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Abstract

The challenge of learning with noisy labels is significant in machine learning, as
it can severely degrade the performance of prediction models if not addressed
properly. This paper introduces a novel framework that conceptualizes noisy label
correction as a reinforcement learning (RL) problem. The proposed approach,
Reinforcement Learning for Noisy Label Correction (RLNLC), defines a compre-
hensive state space representing data and their associated labels, an action space
that indicates possible label corrections, and a reward mechanism that evaluates
the efficacy of label corrections. RLNLC learns a deep feature representation
based policy network to perform label correction through reinforcement learning,
utilizing an actor-critic method. The learned policy is subsequently deployed to
iteratively correct noisy training labels and facilitate the training of the prediction
model. The effectiveness of RLNLC is demonstrated through extensive experi-
ments on multiple benchmark datasets, where it consistently outperforms existing
state-of-the-art techniques for learning with noisy labels.

1 Introduction

Deep neural networks have made significant strides in various domains of machine learning [1–4].
These models predominantly utilize supervised learning, which depends extensively on the avail-
ability of large datasets with high-quality labeled data. Unfortunately, in real-world applications,
the quality of labels is frequently compromised by various issues, including subjective errors from
indistinguishable samples and objective mistakes in label recording, making noisy labels a common
challenge. The presence of such label noise has been shown to significantly undermine the general-
ization ability of deep neural networks. Therefore, the development of robust methods for learning
from noisy labels is of paramount importance [5].

Label noise has been categorized into two primary types: class-conditional noise (CCN) and instance-
dependent noise (IDN) [6], while many recent works have focused on the more common IDN, where
noise distribution correlates with feature similarities among samples [7–9]. Deep neural networks
tend to learn from clean data initially and subsequently adapt to noisy data, which underpins several
sample selection methods that utilize training dynamics, such as prediction loss and confidence levels,
to isolate and manage noisy labels [10, 11]. To enhance the resilience of models trained on noisy
datasets, other methods have evolved to include sophisticated training regimens that incorporate
label filtering [12], label correction [13–15], robust loss formulations [16], and semi-supervised
learning frameworks [17, 18]. However, these methods typically lack the ability to actively explore
different possibilities or learn from long-term consequences, which can limit their effectiveness in
more complex or highly noisy scenarios.

To address this drawback, we propose to formulate the task of noisy label rectification as a reinforce-
ment learning problem. Reinforcement learning can dynamically adapt its noisy label correction
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strategy based on feedback from its actions, optimizing performance through a sequence of decisions
that maximize a cumulative, long-term reward. This ability to make sequential, non-myopic decisions
is particularly well-suited for addressing label noise in complex and instance-dependent environ-
ments. Specifically, we devise a novel policy gradient method, named as Reinforcement Learning for
Noisy Label Correction (RLNLC), to learn a stochastic policy function, which determines the label
correction actions in a given state and consequently separates the training data into a clean subset
without label corrections and a noisy subset with corrections, by maximizing the expected cumulative
reward. A key component of this RLNLC method is the reward function, which evaluates the impact
of actions and the resulting states. We design the reward function to enhance both label consistency
across the entire dataset and the inter-subset alignment of corrected labels with clean labels. This is
achieved through k-nearest neighbor prediction mechanisms, aiming to enhance the robustness of
label correction, maintain instance-dependent and prediction-aware label smoothness, and support
the performance of downstream label prediction tasks. This RL formulation allows for dynamic adap-
tation to the evolving data characteristics, offering a robust method for noise correction. We evaluate
RLNLC through rigorous experiments on benchmark datasets, demonstrating its effectiveness in
various noisy settings. The contributions of this work are summarized as follows:

• We innovatively formulate noisy label correction as an RL problem and propose RLNLC, a
method that leverages the adaptive capabilities of RL to effectively address label noise.

• We design a tailored policy function based on a deep representation network, which adap-
tively determines label correction actions by considering the complete state of the data.

• We develop an informative reward function that encourages effective label correction by
aligning with both local data structures and confident clean labels through k-nearest neighbor
prediction mechanisms.

• We devise an efficient encoding scheme for the critic network to enable effective deployment
of the actor-critic framework for optimizing the policy function.

• Extensive experiments demonstrate that RLNLC outperforms existing state-of-the-art meth-
ods, highlighting the effectiveness of this innovative RL approach.

2 Related Work

2.1 Learning with Noisy Labels

Deep neural networks are highly susceptible to overfitting when trained on datasets with noisy labels
and thus perform poorly on clean test datasets [5]. Previous studies have primarily focused on two
types of label noise, class-conditional label noise (CCN) and instance-dependent label noise (IDN).

Class-Conditional Label Noise For the CCN label noise, the probability of a label being noisy
is conditional on the class but not on individual instances. To address CCN, MentorNet [10] and
Co-teaching [11] use networks to select low-loss, reliable samples through guidance. Reweighting
techniques adjust the training influence of each sample based on estimated noise levels, thus enhanc-
ing robustness [19]. Decoupling [20] updates model parameters only on instances with classifier
disagreement, thus mitigating the reinforcement of noisy labels. Nested Dropout [21] integrates
dropout with curriculum learning, increasing sample difficulty progressively to enhance model re-
silience to noise. Semi-supervised learning strategies, e.g., DivideMix [17], use loss distribution
modeling to differentiate between clean and noisy data, treating noisy labels as unlabeled to leverage
semi-supervised techniques.

Instance-Dependent Label Noise In the IDN scenario, the label noise probability varies with
instance features, presenting unique challenges. To address this problem, CleanNet [22] leverages
a clean validation set to assess and correct noisy labels accurately. Advanced strategies like Lon-
gReMix [18] combine consistency regularization with data augmentation to effectively handle the
variability in noise. Pseudo-Label Correction (PLC) [15] refines labels during training using the
model’s predictions, enhancing label accuracy. Adaptive reweighting methods such as BARE [23]
dynamically adjust the weights of samples based on their likelihood of being clean, addressing
the complexities of IDN. SSR [24] employs statistical methods to estimate and correct noise rates,
facilitating more effective learning from noisy datasets by adapting training strategies to the specific

2



State

RewardPolicy

Actor-Critic

Action

Figure 1: Overview of the proposed RLNLC. Each data point xi is associated with an initial label ŷi
that is potentially noisy. The policy network πθ is constructed over a deep feature extraction network
fθ, and it determines actions based on the current state of the data st = {(xi, ŷti)}Ni=1, resulting
in label corrections. The updated labels subsequently lead to the next state. The reward function
is designed to evaluate the labels in an instance-dependent manner, capturing dataset-wide label
consistency and the inter-subset alignment of the noisy labels with clean labels. The policy function
is learned using an actor-critic method.

characteristics of the noise. SURE [25] enhances uncertainty estimation by integrating techniques
from model regularization like RegMixup, cosine similarity classifier, and sharpness aware minimiza-
tion to tackle IDN.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning framework in which an intelligent agent learns to
make optimal decisions by interacting with its environment and achieving goals through sequential
decision-making [26]. RL is known for its ability to explore effectively [27, 28] and to learn
optimized decisions for long-term outcomes [29, 30]. Leveraging these strengths, RL has seen
extensive application in decision-making domains over the past few years [31, 32]. In particular,
the remarkable success of ChatGPT has provoked significant interest in Reinforcement Learning
from Human Feedback (RLHF) [33–35], where RLHF fine-tunes complex LLMs by leveraging a
reward model trained on human-provided feedback. Recent work has applied RLHF to fine-tune
text-to-image diffusion models, achieving superior alignment with user preferences [36]. Another
study reformulated semi-supervised learning (SSL) as a bandit problem to guide classifier training
using weighted rewards [37]. More recently, photo-finishing tuning has been framed as a goal-
conditioned RL problem, allowing iterative optimization of pipeline parameters guided by a goal
image [38]. These advancements highlight RL’s adaptability in fine-tuning and optimizing diverse
machine learning systems.

Policy Gradient Methods Policy gradient is a class of RL methods designed to directly learn an
optimal policy that maximizes cumulative rewards. REINFORCE [39], a foundational policy gradient
method, uses Monte Carlo simulations to estimate the value function and calculate the policy gradient.
Actor-Critic methods [40] extend this by incorporating a value function (the Critic) to evaluate the
policy (the Actor), providing feedback to assist in updating the policy. One of the key advantages
of policy gradient methods is their ability to learn stochastic policies, making them effective in
complex environments requiring exploration. Additionally, they are well-suited for high-dimensional
or complex action spaces, driving their adoption across diverse applications [41, 36, 37].

3 Method

3.1 Problem Setup

We assume a noisy classification training dataset D = (X, Ŷ ) = {(xi, ŷi)}Ni=1, where each input
instance xi ∈ X is paired with an observed label vector ŷi ∈ Y that is potentially a corrupted noisy
version of the true label vector yi. The objective is to learn an effective prediction model, defined as
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the composition hψ ◦ fθ : X → Y , where fθ denotes the feature extractor with parameters θ, and hψ
represents the classifier with parameters ψ. We aim to develop an effective label cleaning technique
to correct noisy labels and enable efficient training of prediction models without being hindered by
the challenges posed by label noise.

3.2 RL for Noisy Label Correction

Reinforcement Learning (RL) problem is often modeled as a Markov Decision Process (MDP) [26],
characterized by the tupleM = (S,A, P,R, γ), where S denotes the state space, A represents the
action space, P (s′|s,a) defines the transition dynamics for s, s′ ∈ S and a ∈ A,R : S ×A → R
is a reward function, and γ ∈ (0, 1) is the discount factor. The primary objective is to determine an
optimal policy π⋆ : S → A that maximizes the expected discounted cumulative reward Jr(π) =
Eπ[
∑∞
t=0 γ

tR(st,at)].
In this work, we formulate the challenge of noisy label cleaning as an RL problem by properly
designing and defining the key components of the MDP. We then deploy an actor-critic method with
state encoding to learn an optimal policy function for noisy label correction. The overall framework
of the proposed RLNLC is illustrated in Figure 1, with the approach detailed in the remaining section.

3.2.1 State

We define the state as the observed data and corresponding (corrected) labels, expressed as st =
Dt = (X, Ŷ t) = {(xi, ŷti)}Ni=1 at any time-step t. The provided training dataset D = (X, Ŷ ) can
be treated as a static initial state s00. To enhance the exploratory aspect of our RL methodology, we
initiate each RL process by randomly altering a small subset of labels in s00 to establish an initial state
s0. The state encapsulates the current knowledge about the environment and serves as the input for
the policy function π. As the model operates, the policy π selects actions based on the current state
st. These actions primarily involve modifying the labels, which leads to a transition to a new state,
st+1 = (X, Ŷ t+1). Ideally, we expect to reach an optimal goal state where the labels are “clean".

3.2.2 Action and Policy Function

We define the action space A as the possible binary valued vectors of label correction decisions on
all the data instances in any state, such that for each action vector a = [a1, · · · , ai, · · · , aN ] ∈ A,
ai ∈ {0, 1} indicates whether the current label for instance xi needs to be corrected (ai = 1).

At the core of RLNLC is a probabilistic policy function, πθ, which maps a given state, st, to actions
in a stochastic manner. Given the state and action definitions above, the policy function is designed
to make probabilistic decisions regarding whether to apply label corrections to each instance xi in
the dataset (i.e., setting ai = 1) given the current state st = {(xi, ŷti)}Ni=1. To effectively identify
and rectify noisy labels, we define a parametric policy function πθ based on the label consistency of
k-nearest neighbors, calculated within the embedding space generated by a deep feature extraction
network fθ, which is initially pre-trained on the given training dataset D using standard cross-entropy
loss. The underlying assumption is that a label inconsistent with those of its k-nearest neighbors is
more likely to be noisy and in need of correction.

Let N (xi) denotes the indices of the k-nearest neighbors of instance xi within the dataset D based
on the Euclidean distances calculated in the embedding space, fθ(X ), extracted by the current fθ.
For each instance xi, we then aggregate the labels of its k-nearest neighbors in the current state st

using an attention mechanism to generate a new label prediction, ȳi, that aligns with the local data
structures encoded by fθ. Specifically, ȳi is computed as follows:

ȳi =
∑

j∈N (xi)
αijŷ

t
j . (1)

The attention weights {αij} are computed using similarities of instance pairs in the embedding space,
such that:

αij =
exp (sim (fθ(xi), fθ(xj)) /τ)∑

j′∈N (xi)
exp (sim (fθ(xi), fθ(xj′)) /τ)

, (2)

where τ is a temperature hyperparameter, and sim(., .) denotes the cosine similarity. Finally the
probability of taking each element action ati = 1 for instance xi in state st—and thus the policy

4



function—is computed by comparing the k-nearest neighbor predicted label vector ȳi with the current
label vector ŷti , such that:

πθ(s
t)i = p(ati = 1) =

∑C
j=1 1(ȳij > ȳiŷi) · ȳij∑C
j=1 1(ȳij ≥ ȳiŷi) · ȳij

, (3)

where C denotes the length of the label vector—the number of classes for classification, ŷi =
argmaxj ŷij denotes the original predicted class index for instance xi in state st.

The probability p(ati = 1) defined above quantifies the level of label inconsistency—specifically,
the extent to which the class prediction from the k-nearest neighbors disagrees with the original
class prediction ŷi, thereby indicating the likelihood of noise and the probability of applying label
correction to xi. To interpret, the probability p(ati = 1) is proportional to the sum of probabilities of
classes that are more likely than the original predicted class ŷi in the k-nearest neighbor prediction
ȳi. This sum is then normalized by the sum of probabilities of classes whose probabilities are no less
than that of the original label ŷi in ȳi. This normalization ensures that p(ati = 1) scales appropriately
relative to the level of disagreement in class predictions, without being affected by disagreement-
irrelevant classes whose probabilities in ȳi are lower than that of ŷi. Note, the probability p(ati = 1)
becomes zero when all the other classes except ŷi become disagreement-irrelevant—i.e., class ŷi has
the largest probability in ȳi and there is no prediction disagreement.

Deterministic Transition with Stochastic Policy Given state st, we determine the action vector at
using the stochastic policy function πθ introduced above, enhancing the exploratory behavior of the
learning process. Specifically, we randomly sample the value for each binary-valued action element
ati from a Bernoulli distribution, Bernoulli(pi), with pi = p(ati = 1). Given (st,at), we then deploy
a deterministic transition model to induce the next state st+1 = {(xi, ŷt+1

i )}Ni=1, such that:

ŷt+1
i =

{
ŷti if ati = 0,

ȳi if ati = 1.
(4)

This mechanism maintains a soft label distribution in vector space, ensuring that label corrections
occur probabilistically based on the likelihood of a label being noisy. By introducing randomness,
the learning process explores a broader range of state-action pairs, increasing the chances of discov-
ering better strategies while avoiding suboptimal solutions. Additionally, it mitigates disruptions
from abrupt label changes, allowing the model to adaptively learn from the evolving environment
characterized by different states, ultimately enhancing the overall robustness of the learning system.

3.2.3 Reward Function

In RL, the reward function R(st,at) provides feedback on the quality of an action at taken in a
given state st, guiding the learning process toward its objective. To achieve the goal of cleaning label
noise for the proposed RLNLC, we design the reward function to evaluate the quality of an action
through the labels produced from taking the action. Our reward functionR consists of two sub-reward
evaluation functions: a label consistency reward function,RLCR, and a noisy label alignment reward
function,RNLA.

Label Consistency Reward With the deterministic transition mechanism, the next state st+1 is
obtained in a fixed manner by taking action at in the given state st. Consequently, the quality of the
labels {ŷt+1

i }Ni=1 in st+1 directly reflects the quality of the state-action pair (st,at). We design the
label consistency reward (LCR) function,RLCR, to assess the label quality in st+1—i.e., how well
each label fits the dataset—based on the k-nearest neighbor label prediction mechanism. To separate
the impact of the policy function from label quality evaluation, we employ a fixed backbone model,
fω, pre-trained on the original dataset to extract embedding features for the data instances in st+1,
supporting k-nearest neighbor label prediction. Specifically, the label consistency reward function
quantifies the negative Kullback-Leibler (KL) divergences between the given labels in st+1 and the
k-nearest neighbor predicted labels across all the N instances, such that:

RLCR(s
t,at) = −Ei∈[1:N ]

[
KL

(̂
yt+1
i ,

∑
j∈Nω(xi)

αijŷ
t+1
j

)]
(5)
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Here, Nω(xi) denotes the indices of the global k-nearest neighbors of instance xi within st+1,
calculated using embeddings extracted by fω. The attention weight αij is computed in a similar
manner as in Eq. (2), but based on the feature extractor fω. This reward function evaluates the
statistical smoothness of the labels based on local data structures from a prediction perspective,
aligning with the ultimate goal of supporting prediction model training.

Noisy Label Alignment Reward In addition, to evaluate the stability and robustness of the label
correction action at, we divide the data in state st+1 into two subsets: a clean subset Dt+1

cle that
contains the indices of instances whose labels are not changed—i.e., ati = 0, and a noisy subset Dt+1

noi
that contains the indices of instances whose labels are corrected—i.e., ati = 1. We design the noisy
label alignment (NLA) reward function, RNLA, to assess how well the noisy labels in Dt+1

noi align
with the clean labels in Dt+1

cle based on an inter-subset k-nearest neighbor label prediction mechanism,
such that:

RNLA(s
t,at) =−Ei∈Dt+1

noi

[
KL

(̂
yt+1
i ,

∑
j∈Ncle(xi)

αijŷ
t+1
j

)]
(6)

Here, Ncle(xi) represents the k-nearest neighbors identified in the clean subset for an instance xi
from the noisy subset. Both Ncle(xi) and the attention weights {αij} are again computed using
embeddings extracted by fω. The alignment—negative KL-divergence—between each noisy label
ŷt+1
i and the attention-based aggregation from its k-nearest clean neighbors reflects the statistical

consistency of the label correction applied on xi by the action at.

The composite reward functionR(st,at) integrates the two sub-reward functions introduced above
as follows:

R(st,at) = exp
(
RLCR(s

t,at) + λRNLA(s
t,at)

)
(7)

where λ is a trade-off hyper-parameter that balances the contributions of the two sub-reward functions.
Since the value of negative KL-divergence is non-positive and unbounded, we deploy the exponential
function, exp(·), to rescale the reward values to the range of (0, 1]. This scaling mechanism is crucial
for ensuring that the rewards remain bounded and normalized, facilitating a stable learning process.

3.2.4 Actor-Critic Method

Based on the RL formulation of the noisy label correction problem, defined through the key MDP
components above, we adopt an actor-critic framework to learn the policy function by maximizing
the expected cumulative reward.

In this framework, the policy function πθ is considered as an “actor", while an action-value function
Qϕ(s,a) parameterized by ϕ is introduced as a “critic" to directly estimate the Q-value, defined
as Q(s,a) = Eπθ

[
∑∞
t=0 γ

tR(st,at)|s0 = s,a0 = a], which represents the expected discounted
cumulative reward from taking action a in state s. The learning objective for the policy function in
the actor-critic method can be written as:

J(πθ) = Es∼ρπθ

[∑
a
πθ(a|s)Q(s,a)

]
(8)

where ρπθ
denotes the stationary state distribution. The gradient of the objective over θ can be

expressed as:

∇θJ(πθ) = Es∼ρπθ
,a∼πθ(s) [∇θ log πθ(a|s)Q(s,a)] . (9)

The Q-values involved in the objective above are estimated using the critic network Qϕ. To learn the
critic network, we use the SARSA method to compute the Temporal Difference (TD) error [42, 26]
for making on-policy updates to the critic function. The TD error at time-step t− 1 is given by:

δt−1 = R(st−1,at−1) + γQ(st,at)−Qϕ(st−1,at−1) (10)

The parameters of the critic network, ϕ, are updated via the following stochastic gradient step using
the TD error δt−1:

ϕ← ϕ+ βδt−1∇ϕQϕ(st−1,at−1) (11)

where β is the learning rate for the critic.
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Input Encoding for the Critic The critic network, Qϕ, requires both the state and action as inputs.
Given the potentially large dimensions of the states and actions corresponding to the size of the
training dataset, an efficient input encoding scheme is essential for reducing the computational cost.
To this end, we devise a simple yet effective two step encoding scheme. First, given that our proposed
RLNLC framework utilizes a deterministic transition mechanism, the next state st+1 is uniquely
determined by the current state-action pair (st,at). Consequently, we can use st+1 to replace the
corresponding input pair (st,at). We calculate r(xi, ŷt+1

i ) as reward for a single pair of instance
(xi, ŷ

t+1
i ) with the same principle as Label Consistency Reward:

r(xi, ŷ
t+1
i ) = exp

(
−KL

(̂
yt+1
i ,

∑
j∈Nω(xi)

αijŷ
t+1
j

))
(12)

where Nω(xi) is the indices of neighbor set of fω(xi) in D, and {αij} are calculated using Eq. (2).
The exp(.) function is used to normalize the reward and bound it in (0, 1]. Next, we employ a binning
strategy to encode the state st+1 = {(xi, ŷt+1

i )}Ni=1 based on the reward evaluations, substantially
reduces its dimensionality. Specifically, we consider Nb (Nb ≪ N ) number of bins and allocate each
instance-label pair (xi, ŷt+1

i ) in st+1 to one bin based on the following rule:

(xi, ŷ
t+1
i ) ∈ Bj if r(xi, ŷ

t+1
i ) ∈

(
j − 1

Nb
,
j

Nb

]
, (13)

where Bj denotes the j-th bin with j ∈ [1 : Nb], and r(xi, ŷ
t+1
i ) is the exponential of label

consistency reward computed on the single given instance using Eq. (12). After binning, we construct
a vector vt+1 with length Nb to encode the state st+1, with each entry representing the proportion of
instances allocated to the corresponding bin, such that:

vt+1
j = |Bj |/N (14)

where |Bj | denotes the number of instances in the j-th bin. This encoding process is deployed as
part of the critic network Qϕ to transform the inputs (st,at) into a simple vector vt+1, facilitating
subsequent learning and promoting computational efficiency.

3.3 Label Cleaning for Prediction Model Training

After learning the policy function πθ using the actor-critic method, we deploy the trained policy
function for T ′ time-steps to perform label cleaning on the noisy training dataset D. This creates a
trajectory with length T ′ to progressively correct the noisy labels, starting from the initial state s00.
The labels obtained in the last state sT

′
= {(xi, ŷT

′

i )}Ni=1 are treated as “cleaned" labels. To promote
efficiency, the prediction model hψ ◦ fθ is pre-trained on the given dataset D with noisy labels using
standard cross-entropy loss. The feature extraction network fθ then is further trained as part of the
policy function learning. The final prediction model hψ ◦ fθ is obtained by further fine-tuning it on
the “cleaned" data in sT

′
with the standard cross-entropy loss. The learning process of the proposed

RLNLC method is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets In the experiments, we employ four benchmark datasets to evaluate RLNLC under diverse
noise conditions. CIFAR10-IDN and CIFAR100-IDN, adapted from CIFAR datasets [46], contain
50,000 training and 10,000 test images across 10 and 100 classes, respectively. Following prior
work [7], instance-dependent label noise is injected into their training sets to mimic realistic corruption.
Animal-10N [47] includes ten visually similar animal classes with 50,000 training and 5,000 test
images, featuring roughly 8% noisy labels. Food-101N [22] consists of 310,009 web-sourced images
over 101 categories with about 20% label noise, evaluated using the clean Food-101 test split of
25,250 manually verified images. Together, these datasets encompass experimental scenarios with
different levels of label noise complexity.
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Algorithm 1 RLNLC Training Algorithm

Input: Initialized policy network πθ and critic network Qϕ; static initial state s00.
Output: Trained policy network parameters θ and critic network parameters ϕ.
for each epoch do

Randomly modify some labels in s00 to create the initial state s0.
for t = 0, 1, 2, . . . , T do

Form {N (xi)}Ni=1 for all xi ∈ D.
Compute {αij}Ni=1 for j ∈ N (xi) using Eq. (2).
Compute the predicted labels {ȳi}Ni=1 using Eq. (1).
Sample an action at ∼ πθ(·|st) based on the probabilities computed using Eq. (3).
Transition to the next state st+1 by taking action at using Eq. (4).
ComputeRLCR andRNLA and combine them to store rewardR(st,at) using Eq. (5), Eq. (6),
and Eq. (7) .
Compute and store Q-value: Q(st,at) = Qϕ(s

t,at).
θ ← θ + βθ∇θ log πθ(at|st)Q(st,at).
if t ≥ 1 then
δt−1 = R(st−1,at−1) + γQ(st,at)−Qϕ(st−1,at−1).
ϕ← ϕ+ βδt−1∇ϕQϕ(st−1,at−1).

end if
end for

end for

Table 1: Test accuracy (%) of different methods on CIFAR10-IDN and CIFAR100-IDN under various
IDN noise rates. Standard deviations are shown as subscripts in parentheses. Columns correspond to
different label noise ratios. † denotes results reproduced using publicly available source code.

Method CIFAR10-IDN CIFAR100-IDN
0.20 0.30 0.40 0.45 0.50 0.20 0.30 0.40 0.45 0.50

CE [6] 75.8 69.2 62.5 51.7 39.4 30.4 24.2 21.5 15.2 14.4
Mixup [43] 73.2 72.0 61.6 56.5 49.0 32.9 29.8 25.9 23.1 21.3
Forward [44] 74.6 69.8 60.2 48.8 46.3 36.4 33.2 26.8 21.9 19.3
Reweight [19] 76.2 70.1 62.6 51.5 45.5 36.7 31.9 28.4 24.1 20.2
Decoupling [20] 78.7 75.2 61.7 58.6 50.4 36.5 30.9 27.9 23.8 19.6
Co-teaching [11] 81.0 78.6 73.4 71.6 45.9 38.0 33.4 28.0 25.6 24.0
MentorNet [10] 81.0 77.2 71.8 66.2 47.9 38.9 34.2 31.9 27.5 24.2
DivideMix [17] 94.8 94.6 94.5 94.1 93.0 77.1 76.3 70.8 57.8 58.6
CausalNL [6] 81.4 80.3 77.3 78.6 67.3 41.4 40.9 34.0 33.3 32.1
SSR† [24] 96.5 96.5 96.3 95.9 94.1 78.8 78.6 77.0 75.0 72.8
RLNLC (Ours) 97.3(0.1)97.1(0.1)96.9(0.2)96.6(0.2)95.8(0.4)80.5(0.7)80.1(0.7)78.5(0.8)77.2(0.8)74.7(0.9)

Implementation Details In line with previous research [18, 48], our experiments employed a
ResNet-34 backbone for CIFAR10-IDN and a ResNet-50 for CIFAR100-IDN and Food-101N. For
Animal-10N, a VGG-19 with batch normalization, as outlined in prior work [47], is utilized. We also
used a ResNet-18 for experiments with symmetric noise on CIFAR10 and CIFAR100. Our training
methodology involved stochastic gradient descent (SGD) with a momentum of 0.9 and a batch size
of 128. We also implemented L2 regularization with a coefficient of 5× 10−4. We started with an
initial learning rate of 0.01, which was reduced to 0.001 at the halfway point of the training duration.
Additionally, a preliminary warmup phase was conducted for the first 50 epochs. We train the policy
network on the CIFAR10-IDN, CIFAR100-IDN, and Animal-10N datasets for 500 epochs and set
T = 10. Subsequently, we evaluate the trained policy on the training data with a trajectory length of
T ′ = 25. Using the corrected labels, we fine-tune the prediction model for an additional 100 epochs.
The parameters λ, τ , γ, Nb, and k are set to 0.5, 0.5, 0.9, 100, and 10, respectively.

4.2 Comparison Results

We compare the proposed RLNLC with a set of methods, including CE [6], Mixup [43], Forward [44],
Reweight [19], Decoupling [20], Co-teaching [11], Co-teaching+ [12], MentorNet [10], DivideMix
[17], CausalNL [6], SSR [25], SSR+ [25], Nested-Dropout [21], CE+Dropout [21], SELFIE [47],
PLC [15], Nested-CE [21], CleanNet [22], BARE [23], DeepSelf [45], PLC [15], LongReMix [18],
and SURE [25]. We record the average results of RLNLC over five independent runs.
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Table 2: Test accuracy (%, mean and standard deviation) on Animal-10N. † denotes results reproduced
using publicly available source code.
Method CE N-Dropout CE+Dropout SELFIE PLC Nested-CE SSR† SSR+ SURE RLNLC (Ours)

79.4(0.1) 81.8 81.3(0.3) 81.8(0.1) 83.4(0.4) 84.1(0.1) 87.7 88.5 89.0 90.2(0.1)

Table 3: Test accuracy (%, mean and standard deviation) on Food-101N.
Method CE[6] CleanNet[22] BARE[23] DeepSelf[45] PLC[15] LongReMix[18] RLNLC (Ours)

81.6 83.9 84.1 85.1 85.2(0.0) 87.3 89.2(0.1)

Table 1 presents the performance of our method compared to existing techniques with various noise
rates on the CIFAR10-IDN and CIFAR100-IDN datasets, utilizing ResNet-34 and ResNet-50 as
backbone networks, respectively. Our proposed method, RLNLC, consistently produces the best
results. On CIFAR10-IDN, RLNLC achieves a noteworthy improvement of 1.7% over the second
best method, SSR, with a large noise rate of 0.50, highlighting our method’s ability to maintain high
accuracy under elevated noise conditions. On CIFAR100-IDN, our RLNLC consistently outperforms
the nearest competitor, SSR, by margins of 1.7%, 1.5%, 1.5%, 2.2%, and 1.9% across noise rates
of 0.20, 0.30, 0.40, 0.45, and 0.50, respectively. This sustained superiority across various noise
intensities demonstrates the robustness and adaptability of our approach, affirming its effectiveness in
handling complex noisy label scenarios.

The results in Table 2 showcase the comparative performance of our proposed RLNLC on the
Animal-10N dataset, with VGG-19 as the backbone network. Our method achieves a leading test
accuracy of 90.2%, marking a significant improvement of 1.2% over the next best method, SURE.
This enhancement underscores the advantage our approach provides over established techniques.

Table 3 presents the comparative results on the Food-101N dataset employing ResNet-50 as the
backbone network. RLNLC achieves the best test accuracy of 89.2% , outperforming all competing
methods by a significant margin. Specifically, we observe an improvement of approximately 1.9%
over the second best-performing method, LongReMix.

We also conducted experiments on CIFAR10 and CIFAR100 with symmetric noise [44], a type of
class-conditioned noise, using ResNet-18 as the backbone network. The comparison results across
different noise rates are reported in Table 4. Our RLNLC exhibits superior performance on both
CIFAR10 and CIFAR100 under high symmetric noise conditions. Notably, at a 90% noise level
on CIFAR100, RLNLC achieved an impressive test accuracy of 44.2%, significantly surpassing
DivideMix, which recorded only 31%. This 13.2 percentage point increase emphasizes the robustness
and effectiveness of RLNLC in handling extreme noisy scenarios. Similarly, on CIFAR10 with
the same noise level, RLNLC reached an accuracy of 82.1%, outperforming DivideMix by 6.7
percentage points. Such quantitative enhancements validate the superior capabilities of our method in
maintaining accuracy despite high levels of label noise.

4.3 Ablation Study

We conducted an ablation study to investigate the impact of different components in our proposed
RLNLC framework on the overall performance. The study was carried out on the CIFAR100-IDN
dataset, with noise rates ranging from 0.20 to 0.50. Specifically, we considered four ablation variants:
(1) “−w/oRNLA” removes the noisy label alignment reward; (2) “−w/oRLCR” drops the label
consistency reward; (3) “−w/o random. s0” drops initial state randomization and starts each epoch’s
training from the fixed initial state s0 = s00 = D; (4) “fω ← fθ” uses the policy network feature
extractor for reward evaluation. The comparison results are reported in Table 5. We can see that
removing any key component from RLNLC leads to a noticeable decrease in performance across
all noise levels. Specifically, the removal ofRNLA results in lower accuracy, highlighting its crucial
role in leveraging clean data to guide the correction of noisy labels within the dataset. Similarly,
excluding the label consistency reward,RLCR, diminishes the system’s ability to maintain local label
consistency, which is essential for the model’s robust performance across various noise conditions.
The variant without initial state randomization shows a smaller decline in performance compared
to the first two ablated conditions but still underperforms relative to the full RLNLC model. This
suggests that slight initial state randomization helps the model in exploring more diverse corrective
strategies. Finally, the variant “fω ← fθ” leads to a clear performance drop, demonstrating that
decoupling the policy and reward networks is essential for stable reinforcement learning.
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Table 4: Test accuracy (%) of different methods on CIFAR10 and CIFAR100 under various symmetric
noise rates. Columns correspond to different label noise ratios. Bold values indicate the best results.

Method CIFAR10 CIFAR100
0.50 0.80 0.90 0.50 0.80 0.90

CE [17] 57.9 26.1 16.8 37.3 8.8 3.5
Co-teaching+ [12] 84.1 45.5 30.1 45.3 15.5 8.8
Mixup [43] 77.6 46.7 43.9 46.6 17.6 8.1
DivideMix [17] 94.4 92.9 75.4 74.2 59.6 31.0
RLNLC (Ours) 97.4(0.1) 95.8(0.2) 82.1(0.7) 81.2(0.3) 70.6(0.4) 44.2(0.8)

Table 5: Results of ablation study in terms of test accuracy on CIFAR100-IDN . Top row presents the
label noise ratios. Bold font indicates the best results.

Method 0.20 0.30 0.40 0.45 0.50
RLNLC (Ours) 80.5(0.7) 80.1(0.7) 78.5(0.8) 77.2(0.8) 74.7(0.9)

−w/oRNLA 78.4(0.4) 77.9(0.8) 76.2(0.6) 76.3(0.8) 72.0(0.9)
−w/oRLCR 79.3(0.6) 78.5(0.7) 76.1(0.9) 76.1(0.6) 73.9(0.8)
−w/o random. s0 79.9(0.6) 79.5(0.9) 77.8(0.5) 76.8(0.9) 73.1(0.9)
fω ← fθ 78.4(0.8) 76.9(0.8) 75.2(0.6) 74.3(0.8) 73.8(0.9)

(a) CIFAR10-IDN (b) CIFAR100-IDN

Figure 2: Label correction accuracy on the training set by deploying the trained policy function for
T ′ time-steps. Results on CIFAR10-IDN and CIFAR100-IDN with various noise rates are plotted.

4.4 Label Correction Accuracy

We tested the label correction accuracy on CIFAR10-IDN and CIFAR100-IDN, examining how
varying noise rates in {0.2, 0.3, 0.4, 0.45, 0.5} impacts the label correction performance during the
T ′ noise correction steps on the training set using the trained policy function. The results are
presented in Figure 2. The CIFAR10-IDN dataset reveals a clear distinction in label correction
accuracy improvement across different noise rates; lower noise levels (0.2, 0.3, 0.4) exhibit rapid
convergence, achieving over 90% accuracy by T ′ = 5. Even with the highest noise rate (0.50) our
method yields 90% accuracy by T ′ = 10, indicating our approach’s robustness to high noise rates.
On the more complex CIFAR100-IDN dataset, our label correction strategy adeptly handles the
increased class count and intrinsic dataset complexities, albeit with slightly lower accuracies. This
is consistent with expectations given the heightened difficulty of the task. Achieving around 90%
accuracy in lower noise conditions and maintaining over 79% accuracy even in high noise settings on
CIFAR100-IDN showcases RLNLC’s adaptability.

5 Conclusion

In this paper, we innovatively formulated noisy label correction as a reinforcement learning problem
and developed a novel RL approach, named as RLNLC, to address the problem of learning with noisy
labels. RLNLC integrates stochastic policy-driven actions for label correction with a carefully crafted
reward function that fosters both label consistency and noisy label alignment. Its capability to make
sequential, non-myopic decisions is well-suited for handling label noise in complex environments,
thereby enhancing the robustness of label corrections. Experiments are conducted on multiple
benchmark datasets, and the experimental results demonstrated that RLNLC consistently outperforms
existing state-of-the-art methods. These findings underscore the potential of reinforcement learning
to transform the landscape of learning in noisy environments.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introduction accurately reflect the paper’s contributions
and scope. They clearly state the central idea of formulating noisy label correction as a
reinforcement learning problem and propose a novel actor-critic method (RLNLC) that
dynamically corrects labels through a learned policy guided by a tailored reward function.
These claims align with the detailed methodology and are validated by the experimental
results, which demonstrate consistent improvements over existing approaches.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Limitation Section in Appendix C
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes detailed descriptions of the experimental setup and parame-
ters. Additionally, the paper includes algorithms to aid reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code is not shared.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: See Section 4.1 for details about training settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: All experiments were conducted five times, with the average results and
standard deviations reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about computer resources are provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Broader Impacts Section in Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our research are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs where used in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 3: Sensitivity analysis for four hyper-parameters, k, Nb, λ, and T , on CIFAR100-IDN with
0.50 noise rate.

A Hyper-parameter Sensitivity Analysis

We conducted a detailed sensitivity analysis of four key hyperparameters within the RLNLC frame-
work on CIFAR100-IDN: (1) k—hyperparameter for number of neighbors in k-nearest neighbors, (2)
Nb—hyperparameter for the number of bins for state encoding, (3) λ—trade-off coefficient forRNLA,
and (4) T—trajectory length in the training procedure, revealing their influence on the performance.
The experimental results for various hyper-parameter values are plotted in Figure 3.

We can see that the test accuracy performance improves as k increases from 3 to 10, highlighting the
benefits of a broader contextual basis for label refinement. However, further increases beyond 10
yield diminishing returns, with accuracy plateauing around 74.9% for k values of 20 and 30. This
suggests that while a larger contextual window is beneficial up to a point, excessively wide windows
offer no extra benefits, likely due to less informative examples. The granularity of state encoding,
controlled by Nb, shows a similar trend where increasing Nb from 10 to 100 leads to improved
performance. Further increases up to 500 continue to marginally enhance the model’s accuracy. This
improvement shows that finer state space discretization enables more precise state encoding, though
gains diminish with increasing Nb. The optimal range for λ is between 0.4 and 0.6, achieving a peak
accuracy of 74.9%. Outside this range, effectiveness drops, indicating an imbalance that may reduce
learning efficiency. Varying the training trajectory length T shows an initial increase in performance
as T increases from 1 to 10. However, extending T further to 25 leads to a decline in performance.
This reduction may stem from overfitting to noisy data or excessive refinement causing label drift.

B Computer resources

Our experiments were performed using computing systems equipped with 8-core Intel Core proces-
sors, 64 GB of system memory, and NVIDIA GeForce RTX 3060 GPUs, each providing 12 GB of
dedicated video memory.

C Limitation

RLNLC targets the standard learning-with-noisy-labels setting under a single, stationary data dis-
tribution, without explicitly modeling domain shift or class imbalance. Nonetheless, the proposed
formulation is general and flexible enough to be extended to more complex scenarios. These exten-
sions would build upon the core principles of RLNLC, and thus represent natural and promising
directions for future work.

D Broader Impacts

This work proposes a reinforcement learning-based framework for learning with noisy labels, which
can improve the reliability and robustness of machine learning models trained on imperfect datasets.
By reducing the reliance on clean labels, RLNLC can make it more feasible to leverage large-scale
datasets in domains where annotation is expensive or error-prone, such as medical imaging, remote
sensing, or crowd-sourced labeling. However, automatic label correction methods also introduce
potential risks, such as reinforcing existing biases in the data or misclassifying minority or rare
samples if not carefully validated. Future deployments should therefore include safeguards, such as
human-in-the-loop verification or fairness audits, to ensure responsible use.
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