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ABSTRACT

Search over audio sequences is a fundamental problem. In this paper, we propose a
method to extract concise discrete representations for audio that can be used for ef-
ficient retrieval. Our motivation comes from orthography which represents speech
of a given language in a concise and distinct discrete form. The proposed method,
wav2tok, learns such representations for any kind of audio, speech or non-speech,
from pairs of similar audio. wav2tok compresses the query and target sequences
into shorter sequences of tokens that are faster to match. The learning method
makes use of CTC loss and expectation-maximization algorithm, which are gen-
erally used for supervised automatic speech recognition and for learning discrete
latent variables, respectively. Experiments show the consistent performance of
wav2tok across two audio retrieval tasks: music search (query by humming) and
speech search via audio query, outperforming state-of-the-art baselines.

1 INTRODUCTION

Sequence Retrieval aims at retrieving sequences similar to a query sequence, with the constraint that
an ordered alignment exists between the query and the target sequence. In this paper, we address
the following problem: Can we extract discrete tokens from any continuous signal for the purpose
of retrieval of similar signals? This problem has deep connections with tasks such as child language
acquisition, music cognition and learning languages without written forms. Some direct applications
of the proposed task include speech search, where the order of constituent units, such as phonemes,
syllables or words, remains same; and music search – query by humming or query by example –
where the order of constituent units, such as relative notes or phrases, remains same. Apart from
audio, the problem extends to tasks such as handwritten word search and gesture search.

One can define similarity metrics over sequences using methods based on Dynamic Time Warp-
ing (DTW) (Müller, 2007). These methods are inefficient if the sequences are continuous valued
and have high sampling rates. Moreover, they depend on matching hand-made features, which are
ineffective in the face of high variability of query sequences.

Problems such as spoken term detection involve detection of a query utterance in a long speech
audio. The search space is huge, and performing DTW based search of query takes long time
(Rodriguez-Fuentes et al., 2014). A more efficient way of sequence retrieval is by mapping them to
sequences of discrete tokens. Automatic speech recognition (ASR) can be employed for this purpose
(Mamou et al., 2013). However, ASR training requires knowledge of basic units of transcription.
The popularly used units are phonemes and graphemes. This method thus becomes language depen-
dent. Non-linguistic sounds, such as cough and sneeze, could be mapped to certain tokens defined
for them. This approach could not be used when precise tokens are not defined, e.g., music search. ]

In query by humming based music search, audio is mapped to discrete melody-related tokens, such
as notes, and these token sequence are matched for search (Unal et al., 2008). However, several
music traditions do not have precise transcription systems. There, one can tell if two pieces, or
motifs, are similar but cannot precisely transcribe them to tokens. The embellishments used in
music could be too dynamic to be transcribed precisely. Moreover, when a musically untrained user
sings a query, s/he cannot hit the right notes matching the target song. So the matching could rely on
several factors other than notes, such as phonemes of lyrics (Mesaros & Virtanen, 2010), onset times
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(rhythm) (Kosugi et al., 2000), and note transitions (Ranjan & Arora, 2020). Hence, the tokens to
be used may not be derived from notes alone.

In this way, each tokenizer - for speech, music or other signals, in general - uses domain-specific
hand-made tokens defined by a domain expert. In this paper, we propose a tokenizer to map audio
sequences to sequences of discrete tokens with an aim of retrieval. The mapping is learned only
from pairs of similar audio sequences. The tokens are not defined manually but correspond to
distinct semantic units learned from pairs of similar audio sequences. The method is general and
can be applied to signals other than audio. In this paper, we apply the proposed method to speech and
music audio search, for the problems of spoken term detection and query by humming, respectively.

The proposed method, named wav2tok, encodes audio via a BiLSTM (Schuster & Paliwal, 1997)
network. The encoder-generated representations are then mapped to discrete tokens via a K-means
vector quantizer network. Each discrete token corresponds to a discrete representation in the vector
quantizer’s codebook which is initialized and updated via offline K-means clustering only.

wav2tok is trained with pairs of similar audio sequences in a self-supervised fashion without any
transcription using a novel training algorithm. For each pair, we average the encoder-generated rep-
resentations, which map to the same token, by the K-means vector quantizer network to generate
a prototype for that token. We then perform a contrastive learning task to increase the similarity
between the generated prototype for a particular token and the quantizer codebook discrete repre-
sentation corresponding to the same token. We simultaneously minimize the edit distance between
the token sequences generated from each sequence in the pair via Connectionist temporal classifica-
tion (CTC) (Graves et al., 2006) framework to constrain both sequences to get mapped to the same
token sequence.

We compare wav2tok to state-of-the-art (SOTA) methods for discrete representation learning, such
as wav2vec 2.0, and SOTA ASR models fine-tuned to perform phonetic tokenization. We evaluate
the generalization capability of the tokens generated by the models on search experiments, namely,
query-by-humming and spoken term detection. wav2tok outperforms the baselines in performance
and uses much lesser trainable parameters, ensuring faster inference and deployment.

2 RELATED WORK

Sequence Labelling. With expert-defined tokens, various methods are popularly used for mapping
sequences to tokens. In conventional methods, Hidden Markov Models (Rabiner & Juang, 1986)
and Conditional Random Fields (Lafferty et al., 2001) have been popularly used for sequence label-
ing. These methods involve a significant amount of domain knowledge and many assumptions to
make tractable models, which are avoided by End-to-End learning models such as Recurrent Neu-
ral Networks (RNNs) using Connectionist Temporal Classification framework (Graves et al., 2006).
Sequence labeling can be used for sequence retrieval by converting the sequences to tokens, which
are easy to search over. But this approach inevitably depends upon expert-defined tokens.

Unsupervised Speech Representation Learning. Automatic Speech Recognition systems are pre-
trained on large amounts of untranscribed speech data to generate SOTA continuous representations
which encode the slowly varying phoneme features in raw speech. The representations are then
mapped to phoneme tokens via Connectionist Temporal Classification (CTC) (Graves et al., 2006)
fine-tuning on a small amount of transcribed audio. Works like Contrastive Predictive Coding (CPC)
(van den Oord et al., 2018), Autoregressive Predictive Coding (APC) (Chung & Glass, 2020), and
wav2vec (Schneider et al., 2019) generate continuous representations with powerful autoregressive
models pre-trained to predict future time-step representations. Further works started discretizing the
continuous representations with vq-VAE (van den Oord et al., 2017) to generate discrete representa-
tions for speech.

Works like vq-wav2vec (Baevski et al., 2019) and vq-APC (Chung et al., 2020) discretize the rep-
resentations and perform the same prediction tasks as in wav2vec (Schneider et al., 2019) and APC
(Chung & Glass, 2020) respectively but over discrete representations. In vq-wav2vec, the discrete
representations are generated with either a K-Means Vector Quantizer (Baevski et al., 2019) or
Gumbel-Softmax based Vector Quantizer (Baevski et al., 2019). The learned discrete representa-
tions are used to pre-train a BERT (Devlin et al., 2018) to generate stronger continuous representa-
tions much like BERT pre-training in Natural Language Processing. wav2vec 2.0 (Baevski et al.,
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2020) uses a Gumble Softmax based Vector Quantizer (Baevski et al., 2019) to generate discrete
representations. The training involves masking of spans of time steps and then predicting the correct
discrete representations at each masked time step with transformer representation at that time step.
In these methods, raw audio is discretized in a latent space to model all possible acoustic units than
phonetic or sub-phonetic units. The tokens generated by the vector quantizers aren’t constrained to
be interpretable and are initialized in large numbers (∼ 102.4K codes). After pre-training, a subset
of these codes or tokens are chosen more often by the vector quantizers and are considered to repre-
sent acoustic units. CTC-based fine-tuning with transcription groups these discrete acoustic units to
K distinct phonemes or linguistic units as present in the transcriptions.

Works like HuBERT and wav2vec-Unsupervised learn phonemic units directly. HuBERT (Hsu
et al., 2021) pre-trains a transformer network via BERT-like masked prediction task over noisy
targets generated with a clustering model trained offline. The targets may be generated with an
ensemble of K-means clusterers with K = {100, 500} clusters on MFCC features or transformer
representations. wav2vec-Unsupervised (Baevski et al., 2021) learns phonetic tokens adversarially
from phonemized unlabelled text data. A discriminator identifies if the phoneme sequence generated
by model is real or fake based on phonemized unlabelled text.

All aforementioned approaches use powerful auto-regressive models pre-trained on large amounts
of unlabeled audio and fine-tuned on transcribed audio. Our learning approach can learn semantic
tokens with small models while training pairwise on small amount of unlabelled audio data.

Audio Representations for Retrieval. Now Playing (Arcas et al., 2017) and (Chang et al., 2020)
use a Neural Network Fingerprinter (NNFP) module outputting representations which are efficient
for search in query-by-example tasks where the difference between query and the actual song is
pretty minute in comparison to humming where only the melody is sung. Now Playing (Arcas et al.,
2017) trains representations by optimizing the triplet loss (Schroff et al., 2015) and (Chang et al.,
2020) trains representations by simulating the Maximum Inner Product Search (MIPS) on mini-
batches of representations. For Query by Humming task, (Mostafa et al., 2016) and (Mostafa &
Fung, 2017) use deep learning models like DNNs and CNNs to generate representations which they
map to MIDI-numbers or note tokens. Such works require note-transcribed data to train the models.
For Spoken Term Detection task, approaches like (Zhang & Glass, 2009), (Rodriguez-Fuentes et al.,
2014), (Lee et al., 2015), (Ram et al., 2018) convert audio to sequences of feature vectors and apply
different variations of DTW based template matching to detect query in long utterances of speech
which is time-consuming.

Cross Domain Alignment. Given a pair of semantically similar inputs for training, tasks such
as visual question answering (text and image) and machine translation (text) involve learning an
alignment. The alignment here is not ordered and the inputs may be from different modalities.
Attention models have been used to find alignment between output entities and input regions (Yao
et al., 2018). (Chen et al., 2020) use Gromov-Wasserstein distance between output and input entities
to match them. However, there is no notion of tokens there, rather the salient entities in the input are
represented as vectors in a graph.

Graph Matching. Graph Neural Networks (Gori et al., 2005) are used to generate embeddings
for graphs. These embeddings are used to perform graph matching to find similarity of structured
graphs (Li et al., 2019). However, they perform the matching jointly on the pair of inputs, rather
than representing each input independently. This makes them unsuitable for the search problem at
hand due to large run-time complexity. The distance metrics used for graph matching are based on
edit distance (Li et al., 2019) and Wasserstein distance (Chen et al., 2020).

3 PROBLEM STATEMENT

We aim to map X , a sequence of vectors, to T̃ , a sequence of discrete tokens from a finite al-
phabet A, such that the similarity of sequences is preserved in the sense of edit distance. The
length of sequence T̃ may be less than or equal to that of the sequence X . In other words, given
a pair of similar sequences (Xi,Xj) and sequence Xk which is not similar to either sequences
in the pair, we want to map them to token sequences such that ED(T̃i, T̃j) should be less than
min{ED(T̃i, T̃k), ED(T̃j , T̃k)}, where ED(·, ·) is the edit distance between two sequences.
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4 MODEL ARCHITECTURE

wav2tok is comprised of an encoder f : X 7→ Z which takes as input a temporal sequence of audio
features X = [xt ∈ Rn; t ∈ [T ]] of length T , where xt is the feature vector at time step t, and outputs
a sequence of L-2 normalised representations Z = [zt = f(xt) ∈ Rm; t ∈ [T ]]. The encoder is
implemented as a 2-layer BiLSTM followed by an L-2 normalization layer. BiLSTMs summarise
information in both directions and encode surrounding context.

A K-means vector quantizer network g : Z 7→ T then labels sequence Z at each time-step with
tokens belonging to a finite K-element alphabet A = [K] and generates sequence of tokens T =
[τt = g(zt) ∈ A; t ∈ [T ]]. Network g vector quantizes input zt with a codebook E = {ek ∈ Z; k ∈
[K]} comprised of |A| = K discrete representations which are cluster centroids in representation
space Z and outputs token τt = argmaxk zt ·ek. Note, here the dot product gives a cosine similarity
score since both the vectors are L-2 normalized, as a result, ek ∈ E closest to zt is chosen as its
discrete representation and index k as it’s token τt. The K discrete representations in network g are
trainable parameters.

A compressor C compresses sequence of tokens T to sequence T̃ of length T̃ ≤ T by deleting all
consecutive repetitions of tokens. C also generates the corresponding compressed sequence Z̃ of
length T̃ by averaging representations zt ∈ Z over the consecutive tokens and L-2 normalising the
averaged representation. Figure 1a presents an illustration demonstrating our model architecture.

5 TRAINING

wav2tok is trained on pairs of sequences of audio features (X ,X ′) where the raw audio correspond-
ing to X ′ is an augmented replica of that corresponding to X . We apply either pitch shift or time
stretch or both augmentations to raw audio to generate its augmented replica. X and X ′ may differ
in sources as well, i.e. a different person may sing the recording corresponding to X ′.

The discrete representations in quantizer g codebook E are initialized as K centroids obtained via of-
fline K-means clustering over freshly initialized encoder-generated representations. Given (X ,X ′),
encoder f generates sequence of representations Z from input X and Z ′ from X ′. Quantizer g gen-
erates a sequence of tokens T from input Z and T ′ from Z ′ via cosine similarity-based comparison
with codebook vectors e ∈ E initialized via offline clustering over freshly initialized representation
space Z. Compressor C compresses sequence of tokens T to sequence T̃ and T ′ to T̃ ′.

We average all encoder-generated representations in pair (Z,Z ′) which map to the same token,
say τ , to generate a prototype for τ . We then perform a contrastive task where we compare the
prototype with each of the K discrete representations in codebook E and increase its similarity with
the discrete representation corresponding to τ . We also increase the likelihood that wav2tok maps
pair (X ,X ′) to the same token sequence via CTC framework to minimize ED(T̃ , T̃ ′).

Our loss function is defined as,

L = Lm(X ,X ′) + αLctc(X , T̃ ′) + βLctc(X ′, T̃ ) (1)

where Lm is loss defined for contrastive task, Lctc is the loss maximising aforementioned likelihood,
and α, β are positive constants. We optimize this loss function in a manner similar to the Expectation
Maximization algorithm. The clustering is used as the E-step to update the discrete representations
in quantizer g codebook, while gradient descent over L acts as the M-step.

Contrastive Loss. Let the set of unique tokens occurring in pair (T̃ , T̃ ′) be U ⊂ [K], |U| = K ′ ≤
K. We generate a list of token prototypes P = {pτ ; τ ∈ U} where pτ is L-2 normalised mean of
representations in {z ∈ {Z;Z ′} : g(z) = τ}. Figure 1b presents an illustration demonstrating how
we generate list of token prototypes P .

Given pτ ∈ P , we perform a contrastive task to increase its similarity with discrete representation
eτ ∈ E. To compare pτ with the codebook, metrics such as cosine similarity and Euclidean distance
could be used. However, we find that using the following parameterized score for this purpose gives
better performance,

sτ,k = σ(W · (pτ − sg(ek))) ∈ [0, 1] (2)

4



Published as a conference paper at ICLR 2023

(a) Model Architecture (b) Generation of Prototype list P (c) Likelihood Loss Calculation

Figure 1: X ′ is an augmented replica of X . 1a illustrates our model architecture. 1b demonstrates
the generation of P required for calculation of Lm. 1c demonstrates our likelihood loss calculation.

where sg(x) ≡ x, d
dxsg(x) ≡ 0 is the stop-gradient operator, σ(.) is sigmoid function generating a

score in the range [0, 1] and W ∈ R1×d is a parameter matrix. sτ,k acts as a parameterized similarity
score between pτ and discrete representation ek ∈ E. We define our contrastive loss Lm as,

Lm(X ,X ′) = −
∑
τ∈U

log
exp(sτ,τ )∑K
k=1 exp(sτ,k)

(3)

Likelihood Loss. We maximize the likelihood that sequence X maps to token sequence T̃ ′, which
corresponds to X ′, via the CTC framework (see Figure 1c). It puts a constraint to generate the
same token sequence for X and X ′. We calculate the probability of xt mapping to token τt = k as
lt,k = exp(f(xt)·sg(ek))∑K

i=1 exp(f(xt)·sg(ei))
. The likelihood P (T̃ ′|X ) is then calculated as sum of probabilities of

all T -length paths π over tokens τ ∈ A such that C(π) = T̃ ′. The loss is defined as,

Lctc(X , T̃ ′) = − log
∑

π∈C−1(T̃ ′)

P (π|X ) (4)

where the path probabilities are calculated over token probability scores in sequence l = {lt ∈
RK ; t ∈ [T ]} via CTC forward-backward framework (Graves et al., 2006) without the use of blanks.
We present the CTC forward and backward variables for our use case in Appendix B.

Clustering. We perform offline K-means clustering on a subset of encoder representations during
initialization of our network and at regular intervals during training to set the discrete representations
in codebook E of network g. Initializing the clusters in this way prevents wav2tok from converging
to a local optimum during the matching task, as is the case we found with random initialization of
centroids. The intermittent clustering during training iteratively refines the discrete representations
and prevents codebook collapse. We use the sklearn library to perform K-means clustering.

We train wav2tok using the ADAM (Kingma & Ba, 2017) optimizer and a linear learning schedule
with a learning rate of 0.001 and 8% of the training steps as warm-up steps.

6 EXPERIMENTS

We test the performance of tokens and encoder-generated continuous representations of wav2tok in
audio retrieval. We perform Query by Humming (QbH) and Spoken Term Detection experiments to
evaluate the performance of wav2tok in comparison to the baselines.

6.1 MUSIC MELODY SEARCH: QUERY BY HUMMING

Task. Given a test query audio, we are to find the audio with the most similar melody in the search
audio database.

Experiment Details. We use the MIR-QbSH dataset which is composed of 4431 humming audio
recordings of 30s duration corresponding to 48 songs. Each song is sung by several individuals.
All individuals sing the same part of the song. The recordings have variations in the environments
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they were recorded in, tonal qualities, voices, pitch, and time stretch. We train our models on hums
of 40 songs in MIR-QbSH dataset and evaluate search performance on hums of the remaining 8
songs. The training dataset has 1970 hums for training and 676 for validation. The test dataset has
225 hums as a search database and 659 query hums. We evaluate the performance of our models
in identifying which song a given query corresponds to via comparison with all sequences in the
search database. Each model converts all the audio in our test dataset to sequences of tokens or
representations. Each query sequence is compared to all sequences in the search database via Edit
Distance (ED) (if tokens) or DTW (if representations). The song id of the most similar sequence
in the search database is then selected as query song id. We calculate Mean Reciprocal Ranking
(MRR) score with ground-truth song id of the queries for evaluation. The Reciprocal Ranking (RR)
score is given as 1/r if the rth most similar sequence in search database has same song id as query.

All the audio recordings are converted to Short Term Fourier Transform (STFT) matrices before
being passed as inputs to our models. The STFT matrices are computed with 513 frequency bins, a
window length of 1024 samples (summarising 128 ms of audio), and hop length of 512 samples.

6.2 SPOKEN TERM DETECTION

Task. Given a test query audio, we are to detect its occurrence in a long utterance.

Experiment Details. We use the TIMIT dataset which is composed of 6300 utterances of English
speech with time-aligned word transcriptions. We choose 59 most-occurring words with more than
2 characters as keywords and all others as non-keywords. We use utterances of random sentences
formed with 6 words sampled from a subset of 25 keywords for training and evaluation on STD
experiments for the detection of the remaining 34 keywords. The test dataset is composed of 337
utterances corresponding to the 34 queries and 100 long utterances per query, with half containing a
single occurrence of query amongst non-keywords and the other half containing only non-keywords.
Given a query and a long utterance, we convert both to sequences of tokens using each audio tok-
enizer. We perform approximate string matching (Hall & Dowling, 1980) for detection of query
in the utterance. The STFT matrix inputs to the models are computed with 185 frequency bins, a
window length of 368 samples (summarising 23 ms of audio), and a hop length of 92 samples.

6.3 BASELINES

Triplet. We train encoder f : X 7→ Z to generate L-2 normalized continuous representations
for retrieval. Encoder f is trained via optimizing the triplet Loss (Schroff et al., 2015) as done in
training an NNFP in Now Playing (Arcas et al., 2017). Given pair of similar sequences (X ,X ′),
encoder f generates sequences Z and Z ′. We form a mini-batch of size N of triplets {z, z+, z−}
where representation z is sampled from sequence Z , z+ and z− are positive and negative samples
respectively for z sampled from sequence Z ′. The loss is defined as, LTriplet =

∑N
i=1 max{||zi −

z+i || − ||zi − z−i ||+m, 0}, where m is a margin for similarity.

MIPS. We train encoder f : X 7→ Z to generate L-2 normalized continuous representations for
retrieval. Encoder f is trained via simulation of MIPS (Mussmann & Ermon, 2016) on mini-batches
of representations as proposed by (Chang et al., 2020). Given pair of similar sequences (X ,X ′),
encoder f generates sequences Z and Z ′. We form a mini-batch of size N of pairs of {z, z+} where
encoder generated representation z is sampled from sequence Z and z+ is a positive for z sampled

from Z ′. The loss is defined as, LMIPS = −
∑N

i=1 log
exp(zi,z+i )∑

j ̸=i(exp(zi·z+j )+exp(zi·zj))
.

wav2vec2. We train our audio tokenizer via wav2vec 2.0 (Baevski et al., 2020) learning framework.
Quantizer g in our audio tokenizer is chosen to be a Gumbel Softmax-based Vector Quantizer (See
Appendix C for details) as used in (Baevski et al., 2020) but with a single codebook with K mem-
bers. Given sequence X , encoder f outputs sequence of L-2 normalised representations Z of length
T . Quantizer g outputs sequence of discrete representations Q = {qt = g(zt ∈ Z); t = 1, ..., T}.
We mask spans of 10 time steps with random starting indices in sequence Z and then pass the new
sequence to a transformer network h : Z 7→ O which generates a sequence of contextualized rep-
resentations O = {ot = h(zt ∈ Z); t = 1, ..., T}. For transformer output ot over masked time
step t, we identify the true discrete representation qt from a set Dt composed of qt and D dis-
tractors which are discrete representations sampled from other time steps. The loss is defined as,

6



Published as a conference paper at ICLR 2023

Lw(ot,Dt) = − log
exp(sim(ot,qt))∑

q̃∈Dt
exp(sim(ot,q̃)) + Ld, where sim(a, b) = aT b

||a||||b|| is cosine similarity and
Ld is codebook diversity loss.

wav2vec2P. We train wav2vec2 audio tokenizer with our variation of wav2vec 2.0 (Baevski et al.,
2020) learning framework which learns discrete representations from pairs of similar sequences.
Given pair (X ,X ′), encoder f outputs sequences Z of length T and Z ′ of length T ′ respectively.
Assuming T ≤ T ′, we generate sequence Z+ of length T whose t time step element z+t is a positive
for zt ∈ Z sampled from sequence Z ′. Gumbel Softmax-based Vector Quantizer g quantizes each
representation in sequence Z+ to generate sequence Q+. We mask sequence Z and Z+ at the same
time steps. Transformer h inputs masked sequences and generate sequences O and O+. For masked
time step t, we use transformer output ot to identify q+

t ∈ Q+ from set D+
t with distractors sampled

from sequence Q+ and transformer output o+t to identify qt ∈ Q from set Dt with distractors
sampled from sequence Q. The loss is defined as, LwP = Lw(ot,D+

t ) + Lw(o+t ,Dt).

wav2vec2-O. The original wav2vec 2.0 base model with 12 Transformer blocks and 95M param-
eters as proposed by (Baevski et al., 2020). It is pre-trained on 960 hours of LibriSpeech data and
fine-tuned on TIMIT dataset. It uses K = 32 tokens for tokenization.

wav2vec2-Multi. A wav2vec 2.0 large model with 24 Transformer blocks and 317M parameters
pre-trained on 53 languages as proposed by (Conneau et al., 2020). It is fine-tuned on Common
Voice to detect all possible phonemes in training languages with K = 392 tokens.

Triplet and MIPS use a 2-layer BiLSTM as encoder with 3.6M parameters. We use the LAMB
optimizer (You et al., 2020) and a Cosine Annealing Learning Schedule (Loshchilov & Hutter,
2017) with a learning rate restart of 0.0001 to train them. wav2vec2 and wav2vec2P use a 2-layer
BiLSTM encoder with 3.6M parameters to generate latent representations and 3 Transformer blocks
with 8.5M parameters. Both are trained using the ADAM (Kingma & Ba, 2017) optimizer and a
linear learning schedule with a learning rate of 0.001 and 8% of the training steps as warm-up steps.
Proposed wav2tok uses only a 2-layer BiLSTM as encoder with 3.6M parameters.

7 RESULTS

7.1 MUSIC MELODY SEARCH: QUERY BY HUMMING

We present search performances for 3 settings of query namely- Query with no augmentation or
Vanilla Query (V), Time Stretched Query (TS), and Pitch Shifted Query (PS). Time stretch and
pitch shift are the most common augmentations that may be faced in queries by humming data. No
augmentations were applied to audio in search database. Evaluations are performed on sequences
corresponding to songs not seen during training. The results present the generalizability of the
tokens or representations generated by the models. We set the number of tokens as K = 25 for
wav2tok, wav2vec2, and wav2vec2P (See Appendix A.2 for experiments to support our choices).

Quality of Tokenization. Table 1 presents the performance of the sequence of tokens T̃ generated
by the audio tokenizers on ED-based similarity search. Tokens generated by wav2tok present good
generalization capabilities in terms of MRR and outperform all the baselines. It generates time and
pitch invariant tokens as we see no drop in performance when either augmentation is applied to
query. wav2vec2-O is trained on English speech only. The tokens generated by it do not contain
much melodic information but are robust to augmentations. The multilingual training of wav2vec2-
Multi infuses both melodic and phonetic information to its 392 tokens, thereby giving good per-
formance. wav2tok outperforms both wav2vec2-O and wav2vec2-Multi given its pairwise training
which allows it to infuse more melodic information to the tokens while also being trained on a small
amount of unlabelled data. The Gumbel Softmax-based quantizer in wav2vec2 and wav2vec2P
isn’t ideal for infusing melodic information to tokens but it does infuse phonetic information as will
be seen in Section 7.2. We compare the tokens with representations learned by MIPS and Triplet
evaluated on DTW-based similarity search. The continuous representations present sub-par general-
izations to unseen songs. We compare wav2tok with SOTA melody extraction algorithm proposed
in (Salamon & Gómez, 2012) which converts hums to MIDI sequences. wav2tok generates token
sequences much smaller than the respective MIDI sequences and outperforms the MIDI tokens in
search performance, search time, and robustness. In addition, wav2tok outperforms the algorithm
in inference time. We further compare wav2tok with SOTA QbH system proposed in (Mostafa &
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Fung, 2017). In our implementation, we map audio to MIDI sequences using the aforementioned
SOTA melody extraction algorithm instead of a CNN. Given MIDI sequence 53, 53, 58, 50 with du-
rations 0s, 0.5s, 1s, 2s, a Relative Note sequence is generated as (0, 0), (0, 0.5), (5, 1), (−8, 2) over
which DTW is performed for retrieval. wav2tok tokens outperform the SOTA QbH system in both
performance and robustness; the performance of the latter drops drastically with time stretch.

We present the performances of the uncompressed sequences T and Z and compressed sequence Z̃
generated by the audio tokenizers in Appendix A.1. We observe a drop in performance for all audio
tokenizers when we apply sequence compression to sequences T and Z . wav2tok outperforms all
the baselines and generates superior-quality of continuous representations and discrete tokens.

Search Time. Table 1 presents the search time taken for similarity search over the tokens or repre-
sentations generated by the models. The search time taken per query is 2 order of magnitude lesser
for ED-based Search over compressed sequence of tokens T̃ than standard DTW-based Search over
continuous representations Z . The pre-trained models being fine-tuned on transcribed audio give
the best tokens in terms of compression and search time. wav2tok gives comparable tokens but
outperforms the pre-trained models in inference time.

Table 1: Quality of Tokenization

Model V TS PS Search InferTime
(MRR) (MRR) (MRR) (s) (s)

MIDI ED 0.75 0.64 0.72 3.84 0.62
Relative Note DTW 0.84 0.74 0.8 0.02 0.62
Triplet DTW 0.5 0.48 0.5 3.5 0.1MIPS DTW 0.6 0.55 0.58
wav2vec2 ED 0.66 0.63 0.64 0.06 0.17wav2vec2P ED 0.69 0.65 0.67
wav2vec2-O ED 0.72 0.72 0.71 0.01 0.43
wav2vec2-Multi ED 0.82 0.82 0.82 1.2
wav2tok ED 0.84 0.84 0.84 0.04 0.14

Table 2: Ablation Studies and Some Variations

Model V TS PS
(MRR) (MRR) (MRR)

log-mel DTW 0.72 0.7 0.67
vq-log-mel ED 0.71 0.6 0.62
wav2tok+NoSim ED 0.73 0.73 0.72
wav2tok+Cos ED 0.79 0.76 0.77
wav2tok+CTC ED 0.64 0.62 0.63
wav2tok+NewInit ED 0.77 0.76 0.78
wav2tok+MIR1K ED 0.72 0.64 0.67
wav2tok ED 0.84 0.84 0.84

Ablation Studies. Query by humming involves similarity based on melody information, which is
carried by the semantic pairing of the audio in training data. We constrain this pairing to include se-
quences not semantically similar and call this model wav2tok+NoSim. We optimize the contrastive
loss Lm to train the model. The results are shown in Table 2 (full table in Appendix A.3). There is a
significant drop in token robustness and performance but the representations suffer a small drop (see
Appendix A.3). Hence, although the representation space may be well clustered, wav2tok is able to
add more semantics to the tokens as it is being trained with pairs of similar sequences in comparison
to wav2tok+NoSim. We train wav2tok with cosine similarity scores instead of a parameterized
score (wav2tok+Cos). The drop in performance validates the enhancement brought about by using
a parameterized score. We also train wav2tok with Lctc only (wav2tok+CTC). The CTC loss con-
siders all possible paths which compress to the target label sequence. As a result, the learnt tokens
aren’t much semantic. The use of both losses gives the best tokens.

Some Variations. In wav2tok+NewInit, we associate the discrete representations with K centroids
in the input space X. Such association does not initialize our tokenizer with optimal centroids which
cluster the space Z perfectly. This results in a significant drop in performance and robustness as
shown in Table 2. We train wav2tok on MIR-1K dataset (wav2tok+MIR1K) which is composed
of polyphonic music recordings of 1000 distinct songs. The tokens generalize well to monophonic
hums in MIR-QbSH dataset giving a comparable performance to MIDI tokens. This validates that
wav2tok tokens do learn melodic information and are robust to variations incurred in hums. We fur-
ther compare wav2tok with log-mel features and token sequences (with no compression) obtained
via quantization of log-mel features. wav2tok tokens outperform both.

7.2 SPOKEN TERM DETECTION

Quality of Tokenization. Table 3 presents the quality of tokenization of the query keywords by
the models evaluated in the Spoken Term Detection experiments. We present the performances of
wav2vec2 , wav2vec2P, wav2vec2-O, wav2vec2-Multi and proposed wav2tok. We conduct search
experiments on a test dataset composed of a search database of 337 utterances of the 34 keywords
used as queries in the STD experiments and 1289 query utterances. We identify the keyword to
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which each query corresponds to via comparison to all the 337 utterances in the search database
via ED-based similarity score. The word id of the most similar utterance is selected as the word to
which the query corresponds to. We set K = 40 equivalent to the number of phonemes in English.

wav2tok gives the best performance in terms of MRR scores. It outperforms huge models like
wav2vec2-O and wav2vec2-Multi which are fine-tuned for the task of phonetic tokenization of
speech audio while using a small number of parameters. wav2vec2 and wav2vec2P also outperform
wav2vec2-Multi and wav2vec2-O while using smaller number of parameters. wav2vec2-O and
wav2vec2-Multi use a blank token to handle consecutive occurrences of the same tokens and to
label background noise. The utterances of each keyword in the test dataset are very small in time
duration. This causes wav2vec2-O to confuse word utterances as background noise. It generates a
sequence of blank tokens and performs poorly in search. wav2vec2-Multi using a larger number of
phonetic tokens does not suffer this issue. wav2tok , wav2vec2, and wav2vec2P have no such blank
token. This brings a drop in search performance with sequence compression. We further present the
performance of wav2tok trained on a much larger LibriSpeech 100 hours dataset (wav2tok+Libri).
It is able to outperform wav2vec2-O and give comparable performance to wav2vec2-Multi.

Table 3: Quality of Tokenization for speech

Model Normal Compressed
(MRR) (MRR)

log-mel DTW 0.7 -
wav2vec2 ED 0.68 0.63
wav2vec2P ED 0.7 0.65
wav2vec2-O ED 0.4 0.4
wav2vec2-Multi ED 0.67 0.67
wav2tok ED 0.74 0.66
wav2tok+Libri ED 0.64 0.6

Table 4: Spoken Term Detection

Model ED Search DTW Search
Time Time

(F1) (s) (F1) (s)
log-mel DTW - - 0.41 0.003
wav2vec2 0.64 0.066 0.46 0.1wav2vec2P 0.64 0.47
wav2vec2-O 0.61 0.29 0.43 0.23
wav2vec2-Multi 0.63 0.72 0.48 0.66
wav2tok 0.65 0.064 0.52 0.09
wav2tok+Libri 0.63 0.44 0.1

Spoken Term Detection. We convert the query word utterance and the long utterance in to se-
quences of tokens by all our models and detect the occurrence of the query via approximate string
matching. We use fuzzysearch library to perform approximate string matching. It automati-
cally chooses the fastest algorithm for matching. Table 4 presents the performance of wav2vec2
, wav2vec2P , wav2vec2-O, wav2vec2-Multi, and proposed wav2tok in STD. All the models give a
comparable performance in terms of F1- score with wav2tok performing slightly better. We also im-
plement the STD system proposed in (Anguera & Ferrarons, 2013) which performs highly competi-
tive STD via subsequence DTW (S-DTW) over gaussian posterior features. In our implementation,
we extract the posterior features with SOTA ASR models like wav2vec2-O and wav2vec2-Multi.
The results are presented in the DTW column in Table 4. Note, the results for other models in same
column are for STD via S-DTW over representations. We observe STD over tokens to give better
F1-score.

8 CONCLUSION AND FUTURE WORK

In this paper, we present an audio sequence tokenizer wav2tok that generates semantically mean-
ingful ordered representations (or tokens) that can be used for efficient retrieval by query sequences.
The model learns only from pairs of semantically similar sequences and outperforms state-of-the-
art approaches for spoken term detection and query by humming. One may apply more efficient
search algorithms such as locality-sensitive hashing and longest common subsequence search on
the generated tokens to further speed up the search. The proposed framework can also be extended
to image and video retrieval, as they also have spatial ordering. We would like to investigate the
domain-specific, i.e., linguistic or musicological, aspects of the extracted tokens. For instance, dur-
ing retrieval, the matching algorithm assumes all the tokens to be equidistant from each other. One
may study or use the metric space of these tokens.
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9 REPRODUCIBILITY

The codes are available in https://github.com/madhavlab/wav2tok. The experiments
are performed using standard datasets.
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A FURTHER STUDIES

A.1 SEQUENCE COMPRESSION

We present the quality of sequence of tokens T and sequence of representations Z and their cor-
responding compressed versions sequences T̃ and Z̃ generated by the audio tokenizers in Table
5.

wav2tok outperformed the baselines and generated the best quality of sequences T , Z , T̃ and Z̃ .
Sequence compression brings an order of magnitude drop in search time for all the audio tokenizers
with a trade-off in search performance. Compression from T to T̃ increases the robustness of the
token sequences generated by wav2tok to various augmentations. wav2vec2P learnt better tokens
and representations than wav2vec2 because of it’s pairwise training on similar audio.

Table 5: Compression of Sequences: MRR scores for query by humming, K = 25

Model V TS PS Search Time
Without Compression

wav2vec2 DTW 0.85 0.84 0.84
3.5swav2vec2P DTW 0.87 0.85 0.87

wav2tok DTW 0.92 0.89 0.93
wav2vec2 ED 0.72 0.69 0.73 0.68swav2vec2P ED 0.75 0.71 0.73
wav2tok ED 0.9 0.84 0.9 0.32s

With Compression
wav2vec2 DTW 0.76 0.72 0.74 0.8swav2vec2P DTW 0.81 0.77 0.79
wav2tok DTW 0.88 0.88 0.87 0.6s
wav2vec2 ED 0.66 0.63 0.64 0.06swav2vec2P ED 0.69 0.65 0.67
wav2tok ED 0.84 0.84 0.84 0.04s

A.2 VARIATION IN NUMBER OF TOKENS K

The effect of varying the size of alphabet A is shown in Table 6. We train wav2vec2, wav2vec2P,
and proposed wav2tok with alphabets of size K ∈ {15, 25, 40}. Out of the three settings for K,
K = 25 gives the best performance for all models. wav2tok gives best performance for all settings
of K.

A.3 ABLATION STUDIES AND SOME VARIATIONS

We present the full version of Table 2 in table 7. Note wav2tok+NoSim repsentations are well
clustered. wav2tok+Trans representations are also comparable with wav2tok but the tokens are of
lesser quality. This is due to model overfitting.

A.4 QUALITY OF REPRESENTATIONS

We present the performance of the continuous representations generated by wav2tok and the base-
lines in Table 8. wav2tok generates the best representations for music outperforming representations
generated by the large wav2vec 2.0 models. wav2tok trained on MIR1K generates representations
outperforming domain-specific QbH baselines. Note, wav2vec2-O outperforms wav2vec2-Multi as
the hums in the dataset were all in english. wav2vec2-O is pre-trained and fine-tuned on English
speech only while wav2vec2-Multi is pre-trained multilingually. Hence , wav2vec2-O gave better
results.
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Table 6: Effect of varying K: MRR scores for query by humming

Models
Without Compression With Compression

V TS PS V TS PS

K = 15
wav2vec2 DTW 0.85 0.83 0.84 0.7 0.66 0.67
wav2vec2P DTW 0.87 0.85 0.85 0.82 0.77 0.8
wav2tok DTW 0.88 0.87 0.88 0.84 0.8 0.83
wav2vec2 ED 0.79 0.77 0.78 0.58 0.56 0.57
wav2vec2P ED 0.8 0.77 0.79 0.71 0.68 0.7
wav2tok ED 0.82 0.8 0.81 0.77 0.75 0.76

K = 25
wav2vec2 DTW 0.85 0.84 0.84 0.76 0.72 0.74
wav2vec2P DTW 0.87 0.85 0.87 0.81 0.77 0.79
wav2tok DTW 0.92 0.89 0.93 0.88 0.88 0.87
wav2vec2 ED 0.72 0.69 0.73 0.66 0.63 0.64
wav2vec2P ED 0.75 0.71 0.73 0.69 0.65 0.67
wav2tok ED 0.9 0.84 0.9 0.84 0.84 0.84

K = 40
wav2vec2 DTW 0.84 0.82 0.83 0.72 0.68 0.7
wav2vec2P DTW 0.86 0.85 0.85 0.81 0.77 0.79
wav2tok DTW 0.9 0.88 0.89 0.86 0.83 0.83
wav2vec2 ED 0.71 0.66 0.69 0.6 0.58 0.58
wav2vec2P ED 0.73 0.7 0.73 0.68 0.65 0.67
wav2tok ED 0.83 0.8 0.82 0.77 0.75 0.76

Table 7: Ablation Studies and Some Variations: MRR scores for query by humming

Models
Without Compression With Compression

V TS PS V TS PS

log-mel DTW 0.72 0.69 0.67 0.54 0.47 0.43
wav2tok+NoSim DTW 0.88 0.87 0.87 0.8 0.84 0.83
wav2tok+Cos DTW 0.88 0.87 0.87 0.83 0.81 0.81
wav2tok+NewInit DTW 0.9 0.84 0.91 0.84 0.85 0.83
wav2tok+Trans DTW 0.84 0.77 0.85 0.8 0.77 0.76
wav2tok+MIR1K DTW 0.88 0.84 0.85 0.82 0.74 0.78
wav2tok DTW 0.92 0.89 0.93 0.88 0.88 0.87
vq-log-mel ED 0.71 0.6 0.62 0.52 0.48 0.47
wav2tok+NoSim ED 0.85 0.74 0.84 0.73 0.73 0.72
wav2tok+Cos ED 0.86 0.84 0.85 0.79 0.76 0.77
wav2tok+NewInit ED 0.83 0.72 0.85 0.77 0.76 0.78
wav2tok+Trans ED 0.84 0.77 0.85 0.7 0.66 0.67
wav2tok+MIR1K ED 0.76 0.66 0.71 0.72 0.64 0.67
wav2tok ED 0.9 0.84 0.9 0.84 0.84 0.84

A.5 TRAINING ON LARGER SPEECH DATASET

We train wav2tok on 100-hours subset of LibriSpeech (Panayotov et al., 2015) dataset. We evaluate
the quality of tokenization of word utterances done by wav2tok on TIMIT (Garofolo et al., 1993)
dataset. We use a 2-layer BiLSTM network with 3.6 million parameters as encoder network which
takes MFCC feature sequences as input. We perform tokenization with K = 40 tokens.

wav2tok outperforms wav2vec2-O by a large margin and gives comparable performance to
wav2vec2-Multi in terms of MRR score. wav2tok uses a minute number of parameters in compari-
son to 95 million parameters in wav2vec2-O and 317 million parameters in wav2vec2-Multi. Note,
wav2vec2-O and wav2vec2-Multi were pre-trained on large amount of unlabelled speech data and
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Table 8: Quality of Representations: MRR scores for query by humming

Model V TS PS
(Salamon & Gómez, 2012) MIDI ED 0.75 0.64 0.72
(Mostafa & Fung, 2017) Note DTW 0.84 0.74 0.8
Triplet DTW 0.5 0.48 0.5
MIPS DTW 0.6 0.55 0.58
wav2vec2-O DTW 0.91 0.83 0.86
wav2vec2-Multi DTW 0.88 0.83 0.85
wav2tok DTW 0.92 0.9 0.93
wav2tok+MIR1K DTW 0.88 0.84 0.85

fine-tuned with transcription to perform tokenization of audio. Moreover, wav2vec2-O was fine-
tuned to perform tokenization on TIMIT (Garofolo et al., 1993) dataset. Proposed wav2tok was
trained on 100 hours of LibriSpeech dataset only. The tokens learnt by wav2tok on LibriSpeech
(Panayotov et al., 2015) dataset generalised well to TIMIT (Garofolo et al., 1993).

Table 9: Quality of Tokenization for speech (MRR Scores)

Model Normal (T ) Compressed (T̃ )
wav2vec2-O ED 0.4 0.4
wav2vec2-Multi ED 0.67 0.67
wav2tok+Libri ED 0.64 0.6

B CTC WITHOUT BLANKS

We present the forward and backward variables used in calculating the gradients of the CTC loss
Lctc(X , T̃ ′) with no blank tokens.

The forward variable is defined as ,

αt(s) =
∑

π;C(π1:t)=T̃ ′
1:s

t∏
t′=1

lt′,πt′ (5)

where π corresponds to all T -length paths over tokens such that C(π) = T̃ ′. Here, C is a compressor
which compresses π a T -length sequence of tokens via de-duplication.

We initialise as follows,

α1(1) = l1,T̃1
′

α1(s) = 0,∀s > 1
(6)

and recursively calculate αt(s) as,

αt(s) = (αt−1(s) + αt−1(s− 1))lt,T̃s
′ (7)

We set αt(s) = 0,∀s < 1.

The backward variable is defined as,

βt(s) =
∑

π;C(πt:T )=T̃ ′
s:|T̃ ′|

T∏
t′=t

lt′,πt′ (8)
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We initialise as follows,

βT (|T̃ ′|) = lT,T̃ ′
|T̃ ′|

βT (s) = 0,∀s < |T̃ ′|
(9)

and recursively calculate βt(s) as,

βt(s) = (βt+1(s) + βt+1(s+ 1))lt,T̃ ′
s

(10)

We set βt(s) = 0,∀s > |T̃ ′|.

C GUMBEL SOFTMAX BASED VECTOR QUANTIZER

The Gumbel Softmax based Vector Quantizer (Baevski et al., 2019) quantizes input latent represen-
tation zt ∈ Rm with C codebooks containing K quantizers e ∈ RK×m

C each. For our experiments,
we set C = 1 and K ∈ {15, 25, 40}. Given zt, one of the K quantizers from each of the C code-
books are chosen resulting in vectors e1, ..., eC . The codebook vectors are then concatenated and
linearly transformed from Rm to Rd to output a discrete representation qt ∈ Rd.

zt is mapped to l ∈ RC×K logits to give probability scores for the choice of codeword. The proba-
bility pc,k of choosing kth quantizer in cth codebook is given as,

pc,k =
exp (lc,k + nk)/τ∑K
i=1 exp (lc,i + ni)/τ

(11)

where τ is a non-negative temperature, n = −log(−log(u)) and u are samples from the uniform
distribution Unif(0, 1).

During forward pass, the codeword is chosen as κ = argmaxj pc,j . During backward pass, the loss
is calculated over the gumble softmax distribution p. We use the straight-through gradient estimator
(Yin et al., 2019) to estimate the gradient.

Codebook Diversity Loss Ld. This loss promotes equal use of all the entries in each of the C
codebooks. Minimization of this loss maximizes the entropy of the averaged softmax distribution p̃
over the K entries for each codebook p̃c across a batch of utterances.

Ld =
1

CK

C∑
c=1

K∑
k=1

p̃c,k log p̃c,k (12)
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