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ABSTRACT

Active learning is the process of training a model with limited labeled data by se-
lecting a core subset of an unlabeled data pool to label. The large scale of data sets
used in deep learning forces most sample selection strategies to employ efficient
heuristics. This paper introduces an integer optimization problem for selecting a
core set that minimizes the discrete Wasserstein distance from the unlabeled pool.
We demonstrate that this problem can be tractably solved with a Generalized Ben-
ders Decomposition algorithm. Our strategy uses high-quality latent features that
can be obtained by unsupervised learning on the unlabeled pool. Numerical re-
sults on several data sets show that our optimization approach is competitive with
baselines and particularly outperforms them in the low budget regime where less
than one percent of the data set is labeled.

1 INTRODUCTION

Although deep learning demonstrates superb accuracy on supervised learning tasks, most deep learn-
ing methods require massive data sets that can be expensive to label. To address this challenge,
active learning is a labeling-efficient supervised learning paradigm when given a large unlabeled
data set (Cohn et al., 1994; Settles, 2009). Active learning uses a finite budget to select and label
a subset of a data pool for downstream supervised learning. By iteratively training a model on a
current labeled set and labeling new points, this paradigm yields models that use a fraction of the
data to achieve nearly the same accuracy as classifiers with unlimited labeling budgets.

The task of selecting points to label is a combinatorial optimization problem of determining the most
representative subset of the unlabeled data (Sener & Savarese, 2017). However, to estimate the value
of labeling a point, active learning strategies require informative features from the unlabeled data.
Integer optimization models can also grow impractically quickly with the data set size. Nonetheless,
optimally selecting which points to label can reduce operational costs, especially for applications
such as medical imaging where labeling requires time-consuming human expert labor (Rajchl et al.,
2016), or domain adaptation where data pools are hard to obtain (Saenko et al., 2010).

In this paper, we introduce an optimization framework for active learning with small labeling bud-
gets. To select points, we minimize the Wasserstein distance between the unlabeled set and the
set to be labeled. We prove that this distance bounds the difference between training with a finite
versus an unlimited labeling budget. Our optimization problem admits a Generalized Benders De-
composition solution algorithm wherein we instead solve sub-problems that are orders of magnitude
smaller (Geoffrion, 1972). Our algorithm guarantees convergence to a globally optimal solution and
can be further accelerated with customized constraints. Finally, to compute informative features, we
use unsupervised learning on the unlabeled pool. We evaluate our framework on four visual data
sets with different feature learning protocols and show strong performance versus existing selection
methods. In particular, we outperform baselines in the very low budget regime by a large margin.

Our overall contributions are as follows: (1) We derive a new deterministic bound on the difference
in training loss between using the full data set versus a subset via the discrete Wasserstein distance.
This further bounds the overall expected risk. (2) We propose active learning by minimizing the
Wasserstein distance. We develop a globally convergent customized algorithm for this problem
using Generalized Benders Decomposition. (3) We consider low budget active learning for image
classification and domain adaptation where up to 400 images can be labeled and show that optimally
selecting the points to label in this regime improves over heuristic-based methods.
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Figure 1: (Left) In our active learning framework, we first pre-train our features with self-supervised
learning, select samples to label by minimizing the discrete Wasserstein distance, and then train
our classifier. (Right) t-SNE plot of the feature space on the STL-10 data set with selected points
highlighted. The baseline misses the top right region. See Appendix E.7 for full visual comparisons.

2 PROPOSED MODEL

We first set up the active learning problem and develop the main theory motivating our active learn-
ing strategy illustrated in Figure 1. All of our proofs can be found in Appendix A.

2.1 PRELIMINARIES OF ACTIVE LEARNING

Consider a C-class classification problem over features x ∈ X and labels y ∈ Y := {1, . . . , C},
where (X , ‖·‖) and (Y, |·|) are metric spaces. With a data distribution and a loss function `(x, y; w) :
X × Y → R parametrized by w, our goal is to minimize the expected risk minw E[`(x, y; w)]. In
practice, we use a labeled data set {(xi, yi)}Ni=1 of N samples to minimize the empirical risk.

In active learning, we instead have features D = {xi}Ni=1 and a labeling oracle Ω : X → Y . Let
π ∈ {0, 1}N indicate points to label given a budget B. That is, we may call the oracle B times to
create a labeled core set C(π) := {(xj ,Ω(xj)}Bj=1 where xi ∈ C(π) is labeled iff πi = 1. An active
learning strategy is an algorithm to optimize C(π). We omit π in the notation for C when obvious.

Active learning strategies can be categorized into uncertainty-based, representation-based, or hy-
brid. Uncertainty methods determine images to label by using measures of the uncertainty of a
classifier (Roth & Small, 2006; Li & Guo, 2013; Wang & Shang, 2014). Representation methods
select a diverse core set of examples spread over the feature space (Yu et al., 2006; Sener & Savarese,
2017; Contardo et al., 2017). Uncertainty estimates and latent features are commonly obtained by
training a preliminary classifier for feature extraction with a previously labeled data set (Sinha et al.,
2019; Shui et al., 2020). Other approaches also include pre-clustering (Nguyen & Smeulders, 2004)
or few-shot learning (Woodward & Finn, 2017).

Sener & Savarese (2017) bound the expected risk by a generalization error of training with an un-
limited number of oracle calls, the empirical risk of training with a core set of B points, and a core
set loss for training with all points versus only the core set. This bound, slightly revised, is

E[`(x, y; w)] ≤ 1

B

B∑
j=1

`(xj ,Ω(xj); w)︸ ︷︷ ︸
empirical risk

+

∣∣∣∣∣E[`(x, y; w)]− 1

N

N∑
i=1

`(xi,Ω(xi); w)

∣∣∣∣∣︸ ︷︷ ︸
generalization bound

+
1

N

N∑
i=1

`(xi,Ω(xi); w)− 1

B

B∑
j=1

`(xj ,Ω(xj); w)︸ ︷︷ ︸
core set loss

.

The generalization bound does not depend on the core set. Furthermore for small B, the empirical
risk is always negligibly small. Thus from Sener & Savarese (2017), we can focus on an active
learning strategy that specifically minimizes the core set loss.

2.2 ACTIVE LEARNING VIA WASSERSTEIN DISTANCE

As a function of C, the core set loss resembles a distribution matching loss on the empirical risk
with C versus D. This motivates an active learning strategy of minimizing a distance between
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distributions over these two sets (Shui et al., 2020). We consider minimizing the discrete Wasserstein
distance (Villani, 2008). Let Dx = [‖xi − xi′‖]N,Ni=1,i′=1 be a distance matrix over features inD. The
discrete Wasserstein distance between C and D is denoted by W (C(π),D) and defined as

W (C(π),D) := min
Γ≥0

{
〈Dx,Γ〉

∣∣∣∣∣ Γ1 =
1

N
1, ΓT1 =

1

B
π

}
(1)

= max
λ,µ

{
1

N
µT1− 1

B
λTπ

∣∣∣∣∣ λT ⊗ 1 + µ⊗ 1T ≤ Dx

}
(2)

where 〈A,B〉 := Trace(A>B) is the Frobenius inner product between real matrices A and B. We
then formulate our active learning strategy as the following optimization problem:

min
π∈{0,1}N

W (C(π),D) s. t. |C(π)| = B. (3)

We may also consider alternative distance functions such as divergences. However, since the Wasser-
stein distance minimizes a transport between distributions, it can lead to better coverage of the un-
labeled set (e.g., Shui et al. (2020) demonstrate numerical examples). Furthermore, we compute the
discrete Wasserstein distance by a linear program, meaning that our active learning strategy can be
written as a mixed integer linear program (MILP). Finally, the Wasserstein distance induces a new
bound on the expected risk in training. Specifically, we show below that the Wasserstein distance
directly upper bounds the core set loss under the assumption of a Lipschitz loss function.
Theorem 1. Fix w constant. For any ε > 0, if `(x, y; w) is K-Lipschitz continuous over (X ×
Y, ‖x‖+ ε|y|), then 1

N

∑N
i=1 `(xi,Ω(xi); w)− 1

B

∑B
j=1 `(xj ,Ω(xj); w) ≤ KW (C,D) + εKC.

The second term in the bound vanishes for small ε. Moreover, Theorem 1 assumes Lipschitz con-
tinuity of the model for fixed parameters, which is standard in the active learning literature (Sener
& Savarese, 2017) and relatively mild. We provide a detailed discussion on the assumption in Ap-
pendix B. Finally, the bound in Theorem 1 directly substitutes into the bound of Sener & Savarese
(2017), meaning that minimizing the Wasserstein distance intuitively bounds the expected risk.

3 MINIMIZING WASSERSTEIN DISTANCE VIA INTEGER PROGRAMMING

We now present our Generalized Benders Decomposition (GBD) algorithm for solving problem (3).
GBD is an iterative framework for large-scale non-convex constrained optimization (Geoffrion,
1972). We provide a general review of GBD in Appendix C and refer to Rahmaniani et al. (2017)
for a recent survey. In this section, we first reformulate problem (3), summarize the main steps of
our algorithm, and show three desirable properties: (i) it has an intuitive interpretation of iteratively
using sub-gradients of the Wasserstein distance as constraints; (ii) it significantly reduces the size of
the original optimization problem; and (iii) it converges to an optimal solution. Finally, we propose
several customization techniques to accelerate our GBD algorithm.

3.1 MINIMIZING WASSERSTEIN DISTANCE WITH GBD

Problem (3), which selects an optimal core set, can be re-written as the following MILP:

min
π∈{0,1}N ,Γ≥0

〈Dx,Γ〉 s. t. Γ1 =
1

N
1 , ΓT1 =

1

B
π , πT1 = B (4)

Let us define G := {Γ ≥ 0 | Γ1 = 1/N} and P := {π ∈ {0, 1}N | πT1 = B}. Problem (4) is
equivalent to the following Wasserstein-Master Problem (W-MP):

min
η,π∈P

η s. t. η ≥ inf
Γ∈G

{
〈Dx,Γ〉+ λT

(
1

B
π − ΓT1

)}
, ∀λ ∈ RN (5)

Although W-MP contains an infinite number of constraints controlled by the dual variable λ, it can
also be re-written as a single constraint by replacing the right-hand-side with the Lagrangian L(π)
of the inner optimization problem. Furthermore, L(π) is equivalent to the Wasserstein distance:

L(π) := sup
λ∈RN

inf
Γ∈G

{
〈Dx,Γ〉+ λT

(
1

B
π − ΓT1

)}
= W (C(π),D).
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Main Steps of the Algorithm. Instead of the semi-infinite problem W-MP (5), we consider a finite
set of constraints Λ ⊂ RN and solve a Wasserstein-Relaxed Master Problem (W-RMP(Λ)):

min
η,π∈P

η s. t. η ≥ inf
Γ∈G

{
〈Dx,Γ〉+ λ̂T

(
1

B
π − ΓT1

)}
, ∀λ̂ ∈ Λ.

Let (η̂, π̂) be an optimal solution to W-RMP(Λ) and let (η∗,π∗) be an optimal solution to W-MP.
Since W-RMP is a relaxation, η̂ ≤ η∗ lower bounds the optimal value to W-MP (and thus also
to problem (4)). Furthermore, L(π̂) = W (C(π̂),D) ≥ W (C(π∗),D) = η∗ upper bounds the
optimal value to W-MP. By iteratively adding new constraints to Λ, we can make W-RMP(Λ) a
tighter approximation of W-MP, and consequently tighten the upper and lower bounds.

In GBD, we initialize a selection π̂0 ∈ P and Λ = ∅. We repeat at each iteration t ∈ {0, 1, 2, . . . }:

1. Given a solution (η̂t, π̂t), solve the Lagrangian L(π̂t) to obtain a primal-dual transport (Γ̂t, λ̂t).

2. Update Λ← Λ ∪ {λ̂t} and solve W-RMP(Λ) to obtain a solution (η̂t+1, π̂t+1).

We terminate whenW (C(π̂t),D)− η̂t is smaller than a tolerance threshold ε > 0, or up to a runtime
limit. We omit t in the notation when it is obvious.

Interpretation. The Lagrangian is equivalent to computing a Wasserstein distance. Furthermore,
the dual variables of the Wasserstein equality constraints are sub-gradients of problem (4) (Rahmani-
ani et al., 2017). In each iteration, we computeW (C(π̂),D) and add a new constraint to W-RMP(Λ).
Intuitively, each constraint is a new lower bound on η using the sub-gradient with respect to π̂.

Solving Smaller Problems. The original problem (4) contains N2 + N variables and 2N + 1
constraints whereN = |D|, making it intractable for most deep learning data sets (e.g.,N = 50, 000
for CIFAR-10). W-RMP(Λ) only contains N + 1 variables and |Λ| constraints (i.e., the number of
constraints equals the number of iterations). In our experiments, we run for approximately 500
iterations, meaning W-RMP(Λ) is orders of magnitude smaller than (4). Although we must also
solve the Lagrangian sub-problem in each iteration, computing Wasserstein distances is a well-
studied problem with efficient algorithms and approximations (Bonneel et al., 2011; Cuturi, 2013).
We discuss our overall reduced complexity in more detail in Appendix D.3.

Convergence. Finally, because the objectives and constraints of W-MP are linear and separable in
Γ and π (see Appendix C), GBD converges to an optimal solution in finite time.
Corollary 1. Let Λ0 = ∅ and π̂0 ∈ P . Suppose in each iteration t ∈ {0, 1, 2, . . . }, we compute
W (C(π̂t),D) to obtain a dual variable λ̂t and compute W-RMP(Λt+1 ← Λt ∪ {λ̂t}) to obtain
(η̂t+1, π̂t+1). Then for any ε > 0, there exists a finite t∗ for which W (C(π̂t∗),D)− η̂t∗ < ε.

3.2 ACCELERATING THE ALGORITHM

Since W-RMP(Λ) is a relaxation of W-MP, we can accelerate the algorithm with techniques to
tighten this relaxation. We propose two families of constraints which can be added to W-RMP(Λ).

Enhanced Optimality Cuts (EOC). A given inequality is referred to as an optimality cut for an
optimization problem if the optimal solution is guaranteed to satisfy the inequality. Introducing
optimality cuts as additional constraints to an optimization problem will not change the optimal so-
lution, but it may lead to a smaller feasible set. We augment W-RMP(Λ) with “Enhanced Optimality
Cuts” (EOC) in addition to the Lagrangian constraints at each iteration of the algorithm.

Proposition 1. For all π̂ ∈ P , let (Γ̂, λ̂, µ̂) be optimal primal-dual solutions to W (C(π̂),D) in
problems (1) and (2). Let Di,i′ be elements of Dx. The following are optimality cuts for W-MP:

Lower Bound: η ≥ 1

B

N∑
i=1

min
i′∈{1,··· ,N}

{Di,i′ |Di,i′ > 0}πi (6)

Triangle Inequality: η ≥ 1

B

N∑
i=1

min
i′∈{1,··· ,N}

xi′∈C(π̂)

{Di,i′ |Di,i′ > 0}πi −W (C(π̂),D) (7)

Dual Inequality: η ≥W (C(π̂),D) +
1

B
λ̂Tπ − 1

N
µ̂T1− 1

B

N∑
i=1

max
i′∈{1,··· ,N}

{Di,i′}πi (8)
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Inequality (6) is derived from a lower bound on the Wasserstein distance between two probability
distributions. This is a general relationship between η and π and can be included as an additional
constraint to W-RMP(Λ) at the onset of the algorithm. Inequalities (7) and (8) bound η and π with
respect to a given π̂. In each iteration, when we obtain a new π̂, we can construct a Triangle and
Dual Inequality, respectively, and add them to W-RMP(Λ) along with the Lagrangian constraints.

From Proposition 1, an optimal solution to W-MP satisfies the inequalities (6)–(8), meaning that
including them as additional constraints to W-RMP(Λ) will still ensure that the optimal solution to
W-MP is feasible for W-RMP(Λ) for any Λ (and therefore also optimal once Λ is sufficiently large).
That is, we preserve convergence from Corollary 1, while tightening the relaxation, which reduces
the search space and consequently, the overall number of iterations of our algorithm.

Pruning Constraints (P). Augmenting W-RMP(Λ) with constraints that are not valid optimal-
ity cuts may potentially remove the global optimal solution of W-MP from the relaxed problem.
Nonetheless, such constraints may empirically improve the algorithm by aggressively removing un-
necessary regions of the relaxed feasible set (Rahmaniani et al., 2017). One simple approach is to use
trust region-type constraints that prune neighbourhoods of good versus bad solutions (van Ackooij
et al., 2016). We introduce a simple set of constraints that remove search neighbourhoods around
core sets with high Wasserstein distances and encourage searching near neighbourhoods around core
sets with lower Wasserstein distances. We detail these constraints in Appendix D.1.

In Appendix D.2, we provide a full algorithm description and Python pseudo-code. Finally, note
that the techniques proposed here are not exhaustive and more can be used to improve the algorithm.

4 COMPARISON WITH RELATED LITERATURE

In this section, we compare our optimization problem and active learning strategy with the related
literature in active learning, minimizing Wasserstein distances, self-supervised learning, and GBD.

Active Learning. Our approach is closely related to Greedy k-centers (Sener & Savarese, 2017),
which develops a core set bound similar to Theorem 1 but using the optimal solution to a k-center
facility location problem rather than the Wasserstein distance (Wolf, 2011). Their bound is proba-
bilistic whereas ours is deterministic. Furthermore since facility location is a large MILP, Sener &
Savarese (2017) use a greedy approximation to select points. This sub-optimality can incur signif-
icant opportunity cost in settings where every point must be carefully selected so as to not waste a
limited budget. Here, GBD solves our MILP with an optimality guarantee if given sufficient runtime.

Another related method is Wasserstein Adversarial Active learing (WAAL) (Shui et al., 2020), which
also proposes a probabilistic Wasserstein distance core set bound. Their bound is proved with tech-
niques from domain adaptation and requires a Probabilistic-Lipschitz assumption on the data dis-
tribution itself, whereas our bound uses only linear duality and a weaker assumption: Lipschitz
continuity in the loss function. To select points, Shui et al. (2020) use a semi-supervised adversarial
regularizer to estimate the Wasserstein distance and a greedy heuristic to select points that minimize
the regularizer. Our algorithm does not need to learn a custom feature space and can instead be
used with any features. Furthermore, we directly optimize the Wasserstein distance and provide a
theoretical optimality gap. Numerical results show that optimization outperforms greedy estimation
in the low-budget regime and yields a small improvement even in high-budget settings.

Minimizing Wasserstein Distance. Problem (3) has been previously studied in active learn-
ing (Ducoffe, 2018; Shui et al., 2020) and in other applications such as scenario reduction for
stochastic optimization (Heitsch & Römisch, 2003; Rujeerapaiboon et al., 2018). The related lit-
erature concedes that MILP models for this problem have difficulty scaling to large data sets, ne-
cessitating heuristics. For instance in scenario reduction, Heitsch & Römisch (2003) and Rujeer-
apaiboon et al. (2018) equate problem (3) to the k-Medoids Cluster Center optimization problem.
They employ the k-medoids heuristic and an approximation algorithm, respectively, on small data
sets containing approximately 1, 000 samples. In contrast, our GBD algorithm provides an optimal-
ity guarantee and as we show in numerical experiments, scales gracefully on data sets with 75, 000
samples. We review k-medoids and scenario reduction in Appendix E.2.

Self-supervised Learning. Active learning selection strategies improve with useful features x ∈
X . Recently, self-supervised learning has shown tremendous promise in extracting representations
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for semi-supervised tasks. For example, a model pre-trained with SimCLRv2 on ImageNet (Deng
et al., 2009) can be finetuned with labels from 1% of the data to achieve impressive classification
accuracy (Chen et al., 2020a;b;c). In contrast, the standard practice in classical active learning is
to train a classifier for feature extraction with previously labeled data (Sener & Savarese, 2017;
Sinha et al., 2019; Shui et al., 2020), with the previous papers requiring labeling up to 20% of the
data to achieve comparable performance to self-supervised pre-training with supervised finetuning.
Our numerical experiments verify that self-supervised pre-training can accelerate active learning to
competitive accuracy with orders of magnitude less labeled data.

Chen et al. (2020c) use random selection after self-supervised learning. With enough points, current
active learning strategies achieve similar bottleneck performances (Siméoni et al., 2019). However,
the heuristic nature of these strategies leave opportunities in the low budget regime. Numerical
results show that optimization in this regime specifically yields large gains over heuristic baselines.

Generalized Benders Decomposition (GBD). This framework is commonly used in non-convex
and integer constrained optimization (Geoffrion, 1972), since it instead solves sub-problems while
often providing an optimality guarantee. However, the vanilla GBD algorithm is typically slow to
converge for large problems. As a result, the integer programming literature proposes improvement
techniques such as multiple different types of constraints to tighten the relaxations and heuristics
to direct the search (Rahmaniani et al., 2017). These improvements are often customized for the
specific optimization problem being solved. In our case, we propose enhanced optimality cuts in
Section 3.2 that leverage properties of the Wasserstein distance. Further, our pruning constraints are
simple techniques that can be used in GBD for arbitrary binary MILPs.

5 EXPERIMENTS

In this section, we first evaluate our algorithm on solving problem (4) by comparing against the stan-
dard heuristic from the scenario reduction literature (Heitsch & Römisch, 2003). We then evaluate
our algorithm on the following two active learning tasks: (i) low budget image classification where
we select images based on features obtained via self-supervised learning and (ii) domain adaptation
where we select images in an unlabeled target pool using features obtained via unsupervised domain
adaptation over a source data pool. For both tasks, we outperform or remain competitive with the
best performing baselines on all data sets and budget ranges.

In ablations, we first observe that our approach is effective with different embedding methods (e.g.,
self-supervised, domain adversarial, and classical active learning where features are obtained from
previous rounds); in each case, we yield improvements over baselines. Second, the acceleration
techniques proposed in Section 3.2 help optimize problem (4) faster and often improve active learn-
ing. Finally, from a wall-clock analysis, running GBD for more iterations yields better selections,
but even early stopping after 20 minutes is sufficient for high-quality solutions.

In this section, we only summarize the main results. We leave detailed analyses for all experiments
in Appendix E. Further in Appendix E.7, we include additional experiments including ablations and
qualitative evaluation of the selections and t-SNE visualizations of the feature space.

5.1 EVALUATION PROTOCOL AND BASELINES

We evaluate active learning in classification on three data sets: STL-10 (Coates et al., 2011), CIFAR-
10 (Krizhevsky, 2009), and SVHN (Netzer et al., 2011). Each data set contains 5, 000, 50, 000, and
73, 257 images, respectively, showcasing when the number of potential core sets ranges from small
to large. We initialize with no labeled points and first pre-train our model (i.e., feature encoder +
head) using the self-supervised method SimCLR (Chen et al., 2020a;b). We then employ active
learning over sequential rounds. In each round, we use feature vectors obtained from the encoder
output to select and label B new images and then train the classifier with supervised learning.

Our domain adaptation experiments use the Office-31 data set (Saenko et al., 2010), which contains
4, 652 images from three domains, Amazon (A), Web (W), and DSLR (D). We use active learning
to label points from an initially unlabeled target set to maximize accuracy over the target domain.
We follow the same sequential procedure as above except with a different feature encoding step,
f -DAL, which is an unsupervised domain adversarial learning method (Acuna et al., 2021).

6



Published as a conference paper at ICLR 2022

Table 1: Head-to-head comparison of our solver using Enhanced Optimality Cuts (EOC) versus k-
medoids on the objective function value of problem (4) at different budgets. Lower values are better.
For each data set, the best solution at each budget is bolded and underlined. All entries show means
over five runs. See Appendix E.2 for standard deviations.

B 10 20 40 60 80 100 120 140 160 180

STL-10 k-medoids 0.290 0.132 0.109 0.110 0.100 0.097 0.092 0.089 0.093 0.087
Wass. + EOC 0.281 0.134 0.122 0.116 0.101 0.096 0.092 0.087 0.090 0.085

CIFAR-10 k-medoids 0.258 0.142 0.118 0.120 0.109 0.104 0.095 0.089 0.099 0.096
Wass. + EOC 0.322 0.176 0.125 0.092 0.077 0.097 0.064 0.059 0.072 0.072

SVHN k-medoids 0.152 0.172 0.164 0.175 0.178 0.179 0.178 0.173 0.173 0.170
Wass. + EOC 0.153 0.093 0.093 0.100 0.098 0.091 0.085 0.080 0.087 0.089

We use a ResNet-18 (He et al., 2016) feature encoder for STL-10, ResNet-34 for CIFAR-10 and
SVHN, and Resnet-50 for Office-31. Our head is a two-layer MLP. The downstream classifier is
the pre-trained encoder (whose weights are frozen) with a new head in each round. Supervised
learning is performed with cross entropy loss. We compute Wasserstein distances using the Python
Optimal Transport library (Flamary et al., 2021) and solve W-RMP(Λ) with the COIN-OR/CBC
Solver (Forrest & Lougee-Heimer, 2005). We run our algorithm up to a time limit of 3 hours (and
increase to 6 hours for experiments on SVHN). Finally, we implement two variants of the GBD
algorithm without the pruning constraints (Wass. + EOC) and with them (Wass. + EOC + P). See
Appendix E for details on training and optimizer settings.

We compare against the following baselines: (i) Random Selection; (ii) Least Confidence (Settles,
2009; Shen et al., 2017; Gal et al., 2017); (iii) Maximum Entropy (Settles, 2012); (iv) k-Medoids
Cluster Centers (Heitsch & Römisch, 2003); (v) Greedy k-centers (Sener & Savarese, 2017); (vi)
Wasserstein Adversarial Active Learning (WAAL) (Shui et al., 2020). The second and third base-
lines are uncertainty-based approaches using the trained classifier in each round, the fourth and fifth
are representation-based approaches that leverage unsupervised pre-trained features, and the last
is a greedy strategy that approximates the Wasserstein distance with an adversarial regularizer in
training. All baselines use the same self-supervised pre-training and supervised learning steps as us.

5.2 MAIN RESULTS

Table 2: Wass. + EOC with limited
runtimes versus k-medoids on prob-
lem (4) for CIFAR-10. The best so-
lution for each budget is bolded and
underlined. See Appendix E.2 for
full results and Appendix E.6 for de-
tails on k-medoids runtime.
B k-medoids Wass. + EOC

≈ 3 min. 3 min. 3 hr.

120 0.095 0.082 0.064
140 0.089 0.073 0.059
160 0.099 0.084 0.072
180 0.096 0.075 0.072

Objective Function Value (see Appendix E.2 for more
results). k-Medoids is a well-known heuristic for prob-
lem (4) (Heitsch & Römisch, 2003; Rujeerapaiboon et al.,
2018). Table 1 compares objective function values obtained
by our algorithm versus k-medoids for STL-10, CIFAR-
10, and SVHN. We especially outperform k-medoids for
B ≥ 120 where the selection problem is large and harder to
solve. This gap also widens for larger data sets; for instance
on SVHN, we almost always achieve around 2× improve-
ment in objective function value. Table 2 further compares
k-medoids versus Wass. + Enhanced Optimality Cuts (EOC)
on CIFAR-10 where we force early termination. Even after
reducing our algorithm’s runtime to three minutes, we still
achieve high-quality solutions to the optimization problem.

Image Classification (Appendix E.3). Figure 2 summarizes our methods versus baselines on each
data set. For each data set and number of points, our approaches are either competitive with or
outperform the best baseline. Table 3 highlights the extremely low budget regime (B ≤ 40) where
every point must be carefully selected. For instance, if we can only label B = 10 points, poorly
selecting even one point wastes 10% of the budget. Here, our best methods typically outperform the
baselines on all three data sets often by large margins (e.g., ≥ 4.9% on STL-10 at B = 40, ≥ 9.1%
on CIFAR-10 at B = 20, and ≥ 5.2% on SVHN at B = 40).

There is no dominant baseline over all budget ranges and data sets: k-medoids is effective for
B ≤ 40 or smaller data sets (STL-10) but worse with bigger budgets and data sets (CIFAR-10,
SVHN), whereas Random and Greedy k-centers improve in the latter. Furthermore while SimCLR-
pretraining improves all baselines compared to classical active learning papers (Sener & Savarese,
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Figure 2: Low budget active learning on
CIFAR-10, SVHN and STL-10 using SimCLR
pre-trained features. See Table 3 for detailed re-
sults for B ≤ 40. See Appendix E.3 for full
results up to B ≤ 180. The solid lines are our
models and the dashed lines are baselines. All
plots show mean± standard error over five runs.
Our best models outperform baselines for most
budgets.

Table 3: Mean ± standard deviation of accuracy results in the extremely low budget regime.
Data set B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 30.2± 6.1 30.2± 6.1 30.2± 6.1 45.7± 3.5 37.4± 4.4 30.2± 6.1 43.1± 0.7 41.4± 3.2
STL-10 20 42.8± 3.6 37.8± 4.2 33.6± 4.1 50.2± 2.4 45.3± 4.6 45.8± 4.0 51.5± 2.1 49.5± 3.6

40 51.0± 3.4 46.6± 3.1 48.5± 3.4 56.5± 1.2 53.5± 2.9 53.6± 4.2 60.4± 1.5 58.7± 1.8

10 38.0± 9.7 38.0± 9.7 38.0± 9.7 45.6± 5.9 37.0± 3.2 38.0± 9.7 50.7± 3.0 46.8± 1.6
CIFAR-10 20 51.8± 8.5 37.7± 4.5 34.4± 3.1 53.7± 7.0 56.2± 5.9 40.9± 5.5 63.7± 4.8 65.3± 2.9

40 65.1± 3.1 47.8± 3.1 40.5± 6.3 65.3± 3.0 74.7± 4.3 50.1± 3.3 73.5± 1.6 72.7± 1.8

10 37.1± 4.9 37.1± 4.9 37.1± 4.9 35.7± 6.7 28.6± 4.6 37.1± 4.9 37.0± 2.8 38.0± 2.9
SVHN 20 47.2± 4.2 36.9± 4.1 41.4± 4.1 46.1± 4.6 32.6± 6.4 41.5± 2.3 48.3± 3.6 49.4± 4.0

40 57.5± 6.3 48.3± 4.3 51.0± 2.8 58.6± 6.3 54.2± 4.4 39.8± 3.6 63.2± 6.5 63.8± 6.1

Figure 3: Active learning with domain adaptation for D→A, W→A, and D→W on Office-31 using
f -DAL pre-trained features. The solid line is our best model and the dashed lines are baselines. All
plots show mean ± standard error over three runs. See Appendix E.4 for full results.

2017; Shui et al., 2020), representation methods (Greedy k-centers, k-medoids) generally outper-
form uncertainty methods (WAAL, Least Confidence, Maximum Entropy) in this setup because
classification is now easier, which means that it is more useful to obtain representative samples of
each class than uncertain examples. By optimizing for a diverse core set selection, we outperform
with the best baseline for nearly all budgets and data sets.

Domain Adaptation (Appendix E.4). Figure 3 previews accuracy on Office-31 for DSLR to
Amazon, Web to Amazon, and DSLR to Web; we leave the other source-target combinations in
Appendix E.4. As before, our approach either outperforms or is competitive with the best baseline
for all budgets and source-target pairs, the baselines are non-dominating over each other, and rep-
resentation methods such as ours benefit from strong features and model pre-training. Thus, our
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Table 4: Mean ± standard deviation of accuracy results in the classic active learning setup of Shui
et al. (2020). The best method is bolded and underlined.

B 1000 2000 3000 4000 5000 6000

CIFAR-10 WAAL 57.0± 1.2 65.9± 0.4 73.3± 0.6 76.7± 0.8 77.4± 0.7 81.0± 0.2
Wass. + EOC + P 58.1± 0.1 68.9± 0.7 73.2± 0.2 77.3± 0.3 79.1± 0.7 81.0± 0.4

B 500 1000 1500 2000 2500 3000

SVHN
WAAL 69.6± 0.9 76.9± 0.8 84.2± 0.7 86.2± 1.7 87.5± 1.0 88.9± 0.5
Wass. + EOC + P 69.3± 1.1 79.4± 1.7 84.7± 0.6 86.3± 0.6 88.3± 0.8 89.9± 0.5

Figure 4: (Left) Upper and lower
bounds in the first 50 iterations at
B = 10. (Right) Increasing the
wall-clock runtime of the GBD al-
gorithm. All plots show mean ±
standard error over three runs.

framework can be plugged into any classification task as long as there is a good feature space for
optimization; for example, here we use unsupervised domain adaptation (Acuna et al., 2021).

Representations from classical active learning (Appendix E.5). Table 4 ablates the effect of using
features from unsupervised pre-training by presenting accuracy on CIFAR-10 and SVHN under
classical active learning. We implement the exact setup of and compare against WAAL (Shui et al.,
2020), which was specifically designed for the classical setting. Although the optimization problem
is harder than in the low-budget setting due to having less useful features and solving for larger B,
our approach is still competitive and can outperform WAAL sometimes by up to 3%. This suggests
that our algorithm is also effective in classical active learning.

Acceleration Techniques. Figure 4 (left) plots the upper and lower bounds for the first 50 iterations
of the vanilla algorithm Wass., Wass. + EOC, and Wass. + EOC + P (i.e. including Pruning
constraints) for CIFAR-10 at B = 10. The lower bounds for Wass. are negative, meaning the
vanilla algorithm requires a large number of iterations to improve the bounds. Wass. + EOC and
Wass. + EOC + P both improve the lower bounds. At the same time, Wass. + EOC + P yields
better upper bounds early in the algorithm, but is restricted to a local minimum whereas Wass. +
EOC eventually improves over the heuristic. Thus, Wass. requires many iterations to converge,
necessitating our cuts and pruning techniques.

Wall-clock Analysis (Appendix E.6). Our algorithm is effective even without convergence. Fig-
ure 4 (right) plots accuracy on CIFAR-10 for Wass. + EOC where we terminate at different runtimes
and use the incumbent solution. Longer runtimes typically yield better results, especially forB ≤ 40
(i.e., a sub-optimal selection here wastes ≥ 2.5% of the budget). However at higher budgets, setting
the runtime as low as 20 minutes is sufficient to obtain high-quality selections, since the marginal
value of each new labeled point decreases as the labeled set increases. Note that the baselines typ-
ically require between several seconds to minutes to make selections, meaning our algorithm is
on average slower to generate selections. Nonetheless, the time cost of selection is still less than
model training time, and for some applications, less than human labeling time (Rajchl et al., 2016),
meaning a slightly longer selection time is generally acceptable if we can yield better selections.

6 DISCUSSION

When the budget for labeling images is limited, every point must be carefully selected. In this work,
we propose an integer optimization problem for selecting a core set of data to label. We prove that
our problem upper bounds the expected risk, and we develop a GBD algorithm for solving our prob-
lem. Under relevant features, formulating a MILP ensures that we may find globally optimal core set
selections, in contrast to most selection strategies that serve as efficient but ad-hoc heuristics. Our
numerical results show that our algorithm is an effective minimizer of the Wasserstein distance com-
pared to heuristics. Finally, we show over four image data sets that our optimization is competitive
with current baselines in active learning, especially when the labeling budget is low.
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APPENDIX

A PROOFS OF STATEMENTS

Proof of Theorem 1. Let Dy = [|Ω(xi) − Ω(x′i)|]
N,N
i=1,i′=1 be a distance matrix between the labels

of points in D. Let LK be the set of K-Lipschitz functions. Using the Kantorovich-Rubenstein
Duality (Villani, 2008), we bound the core set loss by a Wasserstein distance

1

N

N∑
i=1

`(xi,Ω(xi); w)− 1

B

B∑
j=1

`(xj ,Ω(xj); w)

≤ sup
˜̀∈LK

{
1

N

N∑
i=1

˜̀(xi,Ω(xi); w)− 1

B

N∑
i′=1

πi′ ˜̀(xi′ ,Ω(xi′); w)

}

=

max
λ,µ

1

N
µT1− 1

B
λTπ

s. t. λT ⊗ 1 + µ⊗ 1T ≤ K(Dx + Dy)

=


min
Γ≥0

K〈(Dx + εDy),Γ〉

s. t. Γ1 =
1

N
1

ΓT1 =
1

B
π.

The first line introduces probability masses and upper bounds the objective with a supremum over
all K-Lipschitz functions ˜̀∈ LK . The second line replaces ˜̀with vectors µ and λ that satisfy the
Lipschitz property. The final line takes the dual of the linear program.

Next note that |Ω(xi) − Ω(xi′)| ≤ C, meaning that for any feasible Γ to the Wasserstein problem,
we have the following inequality:

〈Dy,Γ〉 =

N∑
i=1

N∑
i′=1

|Ω(xi)− Ω(xi′)|Γi,i′

≤ C
N∑
i=1

N∑
i′=1

Γi,i′ = C.

The last equality follows from the constraints in the Wasserstein distance primal program implying
1TΓ1 = 1. We now rewrite the objective of the linear program to

K〈Dx + εDy,Γ〉 = K (〈Dx,Γ〉+ ε〈Dy,Γ〉)
≤ K〈Dx,Γ〉+KCε.

Since the second term does not depend on Γ, we remove it from the optimization objective and
complete the proof.

Proof of Corollary 1. The proof follows from Lemma 2 (see Appendix C), which states that if the
objectives and constraints of the optimization problem are (i) separable in the decision variables and
(ii) linear, then the algorithm will converge. Problem (4) satisfies the requirements of this lemma,
meaning that our algorithm terminates in finite iterations.

Proof of Proposition 1. Let (η∗,π∗) be the optimal solution to W-MP and let Γ∗ be the optimal
primal solution to W (C(π∗),D). To prove that each inequality is an optimality cut, we show that
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they are met by (η∗,π∗). We first prove the Lower Bound:

η∗ ≥ 〈Dx,Γ
∗〉+ λ∗T

(
1

B
π∗ − Γ∗T1

)
=

N∑
i=1

N∑
i′=1

Di,i′Γ
∗
i,i′

≥
N∑
i=1

min
i′∈{1,...,N}

{Di,i′ |Di,i′ > 0}
N∑
i′=1

Γ∗i,i′

=

N∑
i=1

min
i′∈{1,...,N}

{Di,i′ |Di,i′ > 0} 1

B
π∗i

The second line follows from expanding the trace and noting Γ∗T1 = π∗/B. The inequality follows
from taking the minimum over all Di,i′ and the last line follows from Γ∗T1 = π∗/B.

To prove the Triangle Inequality, note that the Wasserstein distance is a distance metric and then
satisfies a triangle inequality by definition. That is, for any π̂ ∈ P ,

W (C(π∗),D) +W (C(π̂),D) ≥W (C(π∗), C(π̂)). (9)

The right-hand-side of the inequality is a Wasserstein distance which can be lower bounded similar
to before:

W (C(π∗), C(π̂)) =



min
Γ≥0

N∑
i=1

N∑
i′=1

xi′∈C(π̂)

Di,i′Γi,i′

s. t. Γ1 =
1

B
π∗

ΓT1 =
1

B
π̂

≥



min
Γ≥0

N∑
i=1

min
i′∈{1,...,N}
xi′∈C(π̂)

{Di,i′ |Di,i′ > 0}
N∑
i′=1

Γi,i′

s. t. Γ1 =
1

B
π∗

ΓT1 =
1

B
π̂

=

N∑
i=1

min
i′∈{1,...,N}
xi′∈C(π̂)

{Di,i′ |Di,i′ > 0} 1

B
π∗i .

The key difference in this sequence from the previous is that we only consider indices i′ where
xi′ ∈ C(π̂). Finally, recall that η∗ ≥ W (C(π∗),D). Substituting these two inequalities and rear-
ranging (9) completes the proof.

Finally, to prove the Dual Inequality, note that

η∗ ≥W (C(π̂),D)−W (C(π̂),D) +W (C(π∗),D) (10)

We lower bound the second term by obtaining an upper bound on the Wasserstein distance:

W (C(π̂),D) =

N∑
i=1

N∑
i′=1

Di,i′ Γ̂i,i′

≤
N∑
i=1

max
i′∈{1,...,N}

{Di,i′}
N∑
i′=1

Γ̂i,i′

=

N∑
i=1

max
i′∈{1,...,N}

{Di,i′}
1

B
π̂i
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where the upper bound now follows from taking a maximum. Subtracting from both sides lower
bounds the second term in (10). Finally, we lower bound (C(π∗),D) by considering the Wasserstein
distance dual program

W (C(π∗),D) =

max
λ,µ

1

N
µT1− 1

B
λTπ∗

s. t. λT ⊗ 1 + µ⊗ 1T ≤ Dx

≥ 1

N
µ̂T1− 1

B
λ̂Tπ∗

Note that the optimal dual variables (λ̂, µ̂) forW (C(π̂),D) are feasible solutions for the Wasserstein
dual problem W (C(π∗),D) and thus, also a lower bound on the Wasserstein distance. Substituting
the corresponding objective value into (10) completes the proof.

B ON THE LIPSCHITZ CONTINUITY ASSUMPTION

Our main result in Theorem 1 states that the Wasserstein distance upper bounds the core set loss if
the training loss function `(x, y; w) is K-Lipschitz continuous over the data set space X × Y for
fixed model parameters w. Lipschitz continuity assumptions are commonplace in the development
of active learning theory (Sener & Savarese, 2017; Shui et al., 2020). We show below that our
assumption is relatively mild and can sometimes be satisfied in practice.

Our assumption builds from Sener & Savarese (2017) who require their loss function `(x, y; w) to be
Lipschitz continuous over the input features X only. They show that convolutional neural networks
trained using Mean-Squared Error (MSE) loss meet their assumption. Although we require the loss
function to be Lipschitz in both the input and output, we can extend the result of Sener & Savarese
(2017) to show that convolutional neural networks are Lipschitz in the input-output space as well.
We first state the Lemma of Sener & Savarese (2017) before proving our corollary.
Lemma 1 (Sener & Savarese (2017)). Consider the C-class classification problem over feature
X and one-hot-encoded label Ŷ := {e1, . . . , eC} spaces. Let F : X → Ŷ be a convolutional
neural network with nc convolutional-maxpool-ReLU layers and nf fully connected layers. Then,
there exists a constant α > 0 such that the MSE loss function `(x,y; w) := ‖F (x; w)− y‖2 is
(
√
C − 1αnc+nf /C)-Lipschitz continuous in x for fixed y and w.

While the lemma states that ‖F (x; w)− y‖2 is Lipschitz continuous, the proof further implies that
by composition, the neural network F (x; w) is also Lipschitz continuous with the same constant.
Corollary 2. Consider the metric space (X × Y, ‖x‖ + ε|y|) using features X and labels Y =
{1, . . . , C}. Let e(y) denote the one-hot encoding of y. The MSE loss function `(x, y; w) :=

‖F (x; w)− e(y)‖22 is Lipschitz continuous in (x, y) for fixed w.

Proof. The proof is a straightforward extension of Lemma 1. Consider two pairs (x, e(y)) and
(x′, e(y′)). We bound with the following steps:

|`(x, y; w)− `(x′, y′; w)| =
∣∣∣ ‖e(y)− F (x; w)‖2 − ‖e(y′)− F (x′; w)‖2

∣∣∣
≤ ‖e(y)− e(y′) + F (x′; w)− F (x; w)‖2
≤ ‖e(y)− e(y′)‖2 + ‖F (x′; w)− F (x; w)‖2

≤ |y − y′|+
√
C − 1

C
α(nc+nf ) ‖x− x′‖2

≤ max

(
1

ε
,

√
C − 1

C
α(nc+nf )

)
(ε|y − y′|+ ‖x− x′‖2)

The first two inequalities follow from applying the Reverse Triangle Inequality and then the Triangle
Inequality. The third inequality follows from Lemma 1 and |y − y′| ≥ ‖e(y)− e(y′)‖2. The final
inequality follows from taking the maximum of the coefficients.

Our result holds for MSE loss, specifically. In practice, we use the Cross-Entropy loss, which does
not satisfy this Lipschitz continuity assumption. Nonetheless, the empirical effectiveness of our
strategy highlights its usefulness.
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C BACKGROUND ON GENERALIZED BENDERS DECOMPOSITION

Generalized Benders Decomposition (GBD) is an iterative algorithm for solving non-convex con-
strained optimization problems (Geoffrion, 1972). We summarize the general steps of this algorithm
below and refer the reader to Rahmaniani et al. (2017) for a recent survey on this methodology.

Let x ∈ X ⊆ Rd1 and y ∈ Y ⊆ Rd2 be variables and consider the problem
min

x∈X ,y∈Y
f(x,y) s. t. g(x,y) = 0, (11)

where f(x,y) : Rd1 ×Rd2 → R and g(x,y) : Rd1 ×Rd2 → Rm are convex functions but X and Y
may be non-convex sets. This problem is equivalent to the following bi-level Master Problem (MP):

min
η,y∈Y

η s. t. η ≥ inf
x∈X

{
f(x,y) + λTg(x,y)

}
, ∀λ ∈ Rm

where η is a slack variable which when minimized, is equal to the optimal value of problem (11).
This MP can also be re-written with a single constraint by replacing the right-hand-side of the
inequality with the Lagrangian L(y) := supλ∈Rm infx∈X {f(x,y) + λTg(x,y)}.
Although MP contains an infinite number of constraints, we can instead solve a Relaxed Master
Problem (RMP):

min
η,y∈Y

η s. t. η ≥ inf
x∈X

{
f(x,y) + λTg(x,y)

}
, ∀λ ∈ Λ

where Λ ⊂ Rm consists of a finite set of dual variables. Let (η∗,x∗,y∗) be an optimal solution to
MP and let (η̂, ŷ) be an optimal solution to RMP. Then, η̂ ≤ η∗ presents a lower bound to MP (and
therefore problem (11)). Furthermore, L(ŷ) ≥ f(x∗,y∗) gives an upper bound. Finally, let x̂ be
the minimizer of L(ŷ). Then (x̂, ŷ) is a feasible solution achieving the above upper bound.

Carefully selecting Λ will yield tighter relaxations to MP (Floudas & Pardalos, 2013). GBD pro-
poses iteratively growing Λ and solving increasingly larger RMPs until the upper and lower bounds
converge. We initialize with a feasible ŷ ∈ Y and Λ = ∅. Then in each iteration t ∈ {0, 1, 2, . . . },
we:

1. Given a solution (η̂t, ŷt), solve the Lagrangian L(ŷt) to obtain primal-dual solutions (x̂t, λ̂t).

2. Update Λ← Λ ∪ {λ̂t} and solve RMP to obtain a solution (η̂t+1, ŷt+1).

The algorithm terminates when L(ŷt)− η̂t is below a tolerance threshold ε > 0.

For many problems, the above algorithm will converge in a finite number of iterations. This is
referred to as Property (P) in the literature (Geoffrion, 1972; Floudas & Pardalos, 2013).
Lemma 2 (Geoffrion (1972)). Consider the non-convex optimization problem (11). If f(x,y) =
f1(x) + f2(y) and g(x,y) = g1(x) + g2(y) are separable, linear functions, then for any ε > 0,
Generalized Benders Decomposition terminates in a finite number of iterations.

Even so, the number of iterations may be exceedingly long. As a result, the modern literature in
GBD explores new constraints and heuristics to quickly tighten the relaxation of RMP versus MP.
Often, these techniques are customized to the structure of the specific optimization problem (11)
being solved. In Section 3.2, we propose new custom constraints to improve the algorithm.

D DETAILS ON OUR GENERALIZED BENDERS DECOMPOSITION
ALGORITHM FOR MINIMIZING WASSERSTEIN DISTANCE

In this section, we provide further details on the GBD algorithm used to solve problem (4). To com-
plement the Enhanced Optimality Cuts in Section 3.2, we first discuss an additional set of pruning
constraints to improve our algorithm. We then detail the full steps of the algorithm and provide
Python-style pseudo-code.

D.1 PRUNING CONSTRAINTS

We first define the pruning constraints used to improve our GBD algorithm. These constraints com-
plement the Enhanced Optimality Cuts introduced in Section 3.2 as an additional set of constraints
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Algorithm 1 Generalized Benders Decomposition (GBD) for the Minimum Wasserstein Distance
1: Input: budget B; initial core set π̂; constraint sets Λ = ∅, P+ = {π̂}, P− = ∅; upper bound
B =∞; lower bound B = −∞; hyperparameters β+, β−; tolerance ε; maximum time limit T

2: repeat
3: Solve W (C(π̂),D): Γ̂← arg min Problem (1), (λ̂, µ̂)← arg max Problem (2).
4: Λ← Λ ∪ {(π̂, Γ̂, λ̂, µ̂)} // Update GBD constraint set
5: if W (C(π̂),D) ≤ B then
6: B ← min(B,W (C(π̂),D)) // Update upper bound on optimal value
7: P+ ← P+ ∪ {π̂} // Update Near Neighbourhood set
8: else
9: P− ← P− ∪ {π̂} // Update Prune Neighbourhood set

10: end if
11: Solve W-RMP(Λ):

(η̂, π̂)← arg min
η,π∈P

η

s. t. η ≥ 1

B
λ̂T

π − 1

B
Γ̂T1︸︷︷︸
=π̂

+W (C(π̂),D), ∀(π̂, Γ̂, λ̂, µ̂) ∈ Λ

Lower Bound, Eq. (6)

Triangle Ineq., Eq. (7), ∀(π̂, Γ̂, λ̂, µ̂) ∈ Λ

Dual Ineq., Eq. (8), ∀(π̂, Γ̂, λ̂, µ̂) ∈ Λ

πTπ̂ ≥ β+B, ∀π̂ ∈ P+

πTπ̂ ≤ β−B, ∀π̂ ∈ P−

12: B ← max(B, η̂) // Update lower bound on optimal value
13: until T hours or B −B < ε // Exit at timeout or convergence

used to accelerate the algorithm. However, these pruning constraints do not preserve the conver-
gence criteria of Corollary 1, since there is no guarantee that the optimal solution will satisfy them.
Instead, these constraints are heuristics that our numerical results empirically show to improve the
active learning strategy.

Let P+ and P− denote two sets of good and bad candidate core sets π̂, respectively, and let
β+, β− ∈ (0, 1) denote two hyperparameters. In each iteration, we obtain a candidate π̂ and a
corresponding upper bound W (C(π̂),D) to the W-MP. If this upper bound is a new incumbent (i.e.,
is lower than the previous upper bounds) then we update P+ ∪ {π̂} and limit the search to within
a Hamming ball of size β+B around π̂. Otherwise, we update P− ∪ {π̂} and remove a Hamming
ball of size β−B around π̂ from the search space. These two pruning techniques can be described
by the following linear constraints: ∀π̂ ∈ P+, πTπ̂ ≥ β+B and ∀π̂ ∈ P−, πTπ̂ ≤ β−B.

D.2 ALGORITHM STEPS AND PSEUDO-CODE

Algorithm 1 details the mathematical steps of the GBD algorithm and Figure 5 provides a Python-
style pseudocode snippet. We formulate our algorithm in a loop by iteratively solving our opti-
mization problem and adding new constraints. The main dependency of this optimization algorithm
lies in an off-the-shelf Wasserstein distance computation library (Flamary et al., 2021) and a MILP
solver (Forrest & Lougee-Heimer, 2005). Note that rather than running GBD for a fixed number of
iterations, Algorithm 1 performs iterations until a maximum time limit T or until the upper B and
lower bounds B converge under a tolerance ε. Furthermore in the implementation of the algorithm,
we may also select hyperparameters for the MILP solver being used to solve each instance of W-
RMP(Λ). For our experiments, we only tune the time limit and the minimum optimality gap. That
is, we set the solver for W-RMP(Λ) to timeout in 180 seconds or until the solution it finds is within
10% of optimality.
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# Input
features = ... # Array of feature vectors
N, B = ... # Total number of points and budget
prev_selected = ... # Array of indices selected in earlier rounds

# Calculate distance matrix
arcs = pairwise_distances(features)

# Define W-RMP MIP model and variables
prob = mip.Model()
pis = [prob.add_var(var_type=mip.BINARY) for i in range(N)]
eta = prob.add_var()

# Set objective and constraints
prob.objective = mip.minimize(eta)
prob += mip.xsum(pis) == B

# If we labeled a point in an earlier round, then it should be 1
for i in prev_selected:

prob += pis[i] == 1

# GBD loop
lb, ub, tol, max_time = -inf, inf, 1e-3, 10800
while lb < ub - tol and current_time() < max_time:

# Run MIP solver to populate pis, eta
prob.optimize()

# Compute Wasserstein distance and dual variables with POT
pis_x = [p.x for p in pis]
w_hat, info = ot.emd2(pis_x / N, ones(N) / N, arcs, log=True)
lambda_hat, mu_hat = info[’u’], info[’v’]

# Update bounds
lb, ub = max(lb, eta.x), min(ub, w_hat)

# Add Benders cut
prob += eta >= w_hat + mip.xsum(

lambda_hat[i] * (pis[i] - pis.x[i]) / B for i in range(N))

# Triangle inequality cut
min_Di = ... # Compute coefficients according to Proposition 1
prob += eta + w_hat >= mip.xsum(

min_Di[i] * pis[i] / B for i in range(N))

# Dual inequality cut
max_Di = ... # Compute coefficients according to Proposition 1
prob += eta >= w_hat + mip.xsum(

(lambda_hat[i] - max_Di[i]) * pis[i] / B - mu_hat[i] / N
for i in range(N))

# Pruning constraints
if ub == w_hat:

prob += B * beta_plus <= mip.xsum(
pis[i] * pis.x[i] for i in range(N))

else:
prob += B * beta_minus >= mip.xsum(

pis[i] * pis.x[i] for i in range(N))

# Output
return where(pis.x == 1) # All selected indices so far

Figure 5: Pseudocode of the GBD algorithm used to solve our optimization problem. The above
code uses the Python-MIP (mip) and Python Optimal Transport (ot) libraries.)
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D.3 REDUCING THE COMPUTATIONAL COMPLEXITY

The original problem (4) is a MILP with N2 + N variables and 2N + 1 constraints. This problem
is too large to solve on standard computers when N ≥ 50, 000, which is typical for deep learning
data sets. Instead in Algorithm 1, we repeatedly solve two smaller sub-problems: (i) W-RMP(Λ) to
obtain selections π̂ and (ii) the Wasserstein distance W (C(π̂),D) to obtain dual variables λ̂.

W-RMP(Λ) is a MILP with N + 1 variables and |Λ| + 1 constraints. Incorporating the Enhanced
Optimality Cuts and the Pruning Constraints leads to a MILP with N + 1 variables and 5|Λ| + 1
constraints. From our experiments, |Λ| is typically on the order of 100, meaning that this MILP
contains several orders of magnitude fewer variables and constraints than problem (4). We can find
an optimal or nearly optimal solution to this MILP in less than 180 seconds for most settings.

Before computing the discrete Wasserstein distance W (C(π̂),D), we first need the distance matrix
of features Dx. For Euclidean distance, computing this has complexity O(dN2) where d is the
feature dimension. Note that this is a one-time cost and that once we construct the distance matrix,
we can store it in memory for the remainder of the algorithm.

To compute W (C(π̂),D) in each iteration, we use an off-the-shelf solver, POT (Flamary et al.,
2021). POT applies the Network Simplex Algorithm (Tarjan, 1997), which is an algorithm for
solving network flow problems over graphs. Because W (C(π̂),D) is a minimum flow over a graph
with 2N nodes and N2 edges, our complexity is O(N3(logN)2).

When B is much smaller than N , we can often simply approximate λ̂. We first remove nodes
corresponding to π̂i = 0 to rewrite W (C(π̂),D) as an equivalent network flow with N + B nodes
and NB edges, resulting in complexity O(N2(logN)2). However, from (2), this problem returns
dual variables corresponding only to the B points for which π̂i = 1. We can find the remaining dual
variables via a c-transform (Peyré et al., 2019), which requires solving a minimization problem over
an N -length array for each remaining variable. We refer the reader to Peyré et al. (2019) for details.
This approach does not guarantee an optimal λ̂, but we find that it works well in practice.

Rather than exact algorithms, we could also approximateW (C(π̂),D) with Sinkhorn distances (Cu-
turi, 2013; Peyré et al., 2019). These can typically be computed faster than exact approaches and can
also be scaled to large N with further approximations (Altschuler et al., 2019). Moreover, Sinkhorn
distances can be slotted directly into the vanilla GBD algorithm by replacing the dual regularizer
λ̂ with the gradient of the Sinkhorn distance in the Benders constraints (Cuturi & Doucet, 2014;
Luise et al., 2018). However, they may not necessarily satisfy the EOC in Proposition 1 and thereby
prevent further accelerations.

E COMPLETE NUMERICAL RESULTS

This section expands the numerical results summarized in the main paper. Below, we summarize the
main points:

• Section E.1 details the hyperparameters that were used in our GBD algorithm and opti-
mization solver. We also describe model choices and training settings used in our image
classification and domain adaptation experiments.

• Section E.2 describes our experiments on optimizing problem (4). We first summarize the
related scenario reduction literature and highlight the k-Medoids Cluster Center algorithm
baseline. We then expand the numerical results from the main paper to show that for gener-
ating high-quality solutions to problem (4), our approach typically outperforms k-medoids
and sometimes by up to 2×. Furthermore, these improvements remain even when we limit
our algorithm to comparable runtimes with k-medoids.

• Section E.3 provides the full table of values for active learning experiments on the three
image classification data sets. In addition to the results in the main paper, this section
shows that our approach is consistently effective even up to budgets of B = 180.

• Section E.4 provides the full table of values for active learning with domain adaptation
experiments. We evaluate all six source-target combinations on the Office-31 data set to
show our approach either outperforms or competitive with the best baseline. To further
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compare against k-centers, we perform statistical t-tests in a head-to-head setting. Our
approach statistically outperforms k-centers for more budgets and data sets.

• Section E.5 details our ablation on classical active learning without self-supervised fea-
tures. We first describe the experiment setup and then expand on the results in the main
paper, showing that our algorithm is effective even without self-supervised features and in
higher budgets.

• Section E.6 provides the full table of selection runtimes. Most baselines require at most
a few minutes to select points. We further discuss the downstream effect of our algorithm
having longer runtimes in practice.

• Section E.7 highlights two additional results not discussed in the main paper. We first
ablate the value of customizing the base metric in the Wasserstein distance by showing that
Cosine distance yields significant improvements over Euclidean distance on the CIFAR-
10 data set. We then provide a qualitative analysis of our selections by plotting t-SNE
visualizations of the feature space as well as samples of images selected. In general, our
visualizations show that we can better cover the feature space than baselines.

E.1 METHODS

We first detail hyperparameters for the optimization algorithm, methods for the image classification
experiments, and methods for the domain adaptation experiments. All experiments are performed
on computers with a single NVIDIA V100 GPU card and 50 GB CPU memory. Our optimization
problem is solved on CPU.

Algorithm Settings. When formulating the Wasserstein distance problem, we use Cosine distance
(i.e., l2 normalize our features) as the base metric for the image classification experiments. Co-
sine distance is a better choice than Euclidean distance here because the features are obtained with
SimCLR, which involves maximizing a Cosine distance between different images; that is, the opti-
mization and feature generation use the same base metric. We include ablation tests in Appendix E.7
comparing Cosine versus Euclidean distance on CIFAR-10. We test both Cosine and Euclidean dis-
tance for the domain adaptation experiments. These experiments use features obtained via f -DAL,
which is not necessarily tied to Cosine distance.

We implement the optimization problem using the COIN-OR/CBC Solver (Forrest & Lougee-
Heimer, 2005). Since it is crucial to run as many iterations as possible to obtain better solutions, we
set the solver optimality gap tolerance to 10% and a time limit of 180 seconds to solve W-RMP(Λ)
in each iteration. We also warm-start our algorithm with the solution to the k-centers core set, i.e.,
π̂0 = π̂k-centers, for image classification and k-centers or k-medoids for domain adaptation. We
run Algorithm 1 with ε = 10−3 and T = 3 hours for STL-10, CIFAR-10, and Office-31, and
T = 6 hours for SVHN, which contains a larger data set. Finally for Wass. + EOC + P, we set
(β+, β−) = (0.6, 0.99). These are only optimization parameters and can be tuned by evaluating the
objective function value of the optimization problem.

Image Classification. Table 5 details the differences in setup for each of the three data sets used in
the image classification experiments. For each experiment, we use a ResNet feature encoder with a
two-layer MLP (Linear-BatchNorm-ReLU-Linear) head. The first linear layer has a 64-dimension
output in order to reduce the dimensions of the feature space. We use a 64-dimension second layer
in the SimCLR pre-training step and a 10-dimension second layer during supervised learning. The
choice of specific ResNet encoder was made based on the computational requirement of training on
a single GPU under the required batch sizes.

For each experiment, we use the default test sets to evaluate our strategies. In the SimCLR rep-
resentation learning step, we train for 800 epochs with an initial learning rate of 0.1 decaying to
0.001. We implement SimCLR following the steps of Chen et al. (2020c) with the following ran-
dom data augmentations in their default PyTorch settings: resized crops, horizontal flips, color jitter,
and grayscale. For SVHN, we omit the horizontal flips and increase the scale of the crops to (0.8, 1),
because this yielded better representations in our experiments. In the supervised learning step, we
train with cross entropy loss, random crops and horizontal flips, and a batch size of 128 with a
constant learning rate of 0.002 for 1600 epochs.

20



Published as a conference paper at ICLR 2022

Table 5: Summary of our setup in the image classification experiments. ∗In each of the first two
iterations of each data set, we use only half of the labeling budget.

Dataset Unlabled pool Budget per Model SimCLR Algorithm
iteration∗ batch size runtime

STL10 5, 000 20 ResNet-18 128 3 hrs.
CIFAR10 50, 000 20 ResNet-34 512 3 hrs.
SVHN 73, 257 20 ResNet-34 512 6 hrs.

Table 6: Summary of our setup in the domain adaptation experiments. ∗For each experiment, we
randomly split the target set to 70% training and 30% testing sets.

Task Unlabled pool∗ Budget per Initial Base
iteration solution metric

DSLR to Amazon 1, 972 50 k-centers Euclidean
Web to Amazon 1, 972 50 k-medoids Euclidean
Web to DSLR 349 10 k-centers Cosine
Amazon to DSLR 349 10 k-medoids Euclidean
DSLR to Web 557 10 k-medoids Cosine
Amazon to Web 557 10 k-centers Cosine

Domain Adaptation. Table 6 details the differences in setup for each of the tasks in the domain
adaptation experiment. We use a ResNet-50 + one-layer bottleneck (Linear-BatchNorm-ReLU-
Dropout) encoder and a two-layer classification head (Linear-ReLU-Dropout-Linear). The ResNet-
50 is initialized with Imagenet-pretrained weights. The bottleneck sets the feature space dimension
to 1, 000. The second layer of the classification head reduces the dimension to 31 for the number of
classes.

For each experiment, we randomly partition the target data set into 70% for training and 30% for
testing. We perform the representation learning step using the full labeled source data set and the
unlabeled target training data set. We then perform the supervised learning step using only labeled
target training data. The representation learning is performed via the unsupervised domain adapta-
tion algorithm, f -DAL (Acuna et al., 2021). We train for 20 epochs with 1, 000 iterations per epoch.
We use a learning rate of 0.004 decaying stepwise and a batch size of 32, which are the default
parameters of Acuna et al. (2021). In the supervised learning step, we train with cross entropy loss
with the same learning rate and batch size.

E.2 OBJECTIVE FUNCTION VALUE

We evaluate GBD on minimizing the Wasserstein distance by comparing it to the k-Medoids Cluster
Center algorithm from scenario reduction for stochastic optimization. We first briefly summarize the
scenario reduction problem. We then expand the numerical results in the main paper, showing that
for large problem sizes, our algorithm yields better minimizers of the Wasserstein distance.

Background. Consider a general stochastic optimization problem

min
w∈W

Ex∼P[f(x,w)]

where f(x,w) is an objective function, w ∈ W is the variable to optimize and x ∼ P is a random
variable, here referred to as a scenario. Given a data set D := {x̂i}Ni=1 of N scenarios, we can
solve the Sample Average Approximation (SAA), which corresponds to minimizing the empirical
expected value. Machine learning is a special case of the above problem where f(x,w) corresponds
to the loss function, w to neural network weights, and x to training data.

SAA may grow difficult to solve with large data sets, especially if W is non-convex or contains
integral constraints. Here, scenario reduction is the problem of formulating an approximation of the
SAA by using only a subset C := {x̂j}Bj=1 ⊂ D ofB scenarios. Heitsch & Römisch (2003) consider
constructing this subset by minimizing the Wasserstein distance between C and D, i.e., by solving
problem (4). When N is large, Heitsch & Römisch (2003) propose the k-Medoids Cluster Center
algorithm as a heuristic. Although the algorithm is computationally easy to implement, making it
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Table 7: Head-to-head comparison of our solver versus k-medoids on objective function value of
problem (4) at different budgets. For each data set, the best solution for each budget is bolded and
underlined. All entries show mean ± standard deviation over five runs.
B STL-10 CIFAR-10 SVHN

k-medoids Wass. + EOC k-medoids Wass. + EOC k-medoids Wass. + EOC

10 0.290± 0.028 0.281± 0.005 0.258± 0.013 0.322± 0.012 0.152± 0.009 0.153± 0.007
20 0.132± 0.015 0.134± 0.007 0.142± 0.013 0.176± 0.010 0.172± 0.010 0.093± 0.010
40 0.109± 0.005 0.122± 0.007 0.118± 0.005 0.125± 0.006 0.164± 0.005 0.093± 0.008
60 0.110± 0.006 0.116± 0.003 0.120± 0.005 0.092± 0.006 0.175± 0.005 0.100± 0.006
80 0.100± 0.007 0.101± 0.002 0.109± 0.003 0.077± 0.004 0.178± 0.003 0.098± 0.007
100 0.097± 0.003 0.096± 0.002 0.104± 0.006 0.097± 0.003 0.179± 0.006 0.091± 0.006
120 0.092± 0.004 0.092± 0.004 0.095± 0.007 0.064± 0.006 0.178± 0.004 0.085± 0.004
140 0.089± 0.004 0.087± 0.004 0.089± 0.007 0.059± 0.002 0.173± 0.004 0.080± 0.004
160 0.093± 0.005 0.090± 0.004 0.099± 0.005 0.072± 0.005 0.173± 0.005 0.087± 0.004
180 0.087± 0.005 0.085± 0.002 0.096± 0.004 0.072± 0.003 0.170± 0.005 0.089± 0.004

Table 8: Head-to-head comparison of Wass. + EOC with different runtimes versus k-medoids on
objective function value of problem (4) for the CIFAR-10 data set at different budgets. The best
solution for each budget is bolded and underlined and the second best solution is underlined.

B k-medoids Wass. + EOC
3 min. 6 min. 20 min. 1 hr. 3 hr.

10 0.258± 0.013 0.352± 0.010 0.328± 0.010 0.337± 0.008 0.326± 0.007 0.322± 0.012
20 0.142± 0.013 0.198± 0.012 0.184± 0.003 0.178± 0.008 0.178± 0.008 0.176± 0.010
40 0.118± 0.005 0.159± 0.010 0.131± 0.008 0.126± 0.003 0.122± 0.007 0.125± 0.006
60 0.120± 0.005 0.118± 0.016 0.103± 0.006 0.102± 0.010 0.089± 0.007 0.092± 0.006
80 0.109± 0.003 0.102± 0.020 0.091± 0.008 0.084± 0.008 0.078± 0.002 0.077± 0.004
100 0.104± 0.006 0.088± 0.009 0.077± 0.003 0.076± 0.007 0.071± 0.002 0.097± 0.003
120 0.095± 0.007 0.082± 0.006 0.072± 0.006 0.068± 0.004 0.065± 0.003 0.064± 0.006
140 0.089± 0.007 0.073± 0.004 0.068± 0.001 0.064± 0.004 0.061± 0.004 0.059± 0.002
160 0.099± 0.005 0.084± 0.005 0.079± 0.002 0.076± 0.003 0.075± 0.004 0.072± 0.005
180 0.096± 0.004 0.080± 0.003 0.075± 0.005 0.072± 0.002 0.072± 0.002 0.072± 0.003

desirable in practice, recently Rujeerapaiboon et al. (2018) show that k-medoids can potentially be
a poor approximation in the worst case, and also introduce a new approximation algorithm.

Finally, we note that the scenario reduction literature rarely considers problem sizes of the scale in
our active learning tasks, with numerical experiments in most cases ranging up to 103. In contrast,
the SVHN data set requires N ≤ 75, 000.

Comparing the Minimum Wasserstein Distance. Our GBD algorithm directly solves the integer
optimization problem (4) rather than a heuristic or approximation algorithm. We compare against
k-medoids on minimizing the Wasserstein distance for the three image classification data sets.

Table 7 presents the complete results of our method versus k-medoids for each data set. We run
the solver for three hours for STL-10 and CIFAR-10 and for six hours for SVHN. Although the
algorithm has not yet converged, for each data set, our approach is competitive for all settings (except
for B ≤ 20 at CIFAR-10), and especially outperforms k-medoids for B ≥ 120. Finally, note that
for SVHN, we reduce the objective function value by over half compared to k-medoids.

To further ablate our method, we also compare different runtimes of CIFAR-10 with k-medoids in
Table 8. Even down to three minutes, we often get a better minimizer than k-medoids. Note from
Table 12 that k-medoids requires on average several minutes to compute a selection. This suggests
that our algorithm may have more general use cases outside of active learning, such as an alternative
to k-medoids in scenario reduction.

E.3 IMAGE CLASSIFICATION

Table 9 lists the means ± standard deviations of accuracies shown in Figure 2. Our models consis-
tently outperform the baselines for both STL-10 and SVHN, with the exception of the first round
in STL-10. On CIFAR-10, our models outperform in the first two rounds, but afterwards remain
competitive with k-centers (i.e., less than 2% difference in accuracy). On SVHN, our models sim-
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Table 9: Numerical values of main results in Figure 2. All entries show mean ± standard deviation
over five runs. The best model for each budget range is bolded and underlined and the second best
model is underlined.

STL-10

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 30.2± 6.1 30.2± 6.1 30.2± 6.1 45.7± 3.5 37.4± 4.4 30.2± 6.1 43.1± 0.7 41.4± 3.2
20 42.8± 3.6 37.8± 4.2 33.6± 4.1 50.2± 2.4 45.3± 4.6 45.8± 4.0 51.5± 2.1 49.5± 3.6
40 51.0± 3.4 46.6± 3.1 48.5± 3.4 56.5± 1.2 53.5± 2.9 53.6± 4.2 60.4± 1.5 58.7± 1.8
60 59.1± 1.6 55.0± 4.1 57.2± 1.6 59.5± 1.8 60.0± 1.6 59.7± 3.0 62.9± 4.3 63.8± 1.6
80 62.7± 1.3 59.9± 3.1 60.0± 2.2 62.2± 2.3 64.1± 1.5 60.8± 1.7 67.9± 1.1 66.5± 1.2
100 65.4± 1.1 63.4± 3.0 63.1± 2.2 64.3± 1.9 66.2± 1.7 62.4± 1.8 69.3± 0.4 70.8± 1.4
120 67.9± 1.1 66.8± 1.8 66.6± 1.3 66.3± 1.4 68.7± 2.0 64.3± 1.5 71.0± 1.4 73.3± 0.6
140 70.8± 0.6 69.1± 2.2 70.0± 0.6 69.2± 1.0 71.9± 1.4 66.7± 1.8 73.0± 1.3 73.4± 0.5
160 71.1± 0.5 69.4± 2.5 70.4± 0.8 68.5± 1.7 72.0± 1.5 67.7± 2.0 73.4± 1.5 73.6± 0.5
180 71.3± 1.1 71.0± 1.3 71.2± 0.6 69.6± 1.0 71.1± 0 68.6± 1.7 73.7± 1.1 73.7± 0.9

CIFAR-10

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 38.0± 9.7 38.0± 9.7 38.0± 9.7 45.6± 5.9 37.0± 3.2 38.0± 9.7 50.7± 3.0 46.8± 1.6
20 51.8± 8.5 37.7± 4.5 34.4± 3.1 53.7± 7.0 56.2± 5.9 40.9± 5.5 63.7± 4.8 65.3± 2.9
40 65.1± 3.1 47.8± 3.1 40.5± 6.3 65.3± 3.0 74.7± 4.3 50.1± 3.3 73.5± 1.6 72.7± 1.8
60 70.1± 3.6 55.3± 5.8 50.0± 7.9 69.4± 3.2 78.9± 0.9 59.3± 5.5 77.6± 1.3 78.4± 1.0
80 74.5± 3.9 60.9± 5.6 58.6± 7.2 71.0± 1.5 81.0± 1.2 62.7± 5.8 80.3± 0.9 79.5± 1.2
100 74.6± 3.6 67.8± 2.8 62.8± 6.6 72.6± 0.9 81.8± 0.6 64.4± 5.8 81.2± 1.4 81.5± 0.7
120 78.2± 2.4 71.0± 2.2 66.4± 4.4 74.0± 0.8 82.3± 0.7 65.7± 3.8 82.4± 0.6 82.1± 0.5
140 80.1± 1.9 74.2± 3.1 71.4± 4.6 74.9± 0.4 83.0± 0.6 69.0± 1.9 82.9± 1.0 83.2± 0.6
160 81.0± 1.9 75.9± 3.6 74.0± 3.7 75.9± 0.8 83.0± 0.7 69.0± 1.4 83.3± 0.7 83.2± 0.9
180 82.0± 1.3 74.9± 2.8 74.9± 3.5 76.8± 1.5 83.7± 0.6 68.9± 1.5 83.4± 0.6 83.4± 1.1

SVHN

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 37.1± 4.9 37.1± 4.9 37.1± 4.9 35.7± 6.7 28.6± 4.6 37.1± 4.9 37.0± 2.8 38.0± 2.9
20 47.2± 4.2 36.9± 4.1 41.4± 4.1 46.1± 4.6 32.6± 6.4 41.5± 2.3 48.3± 3.6 49.4± 4.0
40 57.5± 6.3 48.3± 4.3 51.0± 2.8 58.6± 6.3 54.2± 4.4 39.8± 3.6 63.2± 6.5 63.8± 6.1
60 63.8± 5.3 50.7± 5.9 56.1± 2.8 65.4± 6.0 68.9± 4.9 47.8± 4.1 69.4± 4.6 72.1± 6.6
80 64.7± 3.7 55.6± 2.9 59.7± 3.3 70.7± 3.0 78.5± 2.8 51.4± 4.1 73.1± 2.5 77.4± 3.9
100 68.1± 2.8 58.5± 3.3 64.3± 2.0 73.6± 2.6 82.8± 2.2 52.3± 2.9 77.6± 3.1 80.5± 3.1
120 72.1± 1.8 59.9± 3.0 67.2± 1.4 77.5± 2.5 84.3± 1.7 54.9± 2.8 81.6± 3.5 82.9± 3.3
140 78.8± 2.1 65.9± 4.4 73.4± 1.1 82.0± 3.0 87.3± 1.6 59.5± 3.1 85.9± 3.2 87.6± 2.6
160 80.4± 1.6 68.8± 4.0 73.6± 1.5 82.2± 1.9 87.6± 1.9 58.2± 1.9 86.9± 2.6 87.6± 1.8
180 81.2± 1.1 69.9± 2.5 74.2± 1.7 83.3± 2.2 87.3± 1.4 62.1± 4.0 86.7± 2.6 88.6± 1.2

ilarly outperform in the first four rounds at which point k-centers catches up and the two remain
competitive for the rest of training. Note that as the budget increases to B = 180 points, all of the
methods converge to a final accuracy.

E.4 DOMAIN ADAPTATION

Table 10 lists the means ± standard deviations of accuracies for all of the different source-target
combinations of the Office-31 data set. We summarize the results below.

Amazon as target data set. For both DSLR to Amazon and Web to Amazon, our framework
dominates all baselines over the entire budget range. These two domain combinations are the two
hardest problems, as the unlabeled target data set, Amazon, is much larger than the source data sets
and the test accuracy on Amazon is always lower than 80%.

DSLR and Web as target data set. For the other source-target combinations that have a smaller
and “easier” target domain, our framework still outperforms at the extremely low budget regime
B ≤ 20 and then remains competitive with k-centers at the higher budgets. It is worth noting that
when DSLR or Web are the target domains, the top test accuracies are near 100%, meaning there is
little room for variation.

To further compare our framework against k-centers on domain adaptation, Table 11 shows the
head-to-head accuracies of our model versus the baseline with t-tests to compare for statistical sig-
nificance. The results here further validate our analysis on Table 10, as we are statistically better
than k-centers for 15 out of a total of 42 tests and k-centers statistically outperforms us for only six
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Table 10: Numerical values of results on domain adaptation. All entries show mean ± standard
deviation over five runs. The best model for each budget range is bolded and underlined and the
second best model is underlined.

DSLR to Amazon

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

50 45.9± 3.2 17.5± 2.0 17.1± 2.8 61.9± 2.8 59.7± 3.0 46.6± 2.1 62.5± 2.4 60.0± 2.8
100 61.8± 1.9 39.0± 2.3 36.2± 1.7 66.9± 2.4 65.1± 2.2 54.6± 4.2 68.6± 1.8 67.3± 2.8
150 68.1± 0.2 52.9± 2.0 46.9± 3.6 68.8± 0.8 68.0± 1.5 62.0± 1.9 71.4± 1.0 71.3± 1.1
200 70.7± 0.8 60.3± 2.0 55.0± 2.6 70.2± 0.9 70.3± 1.5 66.4± 2.8 72.5± 1.1 73.8± 0.9
250 71.2± 1.0 64.7± 1.2 62.1± 4.2 71.9± 1.5 71.4± 1.7 69.5± 2.1 73.4± 0.9 74.7± 1.1
300 73.2± 0.6 69.0± 1.3 67.4± 2.8 72.6± 1.0 72.5± 1.5 69.8± 1.4 73.9± 1.0 75.5± 1.3
350 73.8± 1.1 72.6± 1.4 70.4± 3.7 73.2± 1.2 73.1± 1.5 70.8± 0.8 74.7± 0.8 77.1± 1.4

Web to Amazon

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

50 50.4± 4.0 19.2± 6.7 23.4± 6.7 64.7± 2.1 61.9± 2.1 50.4± 3.3 63.1± 3.3 65.9± 2.3
100 61.2± 3.0 40.3± 2.1 37.5± 4.7 68.3± 1.5 67.7± 2.9 59.8± 2.4 67.8± 2.4 69.9± 1.7
150 68.4± 2.6 50.6± 3.2 48.5± 6.5 70.4± 1.4 69.6± 2.0 65.5± 1.3 71.9± 1.3 72.8± 1.3
200 70.9± 2.0 58.4± 4.4 58.4± 3.3 71.9± 0.7 71.1± 2.1 69.5± 2.0 73.8± 2.0 74.5± 1.2
250 72.9± 1.7 66.9± 3.4 64.5± 3.5 72.7± 0.9 72.7± 1.6 70.2± 1.8 74.3± 1.8 75.7± 1.5
300 74.6± 1.6 69.3± 4.0 68.4± 3.7 73.6± 1.2 73.9± 1.4 72.9± 1.8 75.7± 1.8 76.0± 1.7
350 75.3± 1.8 73.1± 2.1 72.3± 2.6 74.3± 1.3 74.7± 0.8 73.7± 1.8 76.4± 1.8 77.0± 1.4

Web to DSLR

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 31.3± 5.2 17.8± 4.3 16.4± 5.4 33.0± 3.3 26.7± 0.9 31.3± 5.0 36.4± 4.0 30.4± 1.5
20 49.8± 5.2 31.5± 3.8 29.8± 3.2 41.4± 6.8 60.9± 2.3 42.6± 5.6 67.3± 1.0 67.7± 3.9
30 64.3± 3.8 45.0± 5.2 43.1± 5.0 48.3± 4.3 96.8± 1.2 60.1± 6.8 88.4± 2.2 88.3± 1.4
40 77.4± 2.2 58.8± 7.1 55.4± 8.3 54.5± 1.9 99.7± 0.3 69.4± 5.5 95.0± 0.8 96.7± 2.0
50 81.5± 2.7 71.0± 5.1 67.0± 8.6 61.8± 3.3 99.6± 0.5 86.0± 6.2 96.9± 0.6 99.0± 1.7
60 85.4± 4.7 81.4± 2.5 75.5± 7.3 66.2± 3.4 100± 0 96.9± 1.9 97.7± 1.9 99.0± 1.7
70 90.0± 3.4 91.5± 2.6 85.9± 4.9 72.6± 3.8 100± 0 99.9± 0.3 97.6± 2.0 100± 0

Amazon to DSLR

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 28.6± 5.5 17.5± 4.9 16.5± 0.9 30.7± 4.5 29.4± 4.0 29.4± 5.3 29.1± 3.7 31.1± 5.9
20 45.4± 4.8 34.4± 8.2 28.2± 5.4 39.7± 2.6 54.8± 4.3 42.2± 6.1 52.6± 5.1 56.8± 4.9
30 57.6± 2.5 48.0± 7.2 44.8± 6.1 48.2± 5.6 82.0± 4.1 56.5± 4.8 69.3± 3.2 76.2± 4.1
40 69.8± 2.5 58.8± 6.9 55.4± 4.8 55.5± 7.2 87.4± 3.2 70.0± 3.6 81.6± 1.8 81.9± 2.8
50 71.7± 5.1 70.6± 4.0 65.0± 6.8 58.5± 8.0 89.8± 1.7 78.6± 3.7 87.1± 3.2 87.0± 3.2
60 77.7± 4.0 76.6± 3.9 72.6± 5.9 62.0± 7.1 90.6± 2.7 83.6± 3.3 88.4± 1.7 89.1± 3.8
70 80.8± 3.1 83.4± 2.7 77.7± 6.0 64.8± 7.2 92.2± 1.4 87.3± 2.7 90.3± 1.3 90.3± 3.0

DSLR to Web

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 28.5± 2.1 23.3± 3.5 22.2± 3.2 32.8± 2.5 30.2± 2.8 28.6± 2.0 32.4± 2.6 35.9± 2.4
20 46.2± 2.3 32.7± 5.8 30.2± 4.0 47.8± 8.0 58.1± 2.9 45.6± 6.7 62.1± 5.4 62.7± 1.3
30 58.0± 5.7 41.2± 4.5 35.8± 5.5 52.6± 7.1 93.6± 1.3 56.4± 3.8 84.8± 4.9 86.6± 2.8
40 73.2± 6.6 51.5± 4.5 44.9± 5.3 57.0± 5.7 97.2± 0.8 71.1± 2.7 93.9± 2.4 95.6± 1.0
50 78.1± 5.1 61.3± 3.8 53.7± 4.2 59.6± 7.0 98.0± 0.9 80.2± 3.4 96.6± 1.2 96.4± 1.5
60 82.3± 2.0 69.5± 6.8 62.5± 7.1 61.6± 6.8 98.2± 1.6 87.7± 4.4 97.8± 0.8 97.5± 0.9
70 83.5± 1.5 75.5± 6.7 71.8± 5.6 65.8± 6.7 98.6± 1.1 93.8± 3.2 99.2± 0 97.8± 1.1

Amazon to Web

B Random Confidence Entropy k-medoids k-centers WAAL Wass. + EOC Wass. + EOC + P

10 26.4± 3.5 14.9± 3.2 17.5± 3.7 31.5± 4.0 25.0± 2.8 26.6± 3.1 32.2± 2.7 31.7± 2.7
20 41.7± 1.3 31.0± 6.3 28.0± 6.5 42.2± 1.8 53.6± 3.9 35.6± 3.1 57.6± 5.7 57.9± 4.3
30 51.9± 3.5 43.2± 7.3 40.9± 9.3 48.4± 4.3 82.7± 2.8 49.8± 4.0 74.1± 3.9 78.6± 6.1
40 66.5± 5.7 53.5± 7.4 51.8± 8.9 53.1± 5.8 87.7± 3.6 59.7± 4.7 80.2± 4.2 82.6± 3.2
50 71.7± 3.8 64.2± 5.7 60.7± 7.3 58.0± 7.0 89.2± 3.1 74.3± 4.0 84.6± 1.6 84.5± 3.4
60 75.2± 1.2 73.4± 3.5 68.9± 7.9 61.8± 8.0 89.7± 2.6 81.4± 5.3 86.9± 2.0 84.5± 2.4
70 76.5± 1.0 81.1± 1.9 77.8± 4.2 63.2± 5.8 90.4± 3.1 85.9± 4.5 88.5± 2.3 86.4± 2.5

tests. More specifically, we outperform k-centers on five out of the seven budgets for both DSLR to
Amazon and Web to Amazon, which is the hardest domain to learn, especially since the source data
sets are much smaller than the target. Note that the remaining source-target combinations are easy
problems that nominally yield high accuracies with unsupervised domain adaptation, meaning that
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Table 11: Head-to-head comparison of Wass. + EOC + P versus k-centers on domain adaptation
with statistical t-tests to compare. The best model for each budget range is bolded and underlined.
Tests where Wass. + EOC + P statistically outperforms k-centers are marked in green and tests
where k-centers statistically outperforms Wass. + EOC + P are marked in red.

DSLR to Amazon

B 50 100 150 200 250 300 350

k-centers 59.7± 3.0 65.1± 2.2 68.0± 1.5 70.3± 1.5 71.4± 1.7 72.5± 1.5 73.1± 1.5
Wass. + EOC + P 60.0± 2.8 67.3± 2.8 71.3± 1.1 73.8± 0.9 74.7± 1.1 75.5± 1.3 77.1± 1.4

p-value < 0.05 ! ! ! ! !

Web to Amazon

B 50 100 150 200 250 300 350

k-centers 61.9± 2.1 67.7± 2.9 69.6± 2.0 71.1± 2.1 72.7± 1.6 73.9± 1.4 74.7± 0.8
Wass. + EOC + P 65.9± 2.3 69.9± 1.7 72.8± 1.3 74.5± 1.2 75.7± 1.5 76.0± 1.7 77.0± 1.4

p-value < 0.05 ! ! ! ! !

Web to DSLR

B 10 20 30 40 50 60 70

k-centers 26.7± 0.9 60.9± 2.3 96.8± 1.2 99.7± 0.3 99.6± 0.5 100± 0 100± 0
Wass. + EOC + P 30.4± 1.5 67.7± 3.9 88.3± 1.4 96.7± 2.0 99.0± 1.7 99.0± 1.7 100± 0

p-value < 0.05 ! ! % %

Amazon to DSLR

B 10 20 30 40 50 60 70

k-centers 29.4± 4.0 54.8± 4.3 82.0± 4.1 87.4± 3.2 89.8± 1.7 90.6± 2.7 92.2± 1.4
Wass. + EOC + P 31.1± 5.9 56.8± 4.9 76.2± 4.1 81.9± 2.8 87.0± 3.2 89.1± 3.8 90.3± 3.0

p-value < 0.05 %

DSLR to Web

B 10 20 30 40 50 60 70

k-centers 30.2± 2.8 58.1± 2.9 93.6± 1.3 97.2± 0.8 98.0± 0.9 98.2± 1.6 98.6± 1.1
Wass. + EOC + P 35.9± 2.4 62.7± 1.3 86.6± 2.8 95.6± 1.0 96.4± 1.5 97.5± 0.9 97.8± 1.1

p-value < 0.05 ! ! % %

Amazon to Web

B 10 20 30 40 50 60 70

k-centers 25.0± 2.8 53.6± 3.9 82.7± 2.8 87.7± 3.6 89.2± 3.1 89.7± 2.6 90.4± 3.1
Wass. + EOC + P 31.7± 2.7 57.9± 4.3 78.6± 6.1 82.6± 3.2 84.5± 3.4 84.5± 2.4 87.4± 2.5

p-value < 0.05 ! %

the marginal value of labeling points is much less for these tasks. For Web to DSLR and DSLR to
Web, we are statistically better at smaller budgets whereas k-centers is better for medium budgets.

E.5 CLASSICAL ACTIVE LEARNING

Here, we ablate the effect of feature generation by removing unsupervised pre-training and con-
sidering classical batch-mode active learning (Sener & Savarese, 2017; Sinha et al., 2019; Shui
et al., 2020). Our baseline, WAAL, is an alternative active learning strategy that also minimizes the
Wasserstein distance but rather by using an adversarial model to estimate the dual distance (Shui
et al., 2020). WAAL is designed specifically for classical active learning where self-supervised
features are not available. In this experiment, we follow their exact setup to demonstrate (i) that
optimization is effective over a greedy approach such as WAAL even in the high-budget setting, and
(ii) that optimization is still effective when given weaker features via supervised learning as opposed
to powerful self-supervised features.

Methods. We initialize our labeled data set with a small randomly selected subset. Then in each
round, we first train the classifier using supervised learning on the currently labeled pool and then
use the final layer of the trained classifier to obtain feature embeddings. These embeddings are then
used to solve our optimization problem and select the next B points to label. We use the available
code of Shui et al. (2020) to implement WAAL without changing any of their parameters. We use
their recommended model, training, and algorithm hyper-parameter settings.
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Table 12: Runtime in minutes:seconds for all of the baselines on CIFAR-10. Times are averaged
over five runs.

B Random Confidence Entropy k-medoids k-centers WAAL

10 0.03 0.03 0.03 7 : 56.81 0.09 0.03
20 0.03 0.02 0.01 15 : 22.28 0.15 11.43
40 0.02 0.01 0.01 7 : 25.69 1.33 12.18
60 0.04 0.02 0.02 2 : 18.51 0.34 11.93
80 0.03 0.02 0.02 2 : 18.37 1.75 11.97
100 0.03 0.02 0.02 2 : 21.84 0.54 12.25
120 0.03 0.02 0.01 2 : 17.18 1.31 11.69
140 0.03 0.02 0.02 2 : 20.91 1.19 11.73
160 0.03 0.02 0.01 2 : 18.31 3.50 11.59
180 0.03 0.03 0.02 2 : 13.74 0.74 11.51

In order to adapt our optimization problem to the high-budget setting, we make one modification
to our algorithm. Rather than solving for the entire labeling budget in one problem, we instead
randomly partition the data set into two subsets and solve two optimization problems each for half
of the labeling budget respectively. For example, if we have a previously labeled set of 2, 000 images,
an unlabeled pool of 48, 000, and a budget of B = 1, 000 we randomly split the problem into two
sets of 1, 000 labeled images, 24, 000 unlabeled images, and B = 500 budgets. This ensures that
our optimization problem remains manageable in computational size. Furthermore, we implement
Wass. + EOC + P, set (β+, β−) = (0.6, 0.9), and a total time limit of T = 4 hours for each problem.

Results. From Table 4, for both data sets and at all budgets, our approach outperforms the baseline
by up to 3%. Recall that WAAL (i) learns a feature embedding that estimates the Wasserstein dis-
tance via dual regularization and (ii) uses a greedy uncertainty strategy to select points that minimize
the Wasserstein distance of selected points. In contrast, we use standard embeddings and formulate
an integer program that to select points that minimize the Wasserstein distance. Our approach can
provably obtain optimal solutions. Our performance highlights the value of optimization via im-
provement in classification accuracy. Furthermore, we conclude that our optimization problem can
be tractably solved in higher budget settings.

E.6 WALL-CLOCK ANALYSIS

Table 12 presents the average runtime for each active learning baseline. The runtimes do not include
the first cost of generating features, which occurs for each method except for Random. Nearly every
baseline requires only a few seconds to make queries. The k-medoids baseline usually requires
several minutes due to the cost of computing the distance matrices between points. In contrast, we
encourage running our method for at least 20 minutes and up to several hours.

A potential concern for the use of our method in active learning is the long run time (i.e., requiring
several hours) in contrast to baselines that typically require on the order of seconds. In general,
combinatorial optimization frameworks for deep learning usually scale poorly with data set size. For
example, the nominal MILP (4) does not even fit into memory for large data sets such as CIFAR-10
and SVHN. GBD simplifies our problem by permitting a variable runtime and easier computational
burdern, while still preserving global optimality. Ultimately, we emphasize that the time cost of
selection can be less than model training time and in some applications, less than human labeling
time itself (Rajchl et al., 2016). Furthermore, the selection is entirely automated and offline from
training. Thus, we suggest that it is more practical to ensure the best possible selection regardless of
runtime in order to minimize the real human labor of labeling.

E.7 ADDITIONAL ABLATIONS

Customizing the Wasserstein distance. Figure 6 plots accuracy on CIFAR-10 using Wass. + EOC
with Cosine versus Euclidean distance. The Euclidean alternative outperforms Cosine distance only
whenB = 10 whereas Cosine distance outperforms the alternative for higher budgets. Using Cosine
distance yields better downstream accuracy here because the representation learning step, SimCLR,
also maximizes a Cosine distance between different images.
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Figure 6: Ablation of using Cosine distance as the base metric in the Wasserstein distance problem
for CIFAR-10.

Figure 7: t-SNE visualizations of the latent space obtained from pre-training. Images selected by
each strategy are marked. The first row shows STL-10 at B = 10, the second row shows CIFAR-10
at B = 20, and the third row shows SVHN at B = 20.

Qualitative Analysis. Figure 7 shows t-SNE visualizations of the latent space in the first and
second round for STL-10, CIFAR-10, and SVHN, respectively. In each case, our selection strategy
provides a better coverage of the entire latent space by selecting points closer to cluster centers and
covering most clusters. All of the baselines leave large holes in certain regions of the latent space.

Figures 8, 9, and 10 show a sample set of labeled images by the final round for each data set.
In each case, our model covers every class with a labeled image within the first two rounds. For
example with STL-10, the first round labels two images of dogs instead of a cat, and so the second
round corrects for this issue by identifying and labeling two cats. We observe the same trend with
airplanes and cars for CIFAR-10. Furthermore, we select images from nearly every class in each
round.
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Figure 8: Images selected for labeling on STL-10 with different methods: Wass. + EOC (top left),
k-centers (top right), k-medoids (bottom left), Random (bottom right). The first two rows were
selected in the first two rounds and every two rows after were selected in the subsequent rounds.
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Figure 9: Images selected for labeling on CIFAR-10 with different methods: Wass. + EOC (top
left), k-centers (top right), k-medoids (bottom left), Random (bottom right). The first two rows were
selected in the first two rounds and every two rows after were selected in the subsequent rounds.
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Figure 10: Images selected for labeling on SVHN with different methods: Wass. + EOC + P (top
left), k-centers (top right), k-medoids (bottom left), Random (bottom right). The first two rows were
selected in the first two rounds and every two rows after were selected in the subsequent rounds.

Figure 8 compares our method versus k-centers, k-medoids, and Random for STL-10. Compared
to the baselines, we identify and label examples from more classes in the first rounds. While we
capture labeled examples of all classes by the second round, the k-centers baseline does not label a
dog until the third round. Note that in the first round, the Random baseline includes three images of
dogs, meaning that this baseline at small budgets cannot accurately select a diverse set of points. In
particular in the first rounds, our approach selects unobstructed images that capture the silhouette of
each class. For example in the first round we label unobostructed full examples of horse, bird, dog,
car, deer, and airplane, whereas the k-centers baseline includes unobstructed bird, deer, airplane, and
horse, the k-medoids baseline includes only an unobstructed dog and car, and the Random baseline
includes an unobstructed ship, dog, and truck. Finally, the pictures selected by all three non-random
strategies appear brighter and sharper on average than the Random baseline.
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Figure 9 compares our method versus the three baselines for CIFAR-10. The samples here display
similar trends to the STL-10 example: (i) we more quickly label a diverse set of classes, (ii) our
approach identifies unobstructed, clear images in the first rounds, and (iii) the non-random alterna-
tives select brighter images more often. Specifically, we cover all classes within the second round;
in contrast, the k-medoids baseline requires three rounds to cover all classes. Furthermore in the
first round, we obtain unobstructed images of a dog, horse, deer, frog, truck, and airplane, while
the k-centers baseline obtains an unobstructed airplane, bird, truck, and horse, and the k-medoids
baseline obtains an unobstructed frog, horse, truck.

Finally, Figure 10 compares our method versus the three baselines for SVHN. Here in the first
round, our model more often selects different classes (i.e., 0, 1, 2, 3, 4, 5, 7, 9) versus the baselines.
Furthermore, in the early rounds, our images cover a variety of different backgrounds including blue,
red, and yellow.
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