of LEEP with a Gaussian Mixture Model
(GMM) for better efficiency and calibration. LogME |You et al.| (2021} uses the logarithm of maxi-
mum evidence to provide stable predictions with lower computational costs. ETran |Gholami et al.
(2023)) combines various metrics, introducing an energy-based measure to enhance accuracy, while
GBC Pandy et al.| (2022) employs the Bhattacharyya coefficient to evaluate class separability in the
feature space. These methods do not require updates during fine-tuning, resulting in high compu-
tational efficiency. However, their inability to model the fine-tuning process limits their prediction
accuracy.

Dynamic evolution-based methods simulate the model updating process to estimate its state af-
ter fine-tuning. SFDA |Shao et al| (2022)) uses a linear mapping to project initial features into a
Fisher space, iteratively enhancing class separability. PED |Li et al.|(2023) introduces a potential
energy-based update model for predicting the evolved state. LEAD Hu et al.| (2024) employs ordi-
nary differential equations and downstream objectives to better capture the logits’ evolution during
adaptation.

Despite their advancements, the recent surge of pre-trained models with varied architectures intro-
duces greater discrepancies in initial states and convergence behaviors (as shown in Fig. [J), chal-
lenging these handcrafted prediction-based methods.

2.2 PRE-TRAINED MODELS

The Pre-trained and Fine-tuning paradigm in computer vision is widely used to adapt models to
specific downstream tasks by leveraging representational knowledge from large-scale pre-training
data. Recent research has explored various network architectures and pre-training strategies, leading
to significant advancements and a diverse range of model capabilities.

Architecture evolution. Initially, pre-training and fine-tuning paradigms showed effectiveness on
traditional convolutional neural networks (CNNs) like ResNet|He et al.| (2016 and DenseNet Huang
et al.|(2017). Compared to training from scratch, this paradigm helped CNN-based methods achieve
superior performance on downstream tasks. More recently, Vision Transformers (ViTs)Dosovitskiy
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et al.| (2020) and Swin-TransformersLiu et al.| (2021)) have successfully incorporated self-attention
mechanisms (Vaswani et al., 2017) in computer vision. Benefiting from their ability to capture long-
range dependencies and global context, ViTs significantly enhance the performance of pre-trained
models in tackling complex visual recognition challenges.

Pre-training strategy. Early pre-training processes are conducted in a fully supervised manner,
with ImageNet|Deng et al.| (2009) being the most widely used dataset to boost model performance.
However, this approach relies heavily on dense human annotations, limiting its broader applicability.
With the advent of contrastive learning, strategies like SimCLR (Chen et al.,[2020aib) and MoCo (He
et al., 2020; |Chen et al., 2020c) show remarkable success in transfer learning. By eliminating the
need for ground-truth annotations, these methods significantly increase the amount of available data
and outperform traditional supervised pre-training on downstream tasks. Additionally, masked im-
age modeling techniques, such as MAE (He et al. 2022)) and SimMIM (Xie et al., |2022), further
advance performance, delivering state-of-the-art results across various visual tasks.

However, with diverse pre-training methods and varying model architectures, differences in their op-
timization processes and feature distributions present greater challenges for existing transferability
estimation methods.

3 METHODS

3.1 PROBLEM FORMULATION

The goal of transferability estimation is to predict the performance ranking of these models after
transfer learning on a downstream dataset D = {(z;,v;)}, which contains C classes. Consider a
model zoo {¢;} M, where the models are pre-trained using different architectures and pre-training
methods. The true performance ¢; of a model ¢; is obtained by training the model on the training
set Dy and evaluating it on the test set Dg. fine-tuning all candidate models on the dataset requires
significant computational resources and time. Therefore, transferability estimation methods aim to
output a metric score s; for each model ¢; at a low cost and within a short time, with the expectation
that this metric will yield a consistent ranking with the true performance ranking after full fine-
tuning, thus facilitating effective model selection for downstream applications.

Recent synamic TE methods aim to establish an accurate mapping I'(¢, Dr) : E — E, where E
represents the original embedding space produced by the pre-trained model ¢ on the downstream
training data D, and E represents the final state after fine-tuning. However, due to diverse architec-
ture designs and pre-training strategies, models exhibit varying convergence characteristics, making
it infeasible to directly model this mapping and generalize across different pre-trained models under
affordable computational constraints.

Instead of directly modeling I'(-, -), we propose learning an implicit representation z for the trans-
ferability of ¢. This approach allows the transfer learning process to be treated as an interaction
between the model’s transferability and downstream tasks, leading to more effective and adaptable
estimation across a broader range of scenarios.

To evaluate the ranking consistency between the predicted metrics S = {s;}}, and the true perfor-
mance R = {M}f\il, a set of metrics such as Spearman’s p(Spearman, |1987), Kendall’s 7(Kendall,
1938)), and weighted Kendall’s 7, (Vigna, 2015) can be considered. Following previous work Hu
et al.|(2024); |Li et al.| (2023)); |You et al.| (2021)), we use weighted Kendall’s 7, as the primary evalu-
ation metric:

1
> Wi

1<j

Y wij - sign[(G; — Gj) (P — Py)), (1)

i<j

Tw

where G; € [1, M] and P; € [1, M] indicate the ranking of the i-th element in R and S respectively,

and w;; = ﬁczj is the weight accroding to the importance of the model pair (¢;, ¢;).
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3.2 DIVIDE-AND-CONQUER ADAPTATION

To effectively model the fine-tuning process during transfer learning, we propose a Divide-and-
Conquer Adaptation (DCA) strategy that approximates the embedding space evolution using implicit
modeling in a computationally efficient manner.

Embedding space division. Given the initial embedding space FE, a module parameterized by v
aims to approximate the ideal mapping I'(-,-) by maximizing the posterior distribution gy (z|E),
where z represents the latent variable capturing intrinsic characteristics of the pre-trained model
¢. To achieve an effective approximation of the ideal mapping (-, -), we decompose it as a joint
posterior over a set .4 containing K independent subspaces sampled from E:

44 (21E) =) ay(z|E4)p(A). (2)

Based on bayesian decomposition, this posterior can be further refined to factorize across subspaces:

1, p(Eyle) - p() TS, (S55EL ) - pe
p(Ea) B p(Ea)

) K
qy(z|Eq) = = qu(Z|Ej)- 3)

Hence, the posterior gy (z|E) derived from the original embedding space E can be viewed as the
product of a series of posteriors g, (z|E;) over divisions of the embedding space, where j € {E; :
j € A}. Thus, modeling the evolution of the entire embedding space E — E; can be transformed
into modeling the evolution of a set of subspaces {E; — Ej}fil. In practice, we define the
subspace formed by a mini-batch Dp of data as ;. With larger datasets, the two batches can be
considered approximately independent of one another.

This division reduces overall complexity, making it feasible to model the evolution of each subspace
independently and ultimately combine them to create a cohesive and efficient approximation of the
entire embedding evolution process.

Dynamic equation-based conquering. For the evolution modeling of each subspace E;, a naive
approach would be to iteratively optimize v(-) through its updating process. However, applying
this iterative operation to each subspace would lead to an unmanageable computational costs. To
address this, we introduce a dynamic equation-based updating mechanism to accelerate convergence
for each subspace. To be specific, we model 1) as containing a linear transformation parameterized
by weights W for batch-wise mapping. We formulate the objective of the estimation between the

predicted embedding E](n) at the n-th iteration as an L2-norm objective, as follows:
1 n n . n n - n n n
LW) = SI[EM WO — Bl = T(B" W — B)T(BW —E)). @

Thus, the updating process based on gradient descent can be formulated as:

W (™) or j (5)

{ e _ g gPwm — M B
J J J
Wt — W) . FogaT)

where 7 denotes the learning rate. The evolution of the subspace E; can be further deduced as:

n n n)T n n n )T £
E,") = g, . B = (I—E;"E;™ E,"W" +nE; "V E;"" E;. (6)

oW ()

T
Denoting C = nEj(")Ej(") , the recursive form of the estimated F; ™) is finally given by:

E;") = (I - C)E;™ + CE;. (7)

This recursive formulation efficiently models the evolution of each subspace with reduced compu-
tational complexity, ensuring convergence with fewer iterations.
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Figure 3: Ilustration of full fine-tune and our Improved Transferability Estimation (ITM) approach.
(a) Pipeline of full fine-tune. (b) Overview of ITM framework, which is to model the embedding
space evolution. (c) Pipeline of DCA on one mini-batch, which is to map the subspace E; — Ej
formed by a batch of data Dp.

3.3 PSEUDO-CLUSTERING OPTIMIZATION

During the estimation process, obtaining the final state of the embedding space Ej is impractical,
as it requires a full fine-tuning process on the downstream task. To eliminate reliance on this final
state, we leverage findings indicating that recent pre-trained models possess adequate capability to
converge well on the training set (Goodfellow}, 2016}, [Arpit et al.,[2017). From this, we draw two
inferences: i.e., distribution separability and convergence stability.

First, the static distribution of each class in the embedding space should be well-separated due to
optimal convergence on the training set. This implies that the representations of different classes
should form distinct clusters. Second, the downstream objectives should converge to a stable point,
yielding a minimal loss value. This means the model will effectively align the learned features with
the target labels, reducing the error to a minimal level. Based on these two inferences, we utilize
pseudo-cluster center constraints and objective-driven updating to approximate the evolution of the
embedding space without requiring the actual final state.

Pseudo-cluster center constraints. To mimic the static distribution separability of the evolved
embedding space, we utilize a pseudo-cluster center generation strategy and introduce a constraint,
denoted by MSE loss £, that ensures the embeddings of input data are close to their corresponding
cluster centers. Specifically, the pseudo-cluster centers can be generated using one-hot or random
vectors from high-dimensional embedding spaces or derived from eigenvectors obtained through
Principal Component Analysis (PCA) or Laplacian methods for a sparser distribution. In the exper-
imental section, we compare the impact of different generation methods and determine the optimal
approach based on empirical results.

Objective-driven updating. To achieve convergence stability, we incorporate downstream task
objectives L,;; into the estimation of v, ensuring that the iterative adaptation aligns closely with
downstream requirements. During this process, the downstream objective is updated iteratively to
achieve stable convergence in the logit space, ultimately guiding the embedding evolution toward
effective feature alignment.

3.4 FRAMEWORK

Combining the proposed Divide-and-Conquer Adaptation (DCA) and Pseudo-Cluster Optimization
(PCO) modules, we form the ITM framework. The overall framework is illustrated in Fig.[3] During
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the estimation process, a lightweight module ¢ is introduced to learn the implicit transferability of
the given model. By interacting with downstream data through DCA and optimizing using PCO, this
module effectively captures the transferability potential and adapts efficiently, facilitating precise
transferability estimation while maintaining computational efficiency. The final objective can be
formulated as follows:

ﬁ = £Obj + >\Epc7 (8)

where )\ is a hyperparameter that balances these two loss components and is controlled by C with n
in equation[7] To further enhance the proposed framework, we adopt embedding pre-Standardization
and a dynamic learning Rate adjustment strategy and to facilitate efficient convergence during opti-
mization.

Embedding pre-standardization Embedding pre-standardization is also applied to ensure that the
initial embedding space E has a consistent scale and distribution, which prevents gradients from
exploding or vanishing and promotes more stable updates during the iterative adaptation process.

Dynamic learning rate adjustment. Since n, n) are critical hyperparameters in DCA that determine
the accelerated process, we aim to reduce the dependency on fixed values and avoid manually tun-
ing n and 7 for each different pre-trained model and downstream task. Therefore, we introduce a
dynamic adjustment mechanism where the learning rate 7 is adaptively scaled according to the stan-
dardized initial state E and set n constant to 1. This allows the framework to automatically adjust i
for optimal convergence speed and stability, providing more flexibility across diverse scenarios.

By combining these strategies, the framework achieves more consistent and efficient convergence
across various pre-trained models and downstream tasks.

4 EXPERIMENTS

We constructed a benchmark using 10 classic single-label image classification datasets and 10 differ-
ent pre-trained models. We then reproduced several of the best existing methods for transferability
estimation, highlighting the superior performance of our proposed approach. Subsequently, we con-
ducted ablation studies to analyze the contributions of each component in our method.

4.1 BENCHMARK

Downstream datasets. We utilized 10 commonly used single-label image classification datasets in
transfer learning, including CIFAR-10, CIFAR-100 (Krizhevsky et al.,|2009), FGVC Aircraft (Maji
et al.,|2013)), Caltech-101 (Fei-Fei et al.|[2004), DTD (Cimpoi et al., 2014)), Oxford-IIIT Pets (Parkhi
et al., [2012)), Stanford Cars (Krause et al., 2013)), SUN-397 (Xiao et al., 2010}, Food-101 (Bossard
et al., 2014), and Oxford102 Flowers (Nilsback & Zisserman, 2008). These datasets encompass
image classification tasks across different scenarios, featuring varying numbers of categories and
dataset sizes.

Pre-trained model zoo. To ensure applicability in real-world scenarios, we selected 10 models that
vary in pre-training methods and architectural designs. Specifically, for models pre-trained using
supervised learning, we employed ResNet-18 (He et al., 2016, MobileNetv2 (Sandler et al.,|2018)),
EfficientNet-BO (Tan,|[2019), and Densenet-121 (Huang et al., 2017). For contrastive learning-based
models, we included DINO-S8 (Caron et al., 2021), DINO-B16 (Caron et al., 2021)), and MoCov3-
B16 (Chen et al.| 2021). Lastly, for models pre-trained with Masked Image Modeling (MIM), we
utilized MAE-B16 (He et al., 2022), MAE-L16 (He et al.l [2022), and SimMIM-B16 (Xie et al.,
2022)). In this context, S/B/L represent the small, base, and large versions of the ViT (Dosovitskiy
et al.| 2020) model, while 8/16 indicate the patch sizes used in the ViT architecture.

Ground truth model rank. For all models, we added a classification head to facilitate transfer
learning on downstream datasets. We used the AdamW (Loshchilov, 2017) optimizer to train both
the pre-trained backbone and the randomly initialized classification head. The grid search strategy
specifically involves exploring a range of learning rates from the set {107°,2x 1075,5x 107>} and
weight decay values from the set {1072,10~4}. At the end of each epoch, we evaluated the model
on the test set. Ultimately, we recorded the highest test accuracy achieved by each model across
multiple experiments for each dataset as the model’s accuracy on that dataset.
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Table 1: Comparison of weighted Kendall’s 7,, and wall-Clock Time (s) for different methods on var-
ious datasets. We reproduced methods for comparison including PED (Li et al.,2023)), LogME (You
et al., 2021)), N'Leep (Li et all, 2021), PARC (Bolya et al, 2021)), SFDA (Shao et al 2022) and

Etran (Gholamu et al., [2023)). All methods are run and timed on the same CPU environment.
Methods ‘ Call0l Cars CIFARI00 CIFARIO DTD Aircraft Flowers Food Pets  SUN ‘ Avg.
weighted Kendall’s 7, T

PED 0.32 -0.01 0.51 0.77 0.06 -0.20 0.16 0.60 -0.20  0.07 0.21
LogME 0.71 0.36 0.56 0.61 0.61 0.22 0.77 0.15 0.14  0.38 0.45
NLeep 0.47 0.04 0.32 0.48 0.57 0.13 0.62 0.24 030 0.01 0.32

PARC 0.08 0.00 -0.07 0.25 0.42 0.12 0.62 0.19 0.10 0.01 0.17

SFDA 0.59 0.07 0.48 0.79 0.13 0.18 -0.39 0.33 028 0.09 0.25

ETran 0.13 -0.06 -0.14 0.21 0.36 0.27 0.08 0.23 0.38 -0.06 0.14

ITM (Ours) 0.56 0.61 0.59 0.69 0.77 0.43 0.65 0.44 073  0.62 0.61
Wall-Clock Time (s)) |

PED 6.99 8.31 34.32 46.80 2.33 5.95 2.80 41.72 394 829 16.14
LogME 0.85 1.32 4.50 2.62 0.50 0.86 0.54 6.29 053 1.31 1.93
NLeep 25.52 44091 862.49 268.25 4.60 17.65 342 1387.65 4.31 47.33 | 266.61
PARC 1442 19.82 116.65 118.19 0.74 13.14 0.25 106.19 353 19.80 | 41.27

SFDA 4.02 5.43 20.11 18.56 1.70 3.92 1.91 28.86 220 5.43 9.21
ETran 1.71 2.30 7.58 6.88 0.77 1.64 0.98 10.63 096 231 3.58
ITM (Ours) 7.50 8.50 9.40 7.90 7.00 7.50 7.20 10.50 720 11.50 | 8.42

4.2 IMPLEMENTATION DETAILS

In the default experimental setup for ITM, we set the number of training iterations to only 500,
performing a test on the validation set every 100 iterations. In our experiments, ITM, similar to
other transferability estimation methods, utilizes only the data from the original training set Dr.
And Dy is randomly divided in a 4:1 ratio for training and validation purposes in ITM. As described
in Sec.[3.4] the default configuration for DCA includes n = 1 and an adaptive 7. For all experiments,
we use a learning rate of 5 x 1073 along with the AdamW optimizer. Additional experimental
settings can be found in the appendix.

4.3 COMPARISON WITH PREVIOUS APPROACHES

We conducted a comprehensive comparison of our method against previous transferability esti-
mation methods on the benchmark described in Sec. This comparison includes the primary
weighted Kendall’s 7, as well as the wall-clock time.

As shown in Table I, when incorporating the diversity of pre-trained models, our benchmark
presents challenges to the generalization of TE methods. The average performance of most TE
methods has deteriorated. Our method ITM achieved an average performance of 0.61 in terms of the
weighted Kendall’s 7, across the 10 datasets, outperforming the next-best method, LogME, by 16%.
Specifically, ITM achieved the highest weighted Kendall’s 7,, on six datasets and the second-highest
on two classification datasets. Although other methods perform well on certain specific datasets, it
is evident that they nearly “fail” on some datasets. The lowest weighted Kendall’s 7,, correlation
coefficients for these methods are -0.2, 0.14, 0.01, -0.07, -0.39, and -0.14, respectively, while ITM
achieves a minimum of 0.43 even on its worst-performing dataset. This highlights that ITM of-
fers significantly better stability compared to previous methods, which is particularly important for
practical applications.

In terms of runtime, many effective transferability estimation methods are significantly faster than
pre-trained models, which require 738 seconds for feature extraction. As shown in the table, al-
though ITM uses backpropagation for parameter updates like common deep learning models, it
contains only one linear layer in the DCA. As a result, I[TM achieves a runtime of just 8.42 seconds
in a CPU environment, demonstrating an excellent trade-off between speed and accuracy.

4.4 ABLATION STUDY
4.4.1 BATCH SIZE

As described in Sec.[3.2] the DCA module operates on a subspace formed by a single batch. There-
fore, we adjusted the batch size B and illustrated its impact on accuracy and runtime in Fig. |4} As
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Figure 4: Quantitative Ablation Experiment on Batch Size in DCA. (a) Weighted Kendall’s 7, as a
function of batch size and the number of training iterations. (b) Running time and 7, of DCA for
500 iterations as a function of batch size. All experiments are conducted in a CPU environment.

Table 2: Quantitative ablation study on the feature standardization and adaptive learning rate. We
calculated the average weighted Kendall’s 7, coefficient for each experiment after training for 100,
200, 500, and 1000 iterations.

Standardization  Adaptive n’

Average weighted Kendall’s 7,
100 200 500 1000

X X 0443 0482 0519 0.541
X v 0471 0.496 0.508 0.532
v X 0.557 0.534 0.576 0.569
v v 0.523 0.545 0.605 0.608

shown in the figure, when the batch size is less than or equal to 1024, the accuracy and convergence
speed of ITM improve with increasing batch size. However, when the batch size is further increased
to 4096, ITM quickly overfits, and its weighted Kendall’s 7,, fluctuates across training iterations. In
Fig. we compare the running time of ITM with its weighted Kendall’s 7, after 500 training
iterations. Since the training and validation batch sizes must remain consistent, ITM runs slightly
slower when the batch size is small due to the smaller testing batch size. However, when the batch
size is greater than or equal to 1024, the speed of ITM significantly decreases because the time com-
plexity of Equationis O(B?). Considering both speed and accuracy, we set the default batch size
for ITM to 256 and the number of training iterations to 500.

4.4.2 STANDARDIZATION AND ADAPTIVE LEARING RATE

We conducted ablation experiments on the standardization and the adaptive learning rate mentioned
in Sec.[3.4] As shown in Tab.[2] the adaptive learning rate does not significantly improve ITM when
standardization is not applied, as the adaptive learning rate is derived based on the standardized
embedding space. However, as indicated in the third row of the table, standardizing the features
greatly enhances the convergence speed and accuracy of ITM. This improvement occurs because
the distribution of features from different models varies significantly, and standardization helps the
model converge more quickly. After incorporating both standardization and the adaptive learning
rate, ITM achieved the highest performance. This indicates that setting different learning rates
for various models based on the initial intra-class dispersion of the standardized model features
significantly aids ITM in mapping the embedded spaces before and after fine-tuning.

4.4.3 PSEUDO-CLUSTER CENTERS

As shown in Fig.[5] we attempted to generate orthogonal pseudo-cluster centers on the unit sphere
using different methods as the target for feature alignment. Here, "PCA” and “Laplacian” refer
to the orthogonalization methods applied after random generation using PCA and the Laplacian
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Figure 5: The performance of different methods for generating orthogonal pseudo-cluster centers
under 10 repeated experiments.

matrix, respectively. Through repeated experiments, we found that the performance of the various
methods showed little difference. This is because the classification head h performs an additional
linear transformation on the embedded features, making the choice of pseudo-cluster centers robust.
To eliminate the random instability in practical usage, we adopted one-hot encoding of the classes
as the centers.

5 CONCLUSIONS

In this work, we propose ITM, an Improved Transferability Modeling paradigm designed to decou-
ple the intrinsic properties of pre-trained models by representing them in an implicit latent space,
providing an efficient solution for assessing model transferability. We introduce a Divide-and-
Conquer Adaptation process to reduce learning complexity and computational costs, and employ
a Pseudo-Clustering-based Optimization strategy that eliminates the need for extensive fine-tuning,
enabling effective estimation without intensive training. We conduct experiments on recent models
and a diverse set of downstream tasks, showing that the proposed ITM significantly outperforms all
counterparts with superior computational efficiency, demonstrating its effectiveness.
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A APPENDIX

A.1 BENCHMARK

As shown in Tab. 3] we present the performance of ten different pre-trained models on ten down-
stream single-label classification datasets.

Table 3: The highest accuracy of different models across various datasets.

Models Call01 Cars CIFAR100 CIFAR10 DTD Aircraft Flowers Food  Pets SUN
DenseNet-121 97.24  88.38 85.67 97.38 69.47 83.86 90.40 84.99 91.77 72.49
EfficientNet-BO | 97.87  87.25 87.01 97.88 68.88 81.61 89.71 85.82 90.68 73.87

MobileNetv2 96.03  85.65 82.15 96.48 67.34  76.36 90.03 83.70 89.02 71.16
ResNet-18 95.74  83.58 82.69 96.57 65.59  77.56 88.52 79.92 8850 68.71
DINO-B16 98.16  88.42 90.53 98.70 74.31 78.40 93.19 87.88 9297 77.02
DINO-S8 97.47  89.33 90.24 98.65 71.97 80.02 90.84  90.84 93.10 77.53

MoCov3-B16 97.70  88.53 90.74 98.68 72.07  75.70 93.61 87.15 89.75 7592
MAE-B16 97.52 88.16 87.55 98.42 69.04  72.16 85.80  87.30 89.81 75.29
MAE-L16 97.98 91.21 91.28 98.55 7426  85.30 90.73 90.82 94.69 79.18

SimMIM-B16 96.20 86.02 88.80 98.63 66.17  68.32 83.87 87.88 87.16 74.55

A.2 OTHER EVALUATION PROTOCOLS

We evaluated the transferability estimation methods based on other rank correlation metrics, includ-

ing Spearman’s p (Spearman| [1987) and Kendall’s 7 (Kendall, [1938). As shown in Tab.[4] ITM also

achieved the best performance on these two metrics.

Table 4: Comparison of Spearman’s p [1987) and Kendall’s 7, 1938)) for

different methods on various datasets.

Methods [ CallOI  Cars  CIFARIO0 CIFARIO DTD  Aircraft Flowers Food  Pets SUN [ Avg.
Spearman’s p
PED 0.61 0.05 0.81 0.92 0.19 -0.37 -0.07 084 -0.18 0.25 0.31
LogME 0.81 0.61 0.62 0.61 0.77 0.45 0.90 0.20 0.37 0.52 0.59
NLeep 0.37 0.24 0.25 0.42 0.53 0.44 0.79 0.09 0.41 0.01 0.35
PARC -0.01 0.10 -0.19 0.05 0.49 0.43 0.79 0.03 0.26 -0.05 | 0.19
SFDA 0.71 0.16 0.68 0.70 0.09 0.38 -0.58 0.43 0.52 0.13 0.32
ETran -0.01 -0.08 -0.28 0.01 0.09 0.54 0.13 0.05 0.39 -0.13 | 0.07
ITM (Ours) | 0.75 0.84 0.71 0.70 0.87 0.54 0.78 0.45 0.84 0.75 0.72
Kendall’s
PED 0.556  0.067 0.644 0.778 0.111 -0333  -0.061 0.689 -0.156 0.111 | 0.241
LogME 0.600 0.422 0.422 0.467 0.600  0.333 0.778 0.111 0.244  0.378 | 0.436
NLeep 0.289  0.156 0.244 0.289 0.422  0.289 0.600 0.156 0.333  0.067 | 0.284
PARC 0.022  0.111 -0.156 0.022 0378  0.289 0.600  0.067 0.200 0.067 | 0.160
SFDA 0511  0.156 0.467 0.600 0.067  0.244 -0.479 0.244 0422 0.111 | 0.234
ETran -0.022  -0.022 -0.156 -0.022 0.111 0422 0.111  0.156 0.378 -0.067 | 0.089
ITM (Ours) | 0.629  0.644 0.556 0.600 0.719 0422 0.600 0378 0.719  0.600 | 0.587
A.3 ADAPTIVE LEARNING RATE
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Figure 6: The mean and variance of features from different pre-trained models on Cal-101.
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The goal of DCA is to mapping the embedding spaces of the pre-trained backbone before and after
full fine-tuning. However, as shown in Fig. [6] different pre-trained models have initial embedding
spaces with different means and variances, which means that using the same 7 in equation [7] may
be unfair to models with initially poor feature distributions. Since equation [7]is similar to a linear
recurrence, we computed the average Euclidean distance of all initial features in initial embedding
space E = {f;}7 of model ¢, after standardization, to the cluster centers of their respective classes:

. 1 n 7]
disy = 5 >_51 Ifi = fi,
the mean of the features for class y; = c.

2 where f] = ];’(}{ represents the standardized features, and f/ denotes

Since the linear recurrence coefficient C' = nE; EJT is complex, we consider the recurrence relation
when batch size B=1,n=1,and C = 5:
EM" = (1—n)E; +n.E;, ©)
B") = (1—n)E; +1,E;. (10)

This represents two initial spaces E; and E; being updated towards the target E; and Ej using
different linear recurrence coefficients 7, and 7;. By setting |E™ — Ejl|, = HEj(n) — Ej|2, we
obtain the equation:
(X =m)E; +niE; — Eillz = ||(1 — ;) Ej + 0, Ej — Ejl
= (1=m)||E; — Eill2 = (1 —n;)|| E; — Ej|2. (11)

This implies that (1 — 7)) is inversely proportional to the Euclidean distance between the features
and the target point. Therefore, we compute an adaptive learning rate 7 based on the model’s disg:

_ (1-— nb)disb

12
diS¢i ( )

i = f(disg;) =1
In equation we set 17 = np as an anchor for the model ¢ when disy = disy,.

A.4 EMBEDDING SPACE MAPPING

As shown in the figure, the embedding distributions of pre-trained models E from different pre-
training methods are quite disparate, but after fine-tuning, their embedding space E converge to
a much better distribution. Previous methods either solely rely on pre-trained model features or
use crude methods to simulate the fine-tuning process, which explains why these methods perform
poorly on such complex benchmarks.

Pretrained ITM (10 iters) ITM (50 iters) ITM (100 iters) ITM (500 iters) Full Finetuned
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Figure 7: Illustration of the embedding space mapping. The figure includes the embedding distri-
butions of ResNet-18, DINO-B16, and MAE-B16 models on the CIFAR10 test set for both E and

E, as well as the changes in Ej(”) during the ITM process. The visualizations are generated using

T-SNE for dimensionality reduction. The numbers in the lower left corner of each image represent
the classification accuracy of the model on the test set at that moment.
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