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ABSTRACT

Uncertainty quantification is crucial to account for the imperfect predictions of
machine learning algorithms for high-impact applications. Conformal predic-
tion (CP) is a powerful framework for uncertainty quantification that generates
calibrated prediction intervals with valid coverage. In this work, we study how
CP intervals are affected by bias – the systematic deviation of a prediction from
ground truth values – a phenomenon prevalent in many real-world applications.
We investigate the influence of bias on interval lengths of two different types of
adjustments – symmetric adjustments, the conventional method where both sides
of the interval are adjusted equally, and asymmetric adjustments, a more flexible
method where the interval can be adjusted unequally in positive or negative direc-
tions. We present theoretical and empirical analyses characterizing how symmet-
ric and asymmetric adjustments impact the “tightness” of CP intervals for regres-
sion tasks. Specifically for absolute residual and quantile-based non-conformity
scores, we prove: 1) the upper bound of symmetrically adjusted interval lengths
increases by 2|b| where b is a globally applied scalar value representing bias, 2)
asymmetrically adjusted interval lengths are not affected by bias, and 3) condi-
tions when asymmetrically adjusted interval lengths are guaranteed to be smaller
than symmetric ones. Our analyses suggest that even if predictions exhibit sig-
nificant drift from ground truth values, asymmetrically adjusted intervals are still
able to maintain the same tightness and validity of intervals as if the drift had never
happened, while symmetric ones significantly inflate the lengths. We demonstrate
our theoretical results with two real-world prediction tasks: sparse-view computed
tomography (CT) reconstruction and time-series weather forecasting. Our work
paves the way for more bias-robust machine learning systems.

1 INTRODUCTION

With the growing application of deep learning algorithms to high-impact applications such as health-
care, finance, and climate science, it is equally crucial to develop methods that can robustly quantify
their uncertainties. This is particularly important since deep learning algorithms are known to yield
confident yet incorrect prediction values (Guo et al., 2017; Wang, 2023; Niculescu-Mizil & Caruana,
2005). Given a prediction by a learning algorithm on a fresh test example, uncertainty quantification
methods typically aim to return a prediction set with some guarantee that the true value lies within
that set. In particular, a prediction set for a regression problem consists of an interval with lower and
upper bounds (Lei et al., 2018; Romano et al., 2019).

Conformal Prediction (CP) is a powerful family of uncertainty quantification methods that is
distribution-agnostic, i.e., makes no assumptions about the underlying data distribution, and gen-
erates prediction sets with guarantees of containing ground truth values with some probability (An-
gelopoulos & Bates, 2021; Fontana et al., 2023; Shafer & Vovk, 2008; Papadopoulos et al., 2002).
For example, split CP is based on collecting a separate (from training) calibration dataset containing
both ground truth and predicted values from the algorithm of interest. Then, given the algorithm’s
prediction on a test example, split CP computes a non-conformity score quantifying how “unusual”
new predictions will be with respect to the calibration dataset, and adjusts the prediction via the
empirical quantile of the calibration scores to generate a prediction set.

In practice, to minimize prediction uncertainty, we aim to obtain the tightest possible intervals that
maintain valid coverage. Interval tightness (or, inversely, its length) depends on various factors:
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Figure 1: Key Intuition. Conformal prediction interval lengths computed using symmetric adjust-
ments significantly increase with increasing bias, where bias is defined as the systematic deviation
of a prediction from ground truth. On the other hand, those computed using asymmetric adjustments
are not affected by bias. We aim to understand how bias impacts symmetrically and asymmetrically
adjusted prediction interval lengths.

non-conformity scores, data distributions, and underlying models (Kato et al., 2023). There has
been much theoretical work analyzing aspects of interval length, including optimal efficiency (Sesia
& Romano, 2021; Vovk et al., 2016; Kiyani et al., 2024; Bai et al., 2022), expected set sizes (Dhillon
et al., 2024), conditional and marginal set size differences (Xu & Xie, 2023), and differences in set
sizes between oracle and estimated prediction intervals (Xu & Xie, 2023; Lei et al., 2018). Existing
empirical work includes investigations into lengths under covariate shift (Tibshirani et al., 2019),
skewed distributions (Vilfroy et al., 2024), and heteroskedasticity (Lei et al., 2018; Romano et al.,
2019).

One important scenario, however, that has not been investigated is how CP fares for a learning
algorithm that is biased, i.e., produces predictions that systematically deviate from ground truth
values. For example, we can define the bias b of an algorithm as the mean difference between the
expected values of its predictions Ŷ with respect to ground truth Y over the calibration set:

b(Y, Ŷ ) =
1

n

n∑
i=1

(E[Ŷi]− Yi) (1)

Bias is a well-known issue plaguing machine learning models due to various factors such as skewed
training distributions (Nandy et al., 2022), sensor drift (Jing et al., 2013; Ying et al., 2007; Piazzo
et al., 2015), concept drift (Lu et al., 2018; 2014; Bayram et al., 2022), attrition bias (Lewin et al.,
2018), and noisy labels (Ding et al., 2022). We find that large bias inflates the conventional symmet-
rically adjusted interval lengths (Fig. 1-left) because the intervals must be adjusted equally in both
positive and negative directions.

In this paper, we argue that the effects of bias on CP interval lengths can be mitigated by com-
puting intervals with asymmetric adjustments (Linusson et al., 2014; Romano et al., 2019) instead
of conventional symmetric adjustments. Asymmetric adjustments allow lower and upper endpoints
to be adjusted independently to account for directional bias, maintaining the guarantee that the re-
sulting interval contains the ground truth with high probability (Fig. 1-right). While asymmetric
adjustments have been theorized to yield longer interval lengths as a consequence of stronger guar-
antees (Romano et al., 2019), our work observes that with bias, that may not be the case. We expand
the theoretical understanding of CP interval lengths for absolute residual (L1) and quantile adjusted
(i.e., Conformalized Quantile Regression or CQR (Romano et al., 2019)) non-conformity scores
by analyzing their behavior for symmetrically and asymmetrically adjusted interval lengths under
prediction bias. Specifically, we prove the following:

1. The upper bound of symmetrically adjusted interval lengths increases by 2|b| (Thm. 2),
2. Asymmetrically adjusted interval lengths are not affected by bias (Thm. 3), and
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3. Conditions when asymmetrically adjusted interval lengths are guaranteed to be smaller than
those of symmetric adjustments (Cor. 3.1).

Our theoretical results are significant for several reasons. First, existing theory shows that while
asymmetric adjustments give stronger coverage guarantees, they also result in slightly longer inter-
vals (Romano et al., 2019). However, contrary to this theory, it has also been empirically observed
that asymmetric adjustments yield tighter intervals than symmetric ones (Linusson et al., 2014;
Wang et al., 2023; Cheung et al., 2024), but the underlying reasons were unclear. Our work provides
a theoretical answer to this phenomenon. Second, our theoretical results suggest that asymmetric
adjustments are preferable in practice to symmetric ones when systematic biases are expected, e.g.,
with sensor drift. However, if symmetric adjustments are desired (e.g., when error distributions are
assumed to be symmetric), we also offer a method to achieve tighter symmetric intervals during
calibration.

We validate that our theoretical analyses align with synthetic and real prediction tasks. Our synthetic
experiments validate our theoretical analyses in the ideal setting when n is large for no skew and
skewed distributions. Our real tasks validate our theoretical analyses in two settings: when n is
extremely low and time series. Our real tasks deal with bias arising in different contexts: (1) when
a medical imaging reconstruction algorithm systematically under- or over-estimates volumes of an
anatomical region (computed tomography (CT) reconstruction), and (2) temporal “drift” of values
over time (weather forecasting). The contributions of this study give machine learning practitioners
fundamental and practical insight into using CP under the common scenario of biased predictions.

2 BACKGROUND: SPLIT CONFORMAL PREDICTION (CP)

We focus on a “split” CP setup (Papadopoulos et al., 2002; Lei et al., 2018) in this work, but the
same theoretical analysis can be applied to other CP forms and extensions Fontana et al. (2023);
Barber et al. (2021). In split CP, we assume a calibration dataset DC = {(Ŷ1, Y1), ..., (Ŷn, Yn)}
and test point Ŷn+1, where Ŷi and Yi represent the i-th prediction and ground truth values. The
calibration data is separate from a training dataset used to train the ML algorithm of interest. The
calibration dataset and test point are assumed to be exchangeable. The goal of CP is to construct
a prediction interval C(Ŷn+1) = [L(Ŷn+1), U(Ŷn+1)] for Ŷn+1, where L(Ŷn+1), U(Ŷn+1) ∈ R
are lower and upper bounds, such that P[Yn+1 ∈ C(Ŷn+1)] ≥ 1 − α, for some user-specified mis-
coverage rate α ∈ (0, 1). To compute symmetric intervals, we perform the following steps. First,
for each data point in the calibration set DC , we compute non-conformity scores S = {s1, ..., sn}.
Next, we compute the (1 − α)-th empirical quantile of the non-conformity scores q = Q1−α̂(S),
where α̂ = ⌊α(n+1)⌋

n+1 denotes the finite-sample adjusted mis-coverage rate. Finally, we adjust the
predictions of the test data using q to achieve valid prediction sets. This algorithm provides marginal
coverage: on average, the prediction sets contain ground truth (1−α)% of the time. More rigorously,
based on key CP results:

Lemma 1 Let (Ŷi, Yi) ∈ R × R, i = 1, ..., n + 1 be exchangeable random variables. Assume that
a predictor f has been trained on a proper training set independent of and exchangeable with these
n + 1 points. Consider a calibration set (Ŷi, Yi)

n

i=1 and a fresh test point Ŷn+1. Let si be a non-
conformity score computed using the predictor f for i = 1, ..., n + 1. Let q = Q1−α̂({si}ni=1) be
the ⌈(1 − α)(n + 1)⌉-th smallest value of {si}ni=1 and C(Ŷn+1) = {y ∈ R : sn+1 ≤ q} be the
prediction set for the test point Ŷn+1. Then, for any α ∈ (0, 1):

1. P[Yn+1 ∈ C(Ŷn+1)] ≥ 1− α and

2. P[Yn+1 ∈ C(Ŷn+1)] ≤ 1 − α + 1
n+1 if random variables Y1, ..., Yn+1 are almost surely

distinct

Proof: See variations in Vovk et al. (2005); Lei et al. (2018); Tibshirani et al. (2019); Oliveira et al.
(2024)
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Many non-conformity scores exist (Kato et al., 2023), including absolute residuals (L1) (Papadopou-
los et al., 2002) and quantile-based (Conformalized Quantile Regression or CQR (Romano et al.,
2019)) scores.

This can be extend to asymmetric adjustments (Linusson et al., 2014; Cordier et al., 2023) by com-
puting (1−αlo)-th and (1−αhi)-th empirical quantiles of the conformity scores, where αlo and αhi

are lower and upper mis-coverage rates. In the asymmetric case, the empirical quantiles for the lower
and higher mis-coverage rates αlo and αhi are given by α̂lo = ⌊αlo(n+1)⌋

n+1 and α̂hi = ⌊αhi(n+1)⌋
n+1 .

It is easy to see that when αlo + αhi = α the asymmetric case yields empirically larger coverage
based on the finite sample adjustment. The reason is due to the “rounding effect” of the ceiling func-
tion, which tends to push the empirical quantiles toward more extreme values (larger or smaller),
especially when n is small. Since the asymmetric case deals with two separate quantiles, this effect
is compounded, leading to a prediction set that empirically offers larger coverage. However, as we
will see, symmetrically adjusted interval lengths may not always be shorter than asymmetric ones in
the presence of bias.

3 THEORETICAL ANALYSIS

We assume biased predictions Ŷ b
i = Ŷ 0

i + b where b ∈ R is a constant (positive or negative) applied
between all unbiased predicted values (Ŷ 0) and ground truth values (Y ) from the calibration set. For
example, for prediction and ground truth distributions that are symmetric and centered around their
means, we can use Eq. 1. However, when the distributions are skewed, the mean may no longer
be a good measure of central tendency (Rousseeuw & Hubert, 2011; Huber & Ronchetti, 2011). In
Sec. 3.1, we will use results from our theoretical analyses to estimate bias more accurately in these
cases.

We consider symmetric non-conformity scores with canonical expression:

sbi = max(flo(Ŷ
b
i )− Yi, Yi − fhi(Ŷ

b
i )), (2)

where flo and fhi are the lower adjustment and upper adjustment functions that have linear prop-
erties: flo(Ŷ

b
i ) = flo(Ŷ

0
i ) + b and fhi(Ŷ

b
i ) = fhi(Ŷ

0
i ) + b. Eq. 2 covers the conventional L1

and CQR non-conformity scores. For the L1 non-conformity score given by sbi = |Yi − Ŷ b
i |, Ŷ b

i

represents a point estimate, and the score can be rewritten as sbi = max(Ŷ b
i − Yi, Yi − Ŷ b

i ). For the
CQR non-conformity score given by sbi = max(Qαlo

(Ŷ b
i ) − Yi, Yi −Q1−αhi

(Ŷ b
i )), Ŷ

b
i represents

a set of samples Ŷ b
i = {Ŷ b

ij}
ns
j=1. The adjustment is given by qb = Q1−α̂({sbi}ni=1), the prediction

interval is given by C(Ŷ b
n+1) = [flo(Ŷ

b
n+1) − qb, fhi(Ŷ

b
n+1) + qb], and the interval length is given

by Lsym(Ŷ b
n+1) = fhi(Ŷ

b
n+1) − flo(Ŷ

b
n+1) + 2qb. This setup does not cover locally adaptive non-

conformity scores (Papadopoulos et al., 2008; 2011; Lei et al., 2018) and variations of CQR such as
CQR-r and CQR-m non-conformity scores (Sesia & Candès, 2020). Using Eq. 2, we first derive an
upper bound for symmetrically adjusted interval lengths under bias (Thm. 2):

Theorem 2 Given biased predictions for a fresh test point Ŷ b
n+1 = Ŷ 0

n+1 + b, the upper bound on
prediction interval lengths of non-conformity scores described in Eq. 2 is:

Lsym(Ŷ b
n+1) ≤ Lsym(Ŷ 0

n+1) + 2|b|, (3)

where Lsym(Ŷ b
n+1) and Lsym(Ŷ 0

n+1) are the interval lengths computed using symmetric adjust-
ments for predictions with and without bias.

Proof: See App. A.1

We find the upper bounds of symmetrically adjusted interval lengths increase linearly with the mag-
nitude of bias. Next, we show 1) that asymmetric adjustments are not affected by bias and 2) condi-
tions when using asymmetric adjustments produce shorter lengths than symmetric adjustments. To
accomplish this, we introduce a similar canonical expression for asymmetric non-conformity scores:

(sbi,lo, s
b
i,hi) = (flo(Ŷ

b
i )− Yi, Yi − fhi(Ŷ

b
i )), (4)

4
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Algorithm 1 Estimating bias by minimizing symmetrically-adjusted interval lengths; Example using
gradient descent.

Require: γ: learning rate, {(Ŷ b
i , Yi)}ni=1: calibration dataset, τ : tolerance, Lsym(Ŷ b

i ): function
that computes symmetrically adjusted interval lengths.

Initialize losses lprev and l s.t. lprev ≥ l

Initialize beff . E.g., beff ← 1
n

∑n
i=1(E[Ŷ b

i ]− Yi)
while |lprev − l| ≥ τ do

lprev ← l

l← max({Lsym(Ŷ b
i − beff )}ni=1)

beff ← beff − γ∇(l)
end while

where sbi,lo and sbi,hi represent lower and upper non-conformity score adjustments when predic-
tions are biased with b. The lower and upper asymmetric adjustments are computed by tak-
ing the (1 − αlo)-th and (1 − αhi)-th empirical quantile of the sets of non-conformity scores
qblo = Q1−α̂lo

({sbi,lo}ni=1) and qbhi = Q1−α̂hi
({sbi,hi}ni=1). Thus, the prediction interval is

C(Ŷ b
n+1) = [flo(Ŷ

b
n+1)− qblo, fhi(Ŷ

b
n+1) + qbhi].

Using this setup, we prove the following relationship for the length of a CP prediction interval using
asymmetric non-conformity scores, under bias b:

Theorem 3 Given biased predictions for a fresh test point Ŷ b
n+1 = Ŷ 0

n+1 + b, the lengths for L1

and CQR non-conformity scores computed using asymmetric adjustments are bias-independent:

Lasym(Ŷ b
n+1) = Lasym(Ŷ 0

n+1) (5)

where Lasym(Ŷ b
n+1) and Lasym(Ŷ 0

n+1) are the interval lengths computed using asymmetric adjust-
ments for predictions with and without bias.

Proof: See App. A.2

We find that asymmetric adjustments are not affected at all by a constant bias b, which is a desirable
property. However, recall that when predictions are unbiased, asymmetrically adjusted intervals
tend to be longer than symmetric ones (Romano et al., 2019). This raises the question: at what
level of bias does this behavior reverse? We derive conditions under which, in the presence of bias,
asymmetrically adjusted intervals become shorter than symmetric ones:

Corollary 3.1 For L1 and CQR non-conformity scores, asymmetric adjustments produce smaller
interval lengths than symmetric adjustments under the following condition:

2|b| ≥ Lasym(Ŷ 0
n+1)− Lsym(Ŷ 0

n+1). (6)

where b is the bias, Lsym(Ŷ 0
n+1) and Lasym(Ŷ 0

n+1) are lengths computed using symmetric and
asymmetric adjustments for predictions without bias.

Proof: The result is derived by using Thm. 3, setting Lasym(Ŷ b
n+1) ≤ Lsym(Ŷ b

n+1), substituting Eq.
3, and rearranging the inequality.

We find that when the difference in lengths for predictions without bias is greater than 2 times the
magnitude of bias, the asymmetrically adjusted interval lengths will be guaranteed to be shorter than
symmetric ones.

Our theoretical analyses (Thm. 2, Thm. 3 and Cor. 3.1) provide important insights into how bias
affects length and the conditions which asymmetric adjustments yield shorter lengths than and sym-
metric adjustments. In practice, when αlo + αhi = α and n is large, the interval lengths under no
bias are approximately equal Lasym(Ŷ 0

n+1) ≈ Lsym(Ŷ 0
n+1), and the lengths for predictions with

bias are shorter for asymmetric compared to symmetric adjustments Lasym(Ŷ b
n+1) ≤ Lsym(Ŷ b

n+1)
when |b| > 0.

5
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Figure 2: Synthetic experiments with skewed and noisy predictions align with theoretical anal-
ysis. We set N(10, 5) as the ground truth distribution and added W (1, 0, 5) (right skew), N(0, 2)
(no skew), and −W (1,−2, 5) (left skew) to simulate imperfect predictions. The parameter descrip-
tions can be found in the scipy.stats documentation. We plot the bias versus the maximum length
for symmetric CQR (red) and asymmetric CQR (green) . We also plot the theoretical upper bound
(Thm. 2, dashed grey) and the value when lengths with asymmetric adjustments are smaller than
those with symmetric adjustments (equality in Cor. 3.1, black).

3.1 ESTIMATING BIAS

One unanswered question is how to empirically determine bias b given data. To do so, we leverage
Thm. 2 and adjust the predictions by a scalar value beff to minimize the maximum symmetrically
adjusted interval lengths:

beff = argmin
C

[
max({Lsym(Ŷ b

i − C)}ni=1)

]
(7)

Lsym(Ŷ b
i − beff ) achieves the minimum length for symmetric adjustments (when b = 0). beff can

be thought of as the “debiasing” constant for biased predictions Ŷ b. We prove that the objective
function in Eq. 7 reduces to minimizing a vertically and horizontally translated absolute value func-
tion (App. A.2.1). Therefore, the objective function is convex, and Alg. 1 converges using gradient
descent and its variants. For our experiments, we implemented a PyTorch version for CQR-based
and L1 scores available at [redacted], and optimize using AutoGrad (Paszke et al., 2017).

4 EXPERIMENTS

We next evaluate Thm. 2 and 3 and Cor. 3.1 for L1 and CQR non-conformity scores with synthetic
and real-life experiments. For synthetic experiments, we assume normally distributed ground truth
data, and simulate predictions by adding different types of noise. For real-life experiments, we con-
sider two scenarios: when data is scarce (CT reconstructions for downstream radiotherapy planning
using CQR) and when data is temporally varying (time series weather forecasting using L1). The
data distributions can be found in App. B.

4.1 SYNTHETIC DATA

We first demonstrate the validity of the theoretical analysis Sec. 3 for CQR using Gaussian N
and Weibull W distributions to simulate estimate, ground truth, and noise distributions. We used
N(10, 5) to simulate a ground truth distribution. We added noise characterized by W (1, 0, 5),
N(0, 2), and −W (1,−2, 5) to the ground truth samples to simulate left-, no-, and right-skewing
predictions. We used 1000 calibration data points, 1000 test data points, and 1000 samples per data
point to estimate the quantiles. We set α = 0.1 for symmetric adjustments, and αlo = αhi = 0.05

6
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Figure 3: Biases from using sparse-view CT reconstructions for a downstream segmentation
task. We show slices of 4 different patient ground truth CT volumes. Each slice is overlaid with right
lung segmentations from 10 probabilistically sampled reconstructions (red) and segmentations of the
ground truth right lung (blue). The reconstructed right lung segmentations consistently overestimate
organ volumes compared to the ground truth segmentations. See App. C for experiment details.

for asymmetric adjustments. After determining beff using Alg. 1, we added a constant bias term
from −2 to 2 to the debiased predictions to examine the effect of biased predictions on lengths
(Fig. 2).

Results in Fig. 2 confirm our theoretical analyses. We find that symmetrically adjusted interval
lengths (red) are always upper bounded by the sum of length at b = 0 and 2|b| (dashed black) holds
true (Thm 2). We find that asymmetrically adjusted interval lengths (green) do not change under
bias (Thm. 3) and that they are always smaller than symmetrically adjusted lengths (red) when Cor.
3.1 is true (dashed grey).

4.2 REAL DATA

Next, we validate our theoretical analyses in two different real data scenarios: where upstream image
reconstruction tasks may not fully capture spatial dependencies in downstream metrics (sparse-view
computed tomography (CT) reconstruction), and where predictions “drift” from the ground truth
over time (time series weather forecasting). Through these two examples, we aim to show the
validity and usefulness of our theoretical analysis from different perspectives.

4.2.1 LIMITED DATA

In scenarios with limited imaging capabilities, such as low-resource clinics (Aggarwal et al., 2023;
Court et al., 2023; Kisling et al., 2018), reconstruction algorithms work with observations that do not
contain complete information. For example, sparse cone-beam CT algorithms use limited (< 100
instead of the standard 100s) 2D X-ray observations to generate 3D CT scans (Sun et al., 2023; Ying
et al., 2019; Shen et al., 2019). The observed information is insufficient to recover the true image
with complete certainty, leading to potential biases such as systematically over- or under-estimating
organ volumes.

We simulate a medical imaging pipeline, where a patient is imaged using sparse-CT, an image
reconstruction algorithm is applied to the projections, and the resulting volume is used for down-
stream radiotherapy planning (RT). We use Neural Attenuation Fields (NAF) (Zha et al., 2022), a
self-supervised image reconstruction algorithm. We synthetically injected noise to the projections,
reconstructed the volumes using different initializations of the reconstruction algorithm, and gener-
ated plans using the Radiation Planning Assistant (RPA, FDA 510(k) cleared) 1. More details about
our experimental setup can be found in App. C.

To validate our theoretical analysis in Sec. 3 holds true even for extremely low n, we use 19 patients
for calibration and 1 patient for testing. We generate 10 reconstructions per patient by perturbing
acquisition angles, injecting noise into the projections, and using random initializations of NAF. We

1RPA is a web-based tool that combines organ segmentation algorithms and physics simulations for RT
planning.
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Metric beff
µ(Lasym(Ŷ b

n+1)

−Lsym(Ŷ b
n+1))

P (Lasym(Ŷ b
n+1)

≤ Lsym(Ŷ b
n+1))

Cor. 3.1

Heart D0 (Gy) -0.31 334.41 0.05 ✗
Heart Volume (cm3) -19.74 365.40 0.05 ✗
Right Lung V20 (%) -9.47e-3 0.02 0.05 ✗

Right Lung D35 (Gy) -1.13 1.11 0.05 ✗
Right Lung Volume (cm3) 66.11 -108.98 1.0 ✓
Left Lung Volume (cm3) 58.17 -92.89 1.0 ✓

Left Lung D0 (Gy) -0.14 -0.04 0.90 ✓
Body Volume (cm3) -287.48 -564.53 1.0 ✓

Table 1: Real life application of sparse-view computed tomography for downstream radiother-
apy planning reveals prevalent biases in predictions and validate bias conditions in Cor. 3.1.
We use a variety of downstream RT planning metrics, including max dose to the heart (Heart D0),
heart volume, volume of right lung receiving 20Gy of dose (Right Lung V20), dose to 35% relative
volume of the right lung (Right Lung D35), right lung volume, left lung volume, max dose to left
lung (Left Lung D0), and volume of the body. We show the mean difference in asymmetrically and
symmetrically adjusted interval lengths µ(Lasym(Ŷ b

n+1) − Lsym(Ŷ b
n+1)), effective bias beff , the

probability that asymmetrically adjusted interval lengths are greater than that for symmetric adjust-
ments P (Lasym(Ŷ b

n+1) ≤ Lsym(Ŷ b
n+1)), and whether Cor. 3.1 is true (✓) or false (✗).

perform leave-one-out cross-validation to examine each patient’s interval lengths when calibrated
with the rest of the patients. We use α = 0.15 for symmetric adjustments and αlo = αhi = 0.075 for
asymmetric adjustments, corresponding to α̂ = 0.0567 for the symmetric case and α̂lo = α̂hi = 0
for the asymmetric case. In the asymmetric case, this corresponds to an extreme case of taking the
maximum and minimum non-conformity scores.

We show results in Tab. 4.2.1 for a variety of downstream RT planning metrics, including max dose
to the heart (Heart D0), heart volume, volume of right lung receiving 20Gy of dose (Right Lung
V20), dose to 35% relative volume of the right lung (Right Lung D35), right lung volume, left lung
volume, max dose to left lung (Left Lung D0), and volume of the body. These metrics have important
implications for patient safety. For example, in our setup, if a heart D0 is < 5Gy or right lung V20 is
< 35%, the plan is unsafe for the patient. We look at the mean difference between asymmetrically
and symmetrically adjusted interval lengths µ(Lasym(Ŷ b

n+1) − Lsym(Ŷ b
n+1)), effective bias beff

computed using Alg. 1, the probability that asymmetrically adjusted interval lengths are greater
than that of symmetrically adjusted P (Lasym(Ŷ b

n+1) ≤ Lsym(Ŷ b
n+1)), and whether Cor. 3.1 is

true ✓or false ✗(Tab. 4.2.1). Results in Tab. 4.2.1 reveal that for many downstream tasks like
segmentation (Fig. 3), predictions could be highly biased (column 2). Moreover, results in Cor. 3.1
can be reliably used to determine whether asymmetrically adjusted interval lengths are shorter than
those of symmetric adjustments (columns 4 and 5). When P (Lasym(Ŷ b

n+1) ≤ Lsym(Ŷ b
n+1)) tends

to 1, the condition in Cor. 3.1 is met, and vice versa. Our experimental results show that our
theoretical analyses are robust to scenarios even with extremely low n.

4.2.2 TIMES SERIES

Weather forecasting is important for many aspects of daily life, from public safety to agriculture to
disaster preparedness and response. We use the Yandex Weather Prediction dataset and the average
pre-trained CatBoost model from Angelopoulos & Bates (2021) to predict temperature changes.
The temporal dependencies between points violate the exchangeability assumption. Therefore, we
use weighted conformal prediction where we use a different adjustment for each new data point (Tib-
shirani et al., 2019). We use the L1 non-conformity score and weight the data points in the window
of size K = 1000 equally. This setup effectively reduces to split CP applied each at time window
and the theoretical analyses in Sec. 3 apply. The symmetric non-conformity score for time t is given
by sbt = |Ŷ b

t −Y 0
t |. The asymmetric non-conformity scores for time t are given by sbt,lo = Ŷ b

t −Y 0
t

and sbt,hi = Y 0
t − Ŷ b

t . We set α = 0.1 and inject an increasing negative bias to the unbiased pre-
dicted values Ŷ b

t = Ŷ 0
t − (2×10−4)t. We plot temperature over time for predictions Ŷ b and ground

8
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Figure 4: Real-life application of weather forecasting shows even if predictions drift “far away”
from the ground truth values, asymmetrically adjusted intervals are still able to maintain the
same tightness and validity of intervals as if the drift had never happened. We plot A) Temper-
ature over time for biased predictions Ŷ b and ground truth Y , B) Coverage over time for weighted
conformal prediction with asymmetric adjustments (blue) and symmetric adjustments (red), and
naive (unweighted) conformal prediction (green). C) Intervals with symmetric adjustments (red),
asymmetric adjustments (blue), and where they overlap (purple), and D) Bias versus lengths for
symmetric adjustments (red), lengths for asymmetric adjustments (blue), and upper bound length
for symmetric adjustments from Thm. 2 (purple).

truth Y (Fig. 4A), coverage over time for weighted (symmetric and asymmetric adjustments) and
naive (unweighted, symmetric adjustments) CP (Fig. 4B), symmetrically (red) and asymmetrically
(blue) adjusted intervals and where they overlap (purple) (Fig. 4C), and bias versus lengths for sym-
metric adjustments (red), lengths for asymmetric adjustments (blue), and upper bound lengths for
symmetric adjustments from Thm. 2 (purple).

We observe that symmetric and asymmetric adjustments produce valid coverage while naive ap-
proaches do not, confirming prior work (Angelopoulos & Bates, 2021; Barber et al., 2023) (Fig.
4B). We observe that asymmetric adjustments are independent of bias (Fig. 4D) yet still produce
valid prediction intervals. We observe that symmetrically adjusted interval lengths increase linearly
with increasing bias, bounded by Thm. 2 (Fig. 4D). Our results suggest that even if predictions drift
“far away” from the ground truth values, asymmetrically adjusted intervals are still able to maintain
the same tightness and validity of intervals as if the drift had never happened.

5 DISCUSSION AND CONCLUSION

We will never collect perfect data in practice, or build perfect predictive models that are robust over
time. Therefore, it is integral to account for these imperfections when designing practical systems.
In this work, we argue that the effects of bias on CP prediction interval lengths can be mitigated
by computing asymmetric adjustments as opposed to the conventional symmetric adjustments. We
prove the following for L1 and CQR non-conformity scores. In Thm. 2 we showed that the upper
bound of the prediction interval lengths with symmetric adjustments increases by 2|b|. In Thm. 3, we

9
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showed that prediction interval lengths with asymmetric adjustments are not affected by bias. In Cor.
3.1, we showed the conditions when prediction interval lengths with asymmetric adjustments are
guaranteed to be smaller than those of symmetric intervals. We proposed an algorithm to empirically
determine the bias and showed empirical evidence using synthetic and real-life data. Our results have
have important implications on accounting for algorithmic bias, while also suggesting further areas
of investigation:

Stability of bias estimation for low n. Our work suggests that estimating bias based on sym-
metrically adjusted intervals is a straightforward, practical, and computationally efficient way to
account for systematic errors in predictions. However, it is crucial to consider the impact of sample
size on the reliability of these estimates when the calibration set is small (Tversky & Kahneman,
1971). Small calibration sets can lead to noisy estimates of bias (Springate, 2012). The challenges
associated with limited data include under or overestimating the true bias, greater bias estimation
variability, and being more susceptible to skewed, outliers, and random fluctuations. We recommend
considering the uncertainty in bias estimates when applying corrections and increasing sample size
to improve the reliability of bias estimates where possible.

More complex scores. Our analysis reveals that while simple non-conformity scores, as presented
in Eq. 2 and 4, are tractable for theoretical guarantees, more complex non-conformity scores such as
locally adaptive scores Papadopoulos et al. (2008; 2011); Lei et al. (2018) and CQR variants Sesia &
Candès (2020) present challenges. These challenges arise due to modeling bias as a globally applied
additive constant. This simplification, although useful for theoretical and empirical analysis, may
overlook that biases could exhibit more intricate patterns, possibly varying across the input space or
depending on specific features. For example, in time series data, we use a uniform weighting scheme
that effectively reduces to split CP over each time window. Our results suggest that incorporating
these techniques in more complex settings could reveal interesting behaviors and could help design
more bias-robust scores.

Covariate shift and Bias. Our work suggests correcting for bias using a globally applied constant
to the predictions can significantly reduce the interval lengths. However, our approach does not ac-
count for situations where the predicted distribution changes between calibration and test datasets.
Prior work on CP under covariate shift (Tibshirani et al., 2019) weighted predictions by a proba-
bility proportional to their likelihood ratio. However, when calibration predictions are “far away”
from the expected test predictions, the likelihood ratio may be very small or zero. Thus, it is impos-
sible to perform a covariate shift without significant overlap between the calibration and expected
test predictions when the expected bias is large. Our work suggests exploring both bias correction
and covariate shift together could lead to tighter and more reliable prediction intervals for these
situations.
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A PROOFS

A.1 PROOF OF THEOREM 2

Using Eq. 2, we show the behavior of prediction interval lengths with symmetric adjustments when
predictions are biased Ŷ b

i = Ŷ 0
i + b where b ∈ R. We show the behavior of symmetric adjust-

ments under 1) no bias, 2) large negative bias, 3) large positive bias, 4) small negative bias and 5)
small positive bias, and compare the resulting interval lengths. We leverage a property of quantiles
Qα(Ŷ + b) = Qα(Ŷ ) + b where b is a scalar value.
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When b = 0, we can write the adjustment (Eq. 9), the prediction interval (Eq. 10), and the prediction
interval length (Eq. 11).

s0i = max(flo(Ŷ
0
i )− Yi, Yi − fhi(Ŷ

0
i )) (8)

q0 = Q1−α̂({s0i }ni=1) (9)
Csym(Ŷ 0

n+1) = [flo(Ŷ
0
n+1)− q0, fhi(Ŷ

0
n+1) + q0] (10)

Lsym(Ŷ 0
n+1) = fhi(Ŷ

0
n+1)− flo(Ŷ

0
n+1) + 2q0 (11)

For biased predictions, the 0 is replaced with a b.

Next, we examine when predictions are highly biased in the negative direction Ŷ b−−

i = Ŷ 0
i + b−−

where b−− < Yi − fhi(Ŷ
b−−

i ) < 0, so Yi > fhi(Ŷ
b−−

i ) ≥ flo(Ŷ
b−−

i ). The non-conformity score
reduces to the Yi − fhi(Ŷ

b−−

i ) because flo(Ŷ
b−−

i )− Yi < 0 and can be written as:

sb
−−

i = Yi − fhi(Ŷ
b−−

i ) = Yi − fhi(Ŷ
0
i )− b−− ≤ s0i − b−− (12)

The adjustment can be written as:

qb
−−

= Q1−α̂({sb
−−

i }ni=1) ≤ Q1−α̂({s0i }ni=1)− b−− = q0 − b−− (13)

The length can be written as:

L(Ŷ b−−

n+1 ) = fhi(Ŷ
b−−

n+1 )− flo(Ŷ
b−−

n+1 ) + 2qb
−−

(14)

≤ fhi(Ŷ
0
n+1)− flo(Ŷ

0
n+1) + 2q0 − 2b−− (15)

= L(Ŷ 0
n+1)− 2b−− (16)

The inequalities in Eq. 12, 13 and 15 hold true because max(flo(Ŷ
b−−

i )− Yi, Yi − fhi(Ŷ
b−−

i )) ≥
Yi − fhi(Ŷ

b−−

i ).

Next, we examine when predictions are highly biased in the positive direction Ŷ b++

i = Ŷ 0
i + b++

where b++ > Yi − flo(Ŷ
b++

i ) > 0, so Yi < flo(Ŷ
b++

i ) ≤ fhi(Ŷ
b++

i ). The non-conformity score
reduces to the flo(Ŷ

b++

i )− Yi because Yi − fhi(Ŷ
b++

i ) < 0 and can be written as:

sb
++

i = flo(Ŷ
b++

i )− Yi = flo(Ŷ
0
i )− Yi + b++ ≤ s0i + b++ (17)

qb
++

= Q1−α̂({sb
++

i }ni=1) ≤ Q1−α̂({s0i }ni=1) + b++ = q0 + b++ (18)

L(Ŷ b++

n+1 ) = fhi(Ŷ
b++

n+1 )− flo(Ŷ
b++

n+1 ) + 2qb
++

(19)

≤ fhi(Ŷ
0
n+1)− flo(Ŷ

0
n+1) + 2q0 + 2b++ (20)

= L(Ŷ 0
n+1) + 2b++ (21)

The inequalities in Eq. 17, 18 and 20 hold true because max(flo(Ŷ
b++

i ) − Yi, Yi − fhi(Ŷ
b++

i )) ≥
flo(Ŷ

b++

i )− Yi.

For the L1 non-conformity score flo(Ŷ
b
i ) = fhi(Ŷ

b
i ) = Ŷ b

i , we can combine Eq. 16 and 21 to yield
the desired result: L(Ŷ b

n+1) ≤ L(Ŷ 0
n+1) + 2|b|

For the CQR non-conformity score flo(Ŷ
b
i ) = Qαlo

(Ŷ b
i ) and fhi(Ŷ

b
i ) = Qαhi

(Ŷ b
i ), we need to

analyze when prediction have small negative bias and small positive bias - in other words, when the
ground truth is between the lower and upper adjustment points.

When predictions have small negative bias Ŷ b−

i = Ŷ 0
i + b− where 0 > b− > Yi − fhi(Ŷ

b−

i )

and flo(Ŷ
b−

i ) < Yi < fhi(Ŷ
b−

i ). The ground truth is closer to the upper bound than lower bound
fhi(Ŷ

b−

i )−Yi < Yi−flo(Ŷ b−

i ). Taking negative on both sides gives Yi−fhi(Ŷ b−

i ) > flo(Ŷ
b−

i )−Yi.
This is the same as large negative bias. The interval length reduces to Eq. 16.

When predictions have small positive bias Ŷ b+

i = Ŷ 0
i + b+ where 0 < b+ < Yi − flo(Ŷ

b+

i )

and flo(Ŷ
b+

i ) < Yi < fhi(Ŷ
b+

i ). The ground truth is closer to the lower bound than upper bound
fhi(Ŷ

b+

i )−Yi > Yi−flo(Ŷ b+

i ). Taking negative on both sides gives Yi−fhi(Ŷ b+

i ) < flo(Ŷ
b+

i )−Yi.
This is the same as large positive bias. Thus, the interval length reduces to Eq. 21.

Combining inequalities gives the desired result: L(Ŷ b
n+1) ≤ L(Ŷ 0

n+1) + 2|b|
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A.2 PROOF OF THEOREM 3

We analyze the behavior of asymmetric adjustments under bias. We model the biased predictions
as Ŷ b

i = Ŷ 0
i + b where b is a global constant (can be both positive and negative) added to unbiased

predictions Ŷ 0
i .

First, the lower and upper scores can be written as:

sbi,lo = flo(Ŷ
b
i )− Yi = flo(Ŷ

0
i )− Yi + b = s0i,lo + b (22)

sbi,hi = Yi − fhi(Ŷ
b
i ) = Yi − fhi(Ŷ

0
i )− b = s0i,hi − b (23)

Next, the lower and upper adjustments can be written as:

qblo = Q1−α̂lo
({sbi,lo}ni=1) = Q1−α̂lo

({s0i,lo}ni=1) + b = q0lo + b (24)

qbhi = Q1−α̂hi
({sbi,hi}ni=1) = Q1−α̂hi

({si,hi}ni=1)− b = q0hi − b (25)

Finally, the lengths when predictions are biased can be simplified:

Lasym(Ŷ b
n+1) = fhi(Ŷ

b
n+1)− flo(Ŷ

b
n+1) + qbhi + qblo (26)

= fhi(Ŷ
0
n+1) + b− flo(Ŷ

0
n+1)− b+ q0hi + b+ q0lo − b (27)

= fhi(Ŷ
0
n+1)− flo(Ŷ

0
n+1) + q0hi + q0lo (28)

= Lasym(Ŷ 0
n+1) (29)

The results in Eq. 26 indicate that asymmetric adjustments are not affected by bias b.

A.2.1 PROOF OF ALG. 1 CONVERGENCE

We seek to minimize the objective function:

f(beff ) = max({Lsym(Ŷ b
i − beff )}ni=1) (30)

= max({Lsym(Ŷ 0
i + b− beff )}ni=1) (31)

First, we can derive the symmetrically adjusted interval lengths with bias b ∈ R based on the
techniques and results from App. A.1. Initially, the predictions are assumed to be biased. The
non-conformity scores in canonical form (Eq. 2) when predictions are positively and negatively
biased with b+ > 0 and b− < 0 are given by:

sb
+

i = flo(Ŷ
b+

i )− Yi = flo(Ŷ
0
i )− Yi + b+ = s0i + b+ (32)

sb
−

i = Yi − fhi(Ŷ
b−

i ) = Yi − fhi(Ŷ
0
i )− b− = s0i − b− (33)

where s0i is the non-conformity score without bias. The inequality is replaced with an equal-
ity because predictions are assumed to be biased during the optimization process. Specifically,
max(flo(Ŷ

b+

i ) − Yi, Yi − fhi(Ŷ
b+

i )) = flo(Ŷ
b+

i ) − Yi under positive bias and max(flo(Ŷ
b−

i ) −
Yi, Yi − fhi(Ŷ

b−

i )) = Yi − fhi(Ŷ
b−

i ) under negative bias. Next, the adjustments can be written as:

qb
+

= Q1−α̂({sb
+

i }ni=1) = Q1−α̂({s0i }ni=1) + b+ = q0 + b+ (34)

qb
−
= Q1−α̂({sb

−

i }ni=1) = Q1−α̂({s0i }ni=1)− b− = q0 − b− (35)

where q0 ∈ R is the symmetric adjustment for predictions with no bias. Combining the two equa-
tions gives a more general form of adjustments for positive and negative bias:

qb = q0 + |b| (36)

Thus, symmetrically adjusted interval lengths with bias can be written as:

Lsym(Ŷ b
n+1) = fhi(Ŷ

b
n+1)− flo(Ŷ

b
n+1) + 2qb (37)

= fhi(Ŷ
b
n+1)− flo(Ŷ

b
n+1) + 2q0 + 2|b| (38)
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Using Eq. 38, we can recast the objective function as follows:

f(beff ) = max({Lsym(Ŷi + beff )}ni=1) (39)

= max({Lsym(Ŷ 0
i + b− beff )}ni=1) (40)

= max({fhi(Ŷ 0
i )− flo(Ŷ

0
i ) + 2q0}ni=1) + 2|b− beff | (41)

In Eq. 41, the terms inside the max function and b are data-dependent constants and are not de-
pendent on beff . Thus, minimizing Eq. 39 results in minimizing a translated (horizontally and
vertically) absolute value function (Eq. 41). This problem is convex, not differentiable at beff = b,
and has a global minimum at b. When beff ̸= b, the sub-gradient of f(beff ) is −2 for beff < b and
2 for beff > b. A standard convergence proof follows.

Let beff,k be the k-th iteration of gradient descent. The update rule is: beff,k+1 = beff,k −
γ∇f(beff,k). For any step size γ > 0, we have:

1. If beff,k > b, beff,k+1 = beff,k − 2γ, moving towards b
2. If beff,k < b, beff,k+1 = beff,k + 2γ, moving towards b

Thus, the distance to the optimum decreases in each iteration:

|beff,k+1 − b| ≤ |beff,k − b| − 2γ (42)

After k iterations, the distance to the optimum is at most:

|beff,k − b| ≤ |beff,0 − b| − 2γk (43)

Setting this to ϵ and solving for k yields

k ≥ |x0 − b| − ϵ

2γ
(44)

Thus gradient descent converges to the global minimum beff = b with rate O(1/k)

B DATA DISTRIBUTIONS

We show the data distributions for experiments in Sec. 4 in Fig. 5 and 6.

C SPARSE CT FOR RADIOTHERAPY PLANNING DETAILS

We use a de-identified CT dataset of 20 patients retrospectively treated with radiotherapy at
[redacted]. This research was conducted using an approved institutional review board protocol.
For each patient, we generate 10 digitally reconstructed radiographs (DRR) from the ground truth
CT scan using the TIGRE toolbox Biguri et al. (2016). The DRRs simulate image acquisition from
a cone-beam geometry. We simulate physical randomness (beam angle variability and sensor noise)
by generating DRRs with 3% noise and 50 random projections between 0 and 360 degrees. We use
a self-supervised model, Neural Attenuation Fields (NAF), for reconstruction (Zha et al., 2022). We
use the Radiation Planning Assistant (RPA, FDA 510(k) cleared), a web-based tool for radiotherapy
planning. (Aggarwal et al., 2023; Court et al., 2023; Kisling et al., 2018). RPA automates treatment
planning on CT images and provides dose and plan reports for clinics in low-and-middle-income
countries (Aggarwal et al., 2023; Court et al., 2023; Kisling et al., 2018). The number of projections
was increased from 2 to 50 until organ boundaries in the reconstructed volumes were perceptually
discernible in the reconstruction by the RPA. We use the default parameter setting in NAF (Zha et al.,
2022) and introduce computational randomness through random initializations of NAF (Sünderhauf
et al., 2023; Lakshminarayanan et al., 2017).
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Figure 5: Data distribution for synthetic experiments with skewed and noisy predictions. We
use N(10, 5) to simulate the ground truth (blue) distribution and added N(0, 2), W (1, 0, 5), and
−W (1,−2, 5) to the ground truth to simulate a un-, left- and right- skewed predictions (red). The
parameter descriptions can be found in the scipy.stats documentation. The dotted histograms
indicate the “unbiased” predictions Ŷ b − beff where beff is the empirical effective bias estimated
through a simple optimization procedure.

Figure 6: Data distribution for sparse view computed tomography (sparse CT) reconstruction
applied to downstream radiotherapy planning. Including max dose to the heart (Heart D0),
heart volume, volume of right lung receiving 20Gy of dose (right lung V20), dose to 35% relative
volume of the right lung (right lung D35), right lung volume, left lung volume, max dose to left lung
(Left Lung D0), and volume of the body. The predictions Ŷ b and ground truth Y are shown in red
and blue. The dotted histograms indicate the “unbiased” predictions Ŷ b − beff where beff is the
empirical effective bias estimated through a simple optimization procedure in Alg. 1.
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