
Published as a conference paper at ICLR 2024

LET’S VERIFY STEP BY STEP

Hunter Lightman∗, Vineet Kosaraju∗, Yura Burda∗, Harri Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever & Karl Cobbe∗
OpenAI
San Francisco, CA, USA
karl@openai.com

ABSTRACT

In recent years, large language models have greatly improved in their ability to
perform complex multi-step reasoning. However, even state-of-the-art models
still regularly produce logical mistakes. To train more reliable models, we can
turn either to outcome supervision, which provides feedback for a final result,
or process supervision, which provides feedback for each intermediate reasoning
step. Given the importance of training reliable models, and given the high cost of
human feedback, it is important to carefully compare the both methods. Recent
work has already begun this comparison, but many questions still remain. We con-
duct our own investigation, finding that process supervision significantly outper-
forms outcome supervision for training models to solve problems from the chal-
lenging MATH dataset. Our process-supervised model solves 78% of problems
from a representative subset of the MATH test set. Additionally, we show that
active learning significantly improves the efficacy of process supervision. To sup-
port related research, we also release PRM800K, the complete dataset of 800,000
step-level human feedback labels used to train our best reward model.

1 INTRODUCTION

Large language models are capable of solving tasks that require complex multi-step reasoning by
generating solutions in a step-by-step chain-of-thought format (Nye et al., 2021; Wei et al., 2022;
Kojima et al., 2022). However, even state-of-the-art models are prone to producing falsehoods —
they exhibit a tendency to invent facts in moments of uncertainty (Bubeck et al., 2023). These
hallucinations (Maynez et al., 2020) are particularly problematic in domains that require multi-step
reasoning, since a single logical error is enough to derail a much larger solution. Detecting and
mitigating hallucinations is essential to improve reasoning capabilities.

One effective method involves training reward models to discriminate between desirable and unde-
sirable outputs. The reward model can then be used in a reinforcement learning pipeline (Ziegler
et al., 2019; Stiennon et al., 2020; Nakano et al., 2021; Ouyang et al., 2022) or to perform search via
rejection sampling (Nichols et al., 2020; Shen et al., 2021; Cobbe et al., 2021). While these tech-
niques are useful, the resulting system is only as reliable as the reward model itself. It is therefore
important that we study how to most effectively train reliable reward models.

In closely related work, Uesato et al. (2022) describe two distinct methods for training reward mod-
els: outcome supervision and process supervision. Outcome-supervised reward models (ORMs) are
trained using only the final result of the model’s chain-of-thought, while process-supervised reward
models (PRMs) receive feedback for each step in the chain-of-thought. There are compelling rea-
sons to favor process supervision. It provides more precise feedback, since it specifies the exact
location of any errors that occur. It also has several advantages relevant to AI alignment: it is eas-
ier for humans to interpret, and it more directly rewards models for following a human-endorsed
chain-of-thought. Within the domain of logical reasoning, models trained with outcome supervision
regularly use incorrect reasoning to reach the correct final answer (Zelikman et al., 2022; Creswell
et al., 2022). Process supervision has been shown to mitigate this misaligned behavior (Uesato et al.,
2022).

∗Primary authors. Correspondence to: Karl Cobbe <karl@openai.com>

1



Published as a conference paper at ICLR 2024

Despite these advantages, Uesato et al. (2022) found that outcome supervision and process super-
vision led to similar final performance in the domain of grade school math. We conduct our own
detailed comparison of outcome and process supervision, with three main differences: we use a
more capable base model, we use significantly more human feedback, and we train and test on the
more challenging MATH dataset (Hendrycks et al., 2021).

Our main contributions are as follows:

1. We show that process supervision can train much more reliable reward models than out-
come supervision. We use our state-of-the-art PRM to solve 78.2% of problems from a
representative subset of the MATH test set.

2. We show that a large reward model can reliably approximate human supervision for smaller
reward models, and that it can be used to efficiently conduct large-scale data collection
ablations.

3. We show that active learning leads to a 2.6× improvement in the data efficiency of process
supervision.

4. We release our full process supervision dataset, PRM800K, to promote related research.

2 METHODS

We perform a comparison of outcome and process supervision, following a similar methodology to
Uesato et al. (2022). Outcome supervision can be provided without humans, since all problems in
the MATH dataset have automatically checkable answers. In contrast, there is no simple way to auto-
mate process supervision. We therefore rely on human data-labelers to provide process supervision,
specifically by labelling the correctness of each step in model-generated solutions.

We conduct experiments in two separate regimes: large-scale and small-scale. Each has its own
advantages, and they offer complimentary perspectives. At large-scale, we finetune all models from
GPT-4 (OpenAI, 2023). We focus on advancing the state-of-the-art by training the most reliable
ORM and PRM possible. Unfortunately the training sets for these reward models are not directly
comparable, for reasons we will discuss in Section 3. These models are therefore not ideal for mak-
ing an apples-to-apples comparison of outcome and process supervision. To address this flaw, we
also train models at small-scale, where we can conduct a more direct comparison. In order to re-
move our dependence on costly human feedback, we use a large-scale model to supervise small-scale
model training. This setup enables us to conduct several important ablations that would otherwise
be infeasible.

2.1 SCOPE

At each model scale, we use a single fixed model to generate all solutions. We call this model the
generator. We do not attempt to improve the generator with reinforcement learning (RL). When we
discuss outcome and process supervision, we are specifically referring to the supervision given to
the reward model. We do not discuss any supervision the generator would receive from the reward
model if trained with RL. Although finetuning the generator with RL is a natural next step, it is
intentionally not the focus of this work.

We instead focus exclusively on how to train the most reliable reward model possible. We evaluate
a reward model by its ability to perform best-of-N search over uniformly sampled solutions from
the generator. For each test problem we select the solution ranked highest by the reward model,
automatically grade it based on its final answer, and report the fraction that are correct. A reward
model that is more reliable will select the correct solution more often.

2.2 BASE MODELS

All large-scale models are finetuned from the base GPT-4 model (OpenAI, 2023). This model has
been pretrained solely to predict the next token; it has not been pretrained with any Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al., 2017). The small-scale base models
are similar in design to GPT-4, but they were pretrained with roughly 200 times less compute. As

2



Published as a conference paper at ICLR 2024

Figure 1: A screenshot of the interface used to collect feedback for each step in a solution.

an additional pretraining step, we finetune all models on a dataset of roughly 1.5B math-relevant
tokens, which we call MathMix. Similar to Lewkowycz et al. (2022), we find that this improves the
model’s mathematical reasoning capabilities. Details on how this dataset was constructed can be
found in Appendix A.

2.3 GENERATOR

To make parsing individual steps easier, we train the generator to produce solutions in a newline
delimited step-by-step format. Specifically, we few-shot generate solutions to MATH training prob-
lems, filter to those that reach the correct final answer, and finetune the base model on this dataset
for a single epoch. This step is not intended to teach the generator new skills; it is intended only to
teach the generator to produce solutions in the desired format.

2.4 DATA COLLECTION

To collect process supervision data, we present human data-labelers with step-by-step solutions to
MATH problems sampled by the large-scale generator. Their task is to assign each step in the
solution a label of positive, negative, or neutral, as shown in Figure 1. A positive label indicates
that the step is correct and reasonable. A negative label indicates that the step is either incorrect or
unreasonable. A neutral label indicates ambiguity. In practice, a step may be labelled neutral if it is
subtly misleading, or if it is a poor suggestion that is technically still valid. We permit neutral labels
since this allows us to defer the decision about how to handle ambiguity: at test time, we can treat
neutral labels as either positive or negative. A more detailed description of the labelling instructions
is provided in Appendix D.

We label solutions exclusively from the large-scale generator in order to maximize the value of
our limited human-data resource. We refer to the entire dataset of step-level labels collected as
PRM800K. The PRM800K training set contains 800K step-level labels across 75K solutions to
12K problems. To minimize overfitting, we include data from 4.5K MATH test problems in the
PRM800K training set, and we therefore evaluate our models only on the remaining 500 MATH test
problems. More details about this test set can be found in Appendix C.

During data collection, we must decide which solutions to surface to data-labelers. The most
straightforward strategy is to uniformly surface solutions produced by the generator. However, if
we surface solutions that make obvious errors, the human feedback we get is less valuable. We
would prefer to surface solutions that are more likely to fool our best reward model. To that end,
we attempt to strategically select which solutions to show data-labelers. Specifically, we choose to
surface convincing wrong-answer solutions. We use the term convincing to refer to solutions that are
rated highly by our current best PRM, and we use wrong-answer to refer to solutions that reach an
incorrect final answer. We use this slightly verbose phrasing to emphasize the fact that correctness
is determined solely by checking the final answer, a process which occasionally leads to misgraded
solutions. We expect to gain more information from labeling convincing wrong-answer solutions,
since we know the PRM is mistaken about at least one step in each such solution.

3



Published as a conference paper at ICLR 2024

Figure 2: Two solutions to the same problem, graded by the PRM. The solution on the left is correct
while the solution on the right is incorrect. A green background indicates a high PRM score, and
a red background indicates a low score. The PRM correctly identifies the mistake in the incorrect
solution.

In addition to using this selection strategy, we also iteratively re-train our PRM using the latest
data at several points in the data collection process. At each iteration, we generate N solutions per
problem and surface only the top K most convincing wrong-answer solutions to data-labelers. We
experiment with either applying this top-K filtering at a problem level (K solutions per problem)
or globally across the dataset (K solutions in total, unequally distributed among problems). Since
the data collection process is expensive, it was not feasible to conduct at-scale ablations of these
decisions. However, we perform several surrogate ablations in Section 4, using our largest PRM as a
labelling oracle for a smaller PRM. More details about data collection can be found in Appendix B.

2.5 OUTCOME-SUPERVISED REWARD MODELS (ORMS)

We train ORMs following a similar methodology to Cobbe et al. (2021). We uniformly sample a
fixed number of solutions per problem from the generator, and we train the ORM to predict whether
each solution is correct or incorrect. In practice, we usually determine correctness by automatically
checking the final answer, but in principle these labels could be provided by humans. At test time,
we use the ORM’s prediction at the final token as the overall score for the solution. We note the
automatic grading used to determine ORM targets is not perfectly reliable: false positives solutions
that reach the correct answer with incorrect reasoning will be misgraded. We discuss additional
ORM training details in Appendix E.

2.6 PROCESS-SUPERVISED REWARD MODELS (PRMS)

We train PRMs to predict the correctness of each step after the last token in each step. This prediction
takes the form of a single token, and we maximize the log-likelihood of these target tokens during
training. The PRM can therefore be trained in a standard language model pipeline without any
special accommodations. To determine the step-level predictions at test time, it suffices to perform
a single PRM forward pass over the whole solution. We visualize large-scale PRM scores for two
different solutions in Figure 2. To compare multiple solutions, it is necessary to compute a single
score for each solution. This is an important but straightforward detail: we define the PRM score for
a solution to be the probability that every step is correct under the PRM. We implement this as the
product of the correctness probabilities for each step. We describe other possible scoring strategies
and additional PRM training details in Appendix F.

4



Published as a conference paper at ICLR 2024

ORM PRM Majority Voting
% Solved (Best-of-1860) 72.4 78.2 69.6

101 102 103

N = number of solutions per problem

62

64

66

68

70

72

74

76

78

%
 P

ro
bl

em
s S

ol
ve

d 
(B

es
t-o

f-N
)

Process-Supervised RM
Outcome-Supervised RM
Majority Voting

Figure 3: A comparison of outcome-supervised and process-supervised reward models, evaluated
by their ability to search over many test solutions. Majority voting is shown as a strong baseline. For
N ≤ 1000, we visualize the variance across many subsamples of the 1860 solutions we generated
in total per problem.

When we provide process supervision, we deliberately choose to supervise only up to the first in-
correct step. This makes the comparison between outcome and process supervision more straight-
forward. For correct solutions, both methods provide the same information, namely that every step
is correct. For incorrect solutions, both methods reveal the existence of at least one mistake, and
process supervision additionally reveals the precise location of that mistake. If we were to provide
additional process supervision beyond the first mistake, then process supervision would have an even
greater information advantage. This decision also keeps the labelling cost similar for humans: with-
out relying on an easy-to-check final answer, determining the correctness of a solution is equivalent
to identifying its first mistake. While most MATH problems do have easy-to-check final answers,
we expect this to not remain true in more complex domains.

3 LARGE-SCALE SUPERVISION

We train the large-scale PRM using the step-level labels in PRM800K. To ensure the large-scale
ORM baseline is as strong as possible, we train on 100 uniform samples per problem from the
generator. This means the ORM training set has no overlap with PRM800K, and it is an order of
magnitude larger. Although these two training sets are not directly comparable, each represents our
best attempt to advance the state-of-the-art with each form of supervision. We note that training the
ORM solely on PRM800K solutions would be problematic, since our active learning strategy has
heavily biased the dataset towards wrong-answer solutions. We did explore training the ORM on a
superset of PRM800K solutions, by mixing in uniformly sampled solutions, but we found that this
did not improve ORM performance.

Figure 3 shows how the best-of-N performance of each reward model varies as a function of N.
Since majority voting is known to be a strong baseline (Wang et al., 2022; Lewkowycz et al., 2022),
we also include this method as a point of comparison. While the ORM performs slightly better
than the majority voting baseline, the PRM strongly outperforms both. Not only does the PRM
reach higher performance for all values of N, but the performance gap widens as N increases. This
indicates that the PRM is more effective than both the ORM and majority voting at searching over a
large number of model-generated solutions. We experimented with using RM-weighted voting (Li
et al., 2022; Uesato et al., 2022) to combine the benefits of the PRM and majority voting, but this did
not noticeably improve performance. We use a specific subset of the MATH test set for evaluation,

5



Published as a conference paper at ICLR 2024

100 101 102

Number of solutions labelled per problem

25

30

35

40

45

50

55

60

%
 P

ro
bl

em
s S

ol
ve

d 
(B

es
t-o

f-5
00

)

PRM + Active Learning
PRM (PRMlarge supervised)
ORM (PRMlarge supervised)
ORM (final-answer supervised)

(a) Four series of reward models trained using dif-
ferent data collection strategies, compared across
training sets of varying sizes.

100 101 102 103

N = number of solutions per problem

20

25

30

35

40

45

50

55

60

%
 P

ro
bl

em
s S

ol
ve

d 
(B

es
t-o

f-N
)

PRM (PRMlarge supervised)
ORM (PRMlarge supervised)
ORM (final-answer supervised)

(b) Three reward models trained on 200 sam-
ples/problem using different forms of supervision,
compared across many test-time compute bud-
gets.

Figure 4: A comparison of different forms of outcome and process supervision. Mean and standard
deviation is shown across three seeds.

which we describe in Appendix C. We further break down these results by problem difficulty in
Appendix G.

4 SMALL-SCALE SYNTHETIC SUPERVISION

We find that the PRM outperforms the ORM at large-scale, but this result alone paints an incomplete
picture. To better compare outcome and process supervision, there are two confounding factors that
must be isolated. First, the training sets for the ORM and the PRM are not directly comparable: the
PRM training set was constructed using active learning, is biased towards answer-incorrect solutions,
and is an order of magnitude smaller. Second, the final-answer grading will provide positive labels
to spurious solutions that reach the correct final answer despite incorrect reasoning. This could
damage ORM performance, an effect we may or may not want to attribute to outcome supervision
more generally.

Due to the high cost of collecting human feedback, we cannot easily ablate these factors using
human labelers. We instead perform the relevant ablations by using the large-scale PRM to supervise
smaller models. This setup enables us to simulate a large amount of data collection at a modest cost.
For the remainder of this section, we refer to the large-scale PRM from Section 3 as PRMlarge.

4.1 PROCESS VS OUTCOME SUPERVISION

We now conduct a direct comparison of outcome and process supervision. We first sample between
1 and 200 solutions per problem from a small-scale generator. For each dataset, we provide three
forms of supervision: process supervision from PRMlarge, outcome supervision from PRMlarge, and
outcome supervision from final-answer checking. The choice of supervision is the only difference
between these three series of reward models, which are otherwise trained on identical datasets. See
Appendix H for more details about how PRMlarge is used for outcome and process supervision.

In Figure 4a, we evaluate each reward model by its best-of-500 selection. We see that process
supervision significantly outperforms both forms of outcome supervision at all data collection scales.
In Figure 4b, we evaluate the best reward model from each series by its best-of-N performance
across different values of N. We see that using PRMlarge for outcome supervision is noticeably more
effective than final-answer checking. This can be explained by the fact that PRMlarge provides better
supervision for solutions that reach the correct final answer using incorrect reasoning.

It is not clear whether supervision by PRMlarge or by final-answer checking represents the more ap-
propriate outcome supervision baseline. While final-answer supervision is more explicitly outcome
based, its main weakness — the existence of false positives — is arguably over-emphasized in the

6



Published as a conference paper at ICLR 2024

Table 1: We measure out-of-distribution generalization using recent STEM tests. We evaluate the
outcome-supervised RM, the process-supervised RM, and majority voting using 100 test samples
per problem.

ORM PRM Majority Vote # Problems

AP Calculus 68.9% 86.7% 80.0% 45
AP Chemistry 68.9% 80.0% 71.7% 60
AP Physics 77.8% 86.7% 82.2% 45
AMC10/12 49.1% 53.2% 32.8% 84
Aggregate 63.8% 72.9% 61.3% 234

MATH dataset. Outcome supervision by PRMlarge better represents outcome supervision in domains
that are less susceptible to false positives. We consider outcome supervision by PRMlarge to be the
more relevant baseline, but we encourage the reader to draw their own conclusions.

4.2 ACTIVE LEARNING

Finally, we investigate the impact of active learning. We train a small-scale reward model,
PRMselector, on a single sample from each problem, and we use this model to score 1000 samples
per problem. To train each of our larger reward models, we select N samples per problem such that
80% are the most convincing (according to PRMselector) wrong-answer samples, and 20% are the
most convincing samples that remain (right- or wrong-answer). We score the selected samples with
PRMlarge and train on those scores. This process ensures that all samples are relatively convincing
under PRMselector, that a large fraction are known to contain at least one mistake, and that our overall
dataset is not too heavily biased toward wrong-answer solutions. Performance of this data labelling
scheme is shown in Figure 4a. By comparing the slopes of the line of best fit with and without active
learning, we estimate that this form of active learning is approximately 2.6x more data efficient than
uniform data labelling. We note that the model trained on the largest active learning dataset (200
samples per problem) appears to slightly underperform the expected trend line. Our best explanation
for this observation is that 200 samples represents a significant fraction of the overall selection pool
(1000 samples) and that this relative lack of diversity limits the possible upside from active learning.

We also performed a preliminary investigation into the impact of iteratively retraining PRMselector
throughout data collection. Between iterations, we re-trained PRMselector using all currently labeled
data. Unfortunately, we observed instability in this process which we were unable to diagnose. The
resulting reward models performed no better than the models described above. We expect some form
of iterative retraining to be beneficial in active learning, but we currently have no concrete evidence
to support this claim. We consider this a compelling direction for future research.

5 OOD GENERALIZATION

To get some measure of out-of-distribution generalization, we evaluate our large-scale ORM and
PRM on a held-out set of 224 STEM questions, pulled from the most recent AP Physics, AP
Calculus, AP Chemistry, AMC10, and AMC12 exams. Since these tests were released after the
pre-training dataset was compiled, we can have high confidence that the model has not seen these
problems. We report the best-of-100 performance of the ORM, PRM and majority voting in Table 1.
We observe results similar to those in Section 3: the PRM outperforms both the ORM and majority
voting. This shows us that the PRM can tolerate a modest amount of distribution shift and that its
strong performance holds up on fresh test questions.

6 DISCUSSION

6.1 CREDIT ASSIGNMENT

One clear advantage of process supervision is that it provides more precise feedback than outcome
supervision. A reward model trained with outcome supervision faces a difficult credit-assignment

7



Published as a conference paper at ICLR 2024

task — to generalize well, it must determine where an incorrect solution went wrong. This is par-
ticularly difficult for hard problems: most model-generated solutions contain an error somewhere,
so the marginal value of a negative label from outcome supervision is low. In contrast, process su-
pervision provides a richer signal: it specifies both how many of the first steps were in fact correct,
as well as the precise location of the incorrect step. Process supervision makes credit assignment
easier, and we believe that this explains its strong performance.

6.2 ALIGNMENT IMPACT

Process supervision has several advantages over outcome supervision related to AI alignment. Pro-
cess supervision is more likely to produce interpretable reasoning, since it encourages models to
follow a process endorsed by humans. Process supervision is also inherently safer: it directly re-
wards an aligned chain-of-thought rather than relying on outcomes as a proxy for aligned behavior
(Stuhlmüller & Byun, 2022). In contrast, outcome supervision is harder to scrutinize, and the prefer-
ences conveyed are less precise. In the worst case, the use of outcomes as an imperfect proxy could
lead to models that become misaligned after learning to exploit the reward signal (Uesato et al.,
2022; Cotra, 2022; Everitt et al., 2017).

In some cases, safer methods for AI systems can lead to reduced performance (Ouyang et al., 2022;
Askell et al., 2021), a cost which is known as an alignment tax. In general, any alignment tax may
hinder the adoption of alignment methods, due to pressure to deploy the most capable model. Our
results show that process supervision in fact incurs a negative alignment tax. This could lead to
increased adoption of process supervision, which we believe would have positive alignment side-
effects. It is unknown how broadly these results will generalize beyond the domain of math, and we
consider it important for future work to explore the impact of process supervision in other domains.

6.3 TEST SET CONTAMINATION

The test set of the MATH dataset contains problems that are discussed in several online venues, and it
is likely that some of these problems appear in the pretraining dataset for our models. We attempted
to remove all MATH problems from our MathMix dataset using string-matching heuristics, but since
humans can post hard-to-detect rephrasings of a problem online, it is difficult to make any strong
guarantees about the overlap between MathMix and the MATH dataset.

In our experience inspecting model-generated solutions, we saw no clear signs of our models mem-
orizing MATH problems. However, it is impossible to rule out subtle forms of memorization that
would slip past manual inspection, and it is still possible that some degree of contamination has
slightly inflated our performance on the MATH test set. Even in that case, we would expect any
contamination to manifest similarly across all methods, and that the relative comparisons made
throughout this work would remain mostly unaffected.

We also note that the PRM regularly surfaces correct solutions to MATH problems that have a low
single-digit percentage solve-rate under the generator, some examples of which can be seen in Ap-
pendix I. The generator’s low solve-rate is an additional indication that it has not encountered such
problems via test set contamination. Our generalization results from Section 5 further strengthen
our claim that test set contamination has not significantly impacted this work, since we observe
qualitatively similar results on problems that are guaranteed to be uncontaminated.

7 RELATED WORK

7.1 OUTCOME VS PROCESS SUPERVISION

In work closely related to our own, Uesato et al. (2022) compare the impact of outcome and process
supervision in the domain of grade school math. They found that both methods led to similar final-
answer error rates, and that process supervision achieved those results with less data. While our
core methodology is very similar, there are three main details that differ. First, we use a more
capable model to collect PRM800K dataset and to perform our large-scale experiments. However,
our small-scale results in Section 4 suggest that large-scale models are not necessary to observe
benefits from process supervision. Second, we evaluate on the MATH dataset, which is significantly

8



Published as a conference paper at ICLR 2024

more challenging than GSM8K. Third, we collect a much larger quantity of process supervision
data.

On the surface, the results from Uesato et al. (2022) may seem to conflict with our claim that process
supervision leads to better performance. However, we believe the apparent conflict can be explained
by the difference in the scale of the supervision. The data scaling trend in Figure 4a suggests that a
small amount of process supervision and a large amount of outcome supervision do in fact lead to
similar performance, consistent with the results from Uesato et al. (2022). The trend also shows that
process supervision beats outcome supervision when scaled up, even when judged based solely on
outcomes. This is consistent with our results in Section 3. We believe these results make a strong
case for using process supervision.

7.2 SYNTHETIC SUPERVISION

Similar to our work in Section 4, Gao et al. (2022) use a large reward model to supervise the training
of smaller models. They study the over-optimization that occurs during RLHF, with experiments
that require large quantities of human preference data. To work around this challenge, they use a
gold-standard reward model to replace human feedback. Our use of a large-scale reward model to
supervise smaller reward models shares similarities with their approach.

7.3 NATURAL LANGUAGE REASONING

Several recent studies that have examined the reasoning ability of large language models are im-
plicitly relevant to our work. Lewkowycz et al. (2022) showed that finetuning models on a large
corpus of technical content led to significantly improved performance on MATH. Wang et al. (2022)
showed that self-consistency leads to remarkably strong performance on many reasoning bench-
marks, notably without requiring any additional finetuning. Wei et al. (2022) and Nye et al. (2021)
demonstrate the importance of explicitly performing intermediate reasoning steps via a chain of
thought or a scratchpad in order to solve tasks that require multi-step reasoning. Kojima et al.
(2022) show that models are able to perform this behavior zero-shot, conditioned only on a simple
prompt.

8 CONCLUSION

We have shown that process supervision can be used to train much more reliable reward models
than outcome supervision in the domain of mathematical reasoning. We have also shown that active
learning can be used to lower the cost of human data collection by surfacing only the most valuable
model completions for human feedback. We release PRM800K, the full dataset of human feedback
used to train our state-of-the-art reward model, with the hope that removing this significant barrier
to entry will catalyze related research on the alignment of large language models. We believe that
process supervision is currently under-explored, and we are excited for future work to more deeply
investigate the extent to which these methods generalize.

ACKNOWLEDGMENTS

We thank Joshua Achiam, Mark Chen, Jonathan Gordon, Dan Hendrycks, Lukasz Kaiser, Oleg
Murk, Ben Sokolowsky, Francis Song, and Jonathan Uesato for valuable feedback and thoughtful
discussions; Giambattista Parascandolo and Daniel Selsam for their contributions to the MathMix
dataset; Jonathan Ward for contributing to the data collection interface; Wojciech Zaremba for en-
couraging us to scale up data collection; Peter Hoeschele and Aris Kostantinidis for supporting
our data collection; the research acceleration and supercomputing teams at OpenAI for providing
infrastructure support; and the team at Scale and the many data-labelers who created PRM800K.

REPRODUCIBILITY STATEMENT

To assist reproducibility and further research we are releasing all of the labels that we gathered over
the course of this project. Appendix B contains information about the dataset, what data was used for
training, and a link to the repository containing the raw labels. Appendix C explains our evaluation
methods. Finally, Appendix E and Appendix F explain how we trained our ORMs and PRMs.

9



Published as a conference paper at ICLR 2024

REFERENCES

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ajeya Cotra. Without specific countermeasures, the easiest path to transformative AI likely leads to
AI takeover. https://www.alignmentforum.org/posts/pRkFkzwKZ2zfa3R6H/
without-specific-countermeasures-the-easiest-path-to, 2022.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement
learning with a corrupted reward channel. arXiv preprint arXiv:1705.08417, 2017.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. arXiv
preprint arXiv:2210.10760, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. On the
advance of making language models better reasoners. arXiv preprint arXiv:2206.02336, 2022.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. arXiv preprint arXiv:2005.00661, 2020.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Eric Nichols, Leo Gao, and Randy Gomez. Collaborative storytelling with large-scale neural lan-
guage models. In Proceedings of the 13th ACM SIGGRAPH Conference on Motion, Interaction
and Games, pp. 1–10, 2020.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

10

https://www.alignmentforum.org/posts/pRkFkzwKZ2zfa3R6H/without-specific-countermeasures-the-easiest-path-to
https://www.alignmentforum.org/posts/pRkFkzwKZ2zfa3R6H/without-specific-countermeasures-the-easiest-path-to


Published as a conference paper at ICLR 2024

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming Zhang, and Qun Liu. Generate &
rank: A multi-task framework for math word problems. arXiv preprint arXiv:2109.03034, 2021.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Andreas Stuhlmüller and Jungwon Byun. Supervise process, not outcomes. https://ought.
org/updates/2022-04-06-process, 2022.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

11

https://ought.org/updates/2022-04-06-process
https://ought.org/updates/2022-04-06-process


Published as a conference paper at ICLR 2024

A MATHMIX

Similar to Lewkowycz et al. (2022) we construct a large-scale dataset of high-quality math-relevant
tokens for use in a lightweight pretraining stage, before finetuning on comparably smaller datasets
like MATH and PRM800K. This dataset, which we call MathMix, has two main differences com-
pared to the one used to train Minerva. First, it is smaller and more aggressively filtered to high-
quality math problem-solving content, and second, it does not explicitly mix in general language
data.

Minerva was trained on 38.5B tokens of arXiv documents and webscrape pages with LaTeX content,
while MathMix consists of a smaller set of 1.5B tokens containing individual math problems and
their solutions, free-form text discussing math problems and concepts, and synthetic data (Table 2).
While Minerva was pretrained on a dataset with 5% general natural language data, we chose not to
mix in any natural language data explicitly, primarily because MathMix already contains plenty of
natural language data.

Table 2: MathMix dataset components.

Data type Token count Present in pretraining?

Math problems and solutions ∼ 275M No
Free-form math discussion text (1) ∼ 430M No
Free-form math discussion text (2) ∼ 450M Yes
Synthetic data (1) ∼ 30M No
Synthetic data (2) ∼ 100M Yes
Critiques grading data ∼ 500M No

Note that when training smaller models, as in Section 4, we use a slightly smaller variant of MathMix
that excludes the critiques data and only consists of 1B tokens. For our large models experiments,
we train on MathMix for roughly 3B tokens (2 epochs). For our small models experiments, we train
for 6 epochs (roughly 6.6B tokens).

We apply a set of decontamination checks on MathMix against the test split of the MATH dataset,
including stripping out LaTeX and searching for matching n-grams, but we can make no strong
guarantees on the efficacy of this decontamination. As discussed in Section 6.3, we would not
expect the relative comparisons made throughout this work to be significantly impacted by test set
contamination.

12



Published as a conference paper at ICLR 2024

B PRM800K

We collected 1,085,590 step-level labels over 101,599 solution samples. We present the whole unfil-
tered dataset as PRM800K. During training we discard labels used for quality control, as well as any
step-level labels for which the labeler was unable to complete the task. The filtered dataset contains
about 800,000 step-level labels over 75,000 solutions. The full PRM800K dataset is available at
https://github.com/openai/prm800k.

The data collection was split into two separate phases. In phase 1, we collected labels for multiple
alternative completions at each step of a solution. This seeded our dataset but was cumbersome—
for many steps the alternatives were repetitive, and we found labelers spent a lot of time supervising
long uninteresting solutions. As a result, the step-level labels we collected in this phase are more
repetitive than those collected later. In total, phase 1 represents about 5% of PRM800K, or about
40,000 step-level labels.

The majority of our labels were collected as part of phase 2, during which we scaled up and stream-
lined the data collection process. Phase 2 data collection is split into 10 generations. For each gen-
eration, we sample N solutions per problem from the generator. We rank these solutions with our
current best PRM and surface the highest scoring wrong-answer solutions to our labelers. We retrain
this PRM between each generation using all the latest data. This active learning strategy changes
the balance of our data considerably. Though we sometimes surfaced correct solutions (either by
manually injecting correct solutions or because of errors in our automatic grading), the vast majority
of the labels we collected in this phase are for incorrect solutions. Table 3 breaks down the balance
of correct/incorrect steps and solutions between the different phases of data collection. Though we
mostly collected labels on incorrect solutions, we still collected many labels for correct individual
steps. In fact, our small-scale ablations in Section 4.2 suggest that this active learning strategy, which
favors labelling high-scoring wrong-answer solutions, improves performance despite the resulting
imbalance in the dataset.

Table 3: Distribution of positive/negative steps/solutions.

phase 1 phase 2 combined

% end in correct solution 85.1 13.2 14.2
% correct steps 58.6 74.1 73.1

Some of our phase 2 questions are intended for quality control. For a quality control question,
researchers mark which steps are reasonable to label as incorrect. Then we assess that labelers
are able to consistently mark those steps as incorrect. Prior to starting on phase 2, we required all
labelers to label 30 quality control questions. This served as a screening test, and we only admitted
labelers that agreed with our gold labels at least 75% of the time.

We then designated 10-20 problems per generation as additional quality control questions, and we
randomly served them to labelers as they worked through the task. We used the results of this
continuous quality control to remove labelers whose quality slipped too far, as well as to prepare ed-
ucational material on common mistakes in order to improve labeler alignment with our instructions.

C EVALUATION

As we scaled up the project, we began having to collect labels on multiple solutions for the same
training problem. In order to avoid the risk of over-fitting on the 7,500 MATH training problems,
we expanded the training set to include 4,500 MATH test split problems. We therefore evaluate
our models only on the remaining 500 held-out problems. We selected these 500 test problems
uniformly at random. In Figure 5, we show that the distribution of difficulty levels and subjects
in this subset is representative of the MATH test set as a whole. The specific test set we used can
be found at https://github.com/openai/prm800k. We leave it for future work to explore how many
distinct training problems are actually necessary, and how quickly our methods overfit to the training
set.

13

https://github.com/openai/prm800k
https://github.com/openai/prm800k


Published as a conference paper at ICLR 2024

Figure 5: Two histograms comparing the distribution of problem difficulty levels and subjects in
both the original MATH test set and in our 500 problem test subset.

D LABELLING INSTRUCTIONS

Labelers were tasked to look at steps in a solution and label each one as positive, negative, or
neutral. A step is considered neutral if it is appropriate in context, reasonable, correct, and contains
only computations that can be verified easily. A step is positive if it is neutral and also progresses
towards the solution. All other steps are considered negative. Labelers were not given reference
solutions, but they were given the ground truth final answers. We chose not to provide reference
solutions to avoid biasing them towards one particular path to the solution. We chose to provide
ground truth final answers since this information can sometimes help labelers resolve their own
misunderstandings.

In phase 1, labelers were permitted to enter their own steps in the case that all candidate steps were
negative. Then the solution would progress from a randomly selected positive step (or neutral if
their were no positive ones). This often resulted in trajectories that got stuck in endless sequences of
neutral steps that said reasonable things but made frustratingly slow progress towards a solution or
negative steps that needed constant human supervision. In phase 2, we pre-generate whole solutions
and end the task as soon as the first negative step is encountered. The full instructions given to
labelers can be found at https://github.com/openai/prm800k/tree/main/prm800k/instructions.

E ORM TRAINING DETAILS

We train outcome-supervised reward models in the same manner as token-level verifiers from Cobbe
et al. (2021), with a few subtle differences to hyperparameters. In particular, we only train for
a single epoch on each dataset of model samples and reward model labels, without dropout, and
without jointly learning a language modeling objective. We find that performance is not sensitive to
most other hyperparameters, within a reasonable range.

To collect model samples, we simply sample uniformly from the generator at a temperature of 1.0
without applying any rebalancing of positives or negatives. At training time, the reward model
makes predictions for every token in the context. The target for each token in a solution is the same,
based on whether the solution is labelled correct or incorrect. At test time, we simply use the score
of the final token in the completion as the overall score of the solution. We note that this setup is
identical to the way token-level verifiers were trained in Cobbe et al. (2021).

14

https://github.com/openai/prm800k/tree/main/prm800k/instructions


Published as a conference paper at ICLR 2024

F PRM DETAILS

F.1 TRAINING

We train our PRMs by fine-tuning the MathMix model to predict the probability of positive, nega-
tive, and neutral labels given a solution prefix ending in one of our labeled steps. We sweep over
hyperparameters using a dataset containing the first ∼10% of PRM800K. Fine-tuning an LLM from
its ordinary language modeling task to a classification task like this is a large distribution shift, and
we found low learning rates were important to stable PRM training.

All of our PRMs are trained for 2 epochs. On smaller datasets (such as in phase 1 and the first few
generations of phase 2) this improves the final performance over training for just 1 epoch. Additional
epochs, up to some point, don’t noticeably help or hurt performance. On larger datasets, the benefits
of 2 epoch training diminishes, but we continue doing it for consistency.

F.2 SCORING

There are multiple ways of using the PRM to score solutions. In general, we produce a single
solution-level score by performing a reduction over step-level scores, where the step-level score is
the probability that the step’s label is positive. This involves two specific implementation decisions.
First, when determining a step-level score, we either consider a neutral label to be positive or neg-
ative. Second, when determining a solution-level score, we either use the minimum or the product
over step-level scores as a reduction.

We show results from all four scoring strategies in Table 4. The best performing strategy is to
take the product of step-level scores and to consider the neutrals as positives, but the difference in
performance between all strategies is minor. Throughout the rest of this work, we consider neutral
steps to be positive, and we define the solution score to be the product of step-level scores. Using
the product instead of the minimum as the reduction does create a slight bias against solutions with
a larger number of steps.

Table 4: Best-of-1860 test performance using the PRM with four different scoring strategies.

product minimum

neutral = positive 78.2% 77.6%
neutral = negative 77.4% 77.8%

15



Published as a conference paper at ICLR 2024

G DIFFICULTY BREAKDOWN

We show performance of our ORM and PRM on each quintile of the MATH dataset. We determine
quintiles based on the pass rate under the generator. It is interesting to note that the performance gap
is not only apparent on high difficulty problems: it is in fact apparent across all difficulties. For the
lowest difficulty problems, we see that it is possible to find adversarial examples that fool the ORM,
since the ORM’s performance slightly decreases as the number of samples increases. In contrast,
the PRM remains highly robust over this same set of samples.

We also see that increasing the number of samples has the largest positive effect on the highest
difficulty problems. This is to be expected, since a large number of generator samples may be
required to find a true and convincing solution to a hard problem.

101 103
0.0

0.2

0.4

0.6

0.8

1.0

%
 P

ro
bl

em
s S

ol
ve

d 
(B

es
t-o

f-N
)

Quintile 1 (easiest)

PRM
ORM

101 103

Quintile 2

101 103

N = number of solutions per problem

Quintile 3

101 103

Quintile 4

101 103

Quintile 5 (hardest)

Figure 6: A breakdown of ORM vs PRM performance by problem difficulty.

16



Published as a conference paper at ICLR 2024

H SYNTHETIC SUPERVISION DETAILS

We can use PRMlarge to provide either outcome or process supervision for smaller models. We
determine the labels for individual steps based on the step-level probabilities outputted by PRMlarge.
To do this, we set an arbitrary threshold: any step that PRMlarge assigns a negative label with greater
than 20% probability is considered incorrect. We choose this threshold based on the observation that
PRMlarge is slightly miscalibrated in the direction of favoring positive labels.

To provide process supervision for a solution, we directly return the step-level labels (positive or
negative) provided by PRMlarge, up until the first step that is marked as negative. This mimics our
true human data collection process. To provide outcome supervision, we mark the solution as correct
if and only if PRMlarge considers every step to be correct (using the same thresholding logic).

17



Published as a conference paper at ICLR 2024

I PRM VISUALIZATIONS

All examples shown come from the large-scale generator (GPT-4). We note the pass-rate under the
generator to give some sense of the difficulty of these problems.

I.1 TRUE POSITIVES

These cherry-picked examples show the best-of-1860 solution from the generator as ranked by the
large-scale PRM.

Problem 1. Generator pass-rate: 0.1%. This challenging trigonometry problem requires applying
several identities in a not-at-all obvious succession. Most solution attempts fail, because it is hard to
choose which identities are actually helpful. Though successful solutions to this problem are rare,
the reward model correctly recognizes when a valid chain-of-thought has been found.

18



Published as a conference paper at ICLR 2024

Problem 2. Generator pass-rate: 5.8%. In step 7 and 8, the generator starts performing guess-
and-check. This is a common place the model might hallucinate, by claiming a particular guess is
successful when it isn’t. In this case, the reward model verifies each step and determines that the
chain-of-thought is correct.

Problem 3. Generator pass-rate: 1.7%. The generator successfully applies several trigonometric
identities to simplify the expression.

19



Published as a conference paper at ICLR 2024

Problem 4. Generator pass-rate: 4.5%. Here, the generator successfully performs a complex series
of polynomial factorizations. The use of the Sophie-Germain identity in step 5 is an important step
that could be considered insightful.

I.2 TRUE NEGATIVES

Problem 5. Generator pass-rate: 4.5%. The generator attempts to use the difference of squares
formula in step 12 on an expression that isn’t in fact a difference of squares. The reward model
catches this mistake.

20



Published as a conference paper at ICLR 2024

Problem 6. Generator pass-rate: 93.5%. In step 7, the generator makes an incorrect attempt to
simplify an expression. The reward model catches this mistake.

Problem 7. Generator pass-rate: 48.0%. In step 11, the generator makes a simple calculation error.
The reward model catches this mistake.

21



Published as a conference paper at ICLR 2024

Problem 8. Generator pass-rate: 5.8%. The justification in step 8 is strange, but the reward model
lets it slide. In step 9, though, the model incorrectly factors the expression. The reward model
catches this mistake.

I.3 FALSE POSITIVES

Problem 9. Generator pass-rate: 18.5%. The generator makes a subtle counting error in step 9. On
the surface, it appears reasonable to claim that there are 5 ways to exchange the same colored ball
since there are 5 colors. However, this undercounts by a factor of 2, since Bob has 2 choices for
which ball to return to Alice. The reward model is fooled by this mistake.

22



Published as a conference paper at ICLR 2024

Problem 10. Generator pass-rate: 17.6%. In step 13, the generator attempts to simplify the equation
by combining like terms. It correctly moves and combines the linear terms to the left-hand side, but
then mistakenly leaves the right-hand side untouched. The reward model is fooled by this mistake.

Problem 11. Generator pass-rate: 13.4%. The generator attempts to perform long division, but in
step 16, it forgets to include the leading zeros in the repeating part of the decimal. The reward model
is fooled by this mistake.

23



Published as a conference paper at ICLR 2024

Problem 12. Generator pass-rate: 9.1%. In step 4, the generator falsely claims that the sequence
repeats itself every 12 terms, when it’s in fact every 10 terms. This sort of counting mistake occa-
sionally fools the reward model.

24


	Introduction
	Methods
	Scope
	Base Models
	Generator
	Data Collection
	Outcome-supervised Reward Models (ORMs)
	Process-supervised Reward Models (PRMs)

	Large-scale Supervision
	Small-scale Synthetic Supervision
	Process vs Outcome Supervision
	Active Learning

	OOD Generalization
	Discussion
	Credit Assignment
	Alignment Impact
	Test Set Contamination

	Related Work
	Outcome vs Process Supervision
	Synthetic Supervision
	Natural Language Reasoning

	Conclusion
	MathMix
	PRM800K
	Evaluation
	Labelling Instructions
	ORM Training Details
	PRM Details
	Training
	Scoring

	Difficulty Breakdown
	Synthetic Supervision Details
	PRM Visualizations
	True Positives
	True Negatives
	False Positives


